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Algebraic genericity of strict-order integrability

by

Luis Bernal-González (Sevilla)

Abstract. We provide sharp conditions on a measure µ defined on a measurable space
X guaranteeing that the family of functions in the Lebesgue space Lp(µ,X) (p ≥ 1) which
are not q-integrable for any q > p (or any q < p) contains large subspaces of Lp(µ,X)
(without zero). This improves recent results due to Aron, Garćıa, Muñoz, Palmberg, Pérez,
Puglisi and Seoane. It is also shown that many non-q-integrable functions can even be
obtained on any nonempty open subset of X, assuming that X is a topological space and
µ is a Borel measure on X with appropriate properties.

1. Introduction and aim of this paper. The study of linear prop-
erties of sets of mathematical objects with a priori no linear structure has
recently attracted the attention of a growing number of mathematicians.
This paper intends to shed some light on this topic, in the special frame-
work of spaces of integrable functions.

In this respect, let us recall some recent terminology introduced in [1],
[3], [5] and [8]. Assume that E is a topological vector space. Then a subset
A of E is called

• lineable if A ∪ {0} contains an infinite-dimensional vector subspace,
• dense-lineable or algebraically generic whenever A ∪ {0} contains a

dense vector subspace of X,
• spaceable if A ∪ {0} contains some infinite-dimensional closed vector

subspace.

It is clear that dense-lineability implies lineability if E is infinite-dimensional.
If µ is a cardinal number, then a subset A of E is said to be µ-lineable

if A ∪ {0} contains a vector subspace of dimension µ. Note that if E is
an infinite-dimensional separable Baire topological vector space, then
dim(E) = c, the cardinality of the continuum. Hence c is the maximal dimen-
sion of any vector subspace of E.
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If the last notion is combined with algebraic genericity, the following
concept arises naturally.

Definition 1.1. Let E be a topological vector space. Then we say that
a subset A ⊂ E is maximal dense-lineable if A∪{0} contains a dense vector
subspace M such that dim(M) = dim(E).

Note that it is not clear whether maximal lineability (i.e., dim(E)-line-
ability) plus dense-lineability implies maximal dense-lineability.

For each p ∈ [1,∞) and each interval I ⊂ R, let us consider the Lebesgue
space Lp(I) of (classes of) measurable functions f : I → R such that |f |p
is integrable on I with respect to the Lebesgue measure. We also consider
the space `p of real sequences (an) that are p-summable, that is,

∑∞
n=1 |an|p

<∞. In 2008, Muñoz, Palmberg, Puglisi and Seoane [9] proved the following
assertions:

• If I is a bounded interval and q > p ≥ 1 then Lp(I) \Lq(I) is lineable.
• If J is an unbounded interval and p > q ≥ 1 then Lp(J) \ Lq(J) is

lineable.
• If p > q ≥ 1 then `p \ `q is lineable.

More precisely, it is proved in [9] that these sets are c-lineable. Aron, Garćıa,
Pérez and Seoane [2] have recently completed these results by showing that,
under the same conditions, the three sets mentioned above are dense-lineable
respectively in Lp(I), Lp(J) and `p. Note that Lq(I) ⊂ Lp(I) if q > p, and
`q ⊂ `p if p > q, but none of the spaces Lp(J), Lq(J) is included in the other
if p 6= q.

Our aim in this paper is to unify, extend and improve both of the above
mentioned results of [2] and [9], according to the following points:

• We obtain vector subspaces exhibiting simultaneously density and
maximal dimension.
• The intervals I, J endowed with the Lebesgue measure are replaced

by rather general measure spaces, so we cover the case of `p too. The
conditions given on the measures will be sharp.
• The parameter q runs over all real numbers > p (or < p), that is, q is

not fixed.
• In the case of Borel measures, many non-q-integrable functions are

obtained even on every nonempty open subset.

The precise statements will be given in Sections 3 and 4. Section 2 is
devoted to the necessary background. In Section 5 we make some remarks
and propose a number of problems.

2. Preliminaries. Let (X,M, µ) be a measure space, with µ a positive
measure, and let p ∈ [1,∞). As usual, Lp(µ,X) will denote the vector space
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of all (Lebesgue classes of) measurable functions f : X → R such that |f |p
is integrable on X. It becomes a Banach space under the norm ‖f‖p =
(
	
X |f |

p dµ)1/p. If p = ∞, L∞(µ,X) represents the space of all Lebesgue
classes of essentially bounded measurable functions f : X → R. It becomes
a Banach space under the norm ‖f‖ = inf{M > 0 : |f | ≤ M µ-almost
everywhere in X}.

We assume that the reader is familiar with some standard topological
terminology and with a number of related properties, which can be found
in any reasonable book on general topology. Anyway, we recall that a topo-
logical space X is said to be: perfect if it lacks isolated points; regular at a
point x0 ∈ X if, given a closed set F with x0 /∈ F , there are open sets A,B
such that x0 ∈ A, F ⊂ B and A ∩ B = ∅; first-countable at a point x0 ∈ X
if x0 possesses a countable fundamental system of neighborhoods.

Now, we recall a number of special types of measures defined either
on general σ-algebras or on the σ-algebra of Borel sets of a topological
space. Let (X,M, µ) be a measure space. We say that µ is semifinite if
µ(A) = sup{µ(B) : B ∈ M, B ⊂ A and µ(B) < ∞} for each set A ∈ M,
while µ is called nonatomic if there is no atom in M. Recall that a set
A ∈ M is said to be an atom for µ if µ(A) > 0 and if, for every B ∈ M
with B ( A, one has µ(B) = 0 and µ(A \B) = 0.

Assume that X is a topological space and that µ is a Borel measure
on X, that is, µ is a positive measure defined on a σ-algebra M containing
the Borel sets of X. Then we say that µ has full support whenever µ(U) > 0
for every nonempty open set U , and µ is continuous if µ({x}) = 0 for all
x ∈ X. Finally, µ is called regular if X is a Hausdorff locally compact space
and the following three properties hold:

(a) µ(C) <∞ for every compact set C ⊂ X,
(b) µ(A) = inf{µ(U) : U is open and A ⊂ U} for all A ∈M,
(c) µ(U) = sup{µ(C) : C is compact in X and C ⊂ U} for each open

set U ⊂ X.

For instance, the Lebesgue measure on any interval of R is continuous, regu-
lar and has full support. It is known that each σ-finite measure is semifinite,
and that every regular measure µ also satisfies (c) above if one replaces U
by any set σ-finite set A ∈M (see [10, Proposition 22.5]).

In Sections 3 and 4 the following two lemmas will be respectively needed.
Lemma 2.1 is a strengthening of Theorem 2.1 in [6]. The nuance is that this
time the dimension of the resulting vector subspace is specified. Lemma 2.2
has a narrow scope and replaces a topological vector space by a topological
group.

Lemma 2.1. Assume that E is a metrizable separable topological vector
space. Suppose that Γ is a family of linear subspaces of E such that

⋂
S∈Γ S
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is dense in E and
⋂
S∈Γ (E \ S) ∪ {0} contains a vector space of dimension

µ, where µ is an infinite cardinal number. Then
⋂
S∈Γ (E \S)∪{0} contains

a dense vector subspace of dimension µ.

Proof. From the hypothesis, we can choose a dense countable set {zn}n≥1

in E as well as a translation-invariant distance d defining the topology of E.
By denseness, we can also take, for each n ∈ N := {1, 2, . . .}, a vector
yn ∈

⋂
S∈Γ S such that

(1) d(yn, zn) < 1/n.

By hypothesis, there exists a linearly independent family {vα}α∈J ⊂ E such
that card(J) = µ and

L \ {0} ⊂
⋂
S∈Γ

(E \ S),

where we have set L := span({vα : α ∈ J}). Since µ is infinite, we can split J
into infinitely many mutually disjoint nonempty sets, say J =

⋃∞
n=1 Jn. Now,

as scalar multiplication is continuous on E, there exists a set {εα}α∈J ⊂
(0,∞) such that

d(εαvα, 0) < 1/n (α ∈ Jn, n ∈ N). (2)

Next, we define xn,α := yn + εαvα (α ∈ Jn, n ∈ N) and

D := span({xn,α : α ∈ Jn, n ∈ N}),

the linear span of the vectors xn,α.
For each n ∈ N, choose αn ∈ Jn and consider the vector un := xn,αn . By

(1), (2), the triangle inequality and the translation-invariance of d,

d(un, zn) ≤ d(yn + εαnvαn , yn) + d(yn, zn)
= d(εαnvαn , 0) + d(yn, zn) < 2/n→ 0 (n→∞).

Hence d(un, zn)→ 0. Since {zn}n≥1 is dense and E is perfect (because E is
a topological vector space), we derive that {un}n≥1 is dense. Consequently,
D is a dense linear subspace of E.

Let us prove that D \ {0} ⊂
⋂
S∈Γ (E \ S). To this end, fix x ∈ D \ {0}.

Then there exist N ∈ N, scalars c1, . . . , cN with cN 6= 0 and indices βj ∈ Jj
(j = 1, . . . , N) satisfying x = c1x1,β1 + · · ·+ cNxN,βN

, that is,

(3) x = c1y1 + · · ·+ cNyN + c1εβ1vβ1 + · · ·+ cNεβN
vβN

.

Assume, towards a contradiction, that x /∈
⋂
S∈Γ (E \ S). Then there would

be some S0 ∈ Γ for which x ∈ S0. But y1, . . . , yN ∈
⋂
S∈Γ S ⊂ S0 and S0 is

a linear subspace, so

(4) x− (c1y1 + · · ·+ cNyN ) ∈ S0.
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Since cNεβN
6= 0 and the vectors vβj

are linearly independent, we deduce
that

c1εβ1vβ1 + · · ·+ cNεβN
vβN
∈ L \ {0} ⊂

⋂
S∈Γ

(E \ S),

which contradicts (4) because of (3).
Finally, we have to demonstrate that dim(D) = µ. Since card{(n, α) :

α ∈ Jn, n ∈ N}) = card(
⋃∞
n=1 Jn) = µ, it is enough to show that the family

{xn,α}α∈Jn, n∈N is linearly independent. This is easy: assume that the right
hand side of (3) is 0. Fix any S0 ∈ Γ . Then c1y1+· · ·+cNyN ∈ S0. Therefore

−(c1εβ1vβ1 + · · ·+ cNεβN
vβN

) ∈ S0 ∩
[ ⋂
S∈Γ

(E \ S) ∪ {0}
]

= {0}.

Thus c1εβ1vβ1 + · · · + cNεβN
vβN

= 0. But the vectors vα are linearly inde-
pendent, so cjεβj

= 0 for all j, and consequently c1 = · · · = cN = 0.

Lemma 2.2. Assume that (E, ∗) is a topological group. Suppose that Γ
is a family of subgroups of E such that

⋂
S∈Γ S is dense in E. Then the set⋂

S∈Γ (E \ S) is either empty or dense in E.

Proof. Suppose that
⋂
S∈Γ (E\S) 6= ∅, so that it has at least one element,

say x0. Since the “translation” x ∈ E 7→ x∗x0 ∈ E is a homeomorphism from
E onto itself, the set A := {x ∗ x0 : x ∈

⋂
S∈Γ S} is dense in E. Therefore,

it is enough to show that A ⊂
⋂
S∈Γ (E \ S). To see this, assume towards

a contradiction that there is an element y = x ∗ x0 ∈ A \
⋂
S∈Γ (E \ S),

where x ∈
⋂
S∈Γ S. Then there exists S0 ∈ Γ such that x ∗ x0 ∈ S0. Hence

x0 = x−1 ∗ (x ∗ x0) also belongs to S0 because S0 is a subgroup. This is the
desired contradiction.

Next, we state two propositions that are surely well known, but since
we have not been able to find a reference, the proofs will be furnished.
We first isolate a property to be used later. A measure space (X,M, µ) is
said to have property (σ) if there is a countable set S ⊂ M satisfying the
following: given M ∈M with µ(M) <∞ and ε > 0, there exists A ∈ S such
that µ(M M A) < ε. By A M B we have denoted the symmetric difference
(A \ B) ∪ (B \ A). As usual, Q will stand for the set of rational numbers,
and χA for the indicator function of a subset A of X.

Proposition 2.3. Let p ∈ [1,∞) and (X,M, µ) be a measure space.

(a) If (σ) is satisfied, then Lp(µ,X) is separable.
(b) If X is a Hausdorff second-countable locally compact topological space

and µ is a regular measure on X, then Lp(µ,X) is separable.

Proof. According to [12, Chapter 3], the set St of step functions, i.e., of
measurable functions f : X → R such that f(X) is finite and µ({x ∈ X :
f(x) 6= 0}) < ∞, is dense in Lp(µ,X) for any p ∈ [1,∞) and any positive
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measure on an arbitrary measurable space X. Now, assume that µ is as
in (a), and consider the countable set S ⊂ M furnished by (σ). Since the
set A := {

∑N
i=1 qiχAi : qi ∈ Q, Ai ∈ S for i ∈ {1, . . . , N}, N ∈ N} is

countable and St is dense in Lp(µ,X), it is enough to prove that, given
ε > 0 and f ∈ St, there exists g ∈ A such that ‖f − g‖p < ε. This is
easy: just take into account the denseness of Q in R, the identities χA = χpA,
|χA−χB| = χAMB and the elementary inequality (

∑N
i=1 ai)

p ≤ Np(
∑N

i=1 a
p
i )

for ai ∈ [0,∞). This demonstrates (a).
Now, assume that X and µ are as in (b). Select a countable open basis

U for X and define S to be the family of all finite unions of members of U .
Then S is a countable subfamily of M. Therefore, it is sufficient to prove
that (σ) is satisfied with S. For this, fix ε > 0 and M ∈M with µ(M) <∞.
Since µ is regular, we can find a compact set K and an open set U satisfying

(5) K ⊂M ⊂ U and µ(U)− ε/2 < µ(M) < µ(K) + ε/2.

Fix x ∈ K. Then x ∈ U , so there is Bx ∈ U with x ∈ Bx ⊂ U , because
U is an open basis. Therefore the family {Bx : x ∈ K} is an open covering
of K. From the compactness of K, there exists a finite subfamily {Bxj : j =
1, . . . , J} such that K ⊂

⋃J
j=1Bxj =: A. Then A ∈ S and K ⊂ A ⊂ U .

From this and (5), one derives that M M A ⊂ U \ K and µ(M M A) ≤
µ(U \K) = µ(U)− µ(K) < ε. Consequently, S witnesses property (σ), and
by (a) the proof is finished.

The last proposition can be applied, of course, to the spaces Lp(I) and `p,
where p ∈ [0,∞) and I is any interval of R. Indeed, the Lebesgue measure
and the counting measure on N are special instances of (b). It is well known
that, on the contrary, L∞(µ,X) is seldom separable.

Note that the sufficient condition for nonseparability furnished in the
proposition below is rather common, and works, again, for the Lebesgue
measure as well as the counting measure on N.

Proposition 2.4. Let (X,M, µ) be a measure space such that there is
an infinite family N ⊂ M whose members are pairwise disjoint and 0 <
µ(A) <∞ for all A ∈ N . Then L∞(µ,X) is not separable.

Proof. Select a sequence {An}n≥1 of mutually disjoint sets in N with
positive measure. Consider the family F := {BS =

⋃
n∈S An : S ⊂ N}, and

let BS , BS̃ be distinct members of F . Then S M S̃ 6= ∅ and |χBS
− χBS̃

|
= χBSMBS̃

. Hence |χBS
− χBS̃

| = 1 on the set BS M BS̃ , which has positive
measure. Consequently, the open norm-balls B(χF , 1/2) (F ∈ F) are mu-
tually disjoint. The nonseparability of our space follows from the fact that
F is uncountable.
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We finish this section with a purely topological preliminary result, to be
used in Section 3. If A ⊂ X, where X is a topological space, then A will
stand for the closure of A.

Lemma 2.5. Let X be a T1 topological space. Assume that x0 is a non-
isolated point of X such that X is regular and first-countable at x0. Then, for
each open neighborhood U of x0, there exists a fundamental system {Un}n≥1

of open neighborhoods of x0 such that

Un+1 ⊂ Un ⊂ U and Un \ Un+1 6= ∅ for all n ∈ N.

Proof. Fix an open neighborhood U of x0. Since X is first-countable at
x0, there exists a fundamental system {Vn}n≥1 of open neighborhoods of
x0. By replacing, if necessary, each Vn by U ∩ V1 ∩ · · · ∩ Vn, we can assume
that Vn+1 ⊂ Vn ⊂ U for every n ∈ N. Pick x1 ∈ V1 \ {x0}, which is possible
because x0 is not isolated. Now, regularity at x0 yields open sets A1, B1

satisfying x0 ∈ A1, (X \ V1) ∪ {x1} ⊂ B1 and A1 ∩ B1 = ∅ (note that {x1}
is closed because X is T1). Therefore V1 \ {x1} ⊃ X \B1 ⊃ A1. But X \B1

is closed, whence V1 \ {x1} ⊃ A1. Define U1 := V1 and U2 := V2 ∩ A1. On
the one hand, U1, U2 are open sets containing x0 with U1 ⊂ V1, U2 ⊂ V2.
On the other hand, U2 ⊂ A1 ⊂ V1 = U1 and x1 ∈ U1 \ A1 ⊂ U1 \ U2.
Hence U1 \ U2 6= ∅. By starting with U2, we can pick x2 ∈ U2 \ {x0},
and a similar process yields an open set U3 satisfying x0 ∈ U3, U3 ⊂ U2,
U3 ⊂ V3 and x2 ∈ U2 \ U3 (so U2 \ U3 6= ∅). It is plain that this procedure
generates the desired sequence {Un}n≥1 of open neighborhoods of x0. It is
still a fundamental system for x0, as Un ⊂ Vn for all n ≥ 1.

3. Algebraic genericity. We start by isolating two properties that will
be often used. These properties relate to a measure space (X,M, µ):

(α) inf{µ(A) : A ∈M, µ(A) > 0} = 0.
(β) sup{µ(A) : A ∈M, µ(A) <∞} =∞.

The exact conditions under which inclusions among the Lebesgue spaces
Lp(µ,X) hold are well known. The assertions of the following theorem can
be found in the paper [11] by J. L. Romero and in [10, Section 14.8].

Theorem 3.1. Let (X,M, µ) be a measure space and 1 ≤ p < q ≤ ∞.

(a) Lp(µ,X)⊂Lq(µ,X) if and only if inf{µ(A) : A∈M, µ(A)> 0}> 0.
(b) Lq(µ,X) ⊂ Lp(µ,X) if and only if sup{µ(A) : A ∈ M, µ(A) <∞}

is finite.

For instance, if µ is a finite measure on (X,M) and ν is the counting
measure on an infinite set Y , then Lq(µ,X) ⊂ Lp(µ,X) and Lp(µ, Y ) ⊂
Lq(µ, Y ) whenever p < q. In particular, we recover the inclusion relations
Lq(I) ⊂ Lp(I) (I = a bounded interval of R) and `p ⊂ `q as well as the non-
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inclusion relation Lr(J) 6⊂ Ls(J) (r, s ∈ [1,∞] with r 6= s, J an unbounded
interval of R).

Remarks 3.2. 1. Note that the last theorem can be reformulated as
follows:

• Let 1 ≤ p < q ≤ ∞. Then Lp(µ,X) \ Lq(µ,X) 6= ∅ if and only if (α)
holds.

• Let 1 ≤ q < p ≤ ∞. Then Lp(µ,X) \ Lq(µ,X) 6= ∅ if and only if (β)
holds.

2. In [10, pp. 233–235] it is also proved that (α) is true if and only
if there exists a sequence (An) of pairwise disjoint measurable sets with
0 < µ(An) < 1/2n (n ∈ N), while (β) holds if and only if there exists a
sequence (An) of pairwise disjoint measurable sets with 1 < µ(An) < ∞
(n ∈ N).

As a matter of fact, conditions (α) and (β) will also turn out to be
sharp conditions for much finer properties than the mere nonvacuousness of
Lp \ Lq. This question will be studied in the present section, reaching more
general conclusions than the ones by Aron et al. given in the Introduction.
We first present the following concepts. Then we will state our main result.

Definition 3.3. Let (X,M, µ) be a measure space and p ∈ [1,∞). The
members of the set Lpl-strict := Lp(µ,X)\

⋃
q∈[1,p) L

q(µ,X) will be called left-
strictly p-integrable functions. The members of the set Lpr-strict := Lp(µ,X)\⋃
q∈(p,∞] L

q(µ,X) will be called right-strictly p-integrable functions. Finally,
the members of the set Lpstrict := Lp(µ,X) \

⋃
q∈[1,∞]\{p} L

q(µ,X) are said
to be strictly p-integrable functions.

We notice that Lpstrict = Lpl-strict ∩ L
p
r-strict, L

1
l-strict = L1(µ,X) and

L1
r-strict = L1

strict.

Theorem 3.4. Assume that p ∈ [1,∞), (X,M, µ) is a measure space
and Lp(µ,X) is separable.

(a) Lpr-strict is maximal dense-lineable if and only if (α) holds.
(b) If p > 1, then Lpl-strict is maximal dense-lineable if and only if (β)

holds.
(c) If p > 1, then Lpstrict is maximal dense-lineable if and only if both (α)

and (β) hold.

Proof. From Theorem 3.1 and Remark 3.2.1, it follows that conditions
(α), (β) and (α) & (β) are respectively necessary in (a), (b) and (c). We
have to prove that they are also sufficient.

Suppose that (α) holds. First, we are going to demonstrate that Lpr-strict
is c-lineable. According to Remark 3.2.2, we can select a sequence (An) ⊂M
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of pairwise disjoint sets with 0 < µ(An) < 1/2n (n ≥ 1). For each a ∈ (1,∞),
consider the function fa : X → [0,∞) given by

fa =
∞∑
n=1

1
n1/p(log(n+ 1))a/pµ(An)1/p

· χAn .

It is clear that fa is measurable. From the disjointness of the sets An, it
follows that fpa =

∑∞
n=1

1
n(log(n+1))aµ(An) · χAn . Moreover,

‖fa‖p =
[ �
X

fpa dµ
]1/p

=
[ ∞∑
n=1

1
n(log(n+ 1))a

]1/p

=: δ.

Now, δ is finite: use, for instance, Cauchy’s condensation principle. Thus
fa ∈ Lp(µ,X). Define

M := span({fa : a ∈ (1,∞)}) ⊂ Lp(µ,X).

The functions fa are linearly independent. Indeed, suppose c1fα1 + · · ·+
cNfαN = 0, the αj are pairwise distinct and not all the scalars cj are null. We
can assume that N ≥ 2, α1 < · · · < αN and c1 6= 0. Since (log(n+ 1))α2−α1

→∞ as n→∞, we can choose n0 ≥ 2 such that

(log(n+ 1))(α2−α1)/p > 2
N∑
j=2

|cj/c1| (n ≥ n0). (6)

In particular,

|c1|
n

1/p
0 (log(n0 + 1))α1/pµ(An0)1/p

>
N∑
j=2

|cj |
n

1/p
0 (log(n0 + 1))αj/pµ(An0)1/p

.

Therefore |c1fα1 | > |−(c2fα2 + · · ·+ cNfαN )| on An0 , which is absurd.
Furthermore, each f ∈ M \ {0} happens not to belong to Lq(µ,X),

for any q > p. Indeed, f has the form c1fα1 + · · · + cNfαN as in the last
paragraph. Select an n0 ∈ N such that (6) holds. Let n ≥ n0. Then on An
we have

|f | ≥ |c1fα1 | − (|c2fα2 |+ · · ·+ |cNfαN |)

=
|c1|

n1/p(log(n+ 1))α1/pµ(An)1/p
−

N∑
j=2

|cj |
n1/p(log(n+ 1))αj/pµ(An)1/p

≥ |c1|
n1/p(log(n+ 1))α1/pµ(An)1/p

−
∑N

j=2 |cj |
n1/p(log(n+ 1))α2/pµ(An)1/p

≥ 1
2
· |c1|
n1/p(log(n+ 1))α1/pµ(An)1/p

.
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Now, fix q > p. Then it follows that

‖f‖qq ≥
∞∑

n=n0

1
2q
· |c1|q

nq/p(log(n+ 1))α1q/pµ(An)q/p
µ(An)

≥
∞∑

n=n0

1
2q
· (2q/p−1)n|c1|q

nq/p(log(n+ 1))α1q/p
=∞

because the general term of this series is unbounded since 2q/p−1 > 1. Con-
sequently, f /∈ Lq(µ,X) whenever q ∈ (p,∞). The facts that µ(An) > 0 and

dn :=
1
2
· |c1|
n1/p(log(n+ 1))α1/pµ(An)1/p

→∞ as n→∞

(because µ(An) < 1/2n), together with the inequality |f | ≥ dn on An
(n ≥ n0), show that f /∈ L∞(µ,X). Hence M \ {0} ⊂ Lpr-strict. So far,
we have proved that the last set is c-lineable. To see that it is in fact max-
imal dense-lineable, it is enough to observe that Lpr-strict =

⋂
S∈Γ (E \ S),

where E = Lp(µ,X) and Γ is the family of all subspaces Lp(µ,X)∩Lq(µ,X)
(q > p). Note that

⋂
S∈Γ S is dense in E because it contains the class St of

step functions. By applying Lemma 2.1, the proof of (a) is concluded.
Part (b) is proved in a similar way, only by taking into account that this

time the sets An can be chosen such that µ(An) > 1 for all n (see Remark
3.2). Then the above subspace M works, and a further use of Lemma 2.1
provides the desired maximal dense-lineability. The unique difference is the
business of proving that f /∈ Lq(µ,X) whenever q < p, where f is as before.
This is easy, because we now have

‖f‖qq ≥
∞∑

n=n0

1
2q
· |c1|q

nq/p(log(n+ 1))α1q/pµ(An)q/p
· µ(An)

≥
∞∑

n=n0

1
2q
· |c1|q

nq/p(log(n+ 1))α1q/p
.

This series diverges, for q/p < 1. Therefore ‖f‖q =∞, as required.
It remains to demonstrate the “if” part of (c). Again by Remark 3.2.2

and (α), there are infinitely many pairwise disjoint measurable sets An with
0 < µ(An) < 1/2n (n ∈ N). Observe that the set A :=

⋃∞
n=1An has fi-

nite measure. It follows that (β) is also satisfied by the measure subspace
(X \ A,MX\A, µ|X\A). This entails the existence of infinitely many mutu-
ally disjoint measurable sets Bn with 1 < µ(Bn) < ∞ and Ak ∩ Bn = ∅
(n, k ∈ N). Let C1 := A1, C2 := B1, C3 := A2, C4 := B2, . . . and

M := span({fα : α ∈ (1,∞)}), where

fα =
∞∑
n=1

1
n1/p(log(n+ 1))α/pµ(Cn)1/p

· χCn .
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The proof is now an appropriate combination of the approaches of (a)
and (b). The details (cumbersome, but easy) are left to the reader.

Remarks 3.5. 1. The separability of Lp(µ,X) is a general hypothesis
in the last theorem. According to Proposition 2.3, this condition is fulfilled
if (σ) holds.

2. In the case p = 1, trivially, L1
l-strict is always maximal dense-lineable,

while (by (a)) L1
strict is maximal dense-lineable if and only if (α) holds.

3. The last theorem is no longer valid if p =∞. Indeed, neither (α) nor
(β) is compatible with the separability of L∞(µ,X): see Proposition 2.4.

We conclude this section with the following corollary, which provides two
examples of when the main theorem applies.

Corollary 3.6. Assume that p ∈ [1,∞), (X,M, µ) is a measure space
and Lp(µ,X) is separable. Then Lpr-strict is maximal dense-lineable if one of
the following properties is true:

(a) The measure µ is semifinite and nonatomic.
(b) X is a T1 topological space and there is a non-isolated point x0 ∈ X

such that X is regular and first-countable at x0, µ({x0}) = 0 and
there is an open neighborhood U of x0 with µ(U) <∞ and µ(V ) > 0
for any nonempty open set V ⊂ U .

Proof. If (a) is true, then [0, µ(M)] = {µ(A) : A ∈ M and A ⊂ M} for
every set M ∈M (see for instance [10, Theorem 11.27]). Hence (α) is satis-
fied and Theorem 3.4 applies. If we start from (b), it follows from Lemma
2.5 that there exists a fundamental system {Un}n≥1 of open neighborhoods
of x0 such that Un+1 ⊂ Un ⊂ U and Un \ Un+1 6= ∅ for all n ∈ N. Therefore
the “annuli” An := Un \ Un+1 satisfy µ(An) > 0 (n ≥ 1). Since (Un) is a
decreasing sequence with intersection {x0} (because X is T1) and the Un’s
have finite measure, one derives that limn→∞ µ(Un) = µ({x0}) = 0 (see [12,
Chap. 1]). Hence µ(An)→ 0, which shows that (α) is again fulfilled.

According to Proposition 2.3(b), the separability of Lp(µ,X) is guaran-
teed by a set of conditions, some of which are finer than those given in part
(b) of the last corollary.

4. Nonintegrability on any open set. This short section is de-
voted to showing that under appropriate, rather mild, conditions on a reg-
ular measure, right-strictness can be reinforced to involve every nonempty
open set.

Theorem 4.1. Let X be a Hausdorff first-countable separable locally
compact perfect topological space. Assume that µ is a Borel measure on X
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that is continuous, regular and has full support. Let p ∈ [1,∞) and C be the
set of all f ∈ Lp(µ,X) such that, for every nonempty open subset U of X
and every q > p, f /∈ Lq(µ,U). Then C is a dense subset of Lp(µ,X).

Proof. Consider the space E := Lp(µ,X) as a topological group under
the operation +. If τ is the topology of X, our set C can be written as
C =

⋂
S∈Γ (E \S), where Γ := {{f ∈ Lp(µ,X) : f |U ∈ Lq(µ,U)} : q > p and

U ∈ τ \{∅}}. Observe that each member of Γ is a subgroup of E. Moreover,
the set

⋂
S∈Γ S is dense in E, for it contains the set St of step functions.

According to Lemma 2.2, it is enough to show that C 6= ∅.
To this end, observe that our hypotheses on X and µ imply that the

conditions in part (b) of Corollary 3.6 are satisfied at all points x0 ∈ X.
As in the proof of that corollary, we can consider an appropriate decreasing
countable basis Un = Un,x0 (n ≥ 1) of open neighborhoods for x0, and then
select mutually disjoint measurable subsets An = An,x0 (n ∈ N) of positive
measure such that µ(An,x0)→ 0. By passing to a subsequence if necessary,
one may suppose that 0 < µ(An,x0) < 1/2n for every n. Similarly to the proof
of Theorem 3.4, we consider the measurable function fx0 : X → [0,∞) given
by

fx0 =
∞∑
n=1

1
n1/p(log(n+ 1))2/pµ(An,x0)1/p

· χAn,x0
.

As in that theorem (with α = 2), we get

‖fx0‖p =
[ ∞∑
n=1

1
n(log(n+ 1))2

]1/p

=: β <∞.

Observe that β does not depend on x0. At this point, the separability of X
comes into play, providing a dense countable subset {xk : k ≥ 1} ⊂ X.
Define the measurable function f : X → [0,∞) by

(7) f =
∞∑
k=1

2−kfxk
=
∞∑
k=1

∞∑
n=1

2−k

n1/p(log(n+ 1))2/pµ(An,xk
)1/p
· χAn,xk

.

Our final task is to show that f ∈ C. From the Minkowski inequality,

‖f‖p ≤
∞∑
k=1

‖2−kfxk
‖p =

∞∑
k=1

2−kβ = β <∞.

Hence f ∈ Lp(µ,X).
Our proof will be concluded as soon as we show that, for every q > p

and every U ∈ τ \ {∅}, f /∈ Lq(µ,U). For this, fix such q and U . From the
density of (xk) it follows that there is k0 ∈ N with y := xk0 ∈ U . Since the
Un,y’s form a decreasing basis of open neighborhoods of y, we can find an
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n0 ∈ N such that Un,y ⊂ U for all n ≥ n0. Hence An,y ⊂ U for such n. Since
all terms in (7) are nonnegative, we derive

|f |q ≥
∞∑

n=n0

2−k0q

nq/p(log(n+ 1))2q/pµ(An,y)q/p
· χAn,y ,

from which one deduces that

‖f‖qq ≥ 2−k0q ·
∞∑

n=n0

1
nq/p(log(n+ 1))2q/pµ(An,y)q/p−1

≥ 2−k0q ·
∞∑

n=n0

(2q/p−1)n

nq/p(log(n+ 1))2q/p
=∞,

because q/p−1 > 0. This proves the desired conclusion if q is finite. If q =∞,
suffice it to observe that infAn,y |f | → ∞ (n→∞) and that µ(An,y) > 0 for
all n ∈ N.

Observe that, from the proof of Lemma 2.2, we obtain a dense affine
linear subspace of functions with the property described in the last theorem.
On the other hand, as in Corollary 3.6, we cannot expect left-strictness in
the conclusion of Theorem 4.1 because our measure may well be finite.

5. Final remarks. 1. The nice notion of “A stronger than B” intro-
duced in [2] can also be used when dealing with the problem of dense-
lineability.

2. If the separability of Lp(µ,X) is not guaranteed, we at least keep c-
lineability in the conclusions of Theorem 3.4 and Corollary 3.6. By trivially
extending the strictness to the case p = ∞, we also have c-lineability here.
We pose it as an open problem to study the dense-lineability and maximal
dense-lineability in this case.

3. We also want to ask whether the special sets studied in this paper are
residual/spaceable under appropriate conditions. Moreover, we do not know
whether the set C considered in Theorem 4.1 is lineable/c-lineable/dense-
lineable/maximal-dense lineable.

4. Regarding that theorem, it is worth warning the reader that the ex-
pression “f /∈ Lq(µ,U) for every nonempty open set U” cannot be replaced
by “f /∈ Lq(µ,A) for every measurable set A with µ(A) > 0”. Indeed, since
f is in Lp(µ,X), it is finite µ-almost everywhere. Thus there is a set Z with
µ(Z) = 0 such that X = Z ∪

⋃∞
n=1{x ∈ X : |f(x)| ≤ n}. Hence some set

{x ∈ X : |f(x)| ≤ n0} =: A has positive measure. But |f |q ≤ nq−p0 |f |p on A,
so f ∈ Lq(µ,A).
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5. In [4] the following concept is introduced. A subset A of a topological
vector space of scalar functions is called algebrable if A ∪ {0} contains an
infinitely generated algebra. We cannot expect algebrability in our setting.
For instance, if q > p ≥ 1 and µ is finite, then A := Lp(µ,X) \ Lq(µ,X) is
not algebrable. Indeed, if it were, there would exist f ∈ A with fN ∈ A for
all N ∈ N. Choose N with Np > q. Then f ∈ LNp(µ,X) ⊂ Lq(µ,X), which
is absurd.

6. Lineability properties of families of functions that are either Riemann
integrable or non-Riemann integrable are studied in [7].
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Facultad de Matemáticas
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