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Abstract. Let X, Y be real Banach spaces and € > 0. A standard e-isometry f :
X — Y is said to be (a,7)-stable (with respect to T : L(f) = span f(X) — X for
some «,7y > 0) if T is a linear operator with ||T'|| < « such that T'f — Id is uniformly
bounded by ve on X. The pair (X,Y) is said to be stable if every standard e-isometry
f:X = Y is (a,v)-stable for some a,v > 0. The space X [Y] is said to be universally
left [right]-stable if (X,Y) is always stable for every Y [X]. In this paper, we show that
universally right-stable spaces are just Hilbert spaces; every injective space is universally
left-stable; a Banach space X isomorphic to a subspace of £~ is universally left-stable if
and only if it is isomorphic to £o; and a separable space X has the property that (X,Y)
is left-stable for every separable Y if and only if X is isomorphic to co.

1. Introduction. The study of properties of isometries between Banach
spaces and of their generalizations has continued for 80 years since Mazur
and Ulam’s 1932 celebrated result [18]: Every surjective isometry between
two Banach spaces X and Y is necessarily affine. The simple example of f :
R — ¢2 defined by f(t) = (,sint) shows that the surjectivity assumption
cannot be omitted. In 1968, Figiel [10] showed the following remarkable
result: For every standard isometry f : X — Y there is a linear operator
T : L(f) — X with ||T|| = 1 such that Tf = Id on X, where L(f) is
the closure of span f(X) in Y (see also [3] and [§]). In 2003, Godefroy and
Kalton [12] studied the relationship between isometries and linear isometries
and resolved a long-standing problem: Does the existence of an isometry
f X — Y imply the existence of a linear isometry U : X — Y7

DEFINITION 1.1. Let X,Y be Banach spaces, e >0, and let f: X — Y
be a mapping.

(1) f is said to be an e-isometry if
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(1.1) 1f(z) = fW)ll = llz = yll| <& forall 2,y € X.

In particular, a 0-isometry f is simply called an isometry.

(2) We say an e-isometry f is standard if f(0) = 0.
(3) A standard e-isometry is (c,7y)-stable if there exist o,y > 0 and a
bounded linear operator T : L(f) — X with || T|| < « such that

(1.2) ITf(x) —z|| <ve forallzeX.
In this case, we also simply say f is stable, if no confusion arises.

(4) The pair (X,Y) is said to be stable if every standard e-isometry
f: X =Y is (a,7)-stable for some a,~v > 0.

(5) The pair (X,Y) is called («,~)-stable for some o,y > 0 if every
standard e-isometry f: X — Y is («,y)-stable.

In 1945, Hyers and Ulam [15] (see also [19]) asked whether for every
pair (X,Y) of Banach spaces there is v > 0 such that for every standard
surjective e-isometry f : X — Y there exists a surjective linear isometry
U:X — Y with

(1.3) |f(x) = Uzx|| <~ve forallze X.

After many efforts of a number of mathematicians (see, for instance, [11],
[14], [15]), Omladi¢ and Semrl [19] finally achieved the sharp estimate vy = 2
in .

The study of non-surjective e-isometries has also attracted mathemati-
cians’ attention (see, for instance, [2], [4], [5], [7], [19], [20], [21] and [23]).
Qian [20] proposed the following problem in 1995.

PROBLEM 1.2. Establish whether for every pair (X,Y) of Banach spaces
there exists -y > 0 such that every standard e-isometry f: X — Y is (a,7)-
stable for some a > 0.

He showed that the answer is affirmative if both X and Y are L,, spaces.
Semrl and Viisila [21] proved that v = 2 is sharp in if both X and Y
are Ly, spaces for 1 < p < co. However, Qian [20] presented a counterexample
showing that if a separable Banach space Y contains an uncomplemented
closed subspace X then for every € > 0 there is a standard e-isometry
f X — Y which is not stable. Cheng, Dong and Zhang [4] showed the
following weak stability version.

THEOREM 1.3 (Cheng-Dong—Zhang). Let X and Y be Banach spaces,
and let f: X =Y be a standard e-isometry for some € > 0. Then for every
x* € X*, there exists ¢ € Y* with ||¢|| = ||z*|| = r such that

(1.4) (b, f(z)) — (¥, )| < der  forallx € X.

Concerning the stability of e-isometries of Banach spaces, the following
two questions are very natural.
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PROBLEM 1.4. Is there a characterization for the class of Banach spaces
X such that for any Banach space Y, the pair (X,Y) is stable (resp. («,7)-
stable) ?

Every space X in this class is said to be universally left-stable (resp.
universally (a,y)-left-stable).

PROBLEM 1.5. Can we characterize the class of Banach spaces Y such
that for any Banach space X, the pair (X,Y) is stable (resp. («,~y)-stable)?

Every space Y in this class is called universally right-stable (resp. uni-
versally (o, 7y)-right-stable).

In this paper, we study universal stability and universal right-stability of
Banach spaces. With the help of Qian’s counterexample and Theorem|1.3] in-
corporating Lindenstrauss—Tzafriri’s characterization of Hilbert spaces [17],
we show that the universally stable spaces are precisely the spaces of finite
dimension; and up to isomorphism, a universally right-stable space is just
a Hilbert space. By using Theorem we then prove that every injective
space is universally left-stable; and a Banach space X which is isomorphic
to a subspace of ¢, is universally left-stable if and only if it is isomorphic
to {. Finally, applying Zippin’s theorem [25] we verify that a separable
space X has the property that (X,Y) is stable for every separable Y if and
only if X is isomorphic to c¢p.

All symbols and notations in this paper are standard. We use X to denote
a real Banach space and X* its dual. Bx and Sx denote the closed unit
ball and the unit sphere of X, respectively. Given a bounded linear operator
T:X =Y, T*:Y* - X* stands for its conjugate operator. For a subset
A C X, A stands for the closure of A, and card(A) for its cardinality.

2. Universally (right-) stable spaces for c-isometries. In this sec-
tion, we establish some properties of the class of universally left (right)-stable
spaces for e-isometries.

Recall that a Banach space X [Y] is universally left [right]-stable if for
every Banach space Y [X] and for every standard e-isometry f : X — Y,
there exist o,y > 0 and a bounded operator T : L(f) — X with ||T]| < «
such that

(2.1) ITf(z) —x|| <~ve forall ze X.

A universally stable space is a Banach space which is both universally left-
stable and universally right-stable. We will show that inequality holds
for every Banach space X if and only if Y is, up to linear isomorphism,
a Hilbert space; and universally stable spaces are just finite-dimensional
spaces.

The following lemma follows from Qian’s counterexample [20)].
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LEMMA 2.1. Let X be a closed subspace of a Banach space Y . If card(X)
= card(Y'), then for every € > 0 there is a standard e-isometry f: X — Y
such that

(1) L(f) =span f(X) =Y;

(2) X is complemented whenever f is stable.

THEOREM 2.2. Let Y be a Banach space. Then the following statements
are equivalent:

(i) Y is universally right-stable;
(ii) Y is isomorphic to a Hilbert space;
(iii) Y is universally (o, 4)-right-stable for some o > 0.

Proof. (i)=-(ii). By definition, every closed subspace of Y is again uni-
versally right-stable. Fix any closed separable subspace Z of Y. By Lem-
ma [2.1] universal right-stability of Z entails that every closed subspace of Z
is complemented in Z. According to Lindenstrauss-Tzafriri’s theorem [17]:
“a Banach space such that every closed subspace is complemented is iso-
morphic to a Hilbert space”, Z is isomorphic to a (separable) Hilbert space.
Hence, Y itself is isomorphic to a Hilbert space.

(ii)=-(iii). Suppose that Y is isomorphic to a Hilbert space H. Let a =
dist(Y, H), the Banach-Mazur distance between Y and H. Then every closed
subspace of Y is a-complemented in Y. Given € > 0 and any standard e-
isometry f: X — Y, according to Theorem 4.8 of [4], inequality holds
for some T': L(f) — X with ||T|| < a and with v =4, i.e., Y is universally
(c, 4)-right-stable.

(iii)=(i). This is trivial. m

THEOREM 2.3. A normed space X is universally stable if and only if it
1s finite-dimensional.

Proof. Sufficiency. Since every finite-dimensional normed space is iso-
morphic to a Euclidean space, Theorem [2.2] entails that it is universally
right-stable. Moreover, Theorem 3.4 of [4] says that n-dimensional spaces
are universally left-stable with v = 4n.

Necessity. Suppose, to the contrary, that X is infinite-dimensional. Since
X is also universally right-stable, according to Theorem we have just
proven, it is isomorphic to a Hilbert space. Since every closed subspace
of a universally right-stable space is again universally right-stable, we can
assume that X is separable. Thus, X is isometric to a subspace of £,. Since
ls is prime [16] (i.e. every complemented infinite-dimensional subspace is
isomorphic to it), X is uncomplemented in {,. Note card(X) = card({).
By Lemma there is an unstable standard e-isometry f : X — { for
every € > 0, which contradicts the universal stability of X. =
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3. Universally left-stable spaces. In this section, we consider prop-
erties of universally left-stable spaces. We shall show that (1) every injective
Banach space is universally left-stable; (2) a Banach space isomorphic to a
subspace of £, is universally left-stable if and only if it is isomorphic to £,
and (3) for a separable Banach space X, (X,Y) is stable for every separable
Banach space Y if and only if X is a separably injective Banach space.

A Banach space X is said to be A-injective (or simply injective) if it has
the following extension property: Every bounded linear operator 1" from a
closed subspace of a Banach space into X can be extended to a bounded
operator on the whole space with norm at most A|T|| (see, for instance,
[1]). Goodner [13] introduced a family of Banach spaces coinciding with the
family of injective spaces: for any A > 1, a Banach space X is a Py-space if,
whenever X is isometrically embedded in another Banach space, there is a
projection onto the image of X with norm not larger than A. The following
result is due to Day [6] (see also Wolfe [24] and Fabian et al. [9] p. 242]).

PROPOSITION 3.1. A Banach space X is A-injective if and only if it is
a Py-space.

REMARK 3.2. For any set I', that £ (I") is 1-injective follows from the
Hahn-Banach theorem.

THEOREM 3.3. Every A-injective space is universally (X, 4\)-left-stable.

Proof. Let X be a A-injective Banach space. We can assume that X
is a closed complemented subspace of ¢ (I"); otherwise, we can identify
X with its canonical embedding J(X) as a subspace of ¢ (I"), where I’
denotes the closed ball Bx« of X*. Hence, it is A-complemented in ¢o ().
Let P : {5 (I") — X be a projection such that |P| < \. Given any 8 € I,
let 0g € £oo(I")* be defined for @ = (z(v))yer € €oo(I") by dg(x) = z(B).
Assume that f : X — Y is a standard e-isometry. For every z* € X*, by
Theorem [1.3] there is ¢ € Y* with |¢|| = ||z*|| such that

(3.1) (o, f(x)) — (x*,z)| < 4el|z”|| forall z € X.
In particular, letting 2* = ¢, in (3.1) for every fixed v € I', we obtain a
linear functional ¢., € Y* satisfying (3.1]) with ||¢, || = ||0y||x < 1. Therefore,
(0 (¥))yer € loo(I") for every y € Y.
Let T(y) = P(¢4(y))yer for all y € Y, and note that P|x = Ix, the
identity from X to itself. Then ||T|| < ||P|| < A and for all z € X,
ITf(z) — 2l = [|1P(d1(f(2)))yer — (05 (2))rerll
= [[P(¢(f(2)))yer — P((0y(x))yer)|
< 1P 1@y (f(@)rer — (Oy(z))rerfloe < 4Ae. m

THEOREM 3.4. Let X be a Banach space isomorphic to an infinite-
dimensional subspace of ls. Then the following statements are equivalent:
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(i) X is universally left-stable;
(ii) X is isomorphic to lso;
(ili) X is universally (X, 4X)-left-stable, where X\ = dist(X, {x).

Proof. (i)=(ii). Since dim X = oo and since it is isomorphic to a sub-
space of £, we have

(3.2) card(X) > X = RY = card(RY) = card(ls,) > card(X).

Assume that X is universally left-stable. We can put an equivalent norm |||- |||
on £ such that X is isometric to a closed subspace of ({x, |||-]||). Indeed, let
T : X — ly be a linear embedding and let | - | on Z = T'(X) be defined by
|z| = ||z|| for all z = Tx € Z. Then, we choose a sufficiently large A > 0 and

define ||| - ||| on 4o by [||ul|] = inf{|v| + A||u —v|| : v € Z}. Clearly, the norm
|l| - |l has the property we desired. Applying Lemma we observe that
X is complemented in (¢, ||| - |||), hence in f,. By Lindenstrauss’ theorem

[16], X is isomorphic to £n.

(ii)=-(iii). Suppose that X is isomorphic to f. Since lo, is 1l-injective
(Remark [3.2), X is necessarily A-injective (A = dist(X,/s)). By Theo-
rem 3.3, X is universally (A, 4\)-left-stable.

(iii)=-(i). This is trivial. m

A separable Banach space X is said to be separably injective if it has
the following extension property: Every bounded linear operator from a
closed subspace of a separable Banach space into X can be extended to a
bounded operator on the whole space. In 1941, Sobczyk [22] showed that ¢
is separably injective, and Zippin ([25], 1977) further proved that cq is, up
to isomorphism, the only separable separably injective space.

With the aid of Zippin’s theorem, we can prove the following theorem,
which says that ¢ is (up to isomorphism) the only space satisfying inequality
for every separable Y.

THEOREM 3.5. Let X be a separable Banach space. Then the following
statements are equivalent:

(i) (X,Y) is stable for every separable Banach space Y ;
(ii) X s isomorphic to co;
(iii) (X,Y) is (2ct, 8cx)-stable for every separable Banach space Y, where
a=||T| T~ for any isomorphism T : X — cp.

Proof. (i)=-(ii). Suppose that X is not isomorphic to c¢g. Then by Zip-
pin’s theorem, X is not separably injective. Therefore, there exists a sepa-
rable Banach space Y which contains X as an uncomplemented subspace.
Clearly, card(X) = card(Y). By Lemma again, for every € > 0, there is
a standard e-isometry f: X — Y which is not stable.
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(ii)=-(iii). Let X be a Banach space isomorphic to ¢y and T': X — ¢
be an isomorphism. Assume that (e;)>° is the canonical basis of ¢y with
the standard biorthogonal functionals (e})5°; C ¢;. Let (x,) C X satisfy
Tx, = e, for all n € N, and let T* : {1 — X™* be the conjugate operator
of T'. Then

Tz = Z(T*eq*z)(ff)en and z = Z(T*e;;)(:n)T_len, for all x € X.

Let a = ||T||-|| T, z} = T*e}, € |T||Bx~ for all n € N, and note z,, =
T~ 'e, € X. By Theorem [L.3] there exists ¢, € | T By~ with ||¢,|| = [|2%]]
such that

(3.3) (b, f(2)) — (27, 2)| < 4e|T|| for all z € X.

Since e;; — 0 in the w*-topology of ¢; = c¢f;, we have z;, = T™e;; — 0 in
the w*-topology of X*. Let

(84)  K={0c|TIBE™): |, f(@)) <4e|T] for all » € X},

Then K is a nonempty w*-closed compact subset of Y*. Since Y is separable,
(|T)|By=,w*) is metrizable. Let p be a metric such that (||T||By=,p) is
isomorphic to (||T||By=,w*). Since (||T’||By~, p) is a compact metric space
and since K is a compact subset of it, (¢,) C K has at least one sequential
p-cluster point. Since (z}) is a w*-null sequence in X*, inequality
entails that any p-cluster point ¢ of (¢,,) is in K and ||¢] < || T*] = ||T].
This further implies that dist,(¢,, ) — 0. Consequently, there is a sequence
(¢n) C K such that dist,(¢n,¥n) — 0, or equivalently ¢, — 1, — 0 in the
w*-topology of Y*. Hence, for every y € Y,

(3.5) Uy = (én—tn.y)en € co

n=1
and
(3.6) Uyl < (Sup l[én — wnn) lyll < 20T ]l

neN
that is, U] < 2[T.
Finally, let
(37 S =T (Uy) =) (én—tnyzn foralyey.
n=1

Then
IS = 1T~ U < 2|7 - IT7]| = 2

and
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1S£(0) = all = | 32160 — b FDtn — oz
n=1

n=1

n—o0

— 1 || 32001 = v ) —i@r,xm
i=1 i

=1
— i || (6 £ — (ot — 3w F@)as
i=1 =1
<1mépuz (60,1 () — (& )i + limsu @)
i=1
=nmpHT*Z«@,f(x»—<x:,x>>e@- msu ”(Z(%f( Des) |
i=1 i=1

SC>€Z‘>

< - ims (| 30460 ) — o0
=1

<7 (sup {00,/ () = (a 2)] + sup (W, ()]
< 8&||T| - |IT7|| = 8ean.

Thus, our proof is complete. m
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