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Prevalence of “nowhere analyticity”

by

Françoise Bastin, Céline Esser and Samuel Nicolay (Liège)

Abstract. This note brings a complement to the study of genericity of functions
which are nowhere analytic mainly in a measure-theoretic sense. We extend this study to
Gevrey classes of functions.

1. Introduction. In what follows, C∞([0, 1]) denotes the linear space
of functions of class C∞ on [0, 1], endowed with the sequence (pk)k∈N0 of
seminorms defined by

pk(f) = sup
0≤j≤k

sup
x∈[0,1]

|f (j)(x)|

or equivalently with the distance d defined by

d(f, g) =

∞∑
k=0

2−k
pk(f − g)

1 + pk(f − g)
.

This space is a Fréchet space.
If f is a C∞ function on an open interval containing x0, its Taylor series

at x0 is denoted by

T (f, x0)(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

We say that f is analytic at x0 if T (f, x0) converges to f on an open neigh-
bourhood of x0; if this is not the case, we say that f has a singularity at x0.
A function with a singularity at each point of an interval is called nowhere
analytic on the interval. In the case of a closed interval [a, b], the convergence
of the Taylor series T (f, a) and T (f, b) is only considered on the restriction
to [a, b].

If f has a singularity at x0, then either the radius of convergence of the
series is 0 (i.e. the series only converges at x0), or the series converges in
some neighbourhood of x0 but the limit does not represent f , no matter
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how small a neighbourhood of x0 one takes. Following [B4, R1], we say that
x0 is a Pringsheim singularity if the radius of convergence at x0 is 0 and a
Cauchy singularity in the other case.

In [R3], Rudin gives explicit examples of functions with a Pringsheim
singularity at each point. In [SZ], the authors prove that the set of functions
in C∞([0, 1]) with a Pringsheim singularity at each point of [0, 1] is a residual
or comeager subset of C∞([0, 1]) (i.e. contains a countable intersection of
dense open sets of C∞([0, 1])). This implies that this set is dense in C∞([0, 1])
(by Baire’s theorem) and also that it is “generic” in the topological sense.
More general results were obtained in [B1, B2, R1], and the introduction of
the paper [B1] gives a wide historical context of successive results in this
direction. Let us also mention that results on “algebraic genericity” were also
obtained in [B1], where it is proved that the set of functions in C∞([0, 1])
with a Pringsheim singularity at each point of [0, 1] contains, except for
zero, a dense linear submanifold. Concerning Cauchy singularities, Boas [B3]
already showed in 1935 that there is no function with a Cauchy singularity
at each point.

Another notion of “genericity” has also been introduced in order to gen-
eralize the concept of “almost everywhere” for Lebesgue measure to infinite-
dimensional spaces. Following Hunt, Sauer and Yorke [HSY], a Borel set B
in a complete metric linear space E is said to be shy if there exists a Borel
probability measure µ on E with compact support such that µ(B + x) = 0
for any x ∈ E (it is also known that the property on the support is auto-
matically satisfied if E is separable). More generally, any set is called shy if
it is contained in a shy Borel set. A set is prevalent if it is the complement of
a shy set, and a prevalent property is a property which holds on a prevalent
set.

In this short note, we show (in Section 2) that the set of nowhere analytic
functions is prevalent. This result is already mentioned in [S], but one of the
arguments used there is that the set

(1) A(I) := {f ∈ C∞([0, 1]) : T (f, xI) converges to f on I}
(where I is a closed subinterval of [0, 1] and xI its centre) is closed in
C∞([0, 1]). This is certainly not possible since A(I) contains the set of poly-
nomials, which is dense in C∞([0, 1]). Concerning the prevalence of the set
of functions in C∞([0, 1]) with a Pringsheim singularity at each point of
[0, 1], as far as we know, the problem is still open.

We also examine (in Section 3) the set of functions which are “nowhere
Gevrey differentiable”, using the classical definition of Gevrey classes. In this
case, we also obtain genericity results, both in the topological and in the
prevalence sense. Since analytic functions are a particular class of Gevrey
type functions, these results generalize those obtained in the analytic case.
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However, we present these results in separate sections since analytic func-
tions are somehow more classical than Gevrey-type ones and since the result
of Section 2 directly complements an already mentioned one in the literature.

2. Genericity in the prevalence sense. Let us first introduce a suf-
ficient condition for a subset to be prevalent. Let P be a finite-dimensional
subspace of the topological vector space E and f : Rn → P be a topological
isomorphism. The measure LP defined by

LP (B) = L(f−1(B ∩ P ))

for any Borel set B of E, where L denotes the Lebesgue measure on Rn,
is called a Lebesgue measure on E supported by P . With this definition, a
finite-dimensional subspace P ⊂ E is a probe for a subset T of E if there
exists a Borel set B which contains the complement of T in E and satisfies

LP (B + e) = 0

for any e ∈ E. A sufficient condition for T to be prevalent is to have a probe
for it.

Using this condition, it is straightforward to prove the following (which
simply means that a proper linear subspace which is a Borel set is always
shy).

Remark 2.1. If A is a non-empty Borel subset of E such that the com-
plement of A is a linear subspace of E, then A is prevalent.

Proof. A probe for A is given by the linear span of any element a of A.
Indeed, since B = E \A is linear, for every e ∈ E, the set

{α ∈ R : αa+ e ∈ B}
contains only one element, so has Lebesgue measure 0.

Proposition 2.2. The set of nowhere analytic functions on [0, 1] is a
prevalent subset of C∞([0, 1]).

Proof. For any closed subinterval I of [0, 1] with centre xI , let A(I) be
the set given by (1). Since a function which is analytic at a point is analytic
in a neighbourhood of this point, the set of nowhere analytic functions is
the complement of the union of all A(I) over rational subintervals I ⊂ [0, 1].
Any countable union of shy sets is shy ([HSY]), and therefore it is enough
to prove that every A(I) is shy. Since A(I) is a proper linear subspace of
C∞([0, 1]), this will be done using Remark 2.1, if we show that A(I) is a
Borel set.

For any j, n ∈ N, let

Fn,j =
⋂
x∈I
{f ∈ C∞([0, 1]) : |Tj(f, xI)(x)− f(x)| ≤ 1/n},
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where

Tj(f, xI)(x) =

j∑
k=0

f (k)(xI)

k!
(x− xI)k.

The definition of the topology of C∞([0, 1]) and the fact that only a fi-
nite number of derivatives are involved directly imply that Fn,j is closed in
C∞([0, 1]).

Using well-known properties of power series, the convergence of T (f, xI)
on I is equivalent to uniform convergence on I. Hence

A(I) =
⋂
n∈N

⋃
k∈N

⋂
j≥k

Fn,j ,

which shows that A(I) is a countable intersection of countable unions of
closed sets, so a Borel set.

3. On Gevrey classes. Following [CC, R2], for a real number s > 0
and an open subset Ω of R, an infinitely differentiable function f in Ω is
said to be Gevrey differentiable of order s at x0 ∈ Ω if there exist a compact
neighbourhood I of x0 and constants C, h > 0 such that

sup
x∈I
|f (n)(x)| ≤ Chn(n!)s, ∀n ∈ N0.

It is clear that if a function is Gevrey differentiable of order s at x0, it is
also Gevrey differentiable of any order s′ > s at x0. Note also that the case
s = 1 corresponds to analyticity.

Let us give an example of an element f of C∞(R) such that, for any
x0 ∈ R and any s > 0, f is not Gevrey differentiable of order s at x0.

Lemma 3.1. Let λk, k ∈ N, be a sequence of strictly positive numbers
such that

λk ≥ (k + 1)(k+1)2 & λk+1 ≥ 2

k∑
j=1

λ2+k−jj , ∀k ∈ N,

and let f be the function defined on R by

f(x) =
∞∑
k=1

cke
iλkx with ck = λ1−kk , k ∈ N.

This function belongs to C∞(R) and it is not Gevrey of order s at x0, for
any x0 ∈ R and s > 0.

Proof. Let us first remark that such a sequence can be easily constructed
(using a recurrence procedure).
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Since for every n, k ∈ N, we have ckλ
n
k = λ1+n−kk , the series

∞∑
k=1

ckλ
n
ke
iλkx

is uniformly and absolutely convergent on R. Thus f ∈ C∞(R).

On the other hand, for every n ∈ N, n ≥ 2 and x ∈ R, we have

|f (n)(x)| =
∣∣∣ n−1∑
k=1

λn+1−k
k eiλkx + λne

iλnx +
∑
k>n

λn+1−k
k eiλkx

∣∣∣
≥ λn −

n−1∑
k=1

λn+1−k
k −

∑
k>n

λn+1−k
k ≥

n−1∑
k=1

λn+1−k
k −

∑
k>n

λn+1−k
k

≥ λ2n−1 −
∞∑
j=0

1

λjj
≥ n2n2 − e ≥ 1

2
n2n

2
.

Then, given strictly positive s, C, h, we have

n2n
2

= nn
2

(nn)n ≥ Chn(nn)s ≥ Chn(n!)s

for n large enough. So we are done.

Now, in order to generalize the results about nowhere analyticity, we say
that a function f ∈ C∞([0, 1]) is nowhere Gevrey differentiable on [0, 1] if f
is not Gevrey differentiable of order s at x0, for any x0 ∈ [0, 1] and s ≥ 1,
where the compact neighbourhoods I are considered in [0, 1].

We are going to use the same arguments as in the analytic case to prove
the following result.

Proposition 3.2. The set of nowhere Gevrey differentiable functions is
a prevalent subset of C∞([0, 1]).

Proof. Let us first note that the definition of nowhere Gevrey differen-
tiability given above directly leads to the following description: the set of all
nowhere Gevrey differentiable functions of C∞([0, 1]) is the complement of⋃

s∈N

⋃
I⊂[0,1]

B(s, I)

where I runs oven rational subintervals of [0, 1] and

B(s, I) =
{
f ∈ C∞([0, 1]) : ∃C, h > 0 such that

sup
x∈I
|f (n)(x)| ≤ Chn(n!)s ∀n ∈ N0

}
.

Hence, since in a complete metric space a countable union of shy sets is shy
([HSY]), the result will be proved if we show that every B(s, I) is shy. To get
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this, it suffices to prove that B(s, I) is a proper linear subspace of C∞([0, 1])
which is also a Borel set.

It is straightforward to see (using for example the previous constructive
lemma) that B(s, I) is a linear subspace of C∞([0, 1]) and strictly included
in C∞([0, 1]). We also have

B(s, I) =
⋃
m∈N

⋂
n∈N0

{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1(n!)s

}
,

where each set {
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1(n!)s

}
is closed in C∞([0, 1]). Hence B(s, I) is a Borel subset of C∞([0, 1]).

Now, let us show that the genericity result also holds in the topological
sense.

Proposition 3.3. The set of nowhere Gevrey differentiable functions is
a residual subset of C∞([0, 1]).

Proof. We define B(s, I) as before. As we already remarked, the set of
nowhere Gevrey differentiable functions of C∞([0, 1]) is the complement of⋃

s∈N

⋃
I⊂[0,1]

B(s, I),

where I runs over rational subintervals of [0, 1]. We also have

B(s, I) =
⋃
m∈N

A(s, I,m),

where

A(s, I,m) =
{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1(n!)s, ∀n ∈ N0

}
.

To conclude, it suffices to notice that the closed set A(s, I,m) has empty
interior since it is included in B(s, I) which is a proper linear subspace of
the locally convex space C∞([0, 1]).

This last proposition can also be obtained as a special case of the follow-
ing result of [B1]: For each infinite set M ⊂ N0 and each sequence (cn)n∈N0

of strictly positive numbers, the family

{f ∈ C∞([0, 1]) : ∃ infinitely many n ∈M with |f (n)(x)| > cn, ∀x ∈ [0, 1]}
is a residual subset of C∞([0, 1]). Indeed, for cn = (n!)n and M = N0, this
last family is contained in the set of nowhere Gevrey differentiable functions,
since for any s ∈ N and h,C > 0, one has (n!)n > Chn(n!)s for n sufficiently
large.
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4. Some additional results. Some generalizations can be obtained
with techniques similar to the ones used in the previous sections.

Proposition 4.1. For any sequence (cn)n∈N0 with cn > 0 for all n, the
set {

f ∈ C∞([0, 1]) : ∀I ⊂ [0, 1], sup
n∈N0

supx∈I |f (n)(x)|
cn

= +∞
}

(where I denotes rational subintervals) is a prevalent subset of C∞([0, 1]).

Proof. The complement of this set can be written as⋃
I⊂[0,1]

DI with DI :=

{
f ∈ C∞([0, 1]) : sup

n∈N0

supx∈I |f (n)(x)|
cn

<∞
}
.

Since in a complete metric space, a countable union of shy sets is shy, it
suffices to show that DI is shy for each I. This is as before: DI is a linear
space, strictly included in C∞([0, 1]) (as shown by an explicit example of
[B1, Remark 2.2]), and is a Borel set since it can be written as a countable
union of countable intersections of closed sets:

DI =
⋃
k∈N

⋂
n∈N0

{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ kcn

}
.

This last proposition is a generalization of Proposition 3.2. Indeed, taking
again cn = (n!)n, we see that the set mentioned in the proposition above is
contained in the set of nowhere Gevrey differentiable functions.

One can also make some remarks about classes of type C{Mn} (in relation
with quasi-analyticity, [R3, Chapter 19]): if (Mn)n∈N0 is a sequence of strictly
positive numbers and I a subinterval of [0, 1], let us denote by C{Mn}(I) the
linear space{
f ∈ C∞([0, 1]) : ∃C, h > 0 such that sup

x∈I
|f (n)(x)| ≤ ChnMn ∀n ∈ N0

}
.

In fact, withMn = (n!)s, we haveB(s, I) = C{Mn}(I). So, with the same com-
putations as those used when dealing with B(s, I), one finds that C{Mn}(I)
is shy in C∞([0, 1]). As a consequence, the set of functions of C∞([0, 1])
which are “nowhere in C{Mn}” (that is, which do not belong to C{Mn}(I),
for any interval I) is prevalent in C∞([0, 1]).
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