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The minimal operator
and the geometric maximal operator in Rn

by

David Cruz-Uribe, SFO (Hartford, CT)

Abstract. We prove two-weight norm inequalities in Rn for the minimal operator

mf(x) = inf
Q3x

1
|Q|

�

Q

|f | dy,

extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen
[8] on the real line. As an application we extend to Rn weighted norm inequalities for the
geometric maximal operator

M0f(x) = sup
Q3x

exp
(

1
|Q|

�

Q

log |f | dx
)
,

proved by Yin and Muckenhoupt [27].
We also give norm inequalities for the centered minimal operator, study powers of

doubling weights and give sufficient conditions for the geometric maximal operator to be
equal to the closely related limiting operator M∗0 f = limr→0 M(|f |r)1/r .

1. Introduction

1.1. The minimal operator. Given a measurable function f , the minimal
function of f , mf , is defined by

(1.1) mf(x) = inf
Q3x

1
|Q|

�

Q

|f | dy,

where the supremum is taken over all cubes Q whose sides are parallel to
the co-ordinate axes. By the Lebesgue differentiation theorem, mf(x) ≤
|f(x)| ≤ Mf(x) almost everywhere; intuitively, the minimal operator con-
trols where f is small, just as the Hardy–Littlewood maximal operator con-
trols where f is large.
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The minimal operator was introduced by Cruz-Uribe and Neugebauer [5],
who used it to study the fine structure of Ap weights. They also considered
the weighted norm inequalities for the minimal operator. This question is
complicated by the fact that if f ∈ Lp(Rn) then mf(x) ≡ 0. One solution
is to take inverses, making something small (the minimal operator) into
something large (which can be measured by a norm inequality). In the one-
weight case they proved the following result. Here and below by a weight
we mean a non-negative, locally integrable function.

Theorem 1.1. Given a weight w, the following are equivalent :

(i) w ∈ A∞;
(ii) there exists a constant C such that for every p, 0 < p < ∞, and

every t > 0,

w({x ∈ Rn :mf(x) < 1/t}) ≤ C

tp

�

Rn

w

|f |p dx

for every f such that 1/f ∈ Lp(w);
(iii) there exists a constant C such that for every p, 0 < p <∞,

�

Rn

w

(mf)p
dx ≤ C

�

Rn

w

|f |p dx

for every f such that 1/f ∈ Lp(w).

Theorem 1.1 follows from Hölder’s inequality and the one-weight norm
inequalities for the maximal operator. Two-weight norm inequalities are
significantly more difficult: working on the real line, Cruz-Uribe, Neugebauer
and Olesen [8] were able to prove the following result.

Theorem 1.2. Given a pair of weights (u, v) and p, 0 < p < ∞, let
σ = v1/(p+1). Then the following are equivalent :

(i) (u, v) ∈Wp: there exists a constant C1 such that for every interval I,

1
|I|

�

I

u dx ≤ C1

(
1
|I|

�

I

σ dx

)p+1

;

(ii) there exists a constant C2 such that for every t > 0,

u({x ∈ R :mf(x) < 1/t}) ≤ C2

tp

�

R

v

|f |p dx

for every f such that 1/f ∈ Lp(v);
(iii) (u, v) ∈W ∗p : there exists a constant C3 such that for every interval I,

�

I

u

m(σ/χI)p
dx ≤ C3

�

I

σ dx;
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(iv) there exists a constant C4 such that
�

R

u

(mf)p
dx ≤ C4

�

R

v

|f |p dx

for every f such that 1/f ∈ Lp(v).

Remarks. (i) In Theorem 1.2, the constants C2 and C4 depend on C1

and C3, respectively, but do not depend on p. However, C3 ≈ pC1.
(ii) Unlike the Hardy–Littlewood maximal operator, the strong and

weak-type norm inequalities for the minimal operator are governed by the
same pairs of weights.

(iii) In the one-weight case the Wp condition becomes a reverse Hölder
inequality which is equivalent to the A∞ condition. See [5] for details.

The proof of Theorem 1.2 in [8] depends heavily on the special covering
lemmas for the real line, and does not extend in a satisfactory manner to
higher dimensions. In particular, to prove the weak-type norm inequality
in Rn we had to assume that u was a doubling weight, but to prove the
strong-type norm inequality we had to assume (among other things) that
σ = v1/(p+1) was a doubling weight.

The main result of this paper is an extension of Theorem 1.2 to Rn,
n > 1, with uniform assumptions on u and v.

Theorem 1.3. Given p, 0 < p < ∞, let (u, v) be a pair of weights such
that either u or σ = v1/(p+1) is a doubling weight. Then in Rn, n > 1,
conditions (i)–(iv) of Theorem 1.2 are equivalent , with intervals replaced by
cubes in (i) and (iii).

The relation between the constants Ci, 1 ≤ i ≤ 4, depends on whether u
or σ is doubling. Let Bn be the constant in the Besicovitch–Morse covering
lemma (see Lemma 2.1 below). If u is a doubling weight with constant D(u)
then

C2 ≤ BnD(u)C1,

C3 ≤ C1 + pBn2−nD(u)C1,

C4 ≤ 8D(u)2C3 + 8 · 3npBnD(u)C3.

If σ is a doubling weight with constant D(σ) then

C2 ≤ 2−npBnD(σ)p+1C1,

C3 ≤ C1 + pBn2−n(p+1)D(σ)p+1C1,

C4 ≤ 8D(σ)2C3.

1.2. The geometric maximal operator. As an application of Theorem 1.3
we prove two-weight norm inequalities in Rn for the geometric maximal
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operator

M0f(x) = sup
Q3x

exp
(

1
|Q|

�

Q

log |f | dx
)
,

and the closely related limiting operator

M∗0 f(x) = lim
r→0

Mrf(x) = lim
r→0

M(|f |r)(x)1/r.

Norm inequalities for the geometric maximal operator on the real line were
studied by Yin and Muckenhoupt [27] and others. Cruz-Uribe and Neuge-
bauer [6] used Theorem 1.2 to give a new proof of their results and to prove
analogous results for M∗0 . A key step in their proof is showing that for a
dense family of functions f ,

M0f(x) = lim
r→0

m(|f |−r)(x)−1/r, x ∈ Rn.

They used this to derive norm inequalities for the geometric maximal opera-
tor from norm inequalities for the minimal operator via a limiting argument.
This was possible since the constants C2 and C4 in Theorem 1.2 are inde-
pendent of p. (See [6] for details of the proof and for the history of the
problem.)

Using Theorem 1.3 we can immediately extend their results to higher
dimensions—their proofs go through without change.

Theorem 1.4. Given a pair of weights (u, v), suppose that either u is
doubling or σq = v1/(q+1) is doubling for all q sufficiently large and

lim sup
q→∞

2−nqD(σq)q+1 <∞.

Then the following are equivalent :

(i) (u, v) ∈W∞: there exists a constant C such that for every cube Q,

1
|Q|

�

Q

u dx ≤ C exp
(

1
|Q|

�

Q

log v dx
)

;

(ii) there exists a constant C such that for all p, 0 < p <∞,

u({x ∈ Rn : M0f(x) > t}) ≤ C

tp

�

Rn
|f |pv dx

for every f ∈ Lp(v).

Theorem 1.5. Given a pair of weights (u, v), suppose that σq = v1/(q+1)

is doubling for all q sufficiently large and

lim sup
q→∞

D(σq) <∞.

Then the following are equivalent :



The minimal operator in Rn 5

(i) (u, v) ∈W ∗∞: there exists a constant C such that for all cubes Q,
�

Q

M0(v−1χQ)u dx ≤ C|Q|;

(ii) there exists a constant C such that for all p, 0 < p <∞,
�

Rn
(M0f)pu dx ≤ C

�

Rn
|f |pv dx

for every f ∈ Lp(v).

Theorem 1.6. Theorems 1.4 and 1.5 remain true if M0 is everywhere
replaced by M∗0 , provided that v ∈ I∞:

lim sup
Q,σ

1
|Q|

(
1
|Q|

�

Q

v−σ dx

)1/σ

<∞,

where the upper limit is taken over all cubes Q containing the origin and
all σ > 0 as |Q| tends to infinity and σ tends to 0. The I∞ condition is
necessary as well as sufficient.

Remarks. (i) Unlike the minimal operator, the two-weight, weak and
strong-type norm inequalities for the geometric maximal operator are gov-
erned by different weight classes. See Yin and Muckenhoupt [27] or Cruz-
Uribe and Neugebauer [6] for an example. We suspect that this is connected
to the fact that doubling conditions on u are sufficient in Theorem 1.4 but
not in Theorem 1.5, but we are uncertain as to what the exact relation is.

(ii) A serendipitous consequence of our work on the geometric maximal
operator was the discovery that Theorem 1.3 could be re-interpreted as a
result about a maximal operator. Define the harmonic maximal operator by

M−1f(x) = sup
Q3x

(
1
|Q|

�

Q

|f |−1 dy

)−1

;

in other words, M−1f(x) is the supremum of the harmonic averages of f on
cubes containing x. It is immediate that

M−1f(x) =m(f−1)(x)−1,

and Theorem 1.3 can be restated in terms of M−1.

1.3. Doubling conditions. While the doubling conditions we assume in
Theorems 1.3—1.6 are not unreasonable (cf. Wheeden [23]) they are not
necessary: in Example 5.8 below we construct a pair (u, v) ∈ Wp such that
neither u nor v is doubling, but the weak and strong-type inequalities hold.
However, we have repeatedly and unsuccessfully attempted either to prove
Theorem 1.3 without doubling conditions or to construct a non-doubling pair
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(u, v) which satisfy the Wp condition but for which the norm inequalities do
not hold. This question remains open.

As a corollary to our proofs, we can show that the strong Wp condition,

(1.2)
1
|2Q|

�

2Q

u dx ≤ C ′1
(

1
|Q|

�

Q

σ dx

)p+1

,

and the strong W ∗p condition,

(1.3)
�

3Q

u

m(σ/χ3Q)p
dx ≤ C ′3

�

Q

σ dx,

are equivalent and are sufficient—without additional doubling conditions—
for the weak and strong-type norm inequalities for the minimal operator to
hold. However, Example 5.8 below shows that they are not necessary.

The strongWp condition also yields a sufficient condition for Theorem 1.4
and the corresponding part of Theorem 1.6 to hold:

(1.4) strong W∞:
1
|2Q|

�

2Q

u dx ≤ C exp
(

1
|Q|

�

Q

log v dx
)
.

Surprisingly, the strong W ∗p condition does not yield a satisfactory sufficient
condition for Theorem 1.5 to hold. The best we can obtain is a Sawyer-type
condition involving a related but larger maximal operator.

1.4. The centered minimal operator. Another approach to eliminating
doubling conditions is to modify the operator by restricting the collection
of cubes over which it is defined. For example, while the weighted maximal
operator, Mw, is not necessarily bounded in higher dimensions unless w is
doubling (see Sjögren [20]), the weighted centered maximal operator and
the weighted dyadic maximal operator are for all weights w.

The proof of Theorem 1.3 below or the proof of Theorem 1.2 in [8] are
readily adapted to the dyadic minimal operator. The results in [6] also carry
over to the dyadic geometric maximal operator with little change. Details
are left to the reader.

The centered minimal operator, mc (defined as in equation (1.1) but
with the infimum restricted to cubes centered at x), is both more interesting
and more difficult. As was noted in [8], unlike the maximal operator, the
minimal operator and the centered minimal operator are not equivalent. A
simple example on the real line is given by ex: m(ex) ≡ 0 but mc(ex) = ex.
In [8] it was conjectured that a “centered Wp” condition is necessary and
sufficient for the weak-type inequality for mc. Here we adapt the proof of
Theorem 1.3 to mc and show that this condition (and the corresponding
Sawyer-type condition) are necessary and sufficient for both the strong and
weak-type norm inequalities.
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Theorem 1.7. Given weights (u, v) and p, 0 < p <∞, let σ = v1/(p+1).
Then the following are equivalent :

(i) (u, v) ∈Wp,c: there exists a constant D1 such that for every cube Q,

1
|Q|

�

Q

u dx ≤ D1

(
1
|2Q|

�

2Q

σ dx

)p+1

;

(ii) there exists a constant D2 such that for every t > 0,

u({x ∈ Rn :mcf(x) < 1/t}) ≤ D2

tp

�

Rn

v

|f |p dx

for every f such that 1/f ∈ Lp(v);
(iii) (u, v) ∈W ∗p,c: there exists a constant D3 such that for every cube Q,

�

Q

u

mc(σ/χQ)p
dx ≤ D3

�

Q

σ dx;

(iv) there exists a constant D4 such that
�

Rn

u

(mcf)p
dx ≤ D4

�

Rn

v

|f |p dx

for every f such that 1/f ∈ Lp(v).

Remarks. (i) Unfortunately, except in the case n = 1 (for which case
we have a special proof) the constants D2 and D4 are not independent of p,
so we cannot use the limiting technique of Cruz-Uribe and Neugebauer to
prove the analogues of Theorems 1.4–1.6 for the centered geometric maximal
operator, M0,c. Even in the case n = 1 the proof breaks down, since the
Sawyer-type condition

W ∗∞,c :
�

Q

M0,c(v−1χQ)u dx ≤ C|Q|

does not seem to imply the W ∗p,c condition. The question of weighted norm
inequalities for the centered geometric maximal operator and their relation-
ship to norm inequalities for the centered minimal operator remains open.

(ii) We do not have control of the constant D2 since for the centered
minimal operator we do not have a direct proof that the Wp,c condition
implies the weak-type inequality. It would be very interesting to have such
a proof, as it may yield a proof of a weak-type inequality for M0,c.

1.5. Organization. The remainder of this paper is organized as follows:
In Sections 2–4 we prove Theorem 1.3. In Section 2 we show that the Wp

condition is equivalent to the weak-type inequality; in Section 3 we show
that the Wp and W ∗p conditions are the same; and in Section 4 we show that
the W ∗p condition is equivalent to the strong-type inequality. At the end of
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each section we derive from the proofs the non-doubling sufficient conditions
for the minimal operator and geometric maximal operator discussed above.

In Section 5 we examine the doubling conditions imposed on v in The-
orems 1.3–1.5. We give examples of weights for which they do hold, and
construct an example to show that there exists a doubling weight v such
that vr is not doubling for any r, 0 < r < 1. This answers in the negative
questions posed in Cruz-Uribe [3, p. 561] and Cruz-Uribe, Neugebauer and
Olesen [8]. We also construct a pair of functions (u, v) in Rn which satisfy
the Wp condition, are not doubling, and for which the strong-type norm
inequality for m holds.

In Section 6 we prove Theorem 1.7. The key to the proof is a slightly
stronger version of the Besicovitch–Morse covering lemma. Further, we prove
an analogue of Theorem 1.1 by showing that in the one-weight case the Wp,c

condition is equivalent to a weak A∞ condition due to Sawyer [19]: given
any cube Q and a measurable set E ⊂ Q, there exist constants C and δ such
that

(1.5) weak A∞:
w(E)
w(2Q)

≤ C
( |E|
|Q|

)δ
.

Finally, in Section 7 we consider a problem first studied in detail by
Cruz-Uribe and Neugebauer [6]: sufficient conditions on a function f for the
equality M0f(x) = M∗0 f(x) to hold. They showed that this equality does
not hold in general, but showed that if log f is locally integrable and f ∈ Lp
for some p > 0 then it holds almost everywhere. We generalize this result
considerably.

Theorem 1.8. Let v ∈ I∞. Suppose f ∈ Lp(v) for some p > 0 and
suppose there exists a cube Q0 (possibly infinite) such that supp f = Q0

and log f ∈ L1
loc(Q0). Then M0f(x) = M∗0 f(x) almost everywhere. Further ,

equality almost everywhere is the best possible.

Theorem 1.8 is a partial generalization of a recent result by Wik [26],
and we discuss the relation between the two results. Also, as a corollary to
Theorem 1.8 we show that the best constants in the one-weight, strong-type
norm inequalities for M0 and for the limiting operator M∗0 are the same.
This proves a conjecture made by Wik.

Throughout this paper all notation is standard or will be defined as
needed. For the convenience of the reader, the principal definitions will be
repeated in the relevant sections. All cubes are assumed to have their sides
parallel to the co-ordinate axes. Given a cube Q, l(Q) will denote the length
of its sides and for any r > 0, rQ will denote the cube with the same center
as Q and such that l(rQ) = rl(Q). By weights we will always mean non-
negative, locally integrable functions which are positive on a set of positive
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measure. Given a Lebesgue measurable set E and a weight w, |E| will denote
the Lebesgue measure of E, w(E) = �

E
w dx and w/χE will denote the

function equal to w on E and infinity elsewhere. We say that a non-negative
measure µ is a doubling measure if for any cube Q, µ(2Q) ≤ D(µ)µ(Q);D(µ)
is called the doubling constant of µ. If µ satisfies the doubling condition for
all Q such that 2Q ⊂ Q0, we say that µ is a doubling measure on Q0.
If µ is doubling and dµ = w dx, we say that w is a doubling weight . Given
1 < p <∞, p′ = p/(p−1) will denote the conjugate exponent of p. Finally, C
will denote a positive constant whose value may change at each appearance.

2. The weak-type norm inequality. In this section we prove that the
Wp condition,

(2.1)
1
|Q|

�

Q

u dx ≤ C1

(
1
|Q|

�

Q

σ dx

)p+1

,

is equivalent to the weak-type inequality for the minimal operator in Rn.
The proof requires the Besicovitch–Morse covering lemma. We state the
precise version we need; for a proof see de Guzmán [13].

Lemma 2.1. Given a bounded set E in Rn, suppose that for each x ∈ E
there exists a cube Qx such that x ∈ 1

2Qx. Then there exists a sequence {Qk}
of Qx’s such that E is contained in the union of the Qk’s; further , there
exists a constant Bn, depending only on the dimension n, such that every
point of Rn is contained in at most Bn of the Qk’s.

Throughout this section, let σ = v1/(p+1).
To show that the weak-type norm inequality implies (2.1), fix a cube Q

and let f = σχQ. If σ(Q) = ∞ then (2.1) is immediate. If it is finite then
for each x ∈ Q,

mf(x) ≤ 1
|Q|

�

Q

σ dx.

If we let 1/t in the weak-type inequality equal the right-hand side we get

u(Q) ≤ C2

(
1
|Q|

�

Q

σ dx

)p
·

�

Q

σ dx,

and this is the Wp condition.
To prove that (2.1) implies the weak-type inequality, fix a function f

such that 1/f ∈ Lp(v). Without loss of generality we may assume that f is
non-negative. Further, we first assume that there exists a cube P such that
f is positive on P and supp(1/f) = P .
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Fix t > 0 and let Et = {x ∈ Rn : mf(x) < 1/t}. Then for every x ∈ Et
there exists a cube Qx containing x such that

1
|Qx|

�

Qx

f dy < 1/t.

Each Qx is contained in the cube P and Et is contained in their union.
Therefore, by Lemma 2.1, there exists a sequence {Qj} of Qx’s such that⋃
j 2Qj also contains Et and such that the Qj ’s have overlap of at most Bn.

Since u or σ is doubling, (2.1) implies the strong Wp condition (1.2);
if u is doubling then C ′1 = 2−nD(u)C1; otherwise, if σ is doubling then
C ′1 = 2−n(p+1)D(σ)p+1C1. Therefore,

u(Et) ≤
∑

j

u(2Qj) ≤ 2nC ′1
∑

j

|Qj |−p
( �

Qj

σ dx
)p+1

.

By Hölder’s inequality, for each j,

�

Qj

σ dx ≤
( �

Qj

v

fp
dx

)1/(p+1)( �

Qj

f dx
)p/(p+1)

.

Hence, since Qj = Qx for some x ∈ Et,

2nC ′1
∑

j

|Qj |−p
( �

Qj

σ dx
)p+1

≤ 2nC ′1
tp

∑

j

( �

Qj

σ dx
)p+1( �

Qj

f dx
)−p

≤ 2nC ′1
tp

∑

j

�

Qj

v

fp
dx

≤ 2nBnC ′1
tp

�

Rn

v

fp
dx.

This implies that the weak-type inequality holds with C2 = 2nBnC ′1.
To complete the proof, fix any non-negative f ∈ Lp(v) and define the se-

quence of functions fk = (f + 1/k)/χPk , where Pk is the cube centered
at the origin with l(Pk) = k. Then each fk is strictly positive on Pk,
supp(1/fk) = Pk and 1/fk ∈ Lp(v) since 1/f ∈ Lp(v). The sequence {fk} de-
creases to f , so the sequence {mfk} also decreases and limn→∞mfk ≥mf .
On the other hand, for a fixed x ∈ Rn and any ε > 0, there exists a cube Q
such that for all k sufficiently large, Q ⊂ Pk and

mf(x) ≥ 1
|Q|

�

Q

f dy − ε ≥mfk(x)− ε.

Therefore, {mfk} converges to mf , and by the monotone convergence the-
orem the strong-type inequality holds for all f .
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Remark. Even without a doubling condition, the Wp condition is nec-
essary for the weak-type inequality to hold. In the proof that it is sufficient,
we only used a doubling condition to prove that the strong Wp condition
holds. Hence the strong Wp condition is itself a sufficient condition which
does not involve doubling. However, Example 5.8 shows that this condition
is not necessary. By Jensen’s inequality, if (u, v) satisfy the strong W∞ con-
dition (1.4) then (u, v) satisfy the strong Wp condition for all p > 0 with
a constant independent of p. This is enough to show that the strong W∞
condition is sufficient for the weak-type norm inequalities for M0 and M∗0
to hold (for the latter provided v ∈ I∞). See [6] for details.

3. The equivalence of Wp and W ∗p . In this section we prove that the
Wp condition,

(3.1)
1
|Q|

�

Q

u dx ≤ C1

(
1
|Q|

�

Q

σ dx

)p+1

,

and the W ∗p condition,

(3.2)
�

Q

u

m(σ/χQ)p
dx ≤ C3

�

Q

σ dx,

are equivalent. Throughout this section, let σ = v1/(p+1).
We first show that (3.2) implies (3.1). Fix a cube Q. If σ(Q) = ∞

then the Wp condition holds trivially, so assume it is finite. Then for every
x ∈ Q, m(σ/χQ)(x) ≤ σ(Q). If σ(Q) = 0 then the left-hand side of the
W ∗p condition is finite only if u(Q) = 0, and again the Wp condition holds
trivially. But if σ(Q) > 0 then we can substitute this inequality into (3.2)
and (3.1) follows immediately.

To prove that (3.1) implies (3.2), fix a cube Q. We may assume without
loss of generality that u(Q) > 0 and σ(Q) < ∞, since otherwise the W ∗p
condition holds trivially. For each t > 0 let Et = {x ∈ Q : m(σ/χQ)(x) <
1/t}. Then

(3.3)
�

Q

u

m(σ/χQ)p
dx = p

R�

0

tp−1u(Et) dt+ p

∞�

R

tp−1u(Et) dt,

where R will be chosen below. Since u(Et) ≤ u(Q), the first integral on the
right-hand side is bounded by u(Q)Rp.

To estimate the second integral on the right-hand side of (3.3) we proceed
as in the proof of the weak-type inequality. Given t > 0, for each x ∈ Et
there exists a cube Qtx ⊂ Q containing x such that

(3.4)
1
|Qtx|

�

Qtx

σ dx < 1/t.
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The cubes 2Qtx cover Et, so by Lemma 2.1 there exists a sequence of cubes
{Qtj} which have finite overlap and such that the cubes 2Qtj still cover Et.
If we combine this with the strong Wp condition (1.2) (which holds since u
or σ is doubling) and inequality (3.4), it follows that

p

∞�

R

tp−1u(Et) dt ≤ p
∞�

R

tp−1
∑

j

u(2Qtj) dt(3.5)

≤ 2npC ′1

∞�

R

tp−1
∑

j

|Qtj |
(

1
|Qtj |

�

Qtj

σ dx

)p+1

≤ 2npC ′1

∞�

R

t−2
∑

j

|Qtj | dt

≤ 2npC ′1Bn
∞�

R

t−2|Et| dtr ≤ 2npC ′1BnR
−1|Q|.

Therefore,

(3.6)
�

Q

u

m(σ/χQ)p
dx ≤ u(Q)Rp + 2npC ′1BnR

−1|Q|.

Let R = |Q|/σ(Q). Then by (3.1), u(Q)Rp ≤ C1σ(Q). Hence
�

Q

u

m(σ/χQ)p
dx ≤ (C1 + 2npC ′1Bn)σ(Q),

which is (3.2) with C3 = C1 + 2npC ′1Bn.

Remark. As with the weak-type inequality in Section 2, we only used
a doubling condition to get the strong Wp condition (1.2). Notice, however,
that C3 contains a factor of p. Because of this, even though the weak and
strong-type norm inequalities for the minimal operator are both governed by
the same class of weights—Wp—this is no longer the case for the geometric
maximal operator.

4. The strong-type norm inequality. In this section we complete the
proof of Theorem 1.3 by showing that the W ∗p condition,

(4.1)
�

Q

u

m(σ/χQ)p
dx ≤ C3

�

Q

σ dx,

is equivalent to the strong-type norm inequality for the minimal operator in
Rn. Throughout this section, let σ = v1/(p+1).

The proof that the strong-type inequality implies (4.1) is essentially the
same as the proof in Section 2 that the weak-type inequality implies the
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Wp condition: fix a cube Q, let f = σ/χQ and substitute this into the
strong-type inequality. The W ∗p condition follows at once.

The proof that (4.1) implies the strong-type inequality is based on the
proof of the strong-type norm inequality for the maximal operator given by
Sawyer [18], and adapts ideas from Cruz-Uribe [4], Cruz-Uribe and Neuge-
bauer [7] and Cruz-Uribe, Neugebauer and Olesen [9] to higher dimensions.
For the proof we need two lemmas.

Lemma 4.1. If (u, v) ∈W ∗p and either u or σ is doubling , then the strong
W ∗p condition (1.3) holds. If u is doubling then C ′3 ≤ D(u)2C1 + 6npC ′1Bn;
if σ is doubling then C ′3 ≤ D(σ)2C3.

Proof. If σ is doubling then the strong W ∗p condition follows immediately
from (4.1).

If u is doubling, then, as shown in Section 3, (u, v) ∈ Wp with constant
C1 ≤ C3. We now repeat the proof that the Wp condition implies the W ∗p
condition, except that we replace Q with 3Q. Then inequality (3.6) becomes

�

3Q

u

m(σ/χ3Q)p
dx ≤ u(3Q)Rp + 2npC ′1BnR

−1|3Q|

≤ D(u)2u(Q)Rp + 6npC ′1BnR
−1|Q|.

The rest of the proof now goes through as before to yield the desired in-
equality with C ′3 = D(u)2C1 + 6npC ′1Bn.

The second lemma is a classical covering theorem. For the convenience
of the reader we sketch the proof.

Lemma 4.2. Given a finite collection {Qi}Ni=1 of cubes, there exists a
disjoint subcollection {Qij}kj=1 such that each cube Qr is contained in 3Qis
for some s.

Proof. We may assume that the cubes are ordered so that l(Q1) ≥ . . . ≥
l(QN ). Let i1 = 1. If any cube intersects Qi1 then it is contained in 3Qi1 . Let
Qi2 be the largest cube which is disjoint from Qi1 . Repeating this argument
we form the desired subcollection.

To prove that (4.1) implies the strong-type inequality, we first assume
that v is everywhere positive; we treat the general case at the end. Fix a
function f such that 1/f ∈ Lp(v). Without loss of generality we may assume
that f is non-negative.

Fix α > 1. For each integer k, let Ak = {x ∈ Rn : α−(k+1) ≤ mf(x)
< α−k}. If x ∈ Ak then there exists a cube Qkx containing x such that

α−(k+1) ≤ 1
|Qkx|

�

Qkx

f dy < α−k.
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By the continuity of the integral we may choose each Qkx so that the co-
ordinates of its center and l(Qkx) are rational. But then the set {Qkx}x∈Ak
is countable, so we may enumerate its elements as {Qkj }. Clearly Ak is
contained in their union. By induction define the sequence of disjoint setsEkj :

Ek1 = Qk1 ∩ Ak, Ek2 = (Qk2 ∩ Ak) \Ek1 , Ek3 = (Qk3 ∩Ak) \ (Ek1 ∪Ek2 ), . . .

Then Ak =
⋃
j E

k
j , and since the Ak’s are disjoint, the Ekj ’s are pairwise

disoint for all j and k.
As shown in Section 3, since (u, v) ∈ W ∗p , (u, v) ∈ Wp. So by the weak-

type inequality, u({x :mf(x) = 0}) = 0. Therefore,
�

Rn

u

(mf)p
dx =

∑

k

�

Ak

u

(mf)p
dx ≤

∑

k

u(Ak)αp(k+1)

≤ αp
∑

j,k

u(Ekj )
(

1
|Qkj |

�

Qkj

f dx

)−p
.

Since v is positive, σ(Qkj ) > 0. Further, by Hölder’s inequality,

σ(Qkj ) ≤
( �

Rn

v

fp
dx

)1/(p+1)( �

Qkj

f dx
)p/(p+1)

≤
( �

Rn

v

fp
dx

)1/(p+1)

(α−k|Qkj |)p/(p+1) <∞.

Therefore,

αp
∑

j,k

u(Ekj )
(

1
|Qkj |

�

Qkj

f dx

)−p

= αp
∑

j,k

u(Ekj )
(

1
|Qkj |

�

Qkj

σ dx

)−p( �
Qkj

(f/σ) · σ dx
�
Qkj
σ dx

)−p
.

Let X = N× Z and define the measure ω on X by

ω(j, k) = u(Ekj )
(

1
|Qkj |

�

Qkj

σ dx

)−p
.

Given a non-negative, measurable function h, define the operators S and
T by

Sh(j, k) =
�
Qkj
σ dx

�
Qkj
hσ dx

and Th(j, k) =
�
Qkj
hσ dx

�
Qkj
σ dx

.

By Hölder’s inequality, for any r > 1,

Sh(j, k) ≤ T (h1−r′)(j, k)r−1.
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Set r = 1 + 2/p; then we may rewrite the above inequality as
�

Rn

u

(mf)p
dx ≤ αp

�

X

S(f/σ)p dω ≤ αp
�

X

T ((f/σ)−p/2)2 dω.

If T were a bounded operator from L2(σ) to L2(X,ω) then
�

Rn

u

(mf)p
dx ≤ αpC

�

Rn

σp

fp
σ dx = αpC

�

Rn

v

fp
dx.

Since T is bounded on L∞ with constant 1, by the Marcinkiewicz interpo-
lation theorem it will suffice to show that T is weak (1, 1). For each λ > 0,
let

Eλ = {(j, k) ∈ X : Th(j, k) > λ}.
Then

ω(Eλ) =
∑

(j,k)∈Eλ
u(Ekj )

(
1
|Qkj |

�

Qkj

σ dx

)−p
≤

∑

(j,k)∈Eλ

�

Ekj

u

m(σ/χQkj )p
dx.

For each M > 0, let EM = {(j, k) ∈ Eλ : j + |k| ≤ M}. Then it will suffice
to show that there is a constant C independent of M such that

∑

(j,k)∈EM

�

Ekj

u

m(σ/χQkj )p
dx ≤ C

λ

�

Rn
hσ dx.

Since the set {Qkj : (j, k) ∈ EM} is finite, by Lemma 4.2 there exists a
disjoint subcollection {Qn} such that each cube Qkj ⊂ 3Qn for some n.
Therefore, since the Ekj ’s are pairwise disjoint and Ekj ⊂ Qkj ,

∑

(j,k)∈EM

�

Ekj

u

m(σ/χQkj )p
dx ≤

∑

n

∑

Qkj⊂3Qn

�

Ekj

u

m(σ/χ3Qn)p
dx

≤
∑

n

�

3Qn

u

m(σ/χ3Qn)p
dx

≤ C ′3
∑

n

�

Qn

σ dx.

The last inequality follows from Lemma 4.1. Since each Qn = Qkj for some
(j, k) ∈ Eλ, and since the Qn’s are disjoint,

C ′3
∑

n

�

Qn

σ dx ≤ C ′3
λ

∑

n

�

Qn

hσ dx ≤ C ′3
λ

�

Rn
hσ dx.

Hence T is weak-type (1, 1) with constant C ′3. Therefore, T is strong-type
(2, 2) with constant 8C ′3 (see, for example, Sadosky [17]), and so the strong-
type inequality for the minimal operator holds for positive v with constant
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C4 ≤ 8αpC ′3. However, there are no restrictions on α > 1, so we may take
the limit as α tends to 1 to get C4 ≤ 8C ′3.

To complete the proof, fix an arbitrary pair (u, v) ∈W ∗p and fix any non-
negative f such that 1/f ∈ Lp(v). For each k > 0 define vk = v+k−(n+p+1)

and fk = (f + 1/k)/χPk , where Pk is the cube centered at the origin with
l(Pk) = k. Then a calculation shows that (u, vk) ∈ W ∗p with the same
constant as (u, v). Further, 1/fk ∈ Lp(vk). As we showed at the end of
Section 2,mfk decreases tomf . Therefore, by the special case given above,

�

Rn

u

(mfk)p
dx ≤ C4

�

Pk

vk
fpk

dx

≤ C4

�

Rn

v

fp
dx+ C4k

−(n+p+1)kp|Pk|.

The strong-type norm inequality now follows from the monotone conver-
gence theorem.

Remark. Even without a doubling condition the W ∗p condition is neces-
sary for the strong-type inequality to hold. In the proof that it is sufficient,
we only used a doubling condition to prove Lemma 4.1, so the strong W ∗p
condition (1.3) is a sufficient condition which does not use doubling. The
proof of Lemma 4.1 also shows that the strong Wp condition implies the
strong W ∗p condition. Hence, combining this observation with the remarks
at the end of Section 2, we see that the strong Wp condition is actually
sufficient for both the weak and strong-type inequalities.

However, even though we were able to use the strong Wp condition to
show that the strongW∞ condition is a sufficient condition for the weak-type
norm inequality for the geometric maximal operator, a similar argument fails
to produce a sufficient condition for the strong-type inequality for M0. To
intuitively see why, note that while the strong W∞ condition is the (formal)
limit of the strong Wp condition as p tends to infinity, the (formal) limit of
the strong W ∗p condition is

�

3Q

M0(v−1χ3Q)u dx ≤ C|Q|.

Since |3Q| = 3n|Q|, this is equivalent to the W ∗∞ condition, and so nothing
new is gained.

However, by introducing a larger maximal operator, we get a Sawyer-
type condition which is sufficient. We define the “offset” geometric maximal
operator by

Mo
0 f(x) = sup

3Q3x
exp

(
1
|Q|

�

Q

log f dx
)
.
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Then following the argument in [6], if (u, v) are such that for all cubes Q,
�

Q

Mo
0 (v−1χQ)u dx ≤ C|Q|,

then (u, v) satisfy the strong W ∗p condition for all p with a constant indepen-
dent of p. Hence this yields a sufficient condition for the strong-type norm
inequality for M0 that does not require a doubling condition, but one of
limited utility.

5. Doubling conditions on vr, 0 < r < 1. In this section we examine
the doubling conditions which appear in Theorems 1.3, 1.4 and 1.5. These
results assume different but closely related doubling conditions on a weight v:

(D1) for all r, 0 < r < 1, vr is a doubling weight;
(D2) for all r sufficiently small, vr is a doubling weight and

lim sup
r→0

D(vr) <∞;

(D3) for all r sufficiently small, vr is a doubling weight and

lim sup
r→0

2−n/rD(vr)1/r <∞.

Condition (D1) is equivalent to saying that v = w1/r, where w is a
doubling weight. Note that this does not imply that v is a doubling weight:
a simple counter-example on the real line is v(x) = min(1, |x|−1).

Examples of doubling weights are well known: for instance, if w ∈ A∞
then w is a doubling weight. Examples of doubling weights which are not in
A∞ have been constructed by Fefferman and Muckenhoupt [10], Strömberg
[22] and Wik [25]. However, it is not obvious a priori that there exist weights
which satisfy conditions (D2) and (D3). We begin by showing that the A∞
condition implies both.

Lemma 5.1. If w ∈ A∞ then conditions (D1)–(D3) hold.

Proof. By carefully keeping track of constants we can show wr is dou-
bling for all r < 1 and that condition (D3) holds. (It is immediate that (D3)
implies (D2).)

Fix w ∈ A∞; then w ∈ Ap for some p > 1 with constant Ap(w). Then,
given any cube Q and r < 1, by Hölder’s inequality,

�

2Q

wr dx ≤ |2Q|
(

1
|2Q|

�

2Q

w dx

)r

≤ 2nAp(w)r|Q|
(

1
|2Q|

�

2Q

w1−p′ dx

)−r(p−1)



18 D. Cruz-Uribe, SFO

≤ 2n+nr(p−1)Ap(w)r|Q|
(

1
|Q|

�

Q

(wr)(1−p′)/r dx

)−r(p−1)

≤ 2n+nr(p−1)Ap(w)r
�

Q

wr dx.

Hence D(wr)≤2n+nr(p−1)Ap(w)r and condition (D3) follows immediately.

The situation for doubling weights which are not in A∞ is more complex.
We will construct the following two examples. They are similar in spirit to
the one of Fefferman and Muckenhoupt; we use an idea of Wik’s to show
they are not in A∞.

Example 5.2. There exists a weight v on R such that v is a doubling
weight but for any r > 0, r 6= 1, vr is not a doubling weight.

Example 5.3. There exists a weight w on R such that for every r > 0
wr is a doubling weight and D(wr) is uniformly bounded for all r ≤ 1, but
wr is not in A∞.

We believe that Example 5.3 also satisfies condition (D3) but we cannot
get a sufficiently sharp estimate on the doubling constant to show this.
Further, after repeated attempts we were unable to construct a weight for
which (D2) holds but (D3) does not. Thus the following questions remain
open:

(i) Does there exist a weight v and 0 < a < b such that vr is doubling
for a ≤ r ≤ b, but not for r < a or r > b?

(ii) Does there exist a weight v such that vr is doubling for all r ≤ 1 but
condition (D2) does not hold?

(iii) Are conditions (D2) and (D3) equivalent?

The basic building block for our examples is given in Theorem 5.5. Here-
after, by a dyadic step function we mean a function of the form

∑
aiχJi ,

where the Ji’s are disjoint dyadic intervals.

Definition 5.4. For α > 1, define the operator Tα on dyadic step func-
tions as follows: given a dyadic interval I = [m2k, (m+ 1)2k), let

Ii = [m2k + (i− 1)2k−2,m2k + i2k−2), 1 ≤ i ≤ 4,

be the four dyadic subintervals of length |I|/4. Then define

Tα(χI) = χI1 + αχI2 + α−1χI3 + χI4 .

More generally, if f =
∑
aiχJi is a dyadic step function, define

Tα(f) =
∑

aiTα(χJi).

Theorem 5.5. For α > 1, define the sequence {uα,n} of functions by
induction: uα,0 = χ[0,1) and uα,n = Tα(uα,n−1) = Tnα (uα,0). Then:
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(i) for each α, n and r > 0, urα,n = uαr,n;
(ii) given a dyadic interval I ⊂ [0, 1], |I| ≥ 4−n, then uα,n+s(I) =

γsαuα,n(I), for all s ≥ 1, where γα = 1/2 + (α+ α−1)/4;
(iii) for each n and l, −n ≤ l ≤ n,

|{x ∈ [0, 1] : uα,n(x) = αl}| = 4−n
(

2n
n+ l

)
;

(iv) for each n, uα,n is doubling on [0, 1] and D(uα,n) depends on α but
not on n;

(v) there does not exist p > 1 such that for all n, uα,n satisfies the Ap
condition on [0, 1] with uniformly bounded constant.

Remark. For each n, uα,n is bounded and bounded away from zero, so
each uα,n is a doubling weight and satisfies the A∞ condition on [0, 1].

To prove Theorem 5.5 we need two lemmas.

Lemma 5.6. Given a weight v, suppose there exists a constant S(v) such
that if I and J are adjacent dyadic intervals (whose union need not be a
dyadic interval), then v(I) ≤ S(v)v(J). Then v is a doubling weight and
D(v) ≤ P (S(v)), where P is a degree 5 polynomial.

Proof. Fix an interval I; if j is such that 2j < |I| ≤ 2j+1 then I must
contain a dyadic interval Id of length 2j−1. Since |2I| ≤ 2j+2, 2I must be
contained in the union of 8 adjacent dyadic intervals of length 2j−1. Then
Id must be either the third or fourth interval from the left or the right;
repeatedly applying our hypothesis shows that

v(2I) ≤ P (S(v))v(Id) ≤ P (S(v))v(I),

where

P (S(v)) = max(1 + 2S(v) + 2S(v)2 + S(v)3 + S(v)4 + S(v)5,

1 + 2S(v) + 2S(v)2 + 2S(v)3 + S(v)4).

Remark. Essentially the same proof shows that if I0 is a dyadic interval
and the hypothesis holds for all dyadic subintervals of I0 then u is doubling
on I0.

The following result is due to Wik [25].

Lemma 5.7. A weight w is in Ap, p > 1, if and only if there exist con-
stants q > p and Cw > 0 such that , given any cube Q and measurable set
E ⊂ Q,

w(E)
w(Q)

≥ Cw
( |E|
|Q|

)q
.



20 D. Cruz-Uribe, SFO

Proof of Theorem 5.5. By Definition 5.4,

uα,n =
4n∑

i=1

ai,nχJni ,

where the Jni ’s are disjoint dyadic intervals, |Jni | = 4−n. Denote the four
dyadic subintervals of Jni of length 4−n−1 by Jni,j , 1 ≤ j ≤ 4.

We prove part (i) by induction on n. Fix α and r. It is immediate that
uαr,0 = urα,0. Now suppose that for some n,

uαr,n = urα,n =
∑

ari,nχJni .

Then
uαr,n+1 = Tαr(uαr,n) =

∑

i

ari,nχJni,1 + αrari,nχJni,2 + α−rari,nχJni,3 +ari,nχJni,4

= urα,n+1.

Hence this equality holds for all n.
To prove part (ii), fix α and n. It will suffice to prove that uα,n+1(I) =

γαuα,n(I). There exist i and k such that I = Jni ∪ Jni+1 ∪ . . . ∪ Jni+k. Hence,

uα,n+1(I) = Tα(uα,n)(I) =
k∑

j=0

�

Jni+j

ai+j,nTα(χJni+j ) dx

= γα

k∑

j=0

ai+j,n|Jni+j | = γα

k∑

j=0

uα,n(Jni+j)

= γαuα,n(I).

We prove part (iii) by induction on n. For n = 1 it is immediate. Now
suppose it holds for some n and all l. Since uα,n+1 = Tα(uα,n), for each l,
the set {x ∈ [0, 1] : uα,n+1(x) = αl} will consist of three disjoint subsets:
x ∈ [0, 1] such that uα,n(x) = αl and whose “height” was unchanged by
Tα; x such that uα,n(x) = αl−1 and whose height was raised to αl by Tα;
and x such that uα,n(x) = αl+1 and whose height was lowered to αl by Tα.
Therefore, by our induction hypothesis and by Pascal’s identity,

|{x ∈ [0, 1] : uα,n+1(x) = αl}|

=
1
2

4−n
(

2n
n+ l

)
+

1
4

4−n
(

2n
n+ l − 1

)
+

1
4

4−n
(

2n
n+ l + 1

)

= 4−n−1
[(

2n
n+ l − 1

)
+
(

2n
n+ l

)]
+ 4−n−1

[(
2n
n+ l

)
+
(

2n
n+ l + 1

)]

= 4−n−1
[(

2n+ 1
n+ l

)
+
(

2n+ 1
n+ l + 1

)]
= 4−n−1

(
2n+ 2
n+ l + 1

)
.

Hence part (iii) holds for all n.
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To prove part (iv), by Lemma 5.6 it will suffice to show that if I and J
are two adjacent dyadic subintervals of [0, 1], |I| = |J |, and I to the left of
J , then for all k,

(5.1) α−2uα,k(J) ≤ uα,k(I) ≤ α2uα,k(J).

We will show inequality (5.1) by induction. By inspection, it holds for
k = 1. Now suppose it holds for k = n. To show it holds for k = n + 1 we
consider three cases.

Case 1: I and J are subintervals of Jni for some i. On Jni , uα,n+1 =
ai,n+1Tα(χJni ), so arguing as we did for uα,1 we see that in this case (5.1)
holds for k = n+ 1.

Case 2: I and J are each the union of 2m of the Jni ’s. Then by part (ii)
above,

uα,n+1(Jni ) = γαuα,n(Jni ),

and so it is immediate that in this case (5.1) holds for k = n+ 1.

Case 3: I ⊂ Jni , J ⊂ Jni+1 for some i. There are two possibilities. If
|I| ≤ |Jni |/4, then uα,n+1(I) = uα,n(I) and uα,n+1(J) = uα,n(J), so (5.1)
holds for k = n+ 1 in this case.

If |I| = |Ji|/2 then a direct computation shows that

uα,n+1(I) =
α−1 + 1

2
ai,n|I|, uα,n+1(J) =

α+ 1
2

ai+1,n|J |.

Hence

uα,n+1(I) =
α−1 + 1
α+ 1

· ai
ai+1

uα,n+1(J) =
α−1 + 1
α+ 1

· uα,n(Jni )
uα,n(Jni+1)

uα,n+1(J).

Inequality (5.1) would follow in this case for k = n+ 1 if

(5.2) α−1uα,n(Jni+1) ≤ uα,n(Jni ) ≤ α2uα,n(Jni+1).

This inequality also follows by induction. It is immediate if n = 1. To com-
plete the induction, if it is true for some n then, given Jn+1

i and Jn+1
i+1

there are two cases: for some j either they are both subintervals of some
Jnj or Jn+1

i = Jnj,4 and Jn+1
i+1 = Jnj+1,1. In the first case we argue as we did

when n = 1. In the second case we note that uα,n+1(Jn+1
i ) = uα,n(Jn+1

i )
and uα,n+1(Jn+1

i+1 ) = uα,n(Jn+1
i+1 ). In either case we see that inequality (5.2)

holds with n replaced by n+ 1. Hence it is true for all n, and this completes
the proof of part (iv).

Finally, to prove part (v), by Lemma 5.7 it will suffice to construct an
increasing sequence {nk} and a sequence of sets Ek ⊂ Q = [0, 1] such that
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for any q > 1,

(5.3) lim
k→∞

uα,nk(Ek)
uα,nk(Q)

( |Ek|
|Q|

)−q
= 0.

Let nk = k2 and let Ek = {x ∈ [0, 1] : uα,nk(x) = α−k}. Then by part (iii)
above,

|Ek| = 4−k
2
(

2k2

k2 − k

)
, uα,nk(Ek) = α−k|Ek|.

We estimate |Ek| using Stirling’s formula:

|Ek| =
(2k2)!

4k2(k2 − k)!(k2 + k)!
≈ (k2)2k2

(k2 − k)k2−k(k2 + k)k2+k(k2 − 1)1/2

≈
(

k4

k4 − k2

)k2(
k2 − k
k2 + k

)k 1
k

≈
(

1 +
1

k2 − 1

)k2−1(
1− 2

k + 1

)k+1 1
k
≈ 1
ek
.

By part (ii) above, uα,nk(Q) = γk
2

α . Since γα > 1, for any q > 1,

uα,nk(Ek)
uα,nk(Q)

( |Q|
|Ek|

)q
≤ Cα−kγ−k2

α kq−1,

and (5.3) follows at once.

Remark. Since the doubling condition and the A∞ condition are not
affected by multiplication by constants, parts (iv) and (v) of Theorem 5.5
remain true if we replace uα,n by γ−nα uα,n.

Construction of Example 5.2. It will suffice to construct v on [0,∞),
since by Lemma 5.6, if v is a doubling weight on [0,∞) and we extend it to
R as an even function then it is doubling on R.

Fix α > 1, say α = 2, and for x ≥ 0 define

v(x) =
∞∑

n=0

γ−nα uα,n(x− n)χ[n,n+1)(x).

By Theorem 5.5(ii), for any n ≥ 0,

(5.4)
n+1�

n

v dx = 1.

To show that v is doubling on [0,∞) we will apply Lemma 5.6. By (5.4),
if I and J are adjacent dyadic subintervals of [0,∞), |I| = |J | ≥ 1, then
v(I) = v(J). Further, by Theorem 5.5, if I and J are both subintervals of
[n, n + 1] for some n then v(I) ≤ α2v(J). Therefore, it remains to check
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that this is the case for two intervals I and J such that I ⊂ [n − 1, n] and
J ⊂ [n, n + 1]. Let I ′ = I − (n − 1), J ′ = J − n. Fix k ≥ 1 such that
4−k ≤ |I| < 4−k+1. If |I| = 4−k then uα,k(I ′) = uα,k(J ′) = |I|; if |I| =
2 · 4−k then uα,k(I ′) = (1 + α−1)|I|/2, uα,k(J ′) = (1 + α)|I|/2. Further, by
Theorem 5.5(ii), uα,n−1(I ′) = γn−1−k

α uα,k(I ′) and uα,n(J ′) = γn−kα uα,k(J ′).
Therefore, v(I) = γ−kα uα,k(I ′) and v(J) = γ−kα uα,k(J ′), so

1 + α−1

1 + α
v(J) ≤ v(I) ≤ v(J).

Therefore, by Lemma 5.6, v is a doubling weight.
Now fix r 6= 1. To see that vr is not a doubling weight, note that by

Theorem 5.5(i),

v(x)r =
∞∑

n=0

γ−rnα uαr,n(x− n)χ[n,n+1)(x).

Hence by Theorem 5.5(ii),
n+1�

n

vr dx = γnαr/γ
nr
α .

Let Γr = γαr/γ
r
α; if r < 1 then Γr < 1; if r > 1 then Γr > 1. Now let

I = [0, n] and J = [n, 2n]. Then

vr(I) =
n−1∑

k=0

Γ kr =
Γnr − 1
Γr − 1

and vr(J) =
2n−1∑

k=n

Γ kr =
Γ 2n
r − 1
Γr − 1

− Γnr − 1
Γr − 1

.

Therefore, if r 6= 1, then vr(I)/vr(J) tends to either 0 or infinity as n tends
to infinity, so vr is not a doubling weight.

Construction of Example 5.3. As in the construction of Example 5.2,
we will construct w on [0,∞) and use Lemma 5.6 to show wr is a doubling
weight for all r > 0.

Again fix α > 1, say α = 2. Define the sequence {nk} as follows: let
n0 = 0, and for k ≥ 1, if 2n ≤ k < 2n+1, n an integer, let nk = n. Now
define

w(x) =
∞∑

k=0

γ−nkα uα,nk(x− k)χ[k,k+1)(x).

To show that wr is doubling and satisfies condition (D2), first note that if
I and J are adjacent dyadic intervals with |I| = |J | ≤ 1, then arguing as we
did in the first half of Example 5.2, we obtain wr(I) ≤ α2rwr(J).

Now suppose that |I| = |J | = 2n, n ≥ 1, and I is to the left of J . Given
any k, arguing as in the second half of Example 5.2 gives wr([k, k+1]) = Γnkr .
Let I = [m2n, (m+1)2n]. There are three cases. If m ≥ 2 then by our choice
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of the nk’s, wr(I) = wr(J). If m = 1 then wr(I) = (2Γr)n = Γrw
r(J). If

m = 0, then

wr(I) = 1 +
n−1∑

k=0

2kΓ kr = 1 +
(2Γr)n − 1

2Γr − 1
and wr(J) = (2Γr)n,

so
wr(I)
wr(J)

=
1

2Γr − 1
+

1
(2Γr)n

− 1
(2Γr)n(2Γr − 1)

.

Therefore, we can conclude that for all r > 0, wr is a doubling weight.
Further, if r ≤ 1 there exists a constant Rα such that 1/2 < Rα ≤ Γr ≤ 1.
(E.g. if α = 2, Rα ≈ 0.97.) Hence if r ≥ 1, D(wr) is uniformly bounded.

Finally, by Theorem 5.5(v), since nk tends to infinity as k tends to in-
finity, wr is not in A∞ for any r.

Remark. The bound given by Lemma 5.6 for D(wr) is extremely poor,
but we have been unable to estimate it (or more precisely, D(uα,n)) in any
other way. For this reason we cannot show that w satisfies condition (D3).

Doubling not necessary. We conclude this section with an example to
show that doubling conditions are not necessary for the Wp condition,

1
|I|

�

I

u dx ≤ C1

(
1
|I|

�

I

σ dx

)p+1

,

to govern the weighted norm inequalities for the minimal operator in higher
dimensions.

Example 5.8. There exists a pair of weights (u, v) ∈ Wp(Rn) such that
neither u or σ = v1/(p+1) is doubling , but

(5.5)
�

Rn

u

(mf)p
dx ≤ C

�

Rn

v

|f |p dx

for every f such that 1/f ∈ Lp(v).

Proof. For clarity we will construct our example in R2. The same argu-
ment extends to Rn, n ≥ 3.

Let v0(t) = e−1/|t|. Then vr0 is not doubling for any r > 0. Further, in
[8] it was shown that if u0(t) is defined by the integral equation

1
t

t�

0

u0 ds =
(

1
t

t�

0

v
1/(p+1)
0 ds

)p+1

,

then u0 is also not a doubling weight but (u0, v0) ∈ Wp(R). We now define
the pair (u, v) by u(x, y) = u0(x)u0(y), v(x, y) = v0(x)v0(y). It follows
immediately from Fubini’s theorem that (u, v) ∈ Wp(R2) and that neither
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u or σ = v1/(p+1) is doubling. The same argument also shows that the pair
(u, v) does not satisfy the strong Wp condition (1.2).

It therefore remains to show that inequality (5.5) holds. Define the min-
imal operator restricted to the first co-ordinate as follows:

m1f(x, y) = inf
I

1
|I|

�

I

|f(t, y)| dt,

where the infimum is taken over all intervals in R which contain x. We
define m2, the minimal operator restricted to the second co-ordinate, sim-
ilarly. Then, again by Fubini’s theorem, mf(x, y) ≥ m1(m2f(x, y)), and
inequality (5.5) follows by applying Theorem 1.2 to each variable in turn.

6. The centered minimal operator. In this section we prove Theo-
rem 1.7. Throughout this section, let σ = v1/(p+1).

The proof requires two covering lemmas. The first is a Whitney-type
decomposition of a cube. This result is a special case of a covering lemma
given by Sawyer [19]; because this case is much simpler we sketch the proof
as a convenience to the reader.

Lemma 6.1. Given an open cube Q, there exists a sequence {Qk} of closed
cubes contained in Q such that : the Qk’s have disjoint interiors; l(Qk) =
dist(Qk, ∂Q);

⋃
kQk = Q; 2Qk ⊂ Q and any point in Q is contained in at

most 3 · 2n−1 of the 2Qk’s.

Proof. Let Q0 = 1
3Q. For j ≥ 1, form the “shell”

Sj = (3− 2−j+1)Q0 \ (3− 2−j+2)Q0.

Each shell Sj can be divided into mj = 2jn(3− 2−j+1)n − 2jn(3− 2−j+2)n

closed cubes with disjoint interiors. Further, each of these cubes Qk is such
that l(Qk) = dist(Qk, ∂Q) = 2−j |Q0|. Clearly Q is the union of the Qk’s,
k ≥ 0, and 2Qk ⊂ Q. Finally, to see that the 2Qk’s have finite overlap, let
S0 = Q0 and S−1 = ∅. Then, if x ∈ Sj , j ≥ 0, we have x ∈ 2Qk for at most
2n−1 cubes Qk in each of Sj−1, Sj and Sj+1.

The second covering lemma is a variant of the Besicovitch–Morse cover-
ing lemma, which we prove in the next two lemmas. (Our proof is adapted
from the proof of the Besicovitch–Morse covering lemma given by Wheeden
and Zygmund [24].)

Lemma 6.2. Let {Qk} be a sequence of cubes such that for any k > j,
|Qk| ≤ 3

2 |Qj | and 1
5Qk \ Qj is non-empty. Then there exists a constant

Cn, depending only on the dimension n, such that every point x ∈ Rn is
contained in at most Cn of the Qk’s.

Proof. We will determine the degree of overlap of theQk’s only at the ori-
gin; by translation the same value will hold for every point in Rn. Let {Qki},
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ki < ki+1, be the collection of cubes which contain the origin and whose
centers lie in the “first” quadrant—the quadrant where the co-ordinates
of points are all non-negative. Let hi = l(Qki). Then Qk1 must contain
the cube [0, h1/2)n. Since |Qki | ≤ 3

2 |Qk1 |, for all i > 1, we must have
hi ≤ (3/2)1/nh1 ≤ 5

4h1. Therefore the center of Qki , i > 1, must lie in
the cube

[
0, 5

8h1
)n

. Further, because 1
5Qki cannot be contained in Qk1 , the

center of Qki cannot be in the cube
[
0, 3

8h1
)n

. To see this, consider the lim-
iting case: hi = 5

4h1 and 1
5Qki is just contained in Qk1 . Then the center of

Qki must lie within h1/8 of the edge of Qk1 .
Therefore, the centers of the cubes Qki , i > 1, lie in

[
0, 5

8h1
)n\

[
0, 3

8h1
)n

.
If a cube Qki has its center in this region, then, since it contains the origin,
3
4h1 ≤ hi ≤ 5

4h1. If two cubes Qki and Qkj , j > i, both have their centers
in this region then their centers must be at least h1/4 apart. Otherwise,
reasoning as we did before, we would have 1

5Qkj ⊂ Qki , a contradiction.
There can be only a finite number, Cn, of such points, and Cn depends only
on the dimension. If we rescale so that h1 = 8, then we get a rough estimate
for Cn as follows: count the number of unit cubes with integer co-ordinates
which lie in the cube [0, 5]n. Since each such cube can contain the center of
at most one Qki , there are 5n such cubes. If we repeat this argument for the
cubes whose centers lie in the other 2n−1 quadrants, we see that there can
be at most 10n cubes containing the origin.

Remarks. (i) The constants 1/5 and 3/2 in Lemma 6.2 are not the only
ones possible. We can replace them by any two positive constants δ < 1 and
γ > 1 such that 1/3 > δγ1/n.

(ii) The problem of finding the best value for the constant Cn is closely
related to an open problem in finite point sets. See Croft, Falconer and Guy
[2, p. 154].

Lemma 6.3. Let {Qα} be a collection of cubes in Rn whose union has
finite measure, and for each α let Pα = 1

5Qα. Then there exists a sequence
{Qk} of Qα’s such that for each α, Pα ⊂ Qk for some Qk, and such that
each point x ∈ Rn is contained in at most Cn of the Qk’s, where Cn is the
constant from Lemma 6.2.

Proof. Let F0 = ∅ and define

β1 = sup{|Qα| : Pα 6∈ F0}.
Since

⋃
αQα has finite measure, β1 < ∞. Fix a cube Q1 among the Qα’s

such that |Q1| > 2
3β1. Define F1 = {Pα ⊂ Q1} and

β2 = sup{|Qα| : Pα 6∈ F1}.
Clearly β2 ≤ β1. If β2 = 0 we are done. If not, continue this process. At the
kth stage, if βk > 0 fix a cube Qk among those used to define βk such that
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|Qk| > 2
3βk. define Fk = {Pα ⊂ Qk} and

βk+1 = sup{|Qα| : Pα 6∈ Fj , 1 ≤ j ≤ k}.

Clearly the βk’s are decreasing, so if k > j, then |Qk| ≤ βk ≤ bj ≤ 3
2 |Qj |.

Further, by our choice of Qk, Pk \ Qj 6= ∅. Therefore, by Lemma 6.2, the
Qk’s have finite overlap.

It remains to show that each Pα is contained in some Qk. If βk = 0 for
some k then this is immediate. Therefore, suppose that there are an infinite
number of Qk’s, and suppose to the contrary that there exists an α such
that Pα is not contained in any Qk. Then for all k, Pα 6∈ Fk−1, so |Qα| ≤ βk.
If we can show that βk tends to 0 then we would have a contradiction. Since
2
3βk ≤ |Qk| ≤ βk, it will suffice to show that |Qk| tends to 0.

Suppose instead that there exists δ > 0 such that |Qk| ≥ δ. Then since
there are an infinite number of Qk’s, and they have finite overlap, we have

∞ =
∑
|Qk| ≤ Cn

∣∣∣
⋃

α

Qk

∣∣∣ <∞,

a contradiction. Hence |Qk| tends to zero and we are done.

Proof of Theorem 1.7. A standard argument shows that the strong-type
inequality implies the weak-type inequality, and the arguments in Sections 2
and 4 show that the weak-type inequality implies the Wp,c condition,

(6.1)
1
|Q|

�

Q

u dx ≤ D1

(
1
|2Q|

�

2Q

σ dx

)p+1

,

and the strong-type inequality implies the W ∗p,c condition,

(6.2)
�

Q

u

mc(σ/χQ)p
dx ≤ D3

�

Q

σ dx.

Therefore, to complete the proof it will suffice to show that (6.1) implies
(6.2), and (6.2) implies the strong-type norm inequality.

Remark. We do not have a direct proof that the W ∗p,c condition implies
the Wp,c condition. The argument in Section 3 fails in the same way that the
proof that the W ∗∞ condition implies the W ∗p condition fails in the centered
case.

To prove that (6.1) implies (6.2), fix a cube Q and apply Lemma 6.1 to
form the sequence {Qk}. For each Qk, let Pk be the union of all the cubes
contained in Q whose centers are in Qk. Since dist(Qk, Q) = l(Qk), Pk is a
rectangle whose volume is at most 4 · 5n−1|Qk|. Let Gn = 4 · 5n−1.



28 D. Cruz-Uribe, SFO

We now argue as we did in Section 3. Fix a cube Qk and for each t > 0
let Et = {x ∈ Qk :mc(σ/χQ)(x) < 1/t}. Then for R > 0 to be fixed below,

(6.3)
�

Qk

u

mc(σ/χQ)p
dx = p

R�

0

tp−1u(Et) dt+ p

∞�

R

tp−1u(Et) dt.

The first integral on the right-hand side is bounded by u(Qk)Rp. To
estimate the second, note that if x ∈ Et there exists a cube Qtx,k centered
at x such that 2Qtx,k ⊂ Pk and

1
|2Qtx,k|

�

2Qtx,k

σ dy < 1/t.

By Lemma 2.1 there exists a subcollection {Qtj,k} which covers Et and has
finite overlap. We now repeat the argument in Section 3. With the same
notation, inequality (3.5) becomes

p

∞�

R

tp−1u(Et) dt ≤ pD1

∞�

R

t−2
∑

j

|Qtj,k| dt

≤ pD1Bn|Pk|/R = pD1BnGn|Qk|/R.
Therefore the left-hand side of (6.3) is dominated by u(Qk)Rp + pC|Qk|/R.
Fix R so that Rp = σ(2Qk)/u(Qk). By the Wp,c condition, |Qk|/R ≤
Cσ(2Qk), so �

Qk

u

mc(σ/χQ)p
dx ≤ Cσ(2Qk).

Since the Qk’s are disjoint and the 2Qk’s have finite overlap, if we sum over
k we get (6.2).

To prove that the W ∗p,c condition implies the strong-type norm inequal-
ity, we will adapt the proof in Section 4. Fix a function f ; without loss of
generality we may assume that f is non-negative. Further, arguing as we
did in Section 2, we may also assume that there exists a cube P and ε > 0
such that f(x) > ε for all x ∈ P and 1/f has support on P .

Fix α > 1, and for each integer k letAk = {x : α−k−1 ≤mcf(x) < α−k}.
For each x ∈ Ak there exists a cube Qkx contained in P and centered at x
such that

α−(k+1) ≤ 1
|Qkx|

�

Qkx

f dy < α−k.

Let P kx = 1
5Q

k
x. By the continuity of the integral there exists a small cube

Kk
x centered at x and contained in P kx such that if y ∈ Kk

x then
1
|P kx |

�

Pkx

σ dx ≥ 2−1/pmc(σ/χPkx )(y).



The minimal operator in Rn 29

By Lemma 2.1 there exists a subcollection {Kk
j } such that Ak ⊂

⋃
j K

k
j and

the Kk
j ’s have finite overlap. Let Ekj = Ak ∩Kk

j . Then, since the Ak’s are
disjoint, the Ekj ’s have finite overlap for all j and k.

Since f(x) > ε on P , we have u({x : mcf(x) = 0}) = 0. Therefore, we
can proceed as we did in Section 4; using the same notation we get

�

Rn

u

(mcf)p
dx ≤ αp

�

X

S(f/σ)p dω ≤ αp
�

X

T ((f/σ)−p/2)2 dω.

As before, it will suffice to show that T is weak (1, 1). For each λ > 0,
let

Eλ = {(j, k) ∈ X : Th(j, k) > λ}.
Then

ω(Eλ) =
∑

(j,k)∈Eλ
u(Ekj )

(
1
|Qkj |

�

Qkj

σ dx

)−p

≤ 5np
∑

(j,k)∈Eλ
u(Ekj )

(
1
|P kj |

�

Pkj

σ dx

)−p

≤ 2 · 5np
∑

(j,k)∈Eλ

�

Ekj

u

mc(σ/χPkj )p
dx.

By our choice of the Qkj ’s, their union is bounded and so has finite
measure. Therefore, by Lemma 6.3 there exists a subcollection {Qn} with
finite overlap such that each P kj is contained in some Qn. Since the Ekj ’s
have finite overlap, it follows that

2 · 5np
∑

(j,k)∈Eλ

�

Ekj

u

mc(σ/χPkj )p
dx ≤ 2 · 5np

∑

n

∑

Pkj ⊂Qn

�

Ekj

u

mc(σ/χQn)p
dx

≤ 2Bn5np
∑

n

�

Qn

u

mc(σ/χQn)p
dx

≤ 2BnD35np
∑

n

�

Qn

σ dx

≤ 2BnD35np

λ

∑

n

�

Qn

hσ dx

≤ 2BnCnD35np

λ

�

Rn
hσ dx.

Therefore T is weak-type (1, 1) and our proof is complete.

Remark. The weak (1, 1) constant of T is 2BnCnD35np, and so the
strong-type (2, 2) constant is M = 16BnCnD35np. Hence D4 ≤ 8Mαp.
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While we can take the limit as α tends to 1 to get D4 ≤ 8M , M itself still
depends on p.

The proof on R. If we restrict ourselves to the real line we can modify
our proof to get the strong-type (2, 2) constant for T independent of p. The
argument follows closely the proof of the main theorem in [4]; here we sketch
the details.

Begin the proof as before, and choose the Qkx’s to be open intervals. Omit
the P kx ’s and choose each interval Kk

x to be concentric with the interval Qkx
and such that if y ∈ Kk

x then
1
|Qkx|

�

Qkx

σ dx ≥ 2−1/pmc(σ/χQkx)(y).

Continue the above proof exactly the same until we have to show that
T is weak-type (1, 1). Here we estimate as follows:

ω(Eλ) =
∑

(j,k)∈Eλ
u(Ekj )

(
1
|Qkj |

�

Qkj

σ dx

)−p
≤ 2

∑

(j,k)∈Eλ

�

Ekj

u

mc(σ/χQkj )p
dx.

Let G =
⋃
Qkj . Since the Qkj ’s are open, G is open and so it is the union of

disjoint open intervals Qn. Further, each Qn is the union of Qkj ’s, so each
set Ekj is contained in a unique Qn. Finally, by a lemma of Muckenhoupt
[16] (also see [4]) we have

�

Qn

σ dx ≤ 2
λ

�

Qn

hσ dx.

Therefore, if we use this collection {Qn} the above argument goes through,
and we conclude that the weak (1, 1) constant for T in this case is 4D3, so
the strong (2, 2) constant is 32D3, which does not depend on p.

The one-weight case. We conclude this section by proving the analogue
of Theorem 1.1 for the centered minimal operator. For brevity, we write
w ∈ Wp,c instead of (w,w) ∈ Wp,c. Recall that a function w satisfies the
weak A∞ condition if, given any cube Q and a measurable set E ⊂ Q, there
exist constants C and δ such that

w(E)
w(2Q)

≤ C
( |E|
|Q|

)δ
.

This condition was introduced by Sawyer [19] to generalize the good-λ in-
equality of Coifman and Fefferman [1]. He proved that w ∈ weak A∞ if and
only if it satisfied the weak reverse Hölder inequality for some s > 1:

weak RHs :
(

1
|Q|

�

Q

ws dx

)1/s

≤ C 1
|2Q|

�

2Q

w dx.
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The weak RHs condition plays an important role in the study of PDE’s, po-
tential theory and quasi-conformal mappings. (See, for example, Giaquinta
[12], Iwaniec and Nolder [15] and Stredulinsky [21].) It has many properties
in common with the reverse Hölder inequality; here we need two.

Lemma 6.4. If w ∈ weak RHs for some s > 1 then:

(i) there exists t > s such that w ∈ weak RHt;
(ii) for each r, 0 < r < 1, wr ∈ weak RHs/r.

The proof of (i) is found in [12] and [21]; the proof of (ii) is in [15] and
Heinonen, Kilpeläinen and Martio [14, pp. 66–68].

We can now prove our result.

Theorem 6.5. Given a weight w and p, 0 < p < ∞, the following are
equivalent :

(i) w ∈Wp,c;
(ii) w ∈ weak A∞.

Proof. Suppose w ∈ Wp,c; then w1/(p+1) ∈ weak RHp+1, so by Lem-
ma 6.4, there exists t > p + 1 such that w1/(p+1) ∈ weak RHt. Therefore,
by Hölder’s inequality, w ∈ weak RHt/(p+1), so w ∈ weak A∞.

Now suppose that w ∈ weak A∞. Then for some s > 1, w ∈ weak RHs,
so by Lemma 6.4, for each p > 0, w1/(p+1) ∈ weak RHs(p+1), which implies
that w ∈Wp,c.

7. The equality M0f(x) = M∗0 f(x). In this section we prove Theo-
rem 1.8. The proof uses two lemmas from [6]. Recall that v ∈ I∞ if

lim sup
Q,σ

1
|Q|

(
1
|Q|

�

Q

v−σ dx

)1/σ

<∞,

where the upper limit is taken over all cubes Q containing the origin and all
σ > 0 as |Q| tends to infinity and σ tends to 0.

Lemma 7.1. Let Q0 be a cube (possibly infinite) and suppose that supp f
= Q0. If for some p, 0 < p < ∞, f ∈ Lp(Q0) and log f ∈ L1

loc(Q0) then
M∗0 f(x) = M0f(x) for almost every x.

Lemma 7.2. Let v ∈ I∞ and suppose that for some p, 0 < p < ∞,
f ∈ Lp(v). Let Qk be the cube centered at the origin such that l(Qk) = k.
Then the following are true:

(i) for all x, M∗0 f(x) = limk→∞M∗0 (fχQk)(x);
(ii) there exists r > 0 such that f ∈ Lrloc.
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Remarks. (i) In [6, Corollary 2.2], it was implicitly assumed that the
cube Q0 in Lemma 7.1 was finite; however the same argument works for all
cubes.

(ii) In [6, Lemma 4.3], Lemma 7.2 is only proved for p = 1, but the proof
adapts immediately to the case of arbitrary p. Further, (ii) is actually part
of the proof of (i).

Proof of Theorem 1.8. Fix a function f such that log |f | is locally in-
tegrable and f ∈ Lp(v) for some p > 0. Without loss of generality we may
assume that f is non-negative. Then Lemmas 7.1 and 7.2 together imply
that for almost every x,

M∗0 f(x) = lim
k→∞

M∗0 (fχQk)(x) = lim
k→∞

M0(fχQk)(x).

Since M0(fχQk)(x) ≤ M0f(x), to show that the right-hand side equals
M0f(x), it will suffice to show that

(7.1) M0f(x) ≤ lim
k→∞

M0(fχQk)(x).

Fix ε > 0. Then there exists a cube Q containing x such that

M0f(x)− ε < exp
(

1
|Q|

�

Q

log f dx
)
.

But for all k sufficiently large, Q ⊂ Qk, so the right-hand side is dominated
by M0(fχQk)(x). Therefore,

M0f(x)− ε ≤ lim
k→∞

M0(fχQk)(x),

and since ε > 0 is arbitrary, inequality (7.1) follows at once.
To complete the proof we will construct a non-negative function f on

R such that f is bounded, supp f = [0, 1], log f ∈ L1[0, 1] and M∗0 f(0) >
M0f(0).

For n > 1, let In = [1/n− 1/n4, 1/n] and let I =
⋃
n In. Define

f(x) =




e−n

2
, x ∈ In,

1, x ∈ [0, 1] \ I,
0, x ∈ R \ [0, 1].

Clearly f is bounded and supp f = [0, 1]. (Hence f ∈ L1(v) for any locally
integrable v.) Second,

1�

0

|log f | dx =
∞∑

n=2

n2|In| =
∞∑

n=2

n−2 <∞.

Third, fix r, 0 < r < 1. Then by a standard calculus argument, for any
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n > 1, we have

Mrf(0) ≥
(
n

1/n�

0

fr dx
)1/r

≥ (n|[0, 1/n] \ I|)1/r

≥
(
n

(
1
n
−
∑

k≥n

1
k4

))1/r

≥
(
n

(
1
n
− 1

3n3

))1/r

=
(

1− 1
3n2

)1/r

.

The last term tends to 1 as n tends to infinity. Therefore Mrf(0) = 1 for all
r, so M∗0 f(0) = 1.

Finally, fix t, 0 < t ≤ 1. For some n ≥ 1, (n + 1)−1 < t ≤ n−1. Then
arguing as before, we obtain

1
t

t�

0

log f dx ≤ −1
t

∑

k≥n+1

k2|Ik| ≤ −n
∑

k≥n+1

k−2 ≤ −n
n

= −1.

It follows that M0f(0) ≤ e−1 < 1 = M∗0 f(0).

Remark. Wik [26] established the equality of M0f(x) and M∗0 f(x), f
non-negative, given the following conditions:

(i) for some r > 0, f ∈ Lrloc;
(ii) log f ∈ L1

loc;
(iii) for all t > 0, |{x : f(x) > t}| <∞;
(iv) lim supk→∞ |Qk|−1 �

Qk
log+ f dx <∞, whereQk is the cube centered

at the origin with l(Qk) = k.

Theorem 1.8 is a generalization of this result. To see this, first note that
condition (ii) is a shared hypothesis. Second, we claim that conditions (i)
and (iv) follow from the assumption that there exists v ∈ I∞ such that
f ∈ Lp(v) for some p > 0. Indeed, (i) follows from Lemma 7.2.

To show condition (iv): if v ∈ I∞, there exist constants N and M such
that if σ < 1/N and |Qk| > N then

1
|Qk|

(
1
|Qk|

�

Qk

v−σ dx

)1/σ

< M.

Fix k such that |Qk| > N and r such that 0 < r/(p − r) < 1/N . Let
Jk = {x ∈ Qk : f(x) ≥ 1}. Then log+ f(x) = log f(x)χJk(x) for x ∈ Qk.
Hence, by Jensen’s inequality,

exp
(

1
|Jk|

�

Qk

log+ f dx

)
= exp

(
1
|Jk|

�

Jk

log f dx
)
≤
(

1
|Jk|

�

Jk

fr dx

)1/r

.
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Then by Hölder’s inequality,

1
|Jk|

�

Jk

fr dx ≤ |Qk||Jk|
( �

Rn
fpv dx

)r/p

×
(

1
|Qk|

(
1
|Qk|

�

Qk

v−r/(p−r) dx

)(p−r)/r)r/p

≤ |Qk||Jk|
‖f‖rLp(v)M

r.

Therefore,

1
|Qk|

�

Qk

log+ f dx ≤ |Jk||Qk|
log(M‖f‖Lp(v)) + r−1 |Jk|

|Qk|
log
( |Qk|
|Jk|

)
.

Since 0 < |Jk|/|Qk| ≤ 1 and the function x log(1/x) is bounded on (0, 1],
this establishes condition (iv).

Finally, we note that condition (iii) need not hold for f ∈ Lp(v). We
construct a weight v on the real line as follows: for n ≥ 0 let In = [2n−1, 2n].
For x ≥ 0 define

v(x) =
{

4−n, x ∈ In,
1, otherwise.

Extend v to R as an even function. A straightforward computation shows
that v ∈ I∞. Now define a function f by

f(x) =
{

2n, |x| ∈ In,
1/x2, otherwise.

Then it is immediate that f ∈ L1(v), but

|{x : f(x) > 1}| = 2
∞∑

n=1

|In| =∞.

A conjecture of Wik. We conclude this section by proving a conjecture
made by Wik [26]. Given a weight w ∈ A∞, let

m∞(w) = sup
{ �

Rn
M0fw dx :

�

Rn
|f |w dx = 1

}
,

m∗∞(w) = sup
{ �

Rn
M∗0 fw dx :

�

Rn
|f |w dx = 1

}
.

Since w ∈ A∞, we have w ∈W ∗∞ and w ∈ I∞, so both supremums are finite.
(See [6] for details.) Clearly m∞(w) ≤ m∗∞(w). Wik [26] showed that there
exists a constant C such that m∗∞(w) ≤ Cm∞(w) and conjectured that in
fact these two quantities are equal. Using Theorem 1.8 we show that this is
true.
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Theorem 7.3. Given w ∈ A∞, m∞(w) = m∗∞(w).

Proof. Fix w ∈ A∞ and fix a non-negative function f ∈ L1(w) such that
� fw dx = 1. We first construct a sequence {fj} that decreases to f and such
that for each j, fj ∈ L1(w) and log fj ∈ L1

loc. For each k ≥ 1, let Qk be the
cube centered at the origin with l(Qk) = k, and let Sk = Qk \Qk−1. Choose
a positive decreasing sequence {ak} such that

∞∑

k=1

ak
�

Sk

w dx <∞.

For j ≥ 1 and x ∈ Sk, define fj(x) = f(x) + ak/j. Clearly, {fj} decreases
to f . Further, on each cube Qk the functions fj are bounded below, so
log fj ∈ L1

loc. Finally, fj ∈ L1(w), since

�

Rn
fjw dx =

∞∑

k=1

�

Sk

fjw dx =
∞∑

k=1

�

Sk

(f + ak/j)w dx

=
�

Rn
fw dx+

1
j

∞∑

k=1

ak
�

Sk

w dx <∞.

Since the fj ’s are a decreasing sequence,

M∗0 f(x) ≤ lim
j→∞

M∗0 fj(x).

Therefore, by Fatou’s lemma and Theorem 1.8,
�

Rn
M∗0 fw dx ≤ lim

j→0

�

Rn
M∗0 fjw dx = lim

j→0

�

Rn
M0fjw dx

= lim
j→0
‖fj‖L1(w)

�

Rn
M0(fj/‖fj‖L1(w))w dx

≤ m∞(w) lim
j→0
‖fj‖L1(w) = m∞(w).

Since this is true for all such f , m∗∞(w) ≤ m∞(w) and we are done.
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