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On continuity of measurable group representations
and homomorphisms

by

Yulia Kuznetsova (Luxembourg and Besançon)

Abstract. Let G be a locally compact group, and let U be its unitary representation
on a Hilbert space H. Endow the space L(H) of bounded linear operators on H with
the weak operator topology. We prove that if U is a measurable map from G to L(H)
then it is continuous. This result was known before for separable H. We also prove that
the following statement is consistent with ZFC: every measurable homomorphism from a
locally compact group into any topological group is continuous.

Let G be a locally compact group. We consider its unitary representa-
tions, that is, homomorphisms U from G into the group U(H) of unitary
operators on a Hilbert space H. One gets a rich representation theory if
the representations considered are weakly continuous, i.e. such that for every
x, y ∈ H the coefficient f(t) = 〈U(t)x, y〉 is a continuous function on G. This
requirement is equivalent to strong continuity, i.e. continuity of the function
F (t) = ‖U(t)x‖ for every x ∈ H. Representations satisfying any of these
conditions will be further called continuous.

In certain cases it happens that every representation is automatically
continuous, as, notably, every finite-dimensional unitary representation of
a connected semisimple Lie group. This theorem was proved for compact
groups by van der Waerden [27] and in the general case by A. I. Shtern [26].
But in general it is easy to construct discontinuous representations, so for
automatic continuity, one has to assume some sort of measurability at least.
A commonly used notion is as follows. Say that a representation U of a lo-
cally compact group G on a Hilbert space H is weakly measurable if every
coefficient f(t) = 〈U(t)x, y〉 is a measurable function on G. Every weakly
measurable unitary representation must be continuous if it acts on a sepa-
rable Hilbert space [14, Theorem V.7.3].
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However, in general this does not imply continuity: if G is non-discrete,
then the regular representation of G on the space `2(G) of countably sum-
mable sequences on G is weakly measurable but discontinuous. In this paper
we prove that the separability restriction can be removed if we use a slightly
stronger notion of measurability. Let L(H) be the space of bounded linear
operators on the Hilbert space H, endowed with the weak operator topology
(it is generated by the functions fxy for all x, y ∈ H, where fxy(A) = 〈Ax, y〉,
A ∈ L(H)). Say that U is weakly operator measurable if U−1(V ) is measur-
able for every open set V ⊂ L(H). Now we can formulate the main result of
this paper (Theorem 1.5): every weakly operator measurable unitary repre-
sentation of a locally compact group is continuous.

The proof is based on a generalization of the so-called Four Poles Theo-
rem: if A is a point-finite family of null sets with nonnull union in a Polish
space, then there is a subfamily in A with a non-measurable union (this
was proved initially by L. Bukovský [5] and then in a much simpler way
by J. Brzuchowski, J. Cichoń, E. Grzegorek and C. Ryll-Nardzewski [4]).
In Lemma 1.4, we prove the same result for subsets of any locally com-
pact group, with the restriction that the cardinality of A is not more than
continuum.

The second part of the paper deals with automatic continuity of more
general group homomorphisms. This question is most actively studied for ho-
momorphisms between Polish groups; see a recent review of C. Rosendal [25].
The notion of Haar measurability of f : G→ H is here replaced by universal
measurability : the inverse image of every open set is measurable with respect
to every Radon measure on G. It is known that every universally measurable
homomorphism from a locally compact or abelian Polish group into a Polish
group, or from a Polish group to a metric group, is continuous. There are
also generalizations to other subclasses of Polish groups by S. Solecki and
Rosendal. We omit results on other types of measurability (in the sense of
Souslin, Christensen etc.).

If G is not supposed to be Polish, the results are fewer. The most general
statement is probably the theorem of A. Kleppner [22]: every measurable ho-
momorphism between two locally compact groups is continuous. It has been
generalized to some special classes of groups by J. Brzdęk [3]. If one makes
no assumptions on the image group, it seems inevitable to impose additional
set-theoretic axioms instead. The only result in this direction known to the
author belongs to J. P. R. Christensen [6]: under Luzin’s hypothesis, every
Baire, in particular, every Borel measurable homomorphism from a Polish
group to any topological group is continuous. Our Theorem 2.5 is proved un-
der Martin’s axiom (MA): every measurable homomorphism from a locally
compact group to any topological group is continuous.
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Theorem 2.5 is reduced to the following question. Let G be a locally
compact group; call a set A ⊂ G extra-measurable if SA is measurable for
any S ⊂ G. An obvious example of an extra-measurable set is any open set.
Existence of discontinuous measurable homomorphisms implies existence of
null extra-measurable sets; but under MA, as Theorem 2.4 shows, the lat-
ter do not exist, so every measurable homomorphism is continuous. In the
commutative case, the question of automatic continuity is even equivalent
to the existence of a certain sequence of null extra-measurable sets (Propo-
sition 2.2).

1. Continuity of unitary representations

Definitions and notations. On a locally compact group G, we fix
a left Haar measure µ and the corresponding outer measure µ∗. A map
f : G → Y , where Y is a topological space, is called measurable if f−1(Y )
is Haar measurable for every open set U ⊂ Y . For a set A, |A| denotes its
cardinality.

There are two approaches to the construction of Haar measures. One,
used by E. Hewitt and K. A. Ross [16], yields an outer regular measure:
for every measurable set E, one has µ(E) = inf{µ(U) : E ⊂ U, U open}.
Another one, taken by D. H. Fremlin [13], leads to an inner regular measure:
µ(E) = sup{µ(F ) : F ⊂ E, F compact}.

In the σ-finite case, in particular, on a σ-compact group, both construc-
tions give the same resulting measure, which is both inner and outer regular.
If G is not σ-compact, the approach of [16] gives rise to the following patho-
logical sets. A set A ⊂ G is called locally null [16, 11.26] if µ(A∩K) = 0 for
every compact set K ⊂ G. Equivalently, A does not contain any set of posi-
tive finite measure. Of course, if A is null then A is locally null. Every locally
null set A is measurable, and either µ(A) = 0 or µ(A) = ∞. In Fremlin’s
treatment, there are no locally null nonnull sets.

The results of this paper, in particular Theorem 1.5, are valid for both
definitions of the Haar measure.

It is known [14, IV.2.16 and V.7.2] that every unitary representation
of a locally compact group may be decomposed into a direct sum U =
U1⊕U2, where U1 is continuous and every coefficient of U2 is (locally) almost
everywhere zero. We will say that U2 is singular. If U acts on a separable
space then U2 = 0 [14, Theorem V.7.3].

Let U act on a Hilbert space H. Endow the space L(H) of bounded
linear operators on H with the weak operator topology (generated by the
functions fxy for all x, y ∈ H, where fxy(A) = 〈Ax, y〉, A ∈ L(H)). If U is
a measurable map from G to L(H), we will say that U is weakly operator
measurable.
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The following lemma is known [13, 443P].

Lemma 1.1. Let G be a σ-compact locally compact group, K its compact
normal subgroup, and let π : G → G/K be the quotient map. If A ⊂ G is
such that A = AK then A is measurable (resp. null) in G if and only if π(A)
is measurable (resp. null) in G/K.

The following two facts will be used in further proofs several times, so
we prefer to state them separately.

Remark 1.2 (Pro-Lie and Polish groups). Recall that a topological
group is called pro-Lie if it is an inverse (projective) limit of (finite-dimen-
sional) Lie groups (see [18]). It is known that in every locally compact group
there is an open pro-Lie subgroup [18, p. 165]. If G is a locally compact
group and G = lim←−i∈I Gi, where every Gi is a Lie group, then these groups
can be chosen as Gi = G/Ki, where every Ki is a compact normal subgroup
of G, and the order on I is just inclusion of Ki. Every σ-compact Lie group
is Polish (it is first countable, hence metrizable [17, Theorem A4.16], and
further apply [2, Chapter IX, §6, Corollary of Proposition 2]). If all Gi are
σ-compact and I is countable, G is Polish too ([2, §6, Proposition 1a,b]).

Remark 1.3 (Baire sets in direct products). Baire sets ([15, §51]) are
the elements of the σ-algebra generated by all compact Gδ-sets. In the case of
a σ-compact locally compact group (the only case we will need), this is also
the σ-algebra generated by all zero sets of continuous functions (in [16, 11.1],
this latter property is taken as a definition). Consider the direct product of a
family of locally compact groups, G =

∏
j∈J Gj . This is a topological group,

which is not necessarily locally compact. Let G ⊂ G be a closed σ-compact
subgroup. For any I ⊂ J let πI : G →

∏
j∈I Gj be the natural projection. We

say that a setX ⊂ G depends on the coordinates I ⊂ J ifX = G∩π−1I (πIX).
If F =

⋂
Un is a compact Gδ set in G, then for every n the open set Un can

be chosen as a finite union of basic neighbourhoods in G, each depending
on a finite number of coordinates. It follows that every such F , and as a
consequence every Baire set, depends on a countable set of coordinates.

Lemma 1.4. Let A = {As : s ∈ S} be a point-finite family of null subsets
of a σ-compact locally compact group G. If |A| ≤ c and

⋃
A is nonnull, then

there is B ⊂ A such that
⋃
B is nonmeasurable.

Proof. Let H ⊂ G be an open pro-Lie subgroup, which we can assume
to be compactly generated. Since G is a countable union of H-cosets, there
is t0 ∈ G such that (

⋃
A) ∩ t0H is nonnull. Define A′s = (t−10 As) ∩ H for

all s; then the family A′ = {A′s : s ∈ S} satisfies all the conditions of
the lemma and is contained in H. Moreover, if a union

⋃
{A′s : s ∈ T} is

nonmeasurable, then so is
⋃
{As : s ∈ T}. Thus, we can assume that G = H,
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i.e. G = lim←−i∈I Gi is σ-compact and pro-Lie. In this case every Gi = G/Ki is
a σ-compact Lie group, hence Polish. We assume that every Gi is nontrivial,
otherwise G = {1} and the family A would not exist.

We can assume that S ⊂ R. Let Q = {qm : m ∈ N} be an enumeration
of the rationals, and let Wmn =

⋃
{As : |s − qm| < 1/n}. For every s ∈ S,

choose sequences n(s)k ,m
(s)
k so that |s − q

m
(s)
k

| < 1/n
(s)
k and n(s)k → ∞ while

n
(s)
k+1 > n

(s)
k for all k. Then As =

⋂
kWn

(s)
k m

(s)
k

for every s. Indeed, every point
x ∈ As is contained in this intersection; if x /∈ As then x ∈ Ati for an at
most finite set of points ti 6= s; and every ti can be separated from s by some
interval |q

m
(s)
k

− s| < 1/n
(s)
k , so that x /∈W

n
(s)
k m

(s)
k

.
If one of the sets Wmn is nonmeasurable, the lemma is proved. Suppose

that every Wmn is measurable. By [16, 19.30b], there exists a Baire set
Bmn ⊂ Wmn such that Nmn = Wmn \ Bmn is null. Further, for every n,m
there is a null Baire set N ′mn ⊃ Nmn. Let N =

⋃
m,nN

′
mn. Then N is a Baire

set, so Wmn \N = Bmn \N is Baire for all m,n. Let Wmn \N depend on the
countable set of coordinates Jmn. Then every As \ N =

⋂
k(Wn

(s)
k m

(s)
k

\ N)

depends on the coordinates J =
⋃
m,n Jmn, and the set J is countable.

Extending J if necessary, we can assume that the family {Kj : j ∈ J}
is closed under finite intersections. Denote K =

⋂
j∈J Kj . Then G/K =

lim←−j∈J G/Kj is a Polish group. Let π : G → G/K be the quotient map,
and put A′s = π(As \ N). Then, since As \ N = (As \ N)K, the family
A′ = {A′s : s ∈ S} is point-finite, and by Lemma 1.1 we see that A′s is null
for all s, while

⋃
A′ = π(

⋃
A) is nonnull. By the Four Poles Theorem for

the Polish case [4] we get B′ ⊂ A′ such that
⋃
B′ is nonmeasurable. Put

B = {As : A′s ∈ B′}. Then
⋃
B \N = π−1(∪B′) is nonmeasurable, so B is as

desired.

A simple example shows that in the Hewitt & Ross approach, this theo-
rem is not true for a non-σ-compact group. Let Rd be the real line with the
discrete topology, and consider the direct product Rd×R. ThenX = Rd×{0}
is measurable of infinite measure (this is an example of a locally null, nonnull
set [16, 11.33]). Every uncountable subset of X is also measurable with infi-
nite measure, and every countable subset is null. Thus, if we put At = {(t, 0)}
and A = {At : t ∈ Rd}, then every At is null,

⋃
A is nonnull, but every sub-

family of A has a measurable union. In Fremlin’s approach, this example
does not appear.

Theorem 1.5. Let G be a locally compact group. Then every weakly
operator measurable unitary representation of G is continuous.

Proof. Let U : G → L(H) be a representation acting on a Hilbert
space H. Clearly U is continuous if and only if its restriction to any open
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subgroup is continuous. In G, there is an open compactly generated pro-Lie
subgroup (e.g., the intersection of an open pro-Lie subgroup and the sub-
group generated by a pre-compact neighbourhood of identity). So we can
assume that G = lim←−i∈I G/Ki is itself compactly generated and pro-Lie; in
particular, G is σ-compact.

Take any x ∈ H with ‖x‖ = 1. Put f(t) = 〈U(t)x, x〉 and S = {t ∈ G :
f(t) 6= 0}. We can assume that U is singular; then S is null. Suppose towards
a contradiction that U 6≡ 0; then e ∈ S.

Let us show that S has a null projection onto a Polish quotient of G. By
[16, 19.30b], there exists a null Baire set B ⊃ S. Every Baire set (Remark 1.3)
depends on a countable number of coordinates. Let J ⊂ I be a countable set
such that B = π−1J πJB. By extending J if necessary, we can assume that the
family {Kj : j ∈ J} is closed under finite intersections. Define K =

⋂
j∈J Kj .

Then G/K = lim←−j∈J G/Kj is a Polish group. Let π : G → G/K be the
quotient map and let S′ = π(S); then S′ ⊂ π(B) is null.

Choose an enumeration (probably with repetitions) {Pα : α < c} of
perfect nonnull sets in G/K. It is known that there are at most continuum
many such sets. By induction, we will choose points tα, α < n, with some
ordinal n ≤ c so that

⋃
{tαS′ : α < n} is nonnull (in G/K) and tα /∈

⋃
{tβS′ :

β < α} for every α > 0. Set t0 = e. For every α, let Tα = {tβ : β < α}. If
TαS

′ is nonnull, stop the procedure. Otherwise Pα \ TαS′ 6= ∅, and choose
tα as any point of this set. Let n be the ordinal on which we stopped the
induction, or n = c if it was not stopped. Set T = Tn. If n < c then as
assumed µ∗(TS′) > 0; if n = c then TS′ intersects every nonnull perfect set
in G/K, so it is of full measure. In either case TS′ is nonnull.

For every α < n, choose any zα ∈ π−1(tα) and set Z = {zα : α < n}. It
follows that ZSK = π−1(π(ZS)) = π−1(TS′) is nonnull in G. Recall that
K is a normal subgroup, so ZSK = ZKS. Define now

(1.1) Sn = {t ∈ G : |f(t)| = |〈U(t)x, x〉| > 1/n}.

Then S =
⋃
n Sn and ZKS =

⋃
n ZKSn. It follows that ZKSN is nonnull

for some N ∈ N.
We claim that the family A = {zαKSN : α < n} is point-finite. To

prove this, we first show that U(zαk2)x ⊥ U(zβk1)x for any α 6= β and any
k1, k2 ∈ K. Suppose that α > β. Then (zβk1)

−1zαk2 /∈ S, because otherwise
we would have zα ∈ zβk1Sk

−1
2 ⊂ zβKSK = zβSK

2 = zβSK and hence
tα = π(zα) ∈ π(zβSK) = tβS

′, which is impossible by the choice of tα. This
gives us

0 = f((zβk1)
−1zαk2) = 〈U((zβk1)

−1zαk2)x, x〉 = 〈U(zαk2)x, U(zβk1)x〉,

that is, U(zαk2)x ⊥ U(zβk1)x.
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Next, if t ∈ zαKSN then there is kα ∈ K such that (zaka)
−1t ∈ SN ,

i.e. |〈U(t)x, U(zαkα)x〉| > 1/N . As we have shown above, U(zαkα)x are
orthogonal for different α; since U is unitary, they have norm 1. By Bessel’s
inequality we have, for any t ∈ G,

1 = ‖x‖2 = ‖U(t)x‖2 ≥
∑

α: t∈zαKSN

|〈U(t)x, U(zαkα)x〉|2

> N−2|{α : t ∈ zαKSN}|.

So A is point-finite. It has cardinality |A| = |Z| = n ≤ c and a nonnull union⋃
A = ZKSN . Every zαKSN ⊂ zαKS = zαπ

−1(S′) is a null set. Thus, we
can apply Lemma 1.4 to get B ⊂ A such that

⋃
B is nonmeasurable. Now

recall that by formula (1.1), SN is the inverse image of an open set in L(H).
The same is true for every translate of SN and for unions of such translates,
in particular for every zαKSN and for

⋃
B. Being the inverse image of an

open set,
⋃
B must be measurable. This contradiction proves the theorem.

2. Continuity of group homomorphisms. The content of this section
is valid for both treatments of the Haar measure. For the inner regular variant
adopted in [13], it suffices to ignore the bracketed “locally” everywhere.

Let G be a locally compact group. Call a set A ⊂ G extra-measurable if
SA is measurable for every set S ⊂ G. Every open set is extra-measurable,
while a one-point set is not, unless the group is discrete. As shown below
(Theorem 2.1), existence of discontinuous measurable homomorphisms im-
plies existence of [locally] null (definition below) extra-measurable sets. It is
consistent with ZFC (Theorem 2.4) that a nonempty [locally] null set can-
not be extra-measurable, so it is consistent that every measurable homomor-
phism from a locally compact group to any topological group is continuous.
It is an open question whether this statement is true in ZFC without any
additional axioms. Already in the basic case of the real line the answer is un-
known, but for commutative groups one can make the question more precise
(Proposition 2.2).

Theorem 2.1. Let G be a locally compact group. If there exists a ho-
momorphism ϕ : G → H to a topological group H which is measurable
but discontinuous, then there is a family A of nonempty [locally ] null extra-
measurable sets such that for every A ∈ A:

(2.1) A−1 = A; ∃B ∈ A : B2 ⊂ A; ∀x ∈ G ∃C ∈ A : x−1Cx ⊂ A.

Proof. Suppose that such a ϕ exists. Let U be an open neighbourhood
of identity in H and let A = ϕ−1(U). Then for any S ⊂ G we have SA =
ϕ−1(ϕ(S)U). Indeed, the inclusion ϕ(SA) ⊂ ϕ(S)ϕ(A) = ϕ(S)U is obvious.
For the opposite inclusion, take z ∈ ϕ−1(ϕ(S)U) and choose s ∈ S, a ∈ A
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such that ϕ(z) = ϕ(s)ϕ(a) = ϕ(sa). Let (sa)−1z = t; then t ∈ kerϕ. Since
ϕ(at) = ϕ(a) ∈ U , we have at ∈ A and z = sat ∈ SA.

Now SA is the inverse image of an open set ϕ(S)U , so it must be mea-
surable. Thus, A is extra-measurable.

Suppose that ϕ−1(U) is not [locally] null for every U . Take an open
neighbourhood of identity V such that V −1V ⊂ U . Then B = ϕ−1(V ) is by
assumption also non-[locally] null. It then contains a set C with 0 < µ(C)
< ∞, so C−1C contains a neighbourhood of identity W ⊂ G [16, 20.17].
Then ϕ(W ) ⊂ ϕ(C−1C) ⊂ V −1V ⊂ U , so ϕ−1(U) ⊃ W . Since U was
arbitrary, this implies that ϕ is continuous.

Thus, under the assumptions of the theorem there is U such that ϕ−1(U)
is [locally] null. Let V be a base of neighbourhoods of the identity in H such
that V ⊂ U and V = V −1 for every V ∈ V. Denote A = {ϕ−1(V ) : V ∈ V};
then this family has the properties (2.1).

The conditions (2.1) guarantee that if we take A as a base of neighbour-
hoods of the identity in G, this turns G into a topological group [2, IV, §2].
However, it does not follow immediately that the identity map on G is mea-
surable, i.e. in general we do not get a converse of this theorem. Equivalence
holds in the commutative case:

Proposition 2.2. Let G be a commutative locally compact group. The
following are equivalent:

(i) There is a homomorphism ϕ : G→ H to a topological group H which
is measurable but discontinuous.

(ii) There is a sequence of [locally ] null extra-measurable sets An such
that, for every n, A−1n = An and A2

n+1 ⊂ An.
Proof. (i)⇒(ii): Proved in Theorem 2.1.
(ii)⇒(i): Take the sets An as a base of neighbourhoods of the identity

in G; this turns G into a topological group which we can denote H. (Note
that H is metrizable if

⋂
An = ∅.) The identity map ϕ : G→ H is obviously

discontinuous. At the same time, for every open set U ⊂ H we have U =⋃
TnAn for some sets Tn; all TnAn and hence U = ϕ−1(U) are measurable,

so ϕ is a measurable map and (i) holds.

Existence of sets as in Proposition 2.2(ii) is an open question even on
the real line. Known results on automatic continuity mostly concern Polish
groups; here they do not give a ready answer, since the group H obtained in
the proof may not be complete (i.e. not Polish).

Let add(N ) be the minimal cardinality of a family J of null sets on the
real line G such that

⋃
J is nonnull. This is called the additivity of the

ideal N of Lebesgue null sets in G. It is known that additivity of the ideal
of Haar null sets is the same for every nondiscrete locally compact Polish
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group [13, 522Va]. It is consistent with ZFC that add(N ) < c, but it follows
from Martin’s axiom (MA) that add(N ) = c (see [12]). This is, in fact, the
assumption that we use in our proof. It is known that Martin’s axiom follows
from the continuum hypothesis, but is also consistent with its negation. For
further discussion of Martin’s axiom, we refer to Fremlin’s monograph [12].

A. Kharazishvili has indicated in private correspondence that the follow-
ing statement holds for a commutative Polish group:

Lemma 2.3. (MA) Let G be a locally compact Polish group, and let
A ⊂ G be a nonempty set of measure zero. Then there is a set S ⊂ G such
that SA is nonmeasurable.

Proof. If G is countable, then by local compactness it has all points
isolated, and the measure of every point is positive. Then the set A in the
assumption cannot exist. Thus, G is uncountable without isolated points.
Note that G is σ-compact [11, Theorems 3.3.1, 3.8.1, 3.8.C(b)].

We will construct S so that both SA and G \ SA intersect every perfect
set of positive measure. Then SA must be nonmeasurable, since the inner
measure of SA and G \ SA is zero.

By translating A, and then S, if necessary, one can assume that e ∈ A.
Note that A−1 also has measure zero—this follows, e.g., from [16, 20.2] or
[13, 442K].

Since G is separable and uncountable, there are exactly continuum many
closed sets in it. Let {Pξ : ξ < c} be an enumeration of all perfect sets
of positive measure. By induction, we will choose sξ, dξ ∈ Pξ so that the
condition dξ ∈ Pξ \ sηA holds for every ξ, η. Then S = {sξ : ξ < c} will be
as needed, since sξ ∈ S ∩Pξ ⊂ SA∩Pξ and dξ ∈ Pξ \SA, so both Pξ ∩ (SA)
and Pξ ∩ (G \ SA) are nonempty.

Suppose that for all η < ξ such sη, dη have been chosen, or that ξ = 0
(the base of induction). Set Dξ = {dη : η < ξ} and note that |Dξ| < c. Since
Pξ cannot be covered by less than continuum many translates of A−1 (here
we use Martin’s axiom), we can choose a point sξ ∈ Pξ \DξA

−1 6= ∅. This
implies (sξA) ∩Dξ = ∅.

Next, set Sξ = {sη : η ≤ ξ}. Then |Sξ| < c and similarly we can choose
dξ ∈ Pξ \ SξA. By this choice, we have dξ /∈ sηA for all η ≤ ξ, and for η > ξ
we have dξ /∈ sηA by the choice of sη. This concludes the proof.

Theorem 2.4. (MA) Let G be a locally compact group, and let A ⊂ G
be a nonempty [locally ] null set. Then there is a set S ⊂ G such that SA is
nonmeasurable.

Proof. Let H be an open pro-Lie subgroup of G. Clearly, H can be
chosen σ-compact (e.g., generated by any pre-compact neighbourhood of
the identity).
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Translating A if necessary, we can assume that e ∈ A. Then A1 = A∩H
is nonempty and [locally] null with respect to the Haar measure of H, and
due to σ-compactness it is just null in H. If we find a set S ⊂ H such that
SA1 is nonmeasurable in H, then (SA) ∩H = SA1 is nonmeasurable in G,
and so SA is nonmeasurable too. We can therefore assume that G = H, that
is, G is σ-compact and pro-Lie, and A is null.

As in the proof of Theorem 1.5, either G is Polish (and we can apply
Lemma 2.3), or we can find a Polish quotient G/K such that π(A) is null,
where π : G→ G/K is the quotient map. By Lemma 2.3, there is a set S1 ⊂
G/K such that S1π(A) is nonmeasurable. By Lemma 1.1, π−1(S1π(A)) =
π−1(S1)A is also nonmeasurable. Thus, we can take S = π−1(S1), and the
theorem is proved.

This result together with Theorem 2.1 implies:

Theorem 2.5. (MA) Every measurable homomorphism from a locally
compact group to any topological group is continuous.

In conclusion, let us review some closely related results. Say that a set S
is small if the union of every family of translates of S of cardinality less than
continuum is null. We use Martin’s axiom to guarantee that every null set is
small. Without MA, this depends on the set S. As proved by Gruenhage [9],
the ternary Cantor set is small, and Darji and Keleti showed that every
subset of R of packing dimension less than 1 is small. On the other hand,
Elekes and Tóth [10] and Abért [1] proved the following: it is consistent
with ZFC that in every locally compact group there is a nonsmall compact
set of measure zero. It is however unknown whether for a nonsmall set the
statement of Theorem 2.4 is false.

Finally, we say a few words on results in ZFC concerning nonmeasurable
products of sets. One should better say “sums of sets” because there is a
tradition to do everything in the commutative case. This restriction is rea-
sonable since the principal difficulties appear already in the case of the real
line. The advances most close to our topic are: For every null set S on the
real line such that S + S has positive outer measure there is a set A ⊂ S
such that A+A is nonmeasurable (Ciesielski, Fejzić and Freiling [8]). Cichoń,
Morayne, Rałowski, Ryll-Nardzewski, and Żeberski [7] proved that there is
a subset A of the Cantor set C such that A + C is nonmeasurable, and
under additional axioms they proved the same statement for every closed
null set P such that P + P has positive measure. There is also a series of
results going back to Sierpiński which exhibit null sets A and B such that
A + B is nonmeasurable (see, e.g., the monograph [19] and the recent pa-
pers of Kharazishvili and Kirtadze [21], [20]), where the task is to make A
and B “maximally negligible” (in different senses), and A + B “maximally
nonmeasurable”.
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