Optimality of the range for which equivalence between certain measures of smoothness holds

by

Z. DITZIAN (Edmonton)

Abstract. Recently it was proved for $1 that <math>\omega^m(f,t)_p$, a modulus of smoothness on the unit sphere, and $\widetilde{K}_m(f,t^m)_p$, a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range $1 is optimal; that is, the equivalence <math>\omega^m(f,t)_p \approx \widetilde{K}_m(f,t^r)_p$ does not hold either for $p = \infty$ or for p = 1.

1. Introduction and notations. The moduli of smoothness $\omega^m(f,t)_p$ (see [Di,99]) are given by

(1.1)
$$\omega^m(f,t)_{L_p(S^{d-1})} = \omega^m(f,t)_p = \sup_{\rho \in O_t} \|\Delta_\rho^m f\|_{L_p(S^{d-1})}$$

where $S^{d-1} = \{ \boldsymbol{x} = (x_1, \dots, x_d) : x_1^2 + \dots + x_d^2 = 1 \}$, $O_t = \{ \rho \in SO(d) : \rho \boldsymbol{x} \cdot \boldsymbol{x} \geq \cos t \text{ for all } \boldsymbol{x} \in S^{d-1} \}$, SO(d) is the group of orthogonal matrices whose determinant equals 1, $\Delta_{\rho} f(\boldsymbol{x}) \equiv f(\rho \boldsymbol{x}) - f(\boldsymbol{x})$ and $\Delta_{\rho}^m f(\boldsymbol{x}) \equiv \Delta_{\rho}(\Delta_{\rho}^{m-1} f(\boldsymbol{x}))$.

The K-functional $\widetilde{K}_m(f,t^m)_p$ is given by

(1.2)
$$\widetilde{K}_m(f, t^m)_p = \widetilde{K}_m(f, t^m)_{L_p(S^{d-1})}$$

$$= \inf(\|f - g\|_{L_p(S^{d-1})} + t^m \|(-\widetilde{\Delta})^{m/2} g\|_{L_p(S^{d-1})})$$

where the infimum is taken on all g such that $(-\widetilde{\Delta})^{m/2}g \in L_p(S^{d-1})$, and $\widetilde{\Delta}$ is the Laplace–Beltrami operator given by

(1.3)
$$\widetilde{\Delta}f(\boldsymbol{x}) = \Delta F(\boldsymbol{x}), \quad \boldsymbol{x} \in S^{d-1},$$

$$F(\boldsymbol{x}) = f\left(\frac{\boldsymbol{x}}{|\boldsymbol{x}|}\right), \quad \Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}.$$

We recall that

(1.4)
$$H_k = \{ \varphi_k : \widetilde{\Delta} \varphi_k = -k(k+d-2)\varphi_k \}, \quad k = 0, 1, \dots,$$

2010 Mathematics Subject Classification: 42B35, 41A17, 41A63.

Key words and phrases: moduli of smoothness, K-functionals, Laplace-Beltrami operator.

Z. Ditzian

 $P_k f$ is the projection of f on H_k (in the $L_2(S^{d-1})$ sense) and

$$(1.5) \qquad (-\widetilde{\Delta})^{\alpha} f = \sum_{k=1}^{\infty} (k(k+d-2))^{\alpha/2} P_k f \quad \text{for } \alpha \neq 0, \ \alpha \in \mathbb{R}.$$

It was proved in [Da-Di-Hu] (and for even m in [Di,07]) that $\omega^m(f,t)_p \approx \widetilde{K}_m(f,t^m)_p$ for 1 ; that is,

$$(1.6) C^{-1}\widetilde{K}_m(f,t^m)_p \le \omega^m(f,t)_p \le C\widetilde{K}_m(f,t^m)_p, 1$$

Here we show that the second inequality of (1.6) does not hold for $p = \infty$ or p = 1. The first inequality of (1.6) was proved for even m and $1 \le p \le \infty$ in [Da-Di-Hu, Th. 9.1] (and for even d and m and many other spaces in [Da-Di]).

The main result of this paper is summarized by the next theorem.

Theorem 1.1. The inequality

$$\omega^m(f,t)_p \le C\widetilde{K}_m(f,t^m)_p$$

fails for p = 1 and $p = \infty$ for any m = 1, 2, ...

This failure means that for any integer m and any constant C there exist $f \in L_1(S^{d-1})$ (for p = 1) and $f \in L_{\infty}(S^{d-1})$ (for $p = \infty$) for which the inequality is not valid in the range $0 < t \le t_0$.

2. A counterexample for L_{∞} **.** For $L_{\infty}(S^{d-1})$, $d \geq 3$ and m = 2 we use the function

(2.1)
$$f(x, y, u_1, \dots, u_{d-3}, z) = \begin{cases} (x^2 - y^2) \log(x^2 + y^2), & x \neq 0, y \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

which is clearly in $L_{\infty}(S^{d-1})$. We recall (see [Er, Chapter XI] and [Vi, Ch. IX, p. 494]) that

(2.2)
$$r^{-2}\widetilde{\Delta}f = \Delta f - r^{-d+1} \frac{\partial}{\partial r} \left(r^{d-1} \frac{\partial f}{\partial r} \right),$$
$$r = (x^2 + y^2 + u_1^2 + \dots + u_{d-3}^2 + z^2)^{1/2},$$

where Δ is the Laplacian. Straightforward calculation yields

$$\Delta f = \frac{10(x^2 - y^2)}{x^2 + y^2} - \frac{4(x^4 - y^4)}{(x^2 + y^2)^2}$$
$$= \frac{6(x^2 - y^2)}{x^2 + y^2} \quad \text{and} \quad |\Delta f| \le 6.$$

We express f in polar coordinates given by (see [Er, Ch. XI] and [Vi, Ch. IX, p. 435])

$$z = r \cos \theta_{1},$$

$$u_{d-3} = r \sin \theta_{1} \cos \theta_{2},$$

$$\vdots$$

$$u_{1} = r \sin \theta_{1} \cdots \sin \theta_{d-3} \cos \theta_{d-2},$$

$$x = r \sin \theta_{1} \cdots \sin \theta_{d-2} \cos \varphi,$$

$$y = r \sin \theta_{1} \cdots \sin \theta_{d-2} \sin \varphi,$$

where $0 \le \theta_i \le \pi$ for $1 \le i \le d-2$ and $0 \le \varphi \le 2\pi$. (Clearly, for $d=3, u_1, \ldots, u_{d-3}$ do not exist.) Hence

$$f(r, \theta_1, \dots, \theta_{d-2}, \varphi) = r^2 \cos 2\varphi \sin^2 \theta_1 \cdots \sin^2 \theta_{d-2} \log r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{d-2}.$$

Straightforward computation implies that (for r = 1)

$$\left| r^{-d+1} \frac{\partial}{\partial r} \left(r^{d-1} \frac{\partial f}{\partial r} \right) \right|$$

is smaller than

$$C(1+\sin^2\theta_1...\sin^2\theta_{d-2}|\log(\sin^2\theta_1...\sin^2\theta_{d-2})|),$$

which is bounded for all θ_i . The above, together with (2.2), implies that $\widetilde{\Delta}f$ is bounded on S^{d-1} (when r=1) and hence

(2.4)
$$\widetilde{K}_2(f, t^2)_{\infty} \le C_1 t^2$$
 for f of (2.1).

We will now show that f given in (2.1) satisfies

(2.5)
$$\omega^2(f,t)_{\infty} \ge C_2 t^2 |\log t|.$$

Choosing the point $\boldsymbol{\zeta} = (x, y, \dots, z) = (0, \dots, 0, -1)$ and the transformation (rotation)

(2.6)
$$\rho = \begin{pmatrix} \cos t & 0 \dots 0 & \sin t \\ 1 & 0 & \\ 0 & \ddots & \\ & 1 & \\ -\sin t & 0 \dots 0 & \cos t \end{pmatrix},$$

we have

$$f(\rho \boldsymbol{\zeta}) - 2f(\boldsymbol{\zeta}) + f(\rho^{-1} \boldsymbol{\zeta}) = 2\sin^2 t \log \sin^2 t,$$

which establishes (2.5). Therefore, for $L_{\infty}(S^{d-1})$, $d \geq 3$ and m = 2 the right hand inequality of (1.6) is not valid.

274 Z. Ditzian

To show that the right hand inequality of (1.6) fails for m = 1 we assume that it does not fail and hence, for $f \in C^2$ and $\rho \in O_t$,

$$|\Delta_{\rho} f| \le Ct \|(-\widetilde{\Delta})^{1/2} f\|_{L_{\infty}(S^{d-1})}.$$

Iterating the above will cause a contradiction with (2.5). We note that, for $f \in C^2(S^{d-1})$,

$$\widetilde{K}_1(f,t)_{\infty} \le Ct \|(-\widetilde{\Delta})^{1/2}f\|_{\infty} \quad \text{and} \quad \widetilde{K}_2(f,t^2)_{\infty} \le Ct^2 \|(-\widetilde{\Delta})f\|_{\infty}.$$

To our knowledge the case m=2 does not imply the failure of the right hand inequality of (1.6) for all m. For even m, we set $m=2\ell$ and use the function

(2.7)
$$f_{2\ell}(x, y, u_1, \dots, u_{d-3}, z) = \begin{cases} P_{\ell}(x, y) \log(x^2 + y^2), & x \neq 0, y \neq 0, \\ 0, & \text{otherwise,} \end{cases}$$

with

(2.8)
$$P_{\ell}(x,y) = \sum_{k=0}^{\ell} a_k x^{2(\ell-k)} y^{2k}, \quad P_{\ell}(\cos\varphi, \sin\varphi) = \cos 2\ell\varphi,$$

where the coefficients a_k are determined by $P_{\ell}(\cos \phi, \sin \phi) = \cos 2\ell \phi$. In Section 4 we show that using the Taylor formula, we will obtain

(2.9)
$$\omega^{2\ell}(f_{2\ell}, t)_{\infty} \ge C_{2\ell} t^{2\ell} |\log t| \quad \text{for } 0 < t < t_0,$$

and using iteration of (2.2) and some delicate computation, we will obtain

$$(2.10) \widetilde{K}(f_{2\ell}, t^{2\ell})_{\infty} \le C_{2\ell}^* t^{2\ell}.$$

Combining the inequalities (2.9) and (2.10) implies

(2.11)
$$\omega^{2\ell}(f_{2\ell}, t)_{\infty} \ge A_{2\ell} \widetilde{K}_{2\ell}(f_{2\ell}, t^{2\ell})_{\infty} |\log t| \quad \text{for } 0 < t < t_0.$$

For odd m we use (2.9) and (2.10) with $\ell=m$ and follow exactly the considerations for m=1.

We note that for $L_{\infty}(\mathbb{R}^d)$ (or $L_{\infty}(T^d)$) one has

(2.12)
$$C^{-1}K_m(f, t^m)_p \le \omega^m(f, t)_p \le CK_m(f, t^m)_p, \quad 1$$

where translations in \mathbb{R}^d (not elements of SO(d)) are used in the definition of $\omega^m(f,t)_p$, and the Laplacian (instead of the Laplace–Beltrami operator) is used in the definition of $K_m(f,t^m)_p$. For $d \geq 2$ and $p = \infty$ the right hand inequality of (2.12) fails because of the failure of the estimate of the Riesz transform (see [St]). The example given in (2.1) or (2.7) can be modified by

$$(2.13) f_{2\ell}^*(x, y, u_1, \dots, u_{d-3}, z)$$

$$= f_{2\ell}(x, y, u_1, \dots, u_{d-3}, z) \psi(x^2 + y^2 + u_1^2 + \dots + u_{d-3}^2 + z^2)$$

where

$$\psi(r^2) = \begin{cases} 1, & |r^2| \le 1, \\ 0, & |r^2| \ge 2, \end{cases}$$

 $\psi \in C^{\infty}$ and $r^2 = x^2 + y^2 + \dots + z^2$. The function $f_{2\ell}^*$ will provide an example for the failure of (2.12) for $d \geq 2$, $p = \infty$ and $m = 2\ell$ (when d = 2, z is eliminated). Following previous arguments, a contradiction can establish the above contention (on the failure of (2.12)) for odd m and $p = \infty$.

3. The failure of the inequality for L_1 . For $L_1(S^{d-1})$, $d \geq 3$, we prove the failure of the right hand inequality of (1.6) by contradiction. We assume $\omega^m(H,t)_1 \leq C\widetilde{K}_m(H,t^m)_1$ for all $H \in L_1(S^{d-1})$. Setting $H = (-\widetilde{\Delta})^{-m/2}g$ for $g \in L_1(S^{d-1})$ satisfying $P_0g = 0$ (i.e. $\int_{S^{d-1}} g(x) dx = 0$), one has $\|\Delta_{\rho}^m\{(-\widetilde{\Delta})^{-m/2}g\}\|_{L_1(S^{d-1})} \leq Ct^m\|g\|_{L_1(S^{d-1})}$ for all $\rho \in O_t$ where $(-\widetilde{\Delta})^{-m/2}f$ is given by (1.5). We note that Δ_{ρ} is not a multiplier operator but that it still commutes with powers of $-\widetilde{\Delta}$, i.e. with $(-\widetilde{\Delta})^{\alpha}$ ($\alpha \in \mathbb{R}$). As established in the last section, for any M > 0 we have a function $f \in L_{\infty}(S^{d-1})$ (and in fact $f \in C^m(S^{d-1})$), t > 0 and $\rho \in O_t$ such that

$$\|\Delta_{\rho}^{m} f\|_{L_{\infty}(S^{d-1})} \ge Mt^{m} \|(-\widetilde{\Delta})^{m/2} f\|_{L_{\infty}(S^{d-1})}$$

and hence for $F = (-\widetilde{\Delta})^{m/2} f$ (for which $P_0 F = 0$),

$$\|\Delta_{\rho}^{m}(-\widetilde{\Delta})^{-m/2}F\|_{L_{\infty}(S^{d-1})} \ge Mt^{m}\|F\|_{L_{\infty}(S^{d-1})}.$$

We may now choose $G \in L_1(S^{d-1})$ with $||G||_{L_1(S^{d-1})} = 1$ so that

$$\langle G, \Delta_{\rho}^m(-\widetilde{\Delta})^{-m/2}F \rangle \geq \|\Delta_{\rho}^m(-\widetilde{\Delta})^{-m/2}F\|_{L_{\infty}(S^{d-})} - \varepsilon$$

where $\langle \varphi, \psi \rangle = \int_{S^{d-1}} \varphi(x) \psi(x) dx$.

For $g = G - P_0G$ which satisfies $||g||_{L_1(S^{d-1})} \le 2$ and $P_0g = 0$ we have

$$\langle \Delta_{\rho^{-1}}^m \{ (-\widetilde{\Delta})^{m/2} g \}, F \rangle \leq C t^m \|g\|_{L_1(S^{d-1})} \|F\|_{L_{\infty}(S^{d-1})} \leq 2C t^m \|F\|_{L_{\infty}(S^{d-1})}$$
 as $\rho^{-1} \in O_t$ if $\rho \in O_t$. However,

$$\begin{split} \langle \Delta_{\rho^{-1}}^m \{ (-\widetilde{\Delta})^{-m/2} g \}, F \rangle &= \langle g, \Delta_{\rho}^m \{ (-\widetilde{\Delta})^{-m/2} F \} \rangle = \langle G, \Delta_{\rho}^m \{ (-\widetilde{\Delta})^{-m/2} F \} \rangle \\ &\geq \| \Delta_{\rho}^m \{ (-\widetilde{\Delta})^{-m/2} F \} \|_{L_{\infty}(S^{d-1})} - \varepsilon \\ &\geq M t^m \| F \|_{L_{\infty}(S^{d-1})} - \varepsilon, \end{split}$$

and this causes a contradiction for M > 3C.

For $L_1(\mathbb{R}^d)$ or $L_1(T^d)$ $(d \geq 2)$ the same argument for the corresponding failure of (2.12) follows and in fact in this case both $\Delta_h^m f$ and $(-\Delta)^{-m/2} f$ are multiplier operators which naturally commute.

4. Proof of the inequality (2.11) for $\ell \geq 2$. Using the description of $f_{2\ell}$ in polar coordinates, i.e.

$$f_{2\ell} = r^{2\ell} \cos 2\ell \varphi \sin^{2\ell} \theta_1 \cdots \sin^{2\ell} \theta_{d-1} \log r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{d-2}$$

276 Z. Ditzian

we have

$$r^{2}r^{-d+1}\frac{\partial}{\partial r}\left(r^{d-1}\frac{\partial}{\partial r}f_{2\ell}\right)$$

$$=2\ell(2\ell+d-2)f_{2\ell}+\left[(2\ell+d-2)+2\ell\right]r^{2\ell}\cos 2\varphi\ell\sin^{2\ell}\theta_{1}\cdots\sin^{2\ell}\theta_{d-2}.$$

To compute $\widetilde{\Delta}$ we also calculate $\Delta f_{2\ell}$:

$$\Delta f_{2\ell} = \left(\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) P_{\ell}(x, y) \right) \log(x^2 + y^2) + 2 \frac{\partial}{\partial x} P_{\ell}(x, y) \frac{2x}{x^2 + y^2}$$

$$+ 2 \frac{\partial}{\partial y} P_{\ell}(x, y) \frac{2y}{x^2 + y^2} + P_{\ell}(x, y) \frac{8}{x^2 + y^2}.$$

We now observe that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) P_{\ell}(x, y) = 0.$$

This is shown using the two-dimensional description, i.e. $x = \rho \cos \psi$, $y = \rho \sin \psi$,

$$P_{\ell}(x,y) = \rho^{2\ell} \cos 2\ell \psi$$
 and $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial \rho^2} + \rho^{-1} \frac{\partial}{\partial \rho} + \rho^2 \frac{\partial^2}{\partial \psi^2}$,

which imply

$$\left(\left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \right) P_{\ell}(x, y)
= 2\ell (2\ell - 1)\rho^{2\ell - 2} \cos 2\ell \psi + 2\ell \rho^{2\ell - 2} \cos 2\ell \psi - (2\ell)^2 \rho^{2\ell - 2} \cos 2\ell \psi.$$

As $x^2 + y^2 = r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{d-2}$ and $P_{\ell}(x, y)$ is a homogeneous polynomial of degree 2ℓ in x and y, we can write

$$r^{2} \Delta f_{2\ell} = r^{2\ell} Q_{\ell}(\cos \psi, \sin \varphi, \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{d-2})$$
$$= r^{2\ell} Q_{\ell}^{*}(\cos \varphi, \sin \varphi) (\sin \theta_{1} \cdots \sin \theta_{d-2})^{2\ell-2}$$

where Q_{ℓ}^* is a polynomial in $\cos \varphi$ and $\sin \varphi$.

Therefore, $\widetilde{\Delta}^{\ell-1}r^{2\ell}Q_{\ell}(\cos\varphi,\sin\varphi,\sin\varphi,\sin\theta_1\cdots\sin\theta_d)$ is bounded using the description of $\widetilde{\Delta}$ in polar coordinates as given in [Er, Ch. XI] (see also [Da-Di-Hu, (2.6)] and [Vi, (6), p. 494]). Similarly, $\widetilde{\Delta}^{\ell-1}r^{2\ell}\cos 2\ell\varphi\sin^{2\ell}\theta_1\cdots\sin^{2\ell}\theta_{d-2}$ is also bounded. To examine $2\ell(2\ell+d-1)\widetilde{\Delta}^{\ell-1}f_{2\ell}$ we follow the above procedure and obtain, after $\ell-1$ iterations, a constant times $f_{2\ell}$ plus other terms which are bounded. We note that $f_{2\ell}$ is bounded (when r=1) and hence $\|\widetilde{\Delta}^{\ell}f_{2\ell}\|_{L_{\infty}(S^{d-1})} \leq C$, which implies (2.10). We now use ρ of (2.6) and $\boldsymbol{\zeta} = (0,0,\ldots,0,-1)$ and note that $\|\Delta_{\rho}^{2\ell}f_{2\ell}\|_{L_{\infty}(S^{d-1})} \geq |\Delta_{\rho}^{2\ell}f_{2\ell}(\rho\boldsymbol{\zeta})|$. Using $a_0=1$ (with a_j of (2.8)), which follows by setting $\varphi=0$ and then

using the Taylor formula, we have

$$\begin{aligned} |\Delta_{\rho}^{2\ell} f_{2\ell}(\rho^{\ell+1} \zeta) &= \left| \sum_{j=-\ell}^{\ell} (-1)^j \binom{2\ell}{\ell+j} f_{2\ell}(\rho^{j+1+\ell} \zeta) \right| \\ &= \left| \sum_{j=-\ell}^{\ell} (-1)^j \binom{2\ell}{\ell+j} (\sin^{2\ell} (j+1+\ell)t) \log \sin^2 (j+1+\ell)t \right| \\ &= C_1 t^{2\ell} \left| \left(\frac{\partial}{\partial t} \right)^{2\ell} ((\sin^{2\ell} t) \log \sin^2 t)_{t=\eta} \right| \end{aligned}$$

where η is in $[t, (2\ell+1)t]$. Since $\sin t \log \sin^2 t$ is bounded, we have

$$\left| \left(\frac{\partial}{\partial t} \right)^{2\ell} (\sin^{2\ell} t) \log \sin^2 t \right|_{t=\eta} = (2\ell)! \cos^{2\ell} \eta \log \sin^2 \eta + g(\eta)$$

where $g(\eta)$ is bounded. Therefore, for small t, $g(\eta)$ is insignificant compared with $|\cos^{2\ell} \eta \log \sin^2 \eta|$. This concludes the proof of (2.9), which, together with (2.10), implies (2.11).

References

[Da-Di] F. Dai and Z. Ditzian, Jackson inequality for Banach spaces on the sphere, Acta Math. Hungar. 118 (2008), 171–195.

[Da-Di-Hu] F. Dai, Z. Ditzian and H. W. Huang, Equivalence of measures of smoothness in $L_p(S^{d-1})$, 1 , Studia Math. 196 (2010), 179–205.

[Di,99] Z. Ditzian, A modulus of smoothness on the unit sphere, J. Anal. Math. 79 (1999), 189–200.

[Di,07] —, A note on equivalence of moduli of smoothness on the sphere, J. Approx. Theory 147 (2007), 125–128.

[Er] A. Erdélyi et al., *Higher Transcendental Functions*, Vol. II, Bateman Manuscript Project, McGraw-Hill, 1953.

[St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

[Vi] N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr. 22, Amer. Math. Soc., 1968; Russian original: Nauka, Moscow, 1965, and 2nd ed., 1991.

Z. Ditzian

Department of Mathematical and Statistical Sciences

University of Alberta

Edmonton, AB, Canada T6G 2G1 E-mail: zditzian@math.ualberta.ca

> Received October 3, 2009 Revised version November 24, 2009 (6706)