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Corrigendum to “Carleson measures associated with
families of multilinear operators”
(Studia Math. 211 (2012), 71-94)

by

LoukAs GRAFAKOS (Columbia, MO) and
Lucas OLIVEIRA (Porto Alegre, RS)

Abstract. We provide a modification for part of the proof of Theorem 1.2 of our
article, pages 85-89, under the multivariable T'(1) cancellation condition.

In this note we fix an erroneous derivation in [2]. We do not introduce any
notation here but we adhere to the notation introduced in that article.

We reexamine the pointwise estimates for L; s, . s,., defined in equation
(4.21) of [2] as the kernel of the m-linear operator O(Qs, f1, ..., @s,, fm)-
We claimed in (4.25) that when sq1,..., s, >t we have

(01> |@t(Qs1f17 s 7Qsmfm)| 5 w(817 ‘. '7Sm7t) HM(fZ> )
=1
where

[t osi\©
(0.2) w(sl,...,sm,t):Hm1n<',t>

for some € > 0. Although (0.1)) holds for some function w(sy, ..., Sm,t), it
is not valid for the specific function in (0.2)); in particular it is not the case
that

o0 o0
dsy dsm,

sup \ -+ \ w(s1,...,8m,t) — - — < 0
t(S) (S) ( ) 77717)81 Sm )

which is required to complete the proof in [2].

In what follows, we fix this point providing an alternative argument,
which resembles the approach in [3]. Basically, we need to prove the in-
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equality
n
|OuT; s(f1, -, fn) (@) Sw(t,s) [ M(fi)(2) Y M(Q2F f)(x).
iF#] =1
We first state a proposition about the Calderon reproducing formulae
for tensor products that will be useful in this revision.

ProposiTIiON 0.1. Denote by

(fl ®"'®fm)(x17'-‘733m) = fl(xl)fm(xm)

the tensor product of m functions and let Psf = psx f be a convolution oper-
ator with a nice function that satisfies P2f — f when s — 0 and P2f — 0
when s — oo (convergence in LP norm or in the sense of distributions).
Then the following Calderén representation formulae hold (see [1l, p. 199]
for the case m = 1) for Schwartz functions f;:

f1®...®fm:lim(P3f1®"'®P52fm_P12/sf1®"' 1/6fm)
B d, 9 ds
151(1) d (Pifi®-- ®me)s

/e

) s

| sdi Pfi®--® Pffm)%
S
0

0
_ ds
Z HJ7S flv"’?fm)?7

Jj=1

where
. — 2 .. 7d 2 . DR 2
H],S(f17"'7fm)_Psf1® ® S Psfj b2y ®Psfm

and where s- 4 p2 gre operators of the type Q2 introduced in [2, p. 75], that

S
18, squares of Littlewood—Paley projections.

The following formula, which can be found in [1], gives an explicit expres-
sion for the derivatives of squares of Littlewood—Paley projections (where
now we adopt the notation of [2], and write Q? instead of P? for the
Littlewood—Paley projections):

d o - k1 k2
SdSQS_;QS Qs .

In the preceding expression, Q?’I,QIEQ are operators given by multiplica-
tion on the Fourier transform with bumps supported in balls and annuli,
respectively, of size comparable to s .
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We can use all this information together to obtain the decomposition

O fis- s fm) = Ol fi ® - ® frn) = ét(S Sd%(ngl ® - © Q1 fm) is>
0
" m o0 d
=6 X muli o )Y
j=10
m o d
=Y VOl f))
j=10
Applying duality gives
T d
(03)  [IS(f1,-- s fn)lo= sup || § ©ulfr, .. .,fm><m>h<x,t>{dx :
Hh”p/,le R™ 0O

Using the above expression we obtain

o0

04 || V6. .,fm)(g;)h(x’t)%d$
R" 0
| T V(S Ottt o)) Jiant) o
R? 0 j=10
- Z S S @tﬂj78(fla'~~afm)($)h(x’t>Citdsdx’
Jj=1R7 0 0 S
S|V T {Outmuth ) @nten 2
j=1'R" 0 0
S Tr 1/2
S Z S (S S ‘Qtﬂjﬁ(fla 7fm)(w)|2w(t, )16296?:>
J=1'R™ *0 0
X (S) é!h(:r,tﬂw(t, );t> dx'7
where

for some € > 0. An easy calculation allows us to deduce

(Rn (?OSO I, 1) Pw(t, s) % ?)p'mdw) 1!

00
o L2\
(T (Tmeor) ) = lalye
R’VL

0
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Proceeding exactly as in the case of one-variable cancellation, we reduce
the problem to showing that

(0.5) @I s(frs s frn)(@)] S wlt,s) [ [ M(fi)(x) Y M(QE*f) ().
i#j k=1
This follows using the same idea as in the one-variable case.
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