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Optimality of the range for which equivalence between
certain measures of smoothness holds

by

Z. Ditz1AN (Edmonton)

Abstract. Recently it was proved for 1 < p < oo that w™(f,t)p, a modulus of
smoothness on the unit sphere, and K, (f,t™)p, a K-functional involving the Laplace-
Beltrami operator, are equivalent. It will be shown that the range 1 < p < co is optimal;
that is, the equivalence w™(f,t)p, &~ K (f,t")p, does not hold either for p = oo or for

p=1
1. Introduction and notations. The moduli of smoothness w™(f,1),
(see |D1,99]) are given by
(1.1) W ([ ) (a-1) = 0" (o t)p = Sup 145" Fllz,,(sa-1)
p€e0;

where ST = {z = (z1,...,3q) 1 23+ -+ 23 =1}, O = {p € SO() :
px -x > cost for all z € S971}, SO(d) is the group of orthogonal matri-
ces whose determinant equals 1, A,f(z) = f(pz) — f(z) and A7 f(z) =

A(A7 ).
The K-functional K, (f,t™), is given by
(1.2) I?m(ﬁ t")p = [?m(fv tm)L,,(Sdfl)
= inf (| f = gllz, (se-1) + 1" 1(=2)"?g] , (50-1))

where the infimum is taken on all g such that (—A)™/2g € L,(S%71), and
A is the Laplace—Beltrami operator given by

Af(x) = AF(z), xS,

(1.3) T 92 92
F = — A= —5 4+ 4 —.
(z) f(]m\)’ 0z? Tt Ox?
We recall that
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272 Z. Ditzian
Py f is the projection of f on Hy, (in the Lo(S9™1) sense) and

(1.5) )of = Z (k+d—2))2P,f fora+#0,acR.

It was proved in [Da-Di-Hu] (and for even m in [D1,07]) that w™(f,t), ~
Kp(f, ™), for 1 < p < oo; that is,

(1.6) CT K (f, ™)y < W™ (fot)p < CKpn(f,t™)p, 1< p < oc.

Here we show that the second inequality of does not hold for p =
or p = 1. The first inequality of was proved for even m and 1 < p < o0
n [Da-Di-Hu, Th. 9.1] (and for even d and m and many other spaces in
[Da-Dil).

The main result of this paper is summarized by the next theorem.

THEOREM 1.1. The inequality

m(fa t)p S Ckm(fv tm)p
fails forp=1 and p =00 for any m=1,2,....

This failure means that for any integer m and any constant C' there
exist f € L1(S%1) (for p = 1) and f € Loo(S?1) (for p = o) for which
the inequality is not valid in the range 0 < t < ¢g.

2. A counterexample for L... For L, (S 1), d > 3 and m = 2 we
use the function

(2.1)  f(z,y,u1,..., =

u )_{(xQ_yQ)log($2+y2)v x#O,y#O,
=5 0 otherwise,

which is clearly in Loo(S9~1). We recall (see [Exr, Chapter XI] and [Vi, Ch.
IX, p. 494]) that

2 X e _ ﬁmﬁ dflaif
(2.2) r e Af=Af —r (97"<T 8r>’

r=(a?+y2tul 4o Hudg+ 22
where A is the Laplacian. Straightforward calculation yields
Af = 10(2* —y*) 4z —y?)
- .%‘2 + y2 (1‘2 + y2)2
6(2? —y?)

=2 and |Af] <6.
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We express f in polar coordinates given by (see [Er, Ch. XI] and [Vi, Ch.
IX, p. 435])

z =rcosb,

Ug_3 = rsin #q cos fa,

u1 = rsinfy ---sinfy_3cosfy_o,
x =rsinf; ---sinfy_s cos p,
y=rsinf; ---sinfy_osin p,
where 0 < 0; < mfor 1 <i<d—2and0 < ¢ < 2. (Clearly, for d = 3,
uy,...,uq—3 do not exist.) Hence
f(r,01,...,0q_2,p) =12cos2psin® by - - -sin? By_s logr?sin @y - - - sin® O_s.
Straightforward computation implies that (for r = 1)

_ 0 4 Of
d+1 @ ( a-19]
" 8r<r 87‘)‘

is smaller than
C(1 +sin?6; ...sin? Hd_gllog(sin2 0y - - - sin’ 04—2)|),

which is bounded for all §;. The above, together with (2.2, implies that A f
is bounded on S9~! (when r = 1) and hence

(2.4) Ko (f, 1) oo < C1t?  for f of [@2.1).
We will now show that f given in (2.1]) satisfies
(2.5) WA, t) oo > Cot?[logt|.

Choosing the point { = (z,y,...,2) = (0,...,0,—1) and the transformation
(rotation)

cost 0...0 sint
1 0
(2.6) p= 0 )
1
—sint 0...0 cost

we have
F(p¢) = 2f(C) + f(p~'¢) = 2sin’ tlogsin® ¢,

which establishes (2.5)). Therefore, for Lo, (S%1), d > 3 and m = 2 the right
hand inequality of (1.6 is not valid.



274 7. Ditzian

To show that the right hand inequality of ((1.6) fails for m = 1 we assume
that it does not fail and hence, for f € C? and p € Oy,

|Apf] < CHI(=A) 2 f| (sa-1)-
Iterating the above will cause a contradiction with (2.5). We note that, for
f e (s,

Ki(f,t)oo < CHl|(=2)flloo and  Ka(f,t)oo < O (=)o

To our knowledge the case m = 2 does not imply the failure of the right
hand inequality of (1.6) for all m. For even m, we set m = 2¢ and use the
function

(2.7)  foe(z,y,u1y ... ug_3,2) = {

with

Pf(x7y)10g(x2+y2)a :U#Oa y#oa
0, otherwise,
14
(2.8) Py(z,y) = Z apx® Rk Py(cos g, sin @) = cos 20,
k=0

where the coefficients aj are determined by Pp(cos ¢, sin¢) = cos2l¢. In
Section 4 we show that using the Taylor formula, we will obtain

(2.9) W (for,t)oe > Copt*|logt| for 0 <t < to,

and using iteration of and some delicate computation, we will obtain
(2.10) K (fae, t)o0 < C3pt™.

Combining the inequalities and implies

(2.11) W (far, t)oo = AneKor(for, t2)ss|logt|  for 0 <t < to.

For odd m we use (2.9) and (2.10) with £ = m and follow exactly the

considerations for m = 1.

We note that for L (RY) (or Lo (T9)) one has
(212)  CTIKn(fit™)p Sw™(f,)p < CEm(fit™),  1<p<oo,

where translations in R? (not elements of SO(d)) are used in the definition
of w™(f,t)p, and the Laplacian (instead of the Laplace-Beltrami operator)
is used in the definition of K, (f,t"),. For d > 2 and p = oo the right hand
inequality of fails because of the failure of the estimate of the Riesz
transform (see [St]). The example given in or can be modified by

(213) f;@(wvyvulv'--aud—?nz)
- f2€($7y7 Uy, - .- ,’LLd,g,Z)lb(.fz + y2 + ’U,% + o+ u?l*fi + ZQ)

where
Lo |r?<,

0, [r?>2,

w(r?) = {
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Y € C® and 12 = 22 +y?+- - -+22. The function f5p will provide an example
for the failure of ford > 2, p =00 and m = 2¢ (when d = 2, z is
eliminated). Following previous arguments, a contradiction can establish the
above contention (on the failure of (2.12)) for odd m and p = cc.

3. The failure of the inequality for L. For Li(S% 1), d > 3, we
prove the failure of the right hand inequality of by contradiction. We
assume w™(H,t); < CKp(H,t™); for all H € Ly(S%1). Setting H =
(=A)"™/2g for g € L1(S%) satisfying Pog = 0 (i.c. §ga—1 9(x)dz = 0),
one has ||A7H{(— A)~ m/2g}HLl(Sd71) < Ct™||gll 1, (ge—1y for all p € O where
(— A) m/2f is given by . We note that A, is not a multiplier operator

but that it still commutes with powers of —A, i.e. with (—A)* (a € R).
As established in the last section, for any M > 0 we have a function f €
Loo(S97Y) (and in fact f € C™(S97 1)), t > 0 and p € Oy such that

1D £l o s9-1) = ME|[(=A)™2 f ||, (501
and hence for F = (—A)™/2f (for which PyF = 0),
|AT (= A)"™2F ||, (5a-1y = ME™||F ||, (sa-1y.
We may now choose G € L1(S9!) with |Gl L, (sa-1) = 1 so that
(G AP (A PF) = | Ay (=A) PP ey — €

where (p,¢) = {ga-1 @(@)Y(2) dx.
For g = G — PyG which satisfies ||g|| 1, (ga-1) < 2 and Pyg = 0 we have

(AT {(=4)"?g}, F) < Ct™|lgll 1, s0-1) | Fll oo (si-1) < 2CE™| Pl (s0-1)
as p~! € Oy if p € O;. However,
(A™ (= A) 29}, F) = (g, A{(~A)"/2F}) = (G, An{(~A)"/2F})
> | A{(=A) ™ FY | (s0-1) — €
> Mt™||Flp (sa-1) — &,
and this causes a contradiction for M > 3C.

For Li(R%) or L (T%) (d > 2) the same argument for the corresponding

failure of (2.12) follows and in fact in this case both AP f and (—A)~™/2f
are multiplier operators which naturally commute.

4. Proof of the inequality (2.11) for ¢ > 2. Using the description of
for in polar coordinates, i.e.

20

fae = r*" cos2lp sin?¢ @y - --sin?' 0,4 log 2 sin® 6y - - - sin® 6,4,
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we have
0 0
2. —d+1 9 [ a1 9
o (042
= 20(20 +d — 2) for + [(20 + d — 2) 4 20]7* cos 20l sin** 0 - - - sin** O,_s.

To compute A we also calculate A for:

0? 0? 0 2z
At = (g + 5z ) Pl ) loula® + ) +2 - Pot)

z? + y?
9 y

2~ P, 7

+ Ay K(‘T7y) z2 + y2

We now observe that

P, —-.
+ Z(xay) z2 + yg

0? 0?
— + — | P, =0.
<6$2 + ay2> é($7y)
This is shown using the two-dimensional description, i.e. x = pcosvy, y =
psin,
0? 0? 0? _; 0 5 0

20
Py(z,y) = p~ cos2tp and 92 + a7 o 95 +p 57

which imply

ANNEAS
< “))\p
(G2) + (&) e
= 20(20 — 1)p** =% cos 200p + 20p* 72 cos 20¢) — (20)%p** =2 cos 204).

As 22 4-y? = r2sin? 6 - - - sin? 04_ and Py(x,y) is a homogeneous polynomial
of degree 2¢ in x and y, we can write

2 A fop = r*Qy(cos 1), sin p, sin 0 sin Oy - - - sin _)

= r%QZ‘(cos @, sin ) (sin f; - - - sin gd_2)2ﬂ—2

where @} is a polynomial in cos ¢ and sin .

Therefore, ﬁe_lr%Qg(cos ©,sing,sinf; - --sinfy) is bounded using the
description of A in polar coordinates as given in [Er, Ch. XI] (see also
[Da-Di-Hu, (2.6)] and [Vi, (6), p. 494]). Similarly, A* 172 cos 20 sin* 0 - - -
sin?! 0,_5 is also bounded. To examine 2020 + d — 1)56_1 for we follow the

above procedure and obtain, after £ — 1 iterations, a constant times fo, plus
other terms which are bounded. We note that fa, is bounded (when r = 1)

and hence || A fo| Loo(se-1) < €, which implies ([2.10). We now use p of (2.6)
and ¢ = (0,0,...,0,~1) and note that [| A forll L (se-1) = [A3 fae(pC)].
Using ag = 1 (with a; of (2.8)), which follows by setting ¢ = 0 and then
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using the Taylor formula, we have

A% fae(p10) =

Eé(—ly< %?>bdpﬂ$wfﬁ

=, L+

> (-1y (;fj) (sin®*(j 4 1 4 £)t) logsin?(j 4 1 + £)t
j=—t

20
= CO1t** (;) ((sin®* t) log sin® t),—,

where 7 is in [t, (2¢ 4 1)t]. Since sintlogsin?¢ is bounded, we have

o 20
‘ ((915) (sin?t) logsin? t

= (20)! cos* nlogsin®n + g(n)

t=n

where g(n) is bounded. Therefore, for small ¢, g(n) is insignificant compared
with |cos* nlogsin?n|. This concludes the proof of (2.9), which, together

with (2.10)), implies (2.11]).
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