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Entropy dimension and variational principle

by

Young-Ho Ahn (Mokpo), Dou Dou (Nanjing) and
Kyewon Koh Park (Suwon)

Abstract. Recently the notions of entropy dimension for topological and measurable
dynamical systems were introduced in order to study the complexity of zero entropy
systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions
range from zero to one and whose measure-theoretic entropy dimensions are identically
zero. Hence entropy dimension does not obey the variational principle.

1. Introduction. Entropy is an isomorphism invariant which measures
the exponential growth rate of complexity of dynamical systems. It is a
complete invariant for the class of Bernoulli transformations. It is also well
known that any measurable dynamical system with positive entropy is iso-
morphic to a skew product with the Bernoulli transformation of the same
entropy.

Zero entropy systems cover a wide class of transformations exhibiting dif-
ferent “random” behaviors. Interval exchange transformations have entropy
zero. Simple maps in joining theory, which include the Chacon transforma-
tion, irrational rotations and horocycle flows, also have zero entropy [G].
Indeed, the set of zero entropy systems is a dense Gδ subset of all measure
preserving transformations. To classify the “randomness” or “complexity”
of zero entropy systems, we need some new invariants which are finer than
entropy [F, KT]. For example, the notions of entropy dimension and entropy
dimension set are introduced to help the understanding of the various levels
of complexity of zero entropy systems [DHP1, DHP2]. We can briefly say
that entropy dimension measures the subexponential growth rate of orbits,
and the entropy dimension set measures the complexity of factors. The topo-
logical or measure-theoretic entropy dimension of a translation on a compact
group is zero. Also if a dynamical system has positive entropy, then its en-
tropy dimension is one. It is shown that for any given 0 < α < 1, there exists
a transformation whose entropy dimension is α [FP]. It has been our hope
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that many of the properties of entropy will be generalized and strengthened
to entropy dimensions. This would lead to a better understanding of zero
entropy systems. For example, under very mild conditions, two topological
or measurable dynamical systems with different entropy dimension sets are
disjoint in the sense of Furstenberg [DHP1, DHP2].

Let X be a compact metric space and T be a homeomorphism on X.
The variational principle for the classical entropy says that the topological
entropy of the dynamical system (X,T ) is the supremum of all measure-
theoretic entropies of T . Just as in the case of entropy, it is shown in [DHP2]
that metric entropy dimensions are always less than or equal to the topo-
logical entropy dimension. And there are examples where metric entropy
dimension is the same as the topological entropy dimension [DHP2]. A nat-
ural question is whether the topological entropy dimension of a system is
the supremum of the measurable entropy dimensions over all probability in-
variant measures. We call this property the variational principle for entropy
dimension.

It is fairly easy to construct topological examples of given topological
entropy dimension. However, many of these examples, in particular the
physical models, have no physically meaningful finite invariant measures
but σ-finite invariant measures. In this paper, we consider a class {Xα} of
symbolic dynamical systems, where Xα is generated by a special infinite se-
quence uα. This system is known to be minimal and its topological entropy
dimension is α [C]. We show that these topological dynamical systems are
uniquely ergodic and their measure-theoretic entropy dimensions are identi-
cally zero. Hence these examples reveal differences between topological and
measurable entropy dimensions. They show that the variational principle
does not hold for entropy dimension. In fact these are the only known ex-
amples yet of fractional topological entropy dimensions which have finite
invariant measures.

2. Preliminaries. There are several equivalent definitions of classical
entropy for topological and measurable dynamical systems. Motivated by
one of those definitions, the notions of entropy dimensions have been in-
troduced [DHP1, DHP2, FP]. Henceforth, by entropy dimension we mean
measure-theoretic entropy dimension.

2.1. Entropy dimension. We recall the definition of topological en-
tropy dimension.

Let (X,T ) be a topological dynamical system and CoX be the set of all
finite open covers of the compact metric space X. For 0 ≤ α ≤ 1, we consider
two measures of complexity of the topological dynamical system for U ∈ CoX :
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D(T, α,U) = lim sup
n→∞

logN (
∨n−1
i=0 T

−iU)
nα

,

D(T, α,U) = lim inf
n→∞

logN (
∨n−1
i=0 T

−iU)
nα

,

where N (U) is the smallest cardinality of subcovers of U .
We define D(T,U) = sup{0 ≤ α ≤ 1 : D(T, α,U) > 0}, and the upper

topological entropy dimension D(X,T ) as the supremum of D(T,U) over all
finite open covers U .

Similarly, we define D(T,U) = sup{0 ≤ α ≤ 1 : D(T, α,U) > 0} and the
lower topological entropy dimension D(X,T ) as the supremum of D(T,U)
over all finite open covers U . It is known that if U is a generating open
cover (i.e. limn→∞ diam(

∨n−1
i=0 T

−iU) = 0), then D(X,T ) = D(T,U) and
D(X,T ) = D(T,U) respectively. If D(X,T ) = D(X,T ), then we call it the
topological entropy dimension of (X,T ).

Let T be a measure preserving transformation on a standard Borel prob-
ability space (X,B, µ), and P be a finite measurable partition of X. An
analogous definition of entropy dimension would be

D
H
µ (P) = sup

{
0 ≤ α ≤ 1 : lim sup

n→∞

1
nα
H
(n−1∨
i=0

T−iP
)
> 0
}
.

However it was shown that supP D
H
µ (P) = 1 if DH

µ (Q) > 0 for some
partition Q, hence this is not an isomorphism invariant [FP]. We need to
modify the topological definition and define entropy dimension by counting
the number of d-balls of names [R].

Let P = {P1, . . . , Pk} be a given partition and let P[0,n)(x) denote
the first n-name of the atom P[0,n)(x) ∈

∨n−1
i=0 T

−iP. That is, P[0,n)(x) =
x0x1 · · ·xn−1 where xi = l if T i(x) ∈ Pl for all 0 ≤ i < n. For a point x ∈ X,
we define

b(x, n, ε) = {y ∈ X : d(P[0,n)(x),P[0,n)(y)) < ε},

where d is the Hamming metric defined by

d(x0x1 · · ·xn−1, y0y1 · · · yn−1) =
1
n

#{i : xi 6= yi for 0 ≤ i < n}.

Let K(n, ε) be the smallest number K such that there exists a subset of X
of measure at least 1− ε covered by K balls of type b(x, n, ε). We define

Dµ(P, ε) = sup
{

0 ≤ α ≤ 1 : lim sup
n→∞

logK(n, ε)
nα

> 0
}
,

Dµ(P, ε) = sup
{

0 ≤ α ≤ 1 : lim inf
n→∞

logK(n, ε)
nα

> 0
}
.

Set Dµ(P) = limε→0Dµ(P, ε) and Dµ(P) = limε→0Dµ(P, ε).
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We define the upper entropy dimension Dµ(X,T ) as the supremum of
Dµ(P) and the lower entropy dimension Dµ(X,T ) as the supremum of
Dµ(P) over all finite measurable partitions P respectively.

Similarly to the case of topological dynamical systems, if the two values
are equal, then we call it the entropy dimension of (X,B, µ, T ), denoted
by Dµ(X,T ). It is easy to show that if P is a generating partition, then
Dµ(X,T ) = Dµ(P) and Dµ(X,T ) = Dµ(P).

2.2. Cassaigne’s example. Cassaigne constructed a uniformly recur-
rent 0-1 sequence which has superpolynomial but subexponential growth
rate of the complexity function [C]. In this subsection, we briefly recall his
construction.

We recall that the dyadic valuation word v = v1v2v3 · · · is an infinite
word with vn being the dyadic valuation of n, i.e. the largest integer h such
that 2h divides n. This word can be described in the following way. Let z1 = 0
and define a sequence of finite words by the recursive relation zj+1 = zjjzj .
Then the dyadic valuation word v is the limit of the sequence of words (zj)
(j ≥ 1). More precisely, z2 = z11z1 = 010, z3 = z22z2 = 0102010 and

v = lim
j→∞

zj+1 = 010 2 010 3 010 2 010 4 · · · .

By using the dyadic valuation word and substituting each j (j = 0, 1, 2, . . .)
by a proper finite word of 0’s and 1’s, a sequence which has superpolynomial
but subexponential growth rate of n-blocks can be constructed.

Let ϕ : R+ → R+ be a function such that

(i) ϕ(t)� log t,
(ii) ϕ is differentiable, except possibly at 0,

(iii) ϕ′(t)� t−β for some positive constant β,
(iv) ϕ′ is decreasing.

For example, ϕ(t) = t1/2 and ϕ(t) = t1/3 log(t + 5) satisfy all the above
conditions.

Given any finite or infinite set A, we denote by A∗ the collection of finite
or infinite words over A. Define inductively the substitution ψ : N∗ → {0, 1}∗
and the family (xk)k∈N of prefixes of the dyadic valuation word v as follows:

(a) ψ(0) = 0, ψ(1) = 1;
(b) xk is the longest prefix of v such that

|ψ(xk)| ≤ max(ϕ−1(k + 1)− ϕ−1(k)− 1, 0);

(c) for all j ≥ 1,

ψ(2j) = ψ(xblog jc)0ψ(j) and ψ(2j + 1) = ψ(xblog jc)1ψ(j),

where bac denotes the maximal integer not exceeding a.
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Let u = ψ(v).
In the case of ϕ(t) = t1/2, by the condition (b) above, we have ϕ−1(t) = t2

and xk is the longest prefix of v such that |ψ(xk)| ≤ 2k. The following gives
the first few terms of u.

• x0 = ε, ψ(x0) = ε where ε denotes the empty word;
• since ψ(0) = 0, ψ(1) = 1 and v = 010 · · · , we have x1 = 01 and
ψ(x1) = 01;
• since ψ(2) = ψ(x0)0ψ(1) = 01, ψ(3) = ψ(x0)1ψ(1) = 11, ψ(4) =
ψ(x1)0ψ(2) = 01001, we have

u = ψ(z33z34 · · · ) = ψ(0102010301020104 · · · )
= 010 01 010 11 010 01 010 01001 · · · .

The word u has the following properties (see [C, Theorem 3]).

Proposition 2.1. u is a uniformly recurrent word and its complexity
satisfies

log pu(n) ∼ ϕ(n),

where pu(n) is the number of blocks of length n in u.

Let Xu be the set of all bi-infinite sequences x ∈ {0, 1}Z such that every
n-block of x is an n-block of u. Since u is uniformly recurrent, (Xu, σ) is
a minimal topological dynamical system where σ is the shift map. In this
paper, we restrict our attention to the sequences uα which are induced by the
functions {ϕ(t) = tα, 0 < α < 1} which satisfy all Cassaigne’s conditions.

For the existence and uniqueness of an invariant measure of the system
(Xu, σ), we need to compute the frequency of blocks in a sufficiently long
word w. For these computations we will show that there exists k such that
ψ(zk) makes up most of the word w (Lemma 3.4). We also need to investigate
the structures of ψ(zk) and ψ(i) together with their lengths. We need the
following estimates.

Lemma 2.2 ([C, Lemma 3]). The sequence (|ψ(i)|) is nondecreasing.
Moreover, for i ≥ 1, |ψ(i)| depends only on blog ic and

1 + ϕ−1(blog ic)− blog ic(1 + ϕ−1(blogblog icc)) ≤ |ψ(i)| ≤ 1 + ϕ−1(blog ic).
We need to consider the occurrences of n-blocks in ψ(zk), since ψ(zk)’s

make up most of u. To count the occurrences, we also need the following
lemma which describes the relationship between the length of ψ(zk) and k.

Lemma 2.3. Let n ≥ 3 and g(n) = max{i : |ψ(zi+1)| ≤ n − 2}. Then
there exists a constant c such that log(n− 2)− c < g(n) ≤ log(n− 2).

Proof. By the conditions on ϕ(t), we have ϕ(n) � log n and n �
ϕ−1(blog nc). So there exists k > 0 such that ϕ−1(blog nc) ≤ n + k − 1
for all n. Let |ψ(zn)| = an. Since |ψ(n)| ≤ 1 + ϕ−1(blog nc) and |ψ(zn+1)| =
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2|ψ(zn)| + |ψ(n)|, we have 2an ≤ an+1 ≤ 2an + n + k with a1 = 1. Let bn
be the sequence defined by the recursive relation bn+1 = 2bn + n + k with
b1 = 1. Then an ≤ bn and

bn =
k + 3

2
2n − (n+ 1)− k ≤ k + 3

2
2n.

Let c be a constant such that k+3
2 ≤ 2c−2. Then 2n−1 ≤ an ≤ 2n+c−2. Hence

2g(n) ≤ |ψ(zg(n)+1)| ≤ 2g(n)+c−1, 2g(n)+1 ≤ |ψ(zg(n)+2)| ≤ 2g(n)+c.

Therefore 2g(n) ≤ n − 2 and 2g(n)+c > n − 2. Hence g(n) ≤ log(n − 2) and
g(n) > log(n− 2)− c.

3. Unique ergodicity of the symbolic system Xuα. It is well known
that there is a symbolic dynamical system which is minimal but not uniquely
ergodic (see, for example, [WS]). In this section, we will prove that each
symbolic system Xuα is uniquely ergodic. First, we will show that Xuα has
an invariant measure µα for which uα is generic. If there is no confusion, we
will denote µα by µ, uα by u and Xuα by Xα for notational convenience.

Proposition 3.1. For each symbolic system Xα, there exists an invari-
ant measure µα for which uα is generic.

Proof. Let fBj be the frequency of the block B in ψ(zj). Let gi be the
number of occurrences of B in ψ(i), and k(i) be the number of occurrences
of B which intersect both ψ(zi) and ψ(i). Since the number of occurrences
of i in zj is 2j−i−1, the length of ψ(zj) is

∑j−1
i=0 2j−i−1|ψ(i)| and

fBj =
∑j−1

i=0 2j−i−1(gi + k(i))∑j−1
i=0 2j−i−1|ψ(i)|

=
∑j−1

i=0 2−i(gi + k(i))∑j−1
i=0 2−i|ψ(i)|

.

Since the growth rate of |ψ(i)| is subexponential, and since gi ≤ |ψ(i)| and
k(i) ≤ 2|B|,

∑j−i
i=0 2−i|ψ(i)| and

∑j−i
i=0 2−i(gi + k(i)) converge as j goes to

infinity. So the sequence fBj converges to a constant fB. Hence for given ε,
there exists J such that |fBj − fB| < ε/2 for all j ≥ J . Now we can find N
such that for all n ≥ N , un1 = u1 · · ·un is covered by {ψ(zj) : j ≥ J} except
for nε/2 coordinates. Thus the frequency of B in u1 · · ·un is fB ± ε for all
n ≥ N , which implies the existence of an invariant measure µα.

Now we will prove the unique ergodicity of Xα. The following classical
result is taken from Theorem 4.9 of [G] (see also [W]).

Theorem 3.2. A topological dynamical system (X,T ) is uniquely er-
godic iff for every continuous function g ∈ C(X) the sequence of functions
n−1

∑n−1
i=0 g ◦ T i converges pointwise to a constant function.
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For the unique ergodicity of shift spaces, since the finite blocks make up
a dense collection of clopen sets for shift spaces, it is enough to check that
the characteristic function of the form f = 1B for a finite block B satisfies
the conclusion of the previous theorem. To prove the unique ergodicity, we
define the following notion.

Definition 3.3. Let v be a block of length k and w be a block of length
n ≥ k. Suppose w = w1 · · ·wn where wi = 0 or 1. We define

d(v, w) =
k

n
#{il : wilwil+1

· · ·wil+k = v, 1 ≤ il ≤ n− k, il+1 ≥ il + k}.

That is, d(v, w) is the maximum value of the ratios of nonoverlapping parts
of w covered by v. We call d(v, w) the density of v in w.

Lemma 3.4. For any ε > 0, there exists K = K(ε) such that for any
k ≥ K, there is N = N(ε, k) such that d(ψ(zk), w) > 1− ε for any subword
w of u with length greater than N .

Proof. For given ε > 0, there exists K = K(ε) such that∑∞
i=K |ψ(i)|2−i∑K
i=0 |ψ(i)|2−i

<
ε

32
.

Due to the construction of the infinite word u, we prove the lemma by the
following steps.

Step 1. Let w be the prefix of u of length n. Then there is a unique l
such that |ψ(zl)| ≤ n < |ψ(zl+1)|. Hence w is a prefix of ψ(zl+1), and ψ(zl)
is a prefix of w. When l ≥ k,

d(ψ(zk), w) ≥ 1−
∑l

i=k |ψ(i)|2l−i + |ψ(zk)|
n

≥ 1−
∑l

i=k |ψ(i)|2l−i + |ψ(zk)|
|ψ(zl)|

= 1−
∑l

i=k |ψ(i)|2l−i + |ψ(zk)|∑l−1
i=0 |ψ(i)|2l−i−1

= 1− 2
∑l

i=k |ψ(i)|2−i∑l−1
i=0 |ψ(i)|2−i

− |ψ(zk)|∑l−1
i=0 |ψ(i)|2l−i−1

.

So there exists N1 = N1(ε, k) such that

d(ψ(zk), w) > 1− ε/8 for |w| > N1(ε, k),

since the dyadic valuation word has the recursive relation zj+1 = zjjzj .
If w is a suffix of some ψ(zl+1) and ψ(zl) is a suffix of w, then for |w| > N1,

we get d(ψ(zk), w) > 1− ε/8 by the same argument.
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Step 2. From the construction of u, one has

ψ(m) = ψ(xblogmc−1)eψ(xblogmc−2)e · · · ,
where e can be 0 or 1. When |ψ(xi)| > N1, by Step 1,

d(ψ(zk), ψ(xi)) > 1− ε/8.
Let i0 be the smallest integer i such that |ψ(xi)| > N1. Then

d(ψ(zk), ψ(m)) > 1−
ε
8

∑blogmc−1
i=i0

|ψ(xi)|+ blogmc+
∑i0−1

i=0 |ψ(xi)|
|ψ(m)|

.

By Lemma 2.2, we have |ψ(m)| � logm. Hence there exists N2 =
N2(ε, k) such that

blogmc+
∑i0−1

i=0 |ψ(xi)|
|ψ(m)|

<
ε

8
for all m > N2.

Thus d(ψ(zk), ψ(m)) > 1− ε/4 for all |w| = |ψ(m)| > |ψ(N2)|.
If w is a suffix of some ψ(m), then without loss of generality we may

assume that m is the smallest integer such that w is a suffix of ψ(m).
Since ϕ(t) = tα, 0 < α < 1, for given ε there exists N3(ε, k) such that
|ψ(xblogmc−1)|/ψ(bm/2c) < ε/8 for all m > N3. Let N4 = |ψ(N2)|+ |ψ(N3)|.
Since

d(ψ(zk), w)

> 1−
ε
8

∑blogmc−2
i=i0

|ψ(xi)|+ |ψ(xblogmc−1)|+ blogmc+
∑i0−1

i=0 |ψ(xi)|
|ψ(bm/2c)|

,

we have d(ψ(zk), w) > 1− 3ε/8 for |w| > N4.
Note that for given w, there exists a unique m′ such that |ψ(m′)| ≤

|w| < |ψ(m′ + 1)|, and if |w| > |ψ(N2)|, then (blogm′c+ 1)/|ψ(m′)| < ε/8.
We may also assume that N1/|ψ(N2)| < ε/8.

Suppose w is a prefix of some ψ(m). Then

w = ψ(xblogmc−1)eψ(xblogmc−2)e · · · r
where r is a prefix of ψ(xj) for some j. Then the cardinality of the random
part in w, i.e. the number of appearances of e in w, is at most blogm′c+ 1.
Hence if |w| > |ψ(N2)|, then

d(ψ(zk), w) > 1− ε

8
− blogm′c+ 1

|w|
− N1

|w|
> 1− ε

8
− blogm′c+ 1

|ψ(m′)|
− N1

|ψ(N2)|
.

Thus for all |w| > |ψ(N2)|, we also get d(ψ(zk), w) > 1− 3ε/8.

Step 3. Without loss of generality, we may assume that
2N1 + |ψ(N2)|

N4
<
ε

8
.
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Assume that w is a suffix of some ψ(xj). Let j′ be the largest integer such
that ψ(j′) intersects w. Then there is a prefix r of zj′ such that w is a suffix
of ψ(zj′j′r). So we can write w as either w = w1ψ(j′)ψ(r) or w = w1ψ(r).
If |w| > N4, then at least one of the following inequalities holds:

(i) |ψ(j′)| > |ψ(N2)|, (ii) |w1| > N1, (iii) |w2| > N1.

Thus by Steps 1 and 2, we also get d(ψ(zk), w) > 1− ε/2 for all |w| > N4.

Step 4. Pick N5 = N5(ε, k) which satisfies

N5 > |ψ(N2)|+ 2|ψ(zN2)| and
2N1 + |ψ(N2)|+N4

N5
<
ε

8
.

Now let w be a subword of u of length n > N5(ε, k). There are four cases:

Case 1: w = w1ψ(j)w2, where w1 is a suffix of ψ(zj) and w2 is a prefix
of ψ(zj). Since n > N5, we have n > |ψ(N2)| + 2|ψ(zN2)|, j ≥ N2 and
2N1/n < ε/8. Hence d(ψ(zk), w) > 1− 3ε/8 for all |w| > N5.

Case 2: w is a subword of ψ(jzj) without being a factor of ψ(j). Then
w = w1w2, where w1 is a suffix of ψ(j) and w2 is a prefix of ψ(zj). Since
n > N5, we have n > |ψ(N2)| + |ψ(zN2)|, j ≥ N2 and (N1 + |ψ(N2)|)/n <
ε/8. Thus d(ψ(zk), w) > 1− ε/2 for all |w| > N5.

Case 3: w is a subword of ψ(zjj) without being a factor of ψ(j). Then
w = w1w2, where w1 is a suffix of ψ(zj) and w2 is a prefix of ψ(j). By the
argument of Case 2, when n > N5, one has d(ψ(zk), w) > 1− ε/2.

Case 4: w is a factor of ψ(j) where j is the smallest integer such that
w appears in ψ(j). Then w can be written as w = w1ew2, where w1 is a
suffix of ψ(xblog jc−1) and w2 is a prefix of ψ(bj/2c). Since n > N5, we have
(N4 + 1 + |ψ(N2)|)/n < ε/8. Thus d(ψ(zk), w) > 1−7ε/8 for all |w| > N5.

Remark 3.5. In proving Lemma 3.4, for simplicity, we restrict our at-
tention to the class of functions of the form {ϕ(t) = tα, 0 < α < 1}. Indeed
Lemma 3.4 still holds for the class of all functions which satisfy Cassaigne’s
conditions. Also the proof of Lemma 3.4 shows that the system Xα is of
rank 1 with respect to the invariant measure µα.

Theorem 3.6. Each symbolic system Xα is uniquely ergodic.

Proof. Let B be a block of length p. As in Proposition 3.1, let fBj denote
the frequency of the block B in ψ(zj), and fB be the limit of the sequence
fBj . By Theorem 3.2, we need to show that for any x ∈ Xα,

lim
n→∞

1
n

n−1∑
i=0

1B ◦ σi(x) = lim
n→∞

1
n

n−1∑
i=0

1B ◦ σi(uα) = fB.

For given ε > 0, let k and N(ε, k) be as in Lemma 3.4. Without loss of
generality, we may assume that |fBk − fB| < ε and 2p/|ψ(zk)| < ε.
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Since x ∈ Xα, for each n > N(ε, k), there exists m = m(n) such that
x0x1 · · ·xn+p−2 = umum+1 · · ·um+n+p−2, which is a subword w of uα and we
have d(ψ(zk), w) > 1− ε. Note that

∑n−1
i=0 1B ◦ σi(x) is equal to the number

of occurrences of the given block B in w, d(ψ(zk), w) · (n+ p− 1)/|ψ(zk)|
is the maximum number of nonoverlapping occurrences of ψ(zk) in w, and
(n+p−1)−d(ψ(zk), w) ·(n+p−1) is the number of positions of w which are
not covered by ψ(zk). Since B can appear in the ψ(zk)-covering part of w or
in the non-ψ(zk)-covering part of w, or intersect both parts, the following
inequalities hold:

d(ψ(zk), w) · (n+ p− 1)
|ψ(zk)|

· fBk · |ψ(zk)| ≤
n−1∑
i=0

1B ◦ σi(x)

≤ d(ψ(zk), w) · (n+ p− 1)
|ψ(zk)|

· fBk · |ψ(zk)|

+ ((n+ p− 1)− d(ψ(zk), w) · (n+ p− 1))

+
d(ψ(zk), w) · (n+ p− 1)

|ψ(zk)|
· 2p.

Hence we have∣∣∣∣ 1n
n−1∑
i=0

1B ◦ σi(x)− fB
∣∣∣∣

≤ |fB−fBk |+
∣∣∣∣fBk − n+ p− 1

n
fBk d(ψ(zk), w)

∣∣∣∣+
n+ p− 1

n
|1− d(ψ(zk), w)|

+
n+ p− 1

n
d(ψ(zk), w) · 2p

|ψ(zk)|

< ε+ fBk

∣∣∣∣1− n+ p− 1
n

(1− ε)
∣∣∣∣+

n+ p− 1
n

ε+
n+ p− 1

n
d(ψ(zk), w)ε<5ε.

This completes the proof.

4. Entropy dimension of the measurable system Xα. In this sec-
tion, we will show that the entropy dimension of each measurable system
Xα is zero. Let P be the generating partition of (Xα, σ) induced by the
zero coordinate, i.e. P = {P0, P1} with P0 = {x ∈ Xσ : x0 = 0} and
P1 = {x ∈ Xσ : x0 = 1}.

Proposition 4.1. For any τ > 0,

lim
n→∞

Hµ(
∨n−1
i=0 σ

−iP)
nτ

= 0.
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Proof. Let µ be the unique invariant measure of Xα. For any n-block B,

µ(B) = lim
m→∞

∑m−1
i=g(n)+1 2m−1−ig(B, i)∑m−1

i=0 2m−1−i|ψ(i)|
=

∑∞
i=g(n)+1 2−ig(B, i)∑∞

i=0 2−i|ψ(i)|
,

where g(B, i) is the number of occurrences of B in ψ(zi+1) such that B
intersects ψ(i), and g(n) = max{i : |ψ(zi+1)| ≤ n−2}. Note that g(B, i) = 0
for i ≤ g(n). Denoting M =

∑∞
i=0 2−i|ψ(i)|, we have

Hµ

(n−1∨
i=0

σ−iP
)

=
∑
|B|=n

−µ(B) logµ(B)

=
∑
|B|=n

(
−

∞∑
i=g(n)+1

2−ig(B, i)
M

)
log
( ∞∑
i=g(n)+1

2−ig(B, i)
M

)

≤
∞∑

i=g(n)+1

∑
|B|=n

−2−ig(B, i)
M

log
2−ig(B, i)

M

=
∞∑

i=g(n)+1

∑
|B|=n

g(B, i)
−2−i

M

(
log

2−i

M
+ log g(B, i)

)

≤
∞∑

i=g(n)+1

∑
|B|=n

g(B, i)
−2−i

M

(
log

2−i

M

)
.

Since ∑
{B :n-block}

g(B, i) = |ψ(i)|+ n− 1,

we have

Hµ

(n−1∨
i=0

σ−iP
)
≤

∞∑
i=g(n)+1

(|ψ(i)|+ n− 1)
−2−i

M

(
log

2−i

M

)
≤

∞∑
i=g(n)+1

(i+ n− 1)
2−i

M
(i+ logM) ≤

∞∑
i=g(n)+1

(i+ n− 1)
2−i

M
(2i)

=
2
M

( ∞∑
i=g(n)+1

i2 2−i + (n− 1)
∞∑

i=g(n)+1

i 2−i
)

≤ 2
M

( ∞∑
i=g(n)+1

i2 2−i + (n− 1)
∞∑

i=g(n)+1

i2 2−i
)

=
2n
M

∞∑
i=g(n)+1

i22−i

=
2n
M

(4 · 2−(g(n)+1)(g(n) + 1) + 6 · 2−(g(n)+1) + 2 · 2−(g(n)+1)(g(n) + 1)2)

≤ 24n
M

2−(g(n)+1)(g(n) + 1)2.
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Thus by Lemma 2.3, for any τ > 0, we have

lim
n→∞

Hµ(
∨n−1
i=0 σ

−iP)
nτ

= 0.

The variational principle for entropy says that the topological entropy of
a dynamical system (X,T ) is the maximum value of all measure-theoretic
entropies of T . In the following, we will show that it is not the case for
entropy dimension.

Proposition 4.2. For each dynamical system (Xα, σ), its entropy di-
mension is identically zero.

Proof. Let P be the generating partition induced by the zero coordinate
on the system Xα. We recall that P[0,n)(x) denotes the atom of

∨n−1
i=0 σ

−iP
which x belongs to. By Proposition 4.1, we have

lim
n→∞

1
nτ

�

X

− logµ(P[0,n)(x)) dµ(x) = 0.

Hence for any ε > 0, if n is large enough then

1
nτ

�

X

− logµ(P[0,n)(x)) dµ(x) < ε.

Thus the measure of the set A = {x : − logµ(P[0,n)(x)) > nτ} is less than ε.
So if n is large enough, then K(n, ε) < exp(nτ ). This completes the proof.

Theorem 4.3. For entropy dimension, the variational principle does not
hold.

Proof. As in [DHP1], taking ϕ(t) = tα, we get an infinite word uα and the
associated dynamical system (Xα, σ) whose topological entropy dimension
is α. By Theorem 3.6 and Proposition 4.2, (Xα, σ) is uniquely ergodic and
its measure-theoretic entropy dimension is zero. This yields the result.

It is known that a measurable system conjugates to a group rotation if
and only if there exist no sequences along which the measurable sequence
entropy is positive (see [K]). If a zero entropy system has enough “random-
ness”, then we expect that there exists a sequence of integers along which
the system exhibits positive sequence entropy. In the study of topological
entropy dimension [DHP1], we introduced the following notion.

We say an increasing integer sequence S = {s1 < s2 < · · · } ⊂ Z+ is an
entropy generating sequence of an open cover U if

lim inf
n→∞

1
n
H
( n∨
i=1

T−siU
)
> 0.
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Another way of understanding the subexponential growth rate is to con-
sider the “thickness” of these subsequences of Z+. To compute the “thick-
ness”, we define the dimension of a subset of Z+ as follows.

Definition 4.4. Let S = {0 ≤ s1 < s2 < · · · } be an increasing sequence
of integers. For τ ≥ 0, we define

D(S, τ) = lim sup
n→∞

n

sτn
and D(S, τ) = lim inf

n→∞

n

sτn
.

We also define the upper dimension D(S) and the lower dimension D(S) of
S by

D(S) = inf{τ ≥ 0 : D(S, τ) = 0} and D(S) = inf{τ ≥ 0 : D(S, τ) = 0}.

If D(S) = D(S), then it is called the dimension of the sequence S.

It is clear that if S has positive density, then D(S) = D(S) = 1. Also
for example, if S = {n3}, then D(S) = D(S) = 1/3, and if S = {2n},
then D(S) = D(S) = 0. We note that the dimension differentiates the set
S = {n3} from S = {n2} and S = {2n}, although all of them have density 0.

In [DHP1, DP], the authors have shown that the topological entropy di-
mension is related to the dimension of entropy generating sequences. In fact,
it is shown that if a topological system (X,T ) has a finite generating open
cover, then there exists an entropy generating sequence whose dimension is
the same as the topological entropy dimension of (X,T ). The proof uses an
idea of [KL].

Let (X,B, µ, T ) be a measure preserving dynamical system and P ∈ PX
where PX is the collection of all measurable finite partitions of X. Analogous
to the topological case, we say an increasing integer sequence S = {s1 <
s2 < · · · } ⊂ Z+ is an entropy generating sequence of a partition P if

lim inf
n→∞

1
n
Hµ

( n∨
i=1

T−siP
)
> 0.

We define

D
µ
e (T,P) =

{
sup

S∈Eµ(T,P)
D(S) if Eµ(T,P) 6= ∅,

0 if Eµ(T,P) = ∅,
where Eµ(T,P) is the set of all entropy generating sequences of P, and

D
µ
e (X,T ) := sup

P∈PX
D
µ
e (T,P),

which is called the dimension via entropy generating sequences of the sys-
tem (X,B, µ, T ). It is known that if P is a generating partition of X, then
D
µ
e (X,T ) = D

µ
e (T,P) [DHP2].
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Remark 4.5. We will show that the dimension via entropy generating
sequences of each measurable system Xα is also zero.

Assume that Dµ
e (T,P) > 0. Then there exist a positive real number

τ and a sequence S = {s1 < s2 < · · · } ∈ Eµ(T,P) with D(S) > τ , i.e.
lim supn→∞ n/sτn = ∞. Since S ∈ Eµ(T,P) there exists c > 0 such that
Hµ(

∨n
i=1 T

−siP)/n > c for sufficiently large n. So we have

lim sup
m→∞

Hµ(
∨m
i=1 T

−iP)
mτ

≥ lim sup
n→∞

Hµ(
∨sn
i=1 T

−iP)
sτn

(4.1)

≥ lim sup
n→∞

Hµ(
∨n
i=1 T

−siP)
n

· n
sτn

≥ lim sup
n→∞

c · n
sτn

=∞.

This contradicts Proposition 4.1. Hence for each symbolic system Xα, its
dimension via entropy generating sequences is also identically zero.
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