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No return to convexity

by

Jakub Onufry Wojtaszczyk (Warszawa)

Abstract. We study the closures of classes of log-concave measures under taking
weak limits, linear transformations and tensor products. We investigate which uniform
measures on convex bodies can be obtained starting from some class K. In particular
we prove that if one starts from one-dimensional log-concave measures, one obtains no
non-trivial uniform mesures on convex bodies.

1. Introduction and notation. The developments in asymptotic con-
vex geometry generally tend to abandon the study of uniform measures on
convex bodies in favour of log-concave measures. On one hand, this is a nat-
ural generalization—it is well-known that any log-concave measure is a weak
limit of projections of uniform measures on convex bodies. On the other
hand, it allows one to use a wide variety of tools hitherto unavailable. It also
gives rise to a plethora of new examples (to give one: it is now possible to have
a non-trivial one-dimensional case, as there are various one-dimensional log-
concave measures, while one-dimensional convex bodies were a rather trivial
object of study). A large number of strong results concerning convex bodies
have been proved by passing through the domain of log-concave measures in
a suitable way (see e.g. [7]).

A natural way to proceed in quite a few cases when considering the
log-concave measures is some sort of induction upon dimension. As there
is a well-developed theory of independent log-concave random variables, it
is easy to study tensor products of such measures. It also frequently turns
out that properties being considered are easily seen to be preserved under
linear transformations and weak limits. One can give a number of examples
of classes of measures closed under these three operations. If one restricts
oneself to non-degenerate linear transformations, then measures with the
isotropic constant Lµ bounded by some given C form probably the most
important class (see, for instance, [5] or [9] for an analysis of the isotropic
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constant problem). A more interesting class of transformations, where one
is also allowed to use projections (and, generally, degenerate linear maps),
preserves the infimum convolution inequality (see [8]), and the same set of
operations was considered in [2]; a number of other examples are available.

In this paper we shall study the more general case (where arbitrary linear
transformations are taken); of course the case of non-degenerate linear maps
is contained in it. While in the case of uniform measures on convex bodies it
is easy to see that not much new is going to be obtained by applying these
operations (for instance, if we begin by taking the one-dimensional convex
bodies, i.e. intervals, we end up only with parallelotopes), it is not obvious
whether passing through the log-concave measures will help. One can see, for
instance, that even starting only with intervals (that is, uniform measures on
intervals), but working in the class of log-concave measures, one will obtain
a wider variety of one-dimensional log-concave measures—for instance the
gaussian measure as the limit case of projecting the uniform measure on
the cube onto the line spanned by the vector (1, . . . , 1). Thus one might be
inclined to hope that by proving that a property being studied is preserved
under the given elementary operations in the log-concave setting one will
obtain new, non-trivial examples of convex bodies satisfying the property. In
this paper I intend to show that this is basically not the case. For instance,
starting with all one-dimensional log-concave measures, one ends up with
quite a number of log-concave measure (including non-product ones), but
the only measures equidistributed on convex bodies one obtains are those
equidistributed on parallelotopes.

The result is essentially negative—it proves that this is not the direction
to pursue when attempting to prove new properties for convex bodies via
log-concave measures. Its value, as in the case of most negative results, lies
mainly in guiding other mathematicians away from this approach, rather
than in direct application. As the approach, however, is not obviously wrong,
the result still seems valuable.

1.1. Definitions and notation. The Lebesgue measure will be denoted
by λ. For two sets A,B in Rn we denote by A+B their Minkowski sum, i.e.
{a + b : a ∈ A, b ∈ B}, while tA for a real number t denotes {ta : a ∈ A}.
A log-concave measure in Rn (where log-concave is short for logarithmically
concave) is a measure satisfying µ(tA + (1 − t)B) ≥ µt(A)µ1−t(B) for any
A,B ∈ Rn and any t ∈ (0, 1). We will assume all our log-concave measures
are probability measures and are not concentrated on any lower-dimensional
subspace (that is, if H ⊂ Rn is an affine subspace of lower dimension, then
µ(H) = 0). A celebrated result of Borell (see [1]) states that any log-concave
measure satisfying the above conditions has a density g with respect to the
Lebesgue measure and log g is concave.
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We say a probability measure µ is isotropic if
	
Rn x dµ(x) = 0 and	

Rn〈x, t〉2 dµ(x) = 1 for any t on the unit Euclidean sphere. It is easy to
see that any measure not concentrated on a lower-dimensional subspace has
an affine image which is isotropic.

We shall call a random variable isotropic, log-concave, etc. if it is dis-
tributed according to a law which is isotropic, log-concave, etc.

We say a class of measures is closed under products if for any µ1, µ2 ∈ K
we have µ1 ⊗ µ2 ∈ K. We say K is closed under linear transformations if for
any linear map T and any µ ∈ K we have µ ◦ T−1 ∈ K. In particular, by
the projection of a measure µ we mean µ ◦ P−1, where P is a projection (in
other contexts this is also referred to as a marginal of µ). The projection of a
log-concave measure is log-concave (this follows from the Prekopa–Leindler
inequality, see e.g. [4]). Finally, we say K is closed under weak limits if for
any sequence (µn) of measures from K, if the weak limit µ of (µn) exists,
then it belongs to K.

c, C, c1, c2, . . . will always denote universal constants, possibly different
from line to line. c(n) and C(n) are constants dependent only on the dimen-
sion n.

2. Tensorization does not help. This section is devoted to the proof
of Theorem 2.15, which basically states that when one considers the closure
of a class of measures with respect to products, linear transformations and
weak limits and requires the result to be a uniform measure on a convex
body, then it is enough to perform these operations one-by-one—the result
is a product of weak limits of linear transformations.

2.1. Log-concave preliminaries. Recall we assume our measures to
be probability measures. In this setting the following facts are well-known:

Fact 2.1. Let µ be an isotropic log-concave measure in Rn. Then µ has
a density g, and there exist constants c(n), C(n), dependent on n, such that

c(n) ≤ g(0) ≤ sup
x∈Rn

g(x) ≤ C(n).

The bound on sup g(x) is easily equivalent to the existence of a bound on
the isotropic constant (precisely, sup g(x)1/n ' LK , where' denotes equality
up to a universal constant), which may easily be seen to be bounded from
above by

√
n; see [5] or [9] for information on this relation and [7] for the best

currently known bound of O( 4
√
n). The relation between g(0) and sup g(x)

is studied for instance by Matthieu Fradelizi in [3]. The lower bound is cn
(see e.g. [9]).

Fact 2.2. Let µ be an isotropic log-concave measure in Rn, let g be its
density and let H be any central hyperplane. Then g restricted to H is a
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log-concave function, and there exist constants c, C such that c ≤
	
H g ≤ C

and for any θ ∈ H with ‖θ‖2 = 1 we have c ≤
	
H〈x, θ〉

2g(x) dx ≤ C.
Proof. For the first part, project µ onto H⊥. We obtain a 1-dimensional

isotropic log-concave measure ν1, and the integral
	
H dµ is equal to the den-

sity of ν1 at zero, which is bounded from above and below by Fact 2.1.
For the second fact, we project µ onto the plane spanned by H⊥ and θ;

the result is a 2-dimensional isotropic log-concave measure ν2. Let L be the
line spanned by θ and let h be the density of ν2. We have C >

	
L h(x) dx > c

as above, and C > suph(x) ≥ h(0) > c by Fact 2.1. Define

k =
√�

L
x2h(x) dx/

�

L
h(y) dy.

Notice that h̃(x) = kh(kx)/
	
L h(y) dy is log-concave; direct integration also

proves that
	
L h̃(x) dx = 1,

	
L xh̃(x) = 0 and

	
L x

2h̃(x) dx = 1, thus h̃ is a
density of a log-concave isotropic measure.

Now
�
〈θ, x〉2 dµ =

�

L
x2h(x) dx = k2

�

L
h(y) dy =

h̃2(0)(
	
L h(y) dy)3

h2(0)
,

where we use the definition of L, then the definition of k and finally the
definition of h̃. As h̃ is isotropic on L, we can bound h̃(0) by universal
constants from above and below; combined with the bounds for h(0) and	
L h(y) dy obtained before, this gives us the conclusion.

Note that we applied Fact 2.1 only to measures on R or R2, and not on
Rn—thus the constants we got are indeed universal (dependent on the values
c(1), c(2), but not c(n)).

2.2. Symmetrizations

Definition 2.3. Let f be any bounded measurable function on R. Then
the symmetrization of f is the unique symmetric upper-continuous function
f̃ which is decreasing on R+ and satisfies λ{x : f̃(x) ≥ c} = λ{x : f(x) ≥ c}
for any c. If f is a bounded measurable function on Rn, and θ is a direction
in Rn, then the symmetrization of f in the direction θ is a function f̃ such
that for any v ∈ θ⊥ the function f̃ restricted to v+θR is the symmetrization
of f restricted to v + θR.

Formally the definition above is correct only for vs for which f|v+θR is
measurable, and for a set of vs of measure 0 the restrictions may be non-
measurable; however, we will apply this procedure to log-concave functions,
for which the definition is correct everywhere.

Proposition 2.4. The symmetrization of a log-concave function is log-
concave.
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Proof. Obviously for any bounded f the symmetrization of log f is the
logarithm of the symmetrization of f , thus it is enough to check that the
symmetrization of a concave function is concave. Take any two points x+ rθ
and y+sθ with x, y ∈ θ⊥, and let f̃(x+rθ) = a and f̃(y+sθ) = b. This means
that λ{u : f(x + uθ) ≥ a} = λ{u : f̃(x + uθ) ≥ a} ≥ 2r. As f is concave,
I := {u : f(x + uθ) ≥ a} is an interval of length at least 2r, and similarly
J := {u : f(y+uθ) ≥ b} is an interval of length at least 2s. Take any t ∈ [0, 1];
then for v ∈ tI+(1−t)J we have (by the concavity of f) f(v) ≥ ta+(1−t)b.
Moreover tI + (1− t)J is an interval of tx+ (1− t)y + θR of length at least
2(tr+(1−t)s). Thus λ{u : f(tx+(1−t)y+uθ) ≥ ta+(1−t)b} ≥ 2(tr+(1−t)s),
and so f̃(t(x+ rθ) + (1− t)(y + sθ)) ≥ ta+ (1− t)b, which (as x, y, r, s and
t were arbitrary) proves the concavity of f̃ .

Proposition 2.5. Let µ be a log-concave measure in Rn with density g,
mean zero and a diagonal covariance matrix. Let g̃ be the symmetrization of
g in one of the coordinate directions ei, and µ̃ be the measure with density g̃.
Then µ̃ also has a diagonal covariance matrix, with Eµ〈X, ej〉2 = Eµ̃〈X, ej〉2
for j 6= i. Moreover there exists a constant c(n) > 0 dependent only on
dimension such that Eµ〈X, ei〉2 ≥ Eµ̃〈X, ei〉2 ≥ c(n)Eµ〈X, ei〉2.

Proof. First notice that the joint distribution of all 〈X, ej〉 for j 6= i
is the same for X distributed according to µ and to µ̃, as the projec-
tions of these two measures onto span{ej : j 6= i} are the same—thus
all but the ith row and ith column of the respective covariance matrices
are the same. Furthermore as g̃ is symmetric with respect to the hyper-
plane span{ej : j 6= i}, we have Eµ̃〈X, ei〉〈X, ej〉 = 0 for i 6= j. Also
Eµ̃〈X, ei〉2 =

	
e⊥i

	
R x

2g̃(v + xei) dx dv ≤
	
e⊥i

	
R x

2g(v + xei) dx dv by the
monotone rearrangement inequality.

Consider the diagonal map Tµ (resp. Tµ̃) transforming the measure µ
to an isotropic measure. The ith entry on the diagonal of the matrix of Tµ
is equal to 1/

√
aii, where aii (resp. ãii) is the ith diagonal entry of the

covariance matrix of µ. Let Mµ (resp. Mµ̃) denote the supremum of the
density of µ ◦T−1

µ (resp. µ̃ ◦T−1
µ̃ ), and let M denote the common supremum

of the densities of µ and µ̃. We have Mµ = M/detTµ and Mµ̃ = M/detTµ̃,
so

Mµ̃/Mµ = detTµ/detTµ̃ =
√
ãii/
√
aii =

√
Eµ̃〈X, ei〉2/Eµ〈X, ei〉2,

where the middle equality follows as all eigenvalues of cov µ and cov µ̃ except
the ith are equal.

On the other hand both µ ◦ Tµ and µ̃ ◦ Tµ̃ are isotropic log-concave
measures, thus by Fact 2.1 we have Mµ̃/Mµ ≥ c(n)/C(n). This ends the
proof.
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Proposition 2.6. Let µ be a log-concave probability measure with den-
sity g, mean zero and a diagonal covariance matrix. For z ∈ e⊥i let g′(z) =
supx∈R g(z + rei). Then:

• g′(z) is a log-concave function on e⊥i ;
• c(n)/

√
E〈X, ei〉2 ≤

	
e⊥i
g′(z) ≤ C(n)/

√
E〈X, ei〉2.

Proof. Let g̃ be the symmetrization of g in direction ei. Then g̃(z, 0) =
g′(z)—both are equal to supr∈R g(z + rei). Thus by Proposition 2.4, g′ is
log-concave. By Proposition 2.5 the measure with density g̃ has a diagonal
covariance matrix; as before consider a diagonal map T which transforms this
measure into an isotropic one, let h be the density of this isotropic measure.
By Fact 2.2 we have c(n)

	
e⊥i
h ≤ C(n). Now the ith diagonal entry of T is√

E〈X, ei〉2, so this is the factor by which the mass on the hyperplane e⊥i is
changed by T .

2.3. The Lipschitz invariant

Proposition 2.7. Let X1 and X2 be two independent random variables
in Rn satisfying

∀θ : ‖θ‖2=1 c < E〈Xi, θ〉2 < C

for some positive constants c, C. Let W and V be two diagonal matrices with
W 2 + V 2 = Id. Then c < E〈WX1 + V X2, θ〉2 < C.

Proof. Let G1 and G2 denote the covariance matrices of X1 and X2,
respectively. The assumption on E〈Xi, θ〉2 simply means that all the eigen-
values of G1 and G2 lie in the interval [c, C].

We have cov(WX1+V X2) = cov(WX1)+cov(V X2) = WG1W+V G2V .
Take any vector θ of norm 1. Then 〈WG1Wθ, θ〉 = 〈G1Wθ,Wθ〉. As all the
eigenvalues of G1 are no smaller than c, we have 〈G1v, v〉 ≥ c‖v‖2 for any v,
thus 〈WG1Wθ, θ〉 ≥ c‖Wθ‖2. Similarly 〈V G2V θ, θ〉 ≥ c‖V θ‖2. As V and
W are diagonal, we have ‖Wθ‖2 =

∑
w2
iiθ

2
i , and as W 2 + V 2 = Id, we have

‖Wθ‖2 + ‖V θ‖2 =
∑

(w2
ii + v2

ii)θ
2
i =

∑
θ2
i = ‖θ‖2 = 1. Thus

‖ cov(WX1 + V X2)θ‖ ≥ 〈cov(WX1 + V X2)θ, θ〉 ≥ c,

so in particular all the eigenvalues of cov(WX1 + V X2) must be greater
than or equal to c (they are all positive reals, as eigenvalues of a covariance
matrix). A similar argument gives the upper bound on the eigenvalues.

Lemma 2.8. Let g and h be the densities of two independent log-concave
random variables X and Y in Rn with diagonal covariance matrices satisfying
cov(X + Y ) = Id. Let f ′(v) = supt∈R f(v + tei) for f ∈ {g, h} and v ∈ e⊥i .
Then
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�

e⊥i

g′(v)h′(z − v) dv ≤ C(n)/
√

E〈X, ei〉2E〈Y, ei〉2

for some constant C(n) dependent only on n.

Proof. Begin by considering the symmetrization g1 of g with respect to ei.
Let this be the density of a variable X̃. By Proposition 2.5, X̃ has a diagonal
covariance matrix G, and G−1/2X̃ is isotropic.

Let g2 be the density of G−1/2X̃. Consider the restriction of g2 to e⊥i .
Let c2 :=

	
e⊥i
g2 and g3 := g2/c2. Then g3 is the density of a probability

measure on e⊥i , which is also obviously log-concave. Let X3 be a random
variable distributed according to g3. By Fact 2.2 the eigenvalues of covX3

are in some universal interval [c, C] and c < c2 < C.
Let g4 be the restriction of g1 to e⊥i , and c4 :=

	
e⊥i
g4 and g5 := g4/c4;

finally let X5 be a random variable distributed according to g5. Note that
g′ is equal to g4. We define h2, d2, h3, Y3, h4, d4, h5 and Y5 analogously to
g2, c2, g3, X3, g4, c4, g5 and X5, only starting from h being the density of Y .

By the construction above and by Proposition 2.5 we have

(2.1) c2/c4 =
√
Gii ≥ c(n)

√
(covX)ii.

Also let G′ be the restriction of G to e⊥i (that is, the matrix obtained from G
by deleting the ith row and ith column). Then X5 = G′1/2X3. We perform
similar operations on h to obtain

(2.2) d2/d4 ≥ c(n)
√

(cov Y )ii,

Y5 = H ′1/2Y3 and the eigenvalues of cov Y3 are in the same interval [c, C].
We are now in the situation of Proposition 2.7. We have random variables

X3 and Y3, satisfying c < E〈X3, θ〉2 < C for ‖θ‖ = 1, and the same for Y3,
and matrices G′1/2 and H ′1/2, whose squares sum up to the identity matrix
by Proposition 2.5 and the assumption cov(X + Y ) = Id. Thus the variable
X5 +Y5 satisfies the conclusion of Proposition 2.7, that is, all the eigenvalues
of its covariance matrix lie in the interval [c, C].

The integral we consider,
	
e⊥i
g′(v)h′(z− v) dv, is equal to d4c4 times the

density of the variable X5 + Y5 at z. Recall that c2 and d2 are universally
bounded by Fact 2.2. Thus by (2.1) and (2.2) we only have to prove that the
density of X5 + Y5 is bounded by a constant dependent on n.

Let M be a diagonal matrix such that M(X5 + Y5) is isotropic, that is,
M = cov(X5 + Y5)−1/2. Then the density of M(X5 + Y5) is bounded from
above by C(n) by Fact 2.1, and the supremum of the density of X5 + Y5 is
equal to the supremum of the density of M(X5 +Y5) multiplied by detM =
det cov(X5 + Y5)−1/2 ≤ c−n/2 for some c > 0 (as all the eigenvalues of
cov(X5 + Y5) are bounded from below by universal positive constants).

And now for the final result of this section:



234 J. O. Wojtaszczyk

Definition 2.9. We say a function f : Rn → R is Lipschitz in direction
θ (where we assume ‖θ‖2 = 1) with a constant L if for any x ∈ Rn and t ∈ R
we have |f(x+ tθ)− f(x)| ≤ L|t|.

Proposition 2.10. Let X and Y be two independent log-concave ran-
dom variables in Rn with diagonal covariance matrices such that X + Y is
isotropic. If E〈X, ei〉2 and E〈Y, ei〉2 are both positive, then the density of
X + Y is Lipschitz in direction ei with the Lipschitz constant bounded by
C(n)/

√
E〈X, ei〉2E〈Y, ei〉2.

Proof. We may assume X and Y have densities g and h respectively by
convoluting each with a gaussian variable εG (where G ∼ N (0, Id)), as the
density of X +Y + εG+ εG tends to the density of X +Y when ε→ 0, and
the Lipschitz constant is preserved under pointwise convergence.

The density f of X + Y is the convolution of g and h. For any v ∈ Rn

we denote its decomposition into e⊥i and span{ei} by v = ṽ + tvei. We have

f(x) =
�

Rn

g(y)h(x− y) dy =
�

e⊥i

�

R
g(ỹ + tyei)h(x̃− ỹ + (tx − ty)ei) dty dỹ,

and so the difference |f(x+ sei)− f(x)| is equal to∣∣∣ �
e⊥i

�

R
g(ỹ + tei)[h(x̃− ỹ + (tx + s− ty)ei)− h(x̃− ỹ + (tx − ty)ei)] dty dỹ

∣∣∣.
Let g′(ṽ) = supt∈R g(ṽ + tei) and h′(ṽ) = supt∈R(ṽ + tei). Then we have

|f(x+ sei)− f(x)|

≤
�

e⊥i

�

R
g(ỹ + tei)|h(x̃− ỹ + (tx + s− ty)ei)− h(x̃− ỹ + (tx − ty)ei)| dty dỹ

≤
�

e⊥i

g′(ỹ)
�

R
|h(x̃− ỹ + (tx + s− ty)ei)− h(x̃− ỹ + (tx − ty)ei)| dty dỹ.

Notice that h(ṽ + tei) is log-concave, and thus bimonotone, as a function of
t. Thus the function h(ṽ + (t+ s)ei)− h(ṽ + tei) for positive s has a single
zero at some t0, is non-negative for t < t0 and non-positive for t > t0. Thus

�

R
|h(ṽ + (t+ s)ei)− h(ṽ + tei)| dt ≤

t0�

−∞
h(ṽ + (t+ s)ei)− h(ṽ + tei) dt

−
∞�

t0

h(ṽ + (t+ s)ei)− h(ṽ + tei) dt = 2
t0+s�

t0

h(ṽ + tei) dt ≤ 2|s|h′(ṽ).
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Applying this to our case we have

|f(x+ sei)− f(x)| ≤
�

e⊥i

g′(ỹ)2|s|h′(x̃− ỹ) dỹ.

Here, however, we may apply Lemma 2.8 to conclude the proof.

2.4. Closed classes. We begin by demonstrating a simple structural
proposition:

Proposition 2.11. Let K be a class of log-concave measures. Let K̄
be the smallest class of log-concave measures containing K, which is closed
under products, linear transformations and weak limits. Let µ be any isotropic
measure in K̄. Then there exists a sequence of measures µ1, µ2, . . . , each
of which is a linear image of the tensor product of finitely many measures
from K, such that µ is the weak limit of µi, and each µi is isotropic.

Proof. First let L be the smallest class of log-concave measures contain-
ing K, which is closed under products and linear transformations. We shall
prove that any member of K̄ is a weak limit of some sequence in L. Let
L̄ be the set of all weak limits of sequences in L. We will prove that L̄ is
closed under products, linear transformations and weak limits, thus L̄ = K̄.
Let µ1, µ2 ∈ L̄, say µ1 = lim νk, µ2 = limωk. Then µ1 ⊗ µ2 = lim νk ⊗ ωk.
Similarly, if T is a linear transformation, then (lim νk)◦T−1 = lim(νk ◦T−1).
Thus L̄ is closed under products and linear transformations. Now recall that
the space of probability measures with the weak convergence can be viewed
as a metric space with the Lévy metric. Thus the closure of any set with
respect to weak limits is simply the closure in the Lévy metric, and this is
precisely the set of all weak limits of sequences in this set. Thus L̄ = K̄.

Let µ = limµk with µk ∈ L. Let νk = µk ◦ (cov µk)−1/2. As µ is isotropic
and the covariance matrix is continuous for log-concave measures, cov µk →
Id and thus also νk → µ. The measures νk are isotropic.

Now we have to consider νk which are elements of L. We prove each νk is
the linear image of a product by structural induction, exchanging all linear
transformations with products, as (µ◦S−1)⊗(ν◦T−1) = (µ⊗ν)◦(S⊗T )−1.

Lemma 2.12. Let µk be a sequence of isotropic log-concave probability
measures with densities fk, weakly convergent to some µ. Assume each fk
is Lipschitz in some direction vk with the same constant L. Then µ has a
density f that is Lipschitz with constant L in some direction v.

Proof. First note that µ has to be log-concave and isotropic, and thus
has a density. Now pass to a subsequence of ks such that vk is convergent to
some v.



236 J. O. Wojtaszczyk

Let hδ,z(x) = max{1− |x− z|/δ, 0}, and let

Tδ,z(µ) =
�
hδ,z(x) dµ(x)/

�
hδ,z(x) dx.

For any k the function Tδ,z(µk) is L-Lipschitz in direction vk as a function
of z. Fix a point z and a constant t > 0. We have

|Tδ,z+tvk
(µk)− Tδ,z+tv(µ)|
≤ |Tδ,z+tvk

(µk)− Tδ,z+tv(µk)|+ |Tδ,z+tv(µk)− Tδ,z+tv(µ)|.
The first summand tends to zero as hδ,z+tvk

tends to hδ,z+tv uniformly, while
the density of µk is bounded uniformly in k. The second summand tends
to zero as T is a continuous functional of a measure. Thus, in particular,
Tδ,z(µ) is an L-Lipschitz function of z. Note that the Lipschitz constant is
independent of δ.

We modify f to be zero on the boundary of suppµ—this is a modification
on a set of measure 0, so the modified f is also a density of µ. We will prove
f is now L-Lipschitz in the direction v. Take any point z and consider the
line L = z + tv. If this line does not intersect the interior of suppµ, then
f is equal to 0 on L, and thus is L-Lipschitz. Now suppose L intersects the
interior of suppµ. As suppµ is convex, L intersects the boundary of suppµ
in exactly two points. Take any two points x, y on L, different from the two
intersection points. Then f is continuous in some neighbourhoods of x and
y, for f is continuous both in the interior of suppµ and outside suppµ. Thus
Tδ,x → f(x) and Tδ,y → f(y) when δ → 0, so f is Lipschitz everywhere
except at the two boundary points (but also when x, y straddle a boundary
point). To deal with the case of x or y lying on the boundary of suppµ we
take a sequence xk → x (or yk → y, respectively).

Lemma 2.13. Let (n + 1)−2 > ε > 0. Let X1, . . . , Xk be a sequence
of independent random variables in Rn such that

∑k
i=1Xi is isotropic. Let

Mi denote the space spanned by the eigenvectors of covXi corresponding to
eigenvalues larger than 1− ε. Then either

•
∑

i dimMi = n, or
• there exists a subset S of {1, . . . , k} such that cov

∑
i∈S Xi has an

eigenvalue λ satisfying ε < λ < 1− ε.

Proof. Let Ai denote the covariance matrix of Xi. If any single Ai has an
eigenvalue between ε and 1− ε, we set S = {i}. Consider eigenvalues of Ais
larger than 1 − ε; assume Ai has li such eigenvalues, and let l =

∑
i li. We

have l ≤ n, for otherwise n = tr Id=tr
∑
Ai≥

∑
i li(1−ε)≥(n+1)(1−ε)>n.

If l = d the first condition is satisfied. Otherwise there are at most n − 1
indices i with li > 0, and the sum of the traces of the appropriate Ais is at
most the sum of the large eigenvalues (at most n − 1) and the sum of the



No return to convexity 237

small eigenvalues (at most (n − 1)2ε, for each of the matrices has at most
n−1 small eigenvalues). Thus the trace of the sum of the remaining matrices
is at least 1− (n− 1)2ε.

Rearrange the vectors so that li = 0 for i = 1, . . . ,m, and li > 0 for
i > m. Consider the sums b(j) =

∑j
i=1 trAi. We have b(0) = 0, b(m) ≥

1− (n− 1)2ε ≥ 4nε and b(j+ 1)− b(j) ≤ nε. Thus for some j0 we shall have
nε ≤ b(j0) ≤ 2nε. We put S = {1, . . . , j0}. The vector

∑j0
i=1Xi has to have

an eigenvalue of the covariance matrix no smaller than ε (for the trace of
this matrix is at least nε); on the other hand all its eigenvalues are no larger
than the trace, which in turn is no larger than 2nε < 1− ε. Thus S satisfies
the theorem.

Theorem 2.14. Let Yk =
∑i(k)

i=1 Xk,i be isotropic, log-concave random
variables on Rn. Assume all Xk,i are independent. Assume Yk → Y weakly,
where Y is a uniform measure on a convex body. Then Y = Z1 + · · · + Zm
for some independent random variables Zj, where each Zj is a weak limit of
some of the Xk,is, and all Zj are supported on orthogonal subspaces.

Proof. Choose any ε > 0 and apply Lemma 2.13 for each Yk. If for some
k the second case of the lemma occurs, we have Yk = Y ′k + Y ′′k (where Y ′k
is the sum of the Xk,is for i ∈ S, and Y ′′k is the sum of the others), and
some eigenvalue of Y ′k is between ε and 1 − ε. As Yk is isotropic, Y ′′k has
the same eigenvectors as Y ′k, thus we may apply Proposition 2.10 to find
that the density of Yk is C(n)/ε-Lipschitz in the direction of the appropriate
eigenvector. If this occurs an infinite number of times, we may apply Lemma
2.12 to the subsequence of those ks to conclude that the density of Y is
C(n)/ε-Lipschitz in some direction, and this contradicts the assumption that
Y was uniform on a convex body.

Thus for any ε > 0 the second case of the lemma occurs only finitely
many times. We may thus pass to a subsequence on which the first case
occurs for each Yk with some εk tending to zero. Thus for each k we have
a set of at most d linear spaces Mk,i. We pass to a subsequence again, so
that the number and dimensions of the subspaces are constant, and again
(after an appropriate rearrangement) to haveMk,i →Mi (the convergence
of linear subspaces is taken, for instance, in the metric of the grassmannian
manifold; this can be done due to the compactness of this manifold).

The spaces Mi have to be orthogonal. Assume, say, M1 and M2 are
not orthogonal, say some two unit vectors v1 ∈ M1 and v2 ∈ M2 satisfy
〈v1, v2〉 = c < 0. Then we have sequences vk,1 → v1 in M1 and vk,2 → v2
inM2. Note the following inequalities:

1 = E〈vk,1, Yk〉2 ≥ E〈vk,1, Xk,1 +Xk,2〉2 = E〈vk,1, Xk,1〉2 + 〈vk,1, Xk,2〉2

≥ 1− εk + E〈vk,1, Xk,2〉2,
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thus E〈vk,1, Xk,2〉2 ≤ εk. Moreover

E〈vk,1+ vk,2, Xk,1〉2 = E〈vk,1, Xk,1〉2+ 2〈vk,1, Xk,1〉〈vk,2, Xk,1〉+ 〈vk,2, Xk,1〉2

≥ 1− εk − 2|E〈vk,1, Xk,1〉〈vk,2, Xk,1〉| ≥ 1− εk − 2
√
εk.

Finally

E〈vk,1 + vk,2, Yk〉2 ≥ E〈vk,1 + vk,2, Xk,1 +Xk,2〉2 ≥ 2(1− εk − 2
√
εk),

which is arbitrarily close to 2 for large enough k. On the other hand, however,
〈vk,1 + vk,2, vk,1 + vk,2〉 = 2 + 2〈vk,1, vk,2〉 → 2 − 2c, thus we should have
E〈vk,1 + vk,2, Yk〉2 → 2− 2c, a contradiction.

Now eachXk,i for fixed i converges weakly to some measure Zi distributed
onMi (for the variance in the directions orthogonal toMi tends to zero, as
shown above), and Y is the sum of Zis.

Now all that remains is to combine the theorem above with Proposition
2.11:

Main Theorem 2.15. Let K be any class of log-concave measures closed
under linear transformations, and let K̄ be the smallest class of log-concave
measures containing K which is closed under products, weak limits and linear
transformations. Let µ be any isotropic measure in K̄ which is a uniform mea-
sure on some convex body. Then µ is a product of some measures µ1, . . . , µn,
each of which is a weak limit of some sequence of linear images of measures
in K.

2.5. Applications and discussion. Let us apply this result to a typical
case.

Corollary 2.16. Let K be the smallest class of log-concave measures,
closed under products, linear transformations and weak limits, which contains
all 1-dimensional log-concave measures. Let µ ∈ K be the uniform measure
distributed on a convex body B. Then B is a parallelotope.

Proof. The class of 1-dimensional log-concave measures is closed under
linear transformations and weak limits, thus by Theorem 2.15 any uniform
measure on a convex body in K which is isotropic has to be a product of
1-dimensional log-concave measures, and thus equidistributed on the hyper-
cube. Taking any, not necessarily isotropic, measure equidistributed on some
B in K we can take a linear transformation to make it isotropic, and as after
this transformation B is a hypercube, it had to be a parallelotope before.

Of course a case-by-case survey of what can be obtained from various
classes of log-concave measures is impossible here. However the main scheme
should be clear: we begin with some class of measures K, and if there are no
non-trivial convex bodies obtained as weak limits of linear transformations
of measures from K, then K̄ contains no non-trivial convex bodies. It would
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be interesting to prove, for instance, that the class of `p balls (for fixed p
between 1 and ∞) generates no non-trivial convex bodies (that is, convex
bodies not being linear transforms of `p balls).
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