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Ultragraph C∗-algebras via topological quivers

by

Takeshi Katsura (Yokohama), Paul S. Muhly (Iowa City, IA),
Aidan Sims (Wollongong) and Mark Tomforde (Houston, TX)

Abstract. Given an ultragraph in the sense of Tomforde, we construct a topological
quiver in the sense of Muhly and Tomforde in such a way that the universal C∗-algebras
associated to the two objects coincide. We apply results of Muhly and Tomforde for
topological quiver algebras and of Katsura for topological graph C∗-algebras to study the
K-theory and gauge-invariant ideal structure of ultragraph C∗-algebras.

1. Introduction. Our objective in this paper is to show how the theory
of ultragraph C∗-algebras, first proposed by Tomforde in [13, 14], can be for-
mulated in the context of topological graphs [6] and topological quivers [11]
in a fashion that reveals the K-theory and ideal theory (for gauge-invariant
ideals) of these algebras. The class of graph C∗-algebras has attracted enor-
mous attention in recent years. The graph C∗-algebra associated to a di-
rected graph E is generated by projections pv associated to the vertices v
of E and partial isometries se associated to the edges e of E. Graph C∗-al-
gebras, which, in turn, are a generalization of the Cuntz–Krieger algebras
of [2], were first studied using groupoid methods [9, 8]. An artifact of the
initial groupoid approach is that the original theory was restricted to graphs
which are row-finite and have no sinks in the sense that each vertex emits
at least one and at most finitely many edges (1).

The connection between Cuntz–Krieger algebras and graph C∗-algebras
is that each directed graph can be described in terms of its edge matrix,
which is a {0, 1}-matrix indexed by the edges of the graph; a 1 in the (e, f)
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entry indicates that the range of e is equal to the source of f . The term row-
finite refers to the fact that in any row of the edge matrix of a row-finite
graph, there are at most finitely many non-zero entries.

The two points of view, graph and matrix, led to two versions of Cuntz–
Krieger theory for non-row-finite objects. In [5], C∗-algebras were associated
to arbitrary graphs in such a way that the construction agrees with the orig-
inal definition in the row-finite case. In [3], C∗-algebras—now called Exel–
Laca algebras—were associated to arbitrary {0, 1}-matrices, once again in
such a way that the definitions coincide for row-finite matrices. The funda-
mental difference between the two classes of algebras is that a graph C∗-al-
gebra is generated by a collection containing a partial isometry for each edge
and a projection for each vertex, while an Exel–Laca algebra is generated
by a collection containing a partial isometry for each row in the matrix (and
in the non-row-finite case there are rows in the matrix corresponding to
an infinite collection of edges with the same source vertex). Thus, although
these two constructions agree in the row-finite case, there are C∗-algebras
of non-row-finite graphs that are not isomorphic to any Exel–Laca algebra,
and there are Exel–Laca algebras of non-row-finite matrices that are not
isomorphic to the C∗-algebra of any graph [14].

In order to bring graph C∗-algebras of non-row-finite graphs and Exel–
Laca algebras together under one theory, Tomforde introduced the notion of
an ultragraph and described how to associate a C∗-algebra to such an object
[13, 14]. His analysis not only brought the two classes of C∗-algebras under
one rubric, but also it showed that there are ultragraph C∗-algebras that
belong to neither of these classes. Ultragraphs are basically directed graphs
in which the range of each edge is a non-empty set of vertices rather than a
single vertex—thus in an ultragraph each edge points from a single vertex
to a set of vertices, and directed graphs are the special case where the range
of each edge is a singleton set. Many of the fundamental results for graph
C∗-algebras, such as the well-known Cuntz–Krieger Uniqueness Theorem
and the Gauge-Invariant Uniqueness Theorem, can be proven in the setting
of ultragraphs [13]. However, other results, such as K-theory computations
and ideal structure, are less obviously amenable to traditional graph C∗-al-
gebra techniques.

Recently, Katsura [6] and Muhly and Tomforde [11] studied the notions
of topological graphs and topological quivers, respectively. These structures
consist of second countable locally compact Hausdorff spaces E0 and E1 of
vertices and edges respectively with range and source maps r, s : E1 → E0

which satisfy appropriate topological hypotheses. The main point of differ-
ence between the two (apart from a difference in edge-direction conventions)
is that in a topological graph the source map is assumed to be a local hom-
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eomorphism so that s−1(v) is discrete, whereas in a topological quiver the
range map (remember the edge-reversal!) is only assumed to be continuous
and open, and a system λ = {λv}v∈E0 of Radon measures λv on r−1(v) sat-
isfying some natural conditions (see [11, Definition 3.1]) is supplied as part
of the data. It is worth pointing out that given E0, E1, r and s, with r open,
such a system of Radon measures will always exist. A topological graph can
be regarded as a topological quiver by reversing the edges and taking each
λv to be counting measure; the topological graph C∗-algebra and the topo-
logical quiver C∗-algebra then coincide. One can regard an ordinary directed
graph as either a topological graph or a topological quiver by endowing the
edge and vertex sets with the discrete topology, and then the topological
graph C∗-algebra and topological quiver algebra coincide with the original
graph C∗-algebra.

In this article we show how to build a topological quiver Q(G) from
an ultragraph G in such a way that the ultragraph C∗-algebra C∗(G) and
the topological quiver algebra C∗(Q(G)) coincide. We then use results of
[6] and [11] to compute the K-theory of C∗(G), to produce a listing of its
gauge-invariant ideals, and to provide a version of condition (K) under which
all ideals of C∗(G) are gauge-invariant.

It should be stressed that the range map in Q(G) is always a local homeo-
morphism, so Q(G) can equally be regarded as a topological graph; indeed,
our analysis in some instances requires results regarding topological graphs
from [6] that have not yet been generalized to topological quivers. We use the
notation and conventions of topological quivers because the edge-direction
convention for quivers in [11] is compatible with the edge-direction conven-
tion for ultragraphs [13, 14].

The paper is organized as follows: In Section 2 we describe the commu-
tative C∗-algebra AG ⊂ C∗(G) generated by the projections {pA : A ∈ G0}.
In Section 3 we provide two alternative formulations of the defining rela-
tions among the generators of an ultragraph C∗-algebra which will prove
more natural in our later analysis. In Section 4 we describe the spectrum
of AG . We use this description in Section 5 to define the quiver Q(G), show
that its C∗-algebra is isomorphic to C∗(G), and compute its K-theory in
terms of the structure of G using results from [6]. In Section 6 we use the
results of [11] to produce a listing of the gauge-invariant ideals of C∗(G)
in terms of the structure of G, and in Section 7 we use a theorem of [7]
to provide a condition on G under which all ideals of C∗(G) are gauge-
invariant.

2. The commutative C∗-algebra AG and its representations. For
a set X, let P(X) denote the collection of all subsets of X.
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Definition 2.1. An ultragraph G = (G0,G1, r, s) consists of a countable
set of vertices G0, a countable set of edges G1, and functions s : G1 → G0

and r : G1 → P(G0) \ {∅}.
Definition 2.2. For an ultragraph G = (G0,G1, r, s), we denote by AG

the C∗-subalgebra of `∞(G0) generated by the point masses {δv : v ∈ G0}
and the characteristic functions {χr(e) : e ∈ G1}.

Let us fix an ultragraph G = (G0,G1, r, s), and consider the representa-
tions of AG .

Definition 2.3. For a set X, a subcollection C of P(X) is called a lattice
if

(i) ∅ ∈ C,
(ii) A ∩B ∈ C and A ∪B ∈ C for all A,B ∈ C.

An algebra is a lattice C that also satisfies the additional condition

(iii) A \B ∈ C for all A,B ∈ C.
Definition 2.4. For an ultragraph G = (G0,G1, r, s), we let G0 denote

the smallest algebra in P(G0) containing the singleton sets and the sets
{r(e) : e ∈ G1}.

Remark 2.5. In [13], G0 was defined to be the smallest lattice—not
algebra—containing the singleton sets and the sets {r(e) : e ∈ G1}. The
change to the above definition causes no problem when defining Cuntz–
Krieger G-families (see the final paragraph of Section 3). Furthermore, this
new definition is convenient for us in a variety of situations: It relates G0 to
the C∗-algebra AG described in Proposition 2.6, it allows us too see immedi-
ately that the set r(λ, µ) of Definition 2.8 is in G0, and—most importantly—
it aids in our description of the gauge-invariant ideals in Definition 6.1 and
Lemma 6.2. For additional justification for the change in definition, we refer
the reader to [10, Section 2].

Proposition 2.6. We have G0 = {A ⊂ G0 : χA ∈ AG} and

(2.1) AG = span{χA : A ∈ G0}.
Proof. We begin by proving (2.1). Since {A ⊂ G0 : χA ∈ AG} is an

algebra containing {v} and r(e), we have G0 ⊂ {A ⊂ G0 : χA ∈ AG}. Hence

AG ⊃ span{χA : A ∈ G0}.
Since G0 is closed under intersections, the set span{χA : A ∈ G0} is closed
under multiplication, and hence is a C∗-algebra containing {δv} and {χr(e)}.
Hence AG ⊂ span{χA : A ∈ G0}, establishing (2.1).

We must now show that G0 = {A ⊂ G0 : χA ∈ AG}. We have already
seen G0 ⊂ {A ⊂ G0 : χA ∈ AG}. Let A ⊂ G0 with χA ∈ AG . Then by (2.1),
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‖χA −
∑m

k=1 zkχAk
‖ < 1/2 for some A1, . . . , Am ∈ G0 and z1, . . . , zm ∈ C;

moreover, since G0 is an algebra, we may assume that j 6= k implies that
Aj ∩Ak = ∅. But then x ∈ A if and only if x ∈ Ak for some (unique) k with
|1− zk| < 1/2. That is, A =

⋃
|1−zk|<1/2Ak ∈ G0.

Definition 2.7. A representation of a lattice C on a C∗-algebra B is a
collection of projections {pA}A∈C in B satisfying p∅ = 0, pApB = pA∩B, and
pA∪B = pA + pB − pA∩B for all A,B ∈ C.

When C is an algebra, the last condition of a representation can be
replaced by the equivalent condition that pA∪B = pA + pB for all A,B ∈ C
with A ∩B = ∅.

Note that we define representations of lattices here, rather than just of
algebras, so that our definition of C∗(G) agrees with the original definition
given in [13] (see the final paragraph of Section 3).

Definition 2.8. For a fixed ultragraph G = (G0,G1, r, s) we define

X = {(λ, µ) : λ, µ are finite subsets of G1 with λ ∩ µ = ∅ and λ 6= ∅}.
For (λ, µ) ∈ X, we define r(λ, µ) ⊂ G0 by

r(λ, µ) :=
⋂
e∈λ

r(e) \
⋃
f∈µ

r(f).

Definition 2.9. Let G = (G0,G1, r, s) be an ultragraph. A collection
of projections {pv}v∈G0 and {qe}e∈G1 is said to satisfy condition (EL) if the
following hold:

(1) the elements of {pv}v∈G0 are pairwise orthogonal,
(2) the elements of {qe}e∈G1 pairwise commute,
(3) pvqe = pv if v ∈ r(e), and pvqe = 0 if v /∈ r(e),
(4)

∏
e∈λ qe

∏
f∈µ(1 − qf ) =

∑
v∈r(λ,µ) pv for all (λ, µ) ∈ X such that

|r(λ, µ)| <∞.

From a representation of G0, we get a collection satisfying condition (EL).
We prove a slightly stronger statement.

Lemma 2.10. Let C be a lattice in P(G0) which contains the singleton
sets and the sets {r(e) : e ∈ G1}, and let {pA}A∈C be a representation of C.
Then the collection {p{v}}v∈G0 and {pr(e)}e∈G1 satisfies condition (EL).

Proof. From the condition p∅ = 0 and pApB = pA∩B, it is easy to
show that the collection satisfies conditions (1)–(3) in Definition 2.9. To
see condition (4) let (λ, µ) ∈ X with |r(λ, µ)| < ∞. Define A,B ⊂ G0 by
A =

⋂
e∈λ r(e) and B =

⋃
f∈µ r(f). Then A,B ∈ C, and from the definition

of a representation, we obtain

pA =
∏
e∈λ

pr(e), 1− pB =
∏
f∈µ

(1− pr(f)).
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Since r(λ, µ) is a finite set, r(λ, µ) ∈ C and pr(λ,µ) =
∑

v∈r(λ,µ) p{v}. Also,
because r(λ, µ) = A \B, we obtain r(λ, µ)∪B = A∪B and r(λ, µ)∩B = ∅.
Hence pA∪B = pr(λ,µ) + pB. Since pA∪B = pA + pB − pA∩B, we get pr(λ,µ) =
pA − pA∩B. Therefore,∑

v∈r(λ,µ)

p{v} = pA − pA∩B = pA(1− pB) =
∏
e∈λ

pr(e)
∏
f∈µ

(1− pr(f)).

We will prove that from a collection satisfying condition (EL), we can
construct a ∗-homomorphism from AG onto the C∗-subalgebra generated
by that collection. To this end, we fix a listing G1 = {ei}∞i=1, and for each
positive integer n define a C∗-subalgebra A

(n)
G of AG to be the C∗-algebra

generated by {δv : v ∈ G0} and {χr(ei) : i = 1, . . . , n}. Note that the union

of the increasing family {A(n)
G }∞n=1 is dense in AG .

Definition 2.11. Let n be a positive integer. Let 0n := (0, . . . , 0) ∈
{0, 1}n. For ω = (ω1, . . . , ωn) ∈ {0, 1}n \ {0n}, we set

r(ω) :=
⋂
ωi=1

r(ei) \
⋃
ωj=0

r(ej).

Lemma 2.12. Let n be a positive integer. For each ω ∈ {0, 1}n, we define
λω, µω ⊂ G1 by λω = {ei : ωi = 1} and µω = {ei : ωi = 0}. Then the map

ω 7→ (λω, µω)

is a bijection between {0, 1}n \ {0n} and {(λ, µ) ∈ X : λ∪µ = {e1, . . . , en}},
and we have r(ω) = r(λω, µω).

Proof. The map ω 7→ (λω, µω) is a bijection because (λ, µ) 7→ χλ provides
an inverse, and r(ω) = r(λω, µω) by definition.

Definition 2.13. We define ∆n := {ω ∈ {0, 1}n \ {0n} : |r(ω)| =∞}.

Lemma 2.14. For each i = 1, . . . , n, the set r(ei) is the disjoint union of
the infinite sets {r(ω)}ω∈∆n, ωi=1 and the finite set

⋃
ω/∈∆n, ωi=1 r(ω).

Proof. First note that r(ω)∩r(ω′) = ∅ for distinct ω, ω′ ∈ {0, 1}n \{0n}.
For v ∈ r(ei), define ωv ∈ {0, 1}n by ωvj = χr(ej)(v) for 1 ≤ j ≤ n. Since
v ∈ r(ei), we have ωv 6= 0n, and v ∈ r(ωv) by definition. Hence

r(ei) =
⋃

v∈r(ei)

r(ωv) =
⋃
ωi=1

r(ω).

Since r(ω) is a finite set for ω ∈ {0, 1}n \ {0n} with ω /∈ ∆n, the result
follows.

Proposition 2.15. The C∗-algebra A
(n)
G is generated by {δv : v ∈ G0}

∪ {χr(ω) : ω ∈ ∆n}.
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Proof. For each ω ∈ ∆n, we have

χr(ω) =
∏
ωi=1

χr(ei)

∏
ωj=0

(1− χr(ej)) ∈ A
(n)
G ,

giving inclusion in one direction. It follows from Lemma 2.14 that the gen-
erators of A

(n)
G all belong to the C∗-algebra generated by {δv : v ∈ G0} ∪

{χr(ω) : ω ∈ ∆n}, establishing the reverse inclusion.

For each ω ∈ ∆n, the C∗-subalgebra of A
(n)
G generated by {δv : v ∈ r(ω)}

and χr(ω) is isomorphic to the unitization of c0(r(ω)). Since the C∗-alge-

bra A
(n)
G is a direct sum of such C∗-subalgebras indexed by the set ∆n and

the C∗-subalgebra c0(G0 \
⋃
ω∈∆n

r(ω)) (recall that the r(ω)’s are pairwise
disjoint), we have the following:

Lemma 2.16. For two families {pv}v∈G0 and {qω}ω∈∆n of mutually or-
thogonal projections in a C∗-algebra B satisfying

pvqω =
{
pv if v ∈ r(ω),
0 if v /∈ r(ω),

there exists a ∗-homomorphism πn : A
(n)
G → B with πn(δv) = pv for v ∈ G0

and πn(χr(ω)) = qω for ω ∈ ∆n.

Proposition 2.17. Let G = (G0,G1, r, s) be an ultragraph, and B be a
C∗-algebra. Then there exist natural bijections between the following sets:

(i) the set of ∗-homomorphisms from AG to B,
(ii) the set of representations of G0 on B,

(iii) the set of collections of projections in B satisfying condition (EL).

Specifically , if π : AG → B is a ∗-homomorphism, then pA := π(χA) for
A ∈ G0 gives a representation of G0; if {pA}A∈G0 is a representation of
G0 on B, then {p{v}}v∈G0 ∪ {pr(e)}e∈G1 satisfies condition (EL); and if a
collection of projections {pv}v∈G0 ∪ {qe}e∈G1 satisfies condition (EL), then
there exists a unique ∗-homomorphism π : AG → B such that π(δv) = pv
and π(χr(e)) = qe for all v ∈ G0 and e ∈ G1.

Proof. Clearly, we have the map from (i) to (ii), and by Lemma 2.10
we have the map from (ii) to (iii). Suppose that {pv}v∈G0 and {qe}e∈G1 is a
collection of projections satisfying condition (EL). Fix a positive integer n.
For each ω ∈ {0, 1}n \ {0n}, we define qω =

∏
ωi=1 qei

∏
ωj=0(1 − qej ) ∈ B.

Then {qω : ω ∈ {0, 1}n \ {0n}} is mutually orthogonal. By Definition 2.9(3),
we have

pvqω =
{
pv if v ∈ r(ω),
0 if v /∈ r(ω).
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Hence by Lemma 2.16, there exists a ∗-homomorphism πn : A
(n)
G → B such

that πn(δv) = pv for v ∈ G0 and πn(χr(ω)) = qω for ω ∈ ∆n. For ω ∈
{0, 1}n \ {0n} with |r(ω)| < ∞, we have πn(χr(ω)) =

∑
v∈r(ω) pv = qω by

Definition 2.9(4). Hence we obtain

πn(χr(ei)) = πn

( ∑
ω∈{0,1}n
ωi=1

χr(ω)

)
=

∑
ω∈{0,1}n
ωi=1

qω = qei

for i = 1, . . . , n. Thus for each n, the ∗-homomorphism πn : A
(n)
G → B

satisfies πn(δv) = pv for v ∈ G0 and πn(χr(ei)) = qei for i = 1, . . . , n. Since

there is at most one ∗-homomorphism of A
(n)
G → B with this property,

the restriction of the ∗-homomorphism πn+1 : A
(n+1)
G → B to A

(n)
G coincides

with πn. Hence there is a ∗-homomorphism π : AG → B such that π(δv) = pv
for v ∈ G0 and π(χr(e)) = qe for e ∈ G1. The ∗-homomorphism π is unique
because AG is generated by {δv : v ∈ G0} ∪ {χr(e) : e ∈ G1}.

Corollary 2.18. Let G1 = {ei}∞i=1 be some listing of the edges of G.
To check that a family of projections {pv}v∈G0 ∪ {qe}e∈G1 satisfies condi-
tion (EL), it suffices to verify that conditions (1)–(3) of Definition 2.9 hold
and that (4) holds for (λ, µ) ∈ X with |r(λ, µ)| <∞ and λ∪µ = {e1, . . . , en}
for some n.

We conclude this section by computing the K-groups of the C∗-alge-
bra AG .

Definition 2.19. For an ultragraph G = (G0,G1, r, s), we denote by
ZG the (algebraic) subalgebra of `∞(G0,Z) generated by {δv : v ∈ G0} ∪
{χr(e) : e ∈ G1}.

An argument similar to the proof of Proposition 2.6 shows that

ZG =
{ n∑
k=1

zkχAk
: n ∈ N, zk ∈ Z, Ak ∈ G0

}
.

Proposition 2.20. We have K0(AG) ∼= ZG and K1(AG) = 0.

Proof. For each n ∈ N \ {0}, let Z(n)
G be the subalgebra of `∞(G0,Z)

generated by {δv : v ∈ G0} ∪ {χr(ei) : i = 1, . . . , n}. By an argument similar

to the paragraph following Proposition 2.15, we see that Z(n)
G is a direct sum

of the unitizations (as algebras) of c0(r(ω),Z)’s and c0(G0 \
⋃
ω∈∆n

r(ω),Z).

Hence the description of A
(n)
G in the above-mentioned paragraph shows that

there exists an isomorphism K0(A(n)
G ) → Z

(n)
G which sends [δv], [χr(ω)] ∈

K0(A(n)
G ) to δv, χr(ω) ∈ Z

(n)
G . By taking inductive limits, we get an isomor-

phism K0(AG) → ZG which sends [χA] ∈ K0(AG) to χA ∈ ZG for A ∈ G0.
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That K1(AG) = 0 follows from the fact that K1(A(n)
G ) = 0 for each n, and

by taking direct limits.

Remark 2.21. It is not difficult to see that the isomorphism in Propo-
sition 2.20 preserves the natural order and scaling.

3. C∗-algebras of ultragraphs

Definition 3.1. Let G = (G0,G1, r, s) be an ultragraph. A vertex v ∈
G0 is said to be regular if 0 < |s−1(v)| < ∞. The set of all regular vertices
is denoted by G0

rg ⊂ G0.

Definition 3.2. For an ultragraph G = (G0,G1, r, s), a Cuntz–Krieger
G-family is a representation {pA}A∈G0 of G0 in a C∗-algebra B and a col-
lection of partial isometries {se}e∈G1 in B with mutually orthogonal ranges
that satisfy

(1) s∗ese = pr(e) for all e ∈ G1,
(2) ses

∗
e ≤ ps(e) for all e ∈ G1,

(3) pv =
∑

s(e)=v ses
∗
e for all v ∈ G0

rg,

where we write pv in place of p{v} for v ∈ G0.
The C∗-algebra C∗(G) is the C∗-algebra generated by a universal Cuntz–

Krieger G-family {pA, se}.
We will show that this definition of C∗(G) and the following natural gen-

eralization of the definition of Exel–Laca algebras in [3] are both equivalent
to the original definition of C∗(G) in [13, Definition 2.7].

Definition 3.3. For an ultragraph G = (G0,G1, r, s), an Exel–Laca G-
family is a collection of projections {pv}v∈G0 and partial isometries {se}e∈G1

with mutually orthogonal ranges for which

(1) the collection {pv}v∈G0 ∪ {s∗ese}e∈G1 satisfies condition (EL),
(2) ses

∗
e ≤ ps(e) for all e ∈ G1,

(3) pv =
∑

s(e)=v ses
∗
e for v ∈ G0

rg.

Proposition 3.4. For each Cuntz–Krieger G-family {pA, se}, the col-
lection {pv, se} is an Exel–Laca G-family. Conversely , for each Exel–Laca
G-family {pv, se}, there exists a unique representation {pA} of G0 on the
C∗-algebra generated by {pv, se} such that p{v} = pv for v ∈ G0 and {pA, se}
is a Cuntz–Krieger G-family.

Proof. This follows from Proposition 2.17.

Corollary 3.5. Let {pv, se} be the Exel–Laca G-family in C∗(G). For
an Exel–Laca G-family {Pv, Se} on a C∗-algebra B, there exists a ∗-homo-
morphism φ : C∗(G) → B such that φ(pv) = Pv and φ(se) = Se. The ∗-ho-
momorphism φ is injective if Pv 6= 0 for all v ∈ G0 and there exists a strongly
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continuous action β of T on B such that βz(Pv) = Pv and βz(Se) = zSe for
v ∈ G0, e ∈ G1, and z ∈ T.

Proof. The first part follows from Proposition 3.4, and the rest from [13,
Theorem 6.8] because φ(pA) 6= 0 for all non-empty A if φ(pv) = Pv 6= 0 for
all v ∈ G0.

It is easy to see that Proposition 3.4 is still true if we replace G0 by
any lattice contained in G0 and containing {v} and r(e) for all v ∈ G0 and
e ∈ G1 (see Lemma 2.10). Hence the restriction gives a natural bijection from
Cuntz–Krieger G-families in the sense of Definition 3.2 to the Cuntz–Krieger
G-families of [13, Definition 2.7]. Thus the C∗-algebra C∗(G) is naturally
isomorphic to the C∗-algebra defined in [13, Theorem 2.11].

4. The spectrum of the commutative C∗-algebra AG Let G =
(G0,G1, r, s) be an ultragraph. In this section, we describe the spectrum of
the commutative C∗-algebra AG concretely. Fix a listing G1 = {ei}∞i=1 of the
edges of G. As described in the paragraph following the proof of Lemma 2.10,
the C∗-algebra AG is equal to the inductive limit of the increasing family
{A(n)
G }∞n=1, where A

(n)
G is the C∗-subalgebra of AG generated by {δv : v ∈ G0}

∪ {χr(ei) : i = 1, . . . , n}. In order to compute the spectrum of AG , we first

compute the spectrum of A
(n)
G for a positive integer n.

Definition 4.1. For n ∈ N \ {0}, we define a topological space Ω(n)
G

such that Ω(n)
G = G0 t∆n as a set and A t Y is open in Ω

(n)
G for A ⊂ G0

and Y ⊂ ∆n if and only if |r(ω) \A| <∞ for all ω ∈ Y .

For each v ∈ G0, {v} is open in Ω
(n)
G , and a fundamental system of

neighborhoods of ω ∈ ∆n ⊂ Ω(n)
G is

{A t {ω} : A ⊂ G0, |r(ω) \A| <∞}.

Hence G0 is a discrete dense subset of Ω(n)
G . Note that Ω(n)

G is a disjoint
union of the finitely many compact open subsets r(ω) t {ω} for ω ∈ ∆n

and the discrete set G0 \
⋃
ω∈∆n

r(ω). This fact and the paragraph following
Proposition 2.15 show the following:

Lemma 4.2. There exists an isomorphism π(n) : A
(n)
G → C0(Ω(n)

G ) such
that π(n)(δv) = δv and π(n)(χr(ω)) = χr(ω)t{ω} for v ∈ G0 and ω ∈ ∆n.

Lemma 4.3. For i = 1, . . . , n, the closure r(ei) of r(ei) ⊂ Ω
(n)
G is the

compact open set r(ei)t{ω ∈ ∆n : ωi = 1}, and we have π(n)(χr(ei)) = χ
r(ei)

.

Proof. This follows from Lemma 2.14.
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Let ∆̃n := ∆n ∪ {0n}. We can define a topology on Ω̃
(n)
G := G0 t ∆̃n

similarly to Definition 4.1 so that Ω̃(n)
G is the one-point compactification of

Ω
(n)
G . The restriction map {0, 1}n+1 → {0, 1}n induces a map ∆̃n+1 → ∆̃n,

and hence a map Ω̃
(n+1)
G → Ω̃

(n)
G . It is routine to check that this map

is a continuous surjection, and the induced ∗-homomorphism C0(Ω(n)
G ) →

C0(Ω(n+1)
G ) coincides with the inclusion A

(n)
G ↪→ A

(n+1)
G via the isomorphisms

in Lemma 4.2.
For each element

ω = (ω1, ω2, . . . , ωi, . . .) ∈ {0, 1}∞,

we define ω|n ∈ {0, 1}n by ω|n = (ω1, ω2, . . . , ωn). The space {0, 1}∞ is
a compact space with the product topology, and it is homeomorphic to
lim←−{0, 1}

n.

Definition 4.4. We define

∆̃∞ := {ω ∈ {0, 1}∞ : ω|n ∈ ∆̃n for all n},

and ∆∞ := ∆̃∞ \ {0∞} where 0∞ := (0, 0, . . .) ∈ {0, 1}∞.

Since ∆̃∞ is a closed subset of {0, 1}∞, the space ∆∞ is locally compact,
and its one-point compactification is homeomorphic to ∆̃∞. By definition,
∆̃∞ ∼= lim←− ∆̃n.

Definition 4.5. We define a topological space ΩG as follows: ΩG =
G0 t∆∞ as a set, and At Y is open in ΩG for A ⊂ G0 and Y ⊂ ∆∞ if and
only if for each ω ∈ Y there exists an integer n satisfying

(i) if ω′ ∈ ∆∞ and ω′|n = ω|n, then ω′ ∈ Y ,
(ii) |r(ω|n) \A| <∞.

Equivalently, AtY ⊂ ΩG is closed if and only if Y ⊂ ∆∞ is closed in the
product topology on {0, 1}∞, and for each ω ∈ ∆∞ with |r(ω|n) ∩ A| = ∞
for all n, we have ω ∈ Y .

We can define a topology on Ω̃G := G0 t ∆̃∞ similarly to the definition
above, so that Ω̃G is the one-point compactification ofΩG and Ω̃G ∼= lim←− Ω̃

(n)
G .

Lemma 4.6. In the space ΩG , the closure r(ei) of r(ei) ⊂ ΩG is the
compact open set r(ei) t {ω ∈ ∆∞ : ωi = 1}.

Proof. This follows from the homeomorphism Ω̃G ∼= lim←− Ω̃
(n)
G combined

with Lemma 4.3.

Proposition 4.7. There exists an isomorphism π : AG → C0(ΩG) such
that π(δv) = δv and π(χr(e)) = χ

r(e)
for v ∈ G0 and e ∈ G1.
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Proof. Taking the inductive limit of the isomorphisms π(n) in Lemma 4.2
produces an isomorphism

π : AG → lim−→C0(Ω(n)
G ) ∼= C0(ΩG).

This isomorphism satisfies the desired condition by Lemma 4.6.

By the isomorphism π in the proposition above, we can identify the
spectrum of AG with the space ΩG .

5. Topological quivers and K-groups In this section we will con-
struct a topological quiver Q(G) from G, and show that the C∗-algebra
C∗(G) is isomorphic to the C∗-algebra C∗(Q(G)) of [11]. Fix an ultragraph
G = (G0,G1, r, s), and define

Q(G) := (E(G)0, E(G)1, rQ, sQ, λQ)

as follows. Let E(G)0 := ΩG and

E(G)1 := {(e, x) ∈ G1 ×ΩG : x ∈ r(e)},

where G1 is considered as a discrete set, and r(e) ⊂ ΩG are compact open
sets (see Lemma 4.6).

We define a local homeomorphism rQ : E(G)1 → E(G)0 by rQ(e, x) := x,
and a continuous map sQ : E(G)1 → E(G)0 by sQ(e, x) := s(e) ∈ G0 ⊂
E(G)0. Since rQ is a local homeomorphism, r−1

Q (x) is discrete and countable
for each x ∈ E(G)0. For each x ∈ E(G)0 we define the measure λx on r−1

Q (x)
to be counting measure, and set λQ = {λx : x ∈ E(G)0}.

Reversing the roles of the range and source maps, we can also regard
Q(G) as a topological graph E(G) in the sense of [6], and its C∗-algebra
O(E(G)) is naturally isomorphic to C∗(Q(G)) (see [11, Example 3.19]). Since
some of the results about C∗(Q(G)) which we wish to apply have only been
proved in the setting of [6] to date, we will frequently reference these results;
the reversal of edge-direction involved in regarding Q(G) as a topological
graph is implicit in these statements. We have opted to use the notation
and conventions of [11] throughout, and to reference the results of [11] where
possible only because the edge-direction conventions there agree with those
for ultragraphs [13].

We let E(G)0rg denote the largest open subset of E(G)0 such that the
restriction of sQ to s−1

Q (E(G)0rg) is surjective and proper.

Lemma 5.1. We have E(G)0rg = G0
rg.

Proof. Since the image of sQ is contained in G0 ⊂ E(G)0, we have
E(G)0rg ⊂ G0. For each v ∈ G0, we see that v ∈ E(G)0rg if and only if
s−1
Q (v) is non-empty and compact because {v} is open in E(G)0. Since



Ultragraph C∗-algebras 149

{e} × r(e) ⊂ E(G)1 is compact for all e ∈ G1, it follows that s−1
Q (v) =

{(e, x) ∈ E(G)1 : s(e) = v} is non-empty and compact if and only if
{e ∈ G1 : s(e) = v} is non-empty and finite; that is, if and only if v is
in G0

rg.

For the statement of the following theorem, we identify C0(E(G)0) with
AG via the isomorphism in Proposition 4.7, and let χe ∈ Cc(E(G)1) denote
the characteristic function of the compact open subset {e}×r(e) ⊂ E(G)1 for
each e ∈ G1. We denote by (ψQ(G), πQ(G)) the universal generatingQ(G)-pair,
and by {pGA, sGe : A ∈ G0, e ∈ G1} the universal generating Cuntz–Krieger
G-family.

Theorem 5.2. There is an isomorphism from C∗(G) to C∗(Q(G)) which
is canonical in the sense that it takes pGA to πQ(G)(χA) and sGe to ψQ(G)(χe)
for all A ∈ G0 and e ∈ G1. Moreover , this isomorphism is equivariant for
the gauge actions on C∗(G) and C∗(Q(G)).

Proof. It is easy to check using Lemma 5.1 and Proposition 3.4 that:

(1) for each Cuntz–Krieger G-family {pA, se : A ∈ G0, e ∈ G1} there
is a unique Q(G)-pair (πq,t, ψp,s) satisfying πp,s(χA) = pA for each
A ∈ G0 and ψp,s(χe) = se for each e ∈ G1,

(2) for each Q(G)-pair (π, ψ), the formulae pπ,ψA := π(χA) and sπ,ψe :=
ψ(χe) determine a Cuntz–Krieger G-family {pπ,ψA , sπ,ψe : A ∈ G0,
e ∈ G1}.

The result then follows from the universal properties of the two C∗-algebras
C∗(G) and C∗(Q(G)).

Remark 5.3. To prove Theorem 5.2, one could alternatively use the
gauge-invariant uniqueness theorems for ultragraphs [13, Theorem 6.8] or
topological graphs [6, Theorem 4.5], or topological quivers [11, Theorem
6.16].

Theorem 5.4. Let G = (G0,G1, r, s) be an ultragraph. Let ∂ : ZG0
rg → ZG

be defined by ∂(δv) = δv −
∑

e∈s−1(v) χr(e) for v ∈ G0
rg. Then K0(C∗(G)) ∼=

coker(∂) and K1(C∗(G)) ∼= ker(∂).

Proof. Since C0(E(G)0rg) ∼= c0(G0
rg) and C0(E(G)0) ∼= AG , we have

K0(C0(E(G)0rg)) ∼= ZG0
rg , K0(C0(E(G)0)) ∼= ZG and K1(C0(E(G)0rg)) =

K1(C0(E(G)0)) = 0 by Proposition 2.20. It is straightforward to see that
the map [πr] : K0(C0(E(G)0rg)) → K0(C0(E(G)0)) in [6, Corollary 6.10] sat-
isfies [πr](δv) =

∑
e∈s−1(v) χr(e) for v ∈ G0

rg. Hence the conclusion follows
from [6, Corollary 6.10].
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6. Gauge-invariant ideals In this section we characterize the gauge-
invariant ideals of C∗(G) for an ultragraph G in terms of combinatorial data
associated to G.

For the details of the following, see [11]. Let Q = (E0, E1, r, s, λ) be a
topological quiver. We say that a subset U ⊂ E0 is hereditary if, whenever
e ∈ E1 satisfies s(e) ∈ U , we have r(e) ∈ U . We say that U is saturated if,
whenever v ∈ E0

rg satisfies r(s−1(v)) ⊂ U , we have v ∈ U .
Suppose that U ⊂ E0 is open and hereditary. Then

QU := (E0
U , E

1
U , r|E1

U
, s|E1

U
, λ|E0

U
)

is a topological quiver, where E0
U = E0 \ U and E1

U = E1 \ r−1(U).
We say that a pair (U, V ) of subsets of E0 is admissible if

(1) U is a saturated hereditary open subset of E0,
(2) V is an open subset of E0

U with E0
rg \ U ⊂ V ⊂ (E0

U )rg.

It follows from [11, Theorem 8.22] that the gauge-invariant ideals of C∗(Q)
are in bijective correspondence with the admissible pairs (U, V ) of Q.

Let G = (G0,G1, r, s) be an ultragraph. We define admissible pairs of G
in a similar way to the above, and show that these are in bijective corre-
spondence with the gauge-invariant ideals of C∗(G).

Definition 6.1. A subcollection H ⊂ G0 is said to be an ideal if it
satisfies

(1) A,B ∈ H implies A ∪B ∈ H,
(2) A ∈ H, B ∈ G0 and B ⊂ A imply B ∈ H.

Let π : AG → C0(ΩG) be the isomorphism in Proposition 4.7. For an ideal
H of G0, the set span{χA : A ∈ H} is an ideal of the C∗-algebra AG . Hence
there exists an open subset UH of ΩG with

C0(UH) = π(span{χA : A ∈ H}).

Lemma 6.2. The correspondence H 7→ UH is a bijection from the set of
all ideals of G0 to the set of all open subsets of ΩG.

Proof. Since AG is an AF-algebra, every ideal of AG is generated by
its projections. From this fact, we see that H 7→ span{χA : A ∈ H} is
a bijection from the set of all ideals of G0 to the set of all ideals of AG .
Hence the conclusion follows from the well-known fact that U 7→ C0(U) is
a bijection from the set of all open subsets of ΩG to the set of all ideals of
C0(ΩG).

Remark 6.3. The existence of this bijection is one of the advantages of
changing the definition of G0 from that given in [13].
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Lemma 6.4. Let H be an ideal of G0, and let UH ⊂ ΩG be the corre-
sponding open set. Then for v ∈ G0, {v} ∈ H if and only if v ∈ UH, and for
e ∈ G1, r(e) ∈ H if and only if r(e) ⊂ UH.

Proof. This follows from Proposition 4.7.

Definition 6.5. We say that an ideal H ⊂ G0 is hereditary if, when-
ever e ∈ G1 satisfies {s(e)} ∈ H, we have r(e) ∈ H, and that it is satu-
rated if, whenever v ∈ G0

rg satisfies r(e) ∈ H for all e ∈ s−1(v), we have
{v} ∈ H.

Proposition 6.6. An ideal H of G0 is hereditary (resp. saturated) if
and only if the corresponding open subset UH ⊂ ΩG = E(G)0 is hereditary
(resp. saturated) in the topological quiver Q(G).

Proof. An open subset U ⊂ ΩG = E(G)0 is hereditary if and only if,
whenever (e, x) ∈ E(G)1 satisfies sQ(e, x) = s(e) ∈ U , we have rQ(e, x) =
x ∈ U . This is equivalent to the statement that, whenever e ∈ G1 satisfies
s(e) ∈ U , we have r(e) ⊂ U . Thus Lemma 6.4 shows that an ideal H is
hereditary if and only if UH is hereditary.

An open subset U ⊂ ΩG = E(G)0 is saturated if and only if, whenever
v ∈ E(G)0rg = G0

rg satisfies rQ(s−1
Q (v)) ⊂ U , we have v ∈ U . For v ∈ G0

rg,
we have rQ(s−1

Q (v)) =
⋃
e∈s−1(v) r(e). Hence U is saturated if and only if,

whenever v ∈ G0
rg satisfies r(e) ⊂ U for all e ∈ s−1(v), we have v ∈ U . Thus

Lemma 6.4 again shows that an ideal H is saturated if and only if UH is
saturated.

Definition 6.7. Let H be a hereditary ideal of G0. For v ∈ G0, we
define s−1

G/H(v) ⊂ G1 by

s−1
G/H(v) := {e ∈ G1 : s(e) = v and r(e) /∈ H}.

We define (G0
H)rg ⊂ G0 by

(G0
H)rg := {v ∈ G0 : s−1

G/H(v) is non-empty and finite}.

Since H is hereditary, if {v} ∈ H then we have s−1
G/H(v) = ∅ and hence

v /∈ (G0
H)rg.

Lemma 6.8. A hereditary ideal H of G0 is saturated if and only if , when-
ever v ∈ G0

rg satisfies {v} /∈ H, we have v ∈ (G0
H)rg.

Proof. An element v∈G0
rg is in (G0

H)rg if and only if s−1
G/H(v)⊂s−1(v) is

non-empty, which occurs if and only if there is e ∈ s−1(v) with r(e) /∈H.

Let H be a hereditary ideal of G0, and UH ⊂ ΩG = E(G)0 be the cor-
responding open subset which is hereditary by Proposition 6.6. As at the
beginning of this section, we obtain a topological quiver Q(G)UH .
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Lemma 6.9. We have (E(G)0UH)rg = (G0
H)rg.

Proof. Since the image of sQ|E(G)1UH
is contained in G0 \ UH, we have

(E(G)0UH)rg ⊂ G0 \UH. For v ∈ G0, v ∈ UH implies {v} ∈ H by Lemma 6.4,
and this implies v /∈ (G0

H)rg as remarked after Definition 6.7. Hence we have
(G0
H)rg ⊂ G0 \ UH. An element v ∈ G0 \ UH is in (E(G)0UH)rg if and only if

s−1
Q (v)∩E(G)1UH is non-empty and compact because {v} is open in E(G)0UH .

Since

s−1
Q (v) ∩ E(G)1UH = {(e, x) ∈ E(G)1 : s(e) = v and x /∈ UH},

s−1
Q (v) ∩ E(G)1UH is non-empty and compact if and only if

{e ∈ G1 : s(e) = v and r(e) 6⊂ UH}
is non-empty and finite. This set is equal to s−1

G/H(v) by Lemma 6.4. Therefore
an element v ∈ G0 \ UH is in (E(G)0UH)rg if and only if v ∈ (G0

H)rg. Thus
(E(G)0UH)rg = (G0

H)rg as required.

By Lemma 6.9, the subset (E(G)0UH)rg ⊂ E(G)0UH is discrete.

Definition 6.10. Let G = {G0,G1, r, s} be an ultragraph. We say that a
pair (H, V ) consisting of an ideal H of G0 and a subset V of G0 is admissible
if H is hereditary and saturated and V ⊂ (G0

H)rg \G0
rg.

Definition 6.11. For an admissible pair (H, V ) of an ultragraph G,
we define an ideal I(H,V ) of C∗(G) to be the ideal generated by the projec-
tions

{pA : A ∈ H} ∪
{
pv −

∑
e∈s−1
G/H(v)

ses
∗
e : v ∈ V

}
.

For an ideal I of C∗(G), we define HI := {A ∈ G0 : pA ∈ I} and

VI :=
{
v ∈ (G0

HI
)rg \G0

rg : pv −
∑

e∈s−1
G/HI

(v)

ses
∗
e ∈ I

}
.

Theorem 6.12. Let G be an ultragraph. Then the correspondence I 7→
(HI , VI) is a bijection from the set of all gauge-invariant ideals of C∗(G)
to the set of all admissible pairs of G, whose inverse is given by (H, V ) 7→
I(H,V ).

Proof. By Theorem 5.2, the gauge-invariant ideals of C∗(G) are in bi-
jective correspondence with the gauge-invariant ideals of C∗(Q(G)). We
know that the latter are indexed by admissible pairs (U, V ) of Q(G) by
[11, Theorem 8.22]. Proposition 6.6 and Lemma 6.9 show that (H, V ) 7→
(UH, V ∪ (G0

rg \ UH)) is a bijection from the set of all admissible pairs
of G to the one of Q(G). Thus we get bijective correspondences between
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the set of all gauge-invariant ideals of C∗(G) and the set of all admis-
sible pairs of G. By keeping track of the arguments in [11, Section 8],
we see that the bijective correspondences are given by I 7→ (HI , VI) and
(H, V ) 7→ I(H,V ).

Remark 6.13. The theorem above naturally generalizes [1, Theorem
3.6].

7. Condition (K) In this section we define a version of condition (K)
for ultragraphs, and show that this condition characterizes ultragraphs G
such that every ideal of C∗(G) is gauge-invariant.

Let G be an ultragraph. For v ∈ G0, a first-return path based at v in G
is a path α = e1e2 . . . en such that s(α) = v, v ∈ r(α), and s(ei) 6= v for
i = 2, 3, . . . , n. When α is a first-return path based at v, we say that v hosts
the first-return path α.

Note that there is a subtlety here: a first-return path based at v may
pass through other vertices w 6= v more than once (that is, we may have
s(ei) = s(ej) for some 1 < i, j ≤ n with i 6= j), but no edge other than e1
may have source v.

Definition 7.1. Let G be an ultragraph. We say that G satisfies condi-
tion (K) if every v ∈ G0 which hosts a first-return path hosts at least two
distinct first-return paths.

Example 7.2. The graph

v
e

))
w f

xx

g
hh

satisfies condition (K) because v hosts infinitely many first-return paths
eg, efg, effg, . . ., and w hosts two first-return paths f and ge. Note that all
first-return paths based at v except eg pass through the vertex w more than
once.

Proposition 7.3. Let G = (G0,G1, r, s) be an ultragraph. Then every
ideal of C∗(G) is gauge-invariant if and only if G satisfies condition (K).

Proof. In the same way as above, we can define first-return paths in the
topological graph E(G). It is straightforward to see that for each v ∈ G0,
first-return paths α = e1e2 . . . en based at v in G correspond bijectively to
first-return paths

l = (e1, s(e2))(e2, s(e3)) . . . (en, s(e1))

based at v ∈ G0 ⊂ E(G)0 in E(G).
Recall (see [7, Definition 7.1] and the subsequent paragraph for details)

that Per(E(G)) denotes the collection of vertices v ∈ E(G)0 such that v
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hosts exactly one first-return path in E(G), and v is isolated in

{sQ(l) : l is a path in E(G) with rQ(l) = v}
(recall that the directions of paths are reversed when passing from the quiver
Q(G) to the topological graph E(G)). We see that [7, Theorem 7.6] implies
that every ideal of O(E(G)) is gauge-invariant if and only if Per(E(G)) is
empty. Since the isomorphism of C∗(G) with O(E(G)) is gauge-equivariant,
it therefore suffices to show that Per(E(G)) is empty if and only if G satisfies
condition (K).

The image of sQ is contained in the discrete set G0 ⊂ E(G)0. Thus
v ∈ E(G)0 belongs to Per(E(G)) if and only if v ∈ G0 ⊂ E(G)0 and v hosts
exactly one first-return path in E(G). By the first paragraph of this proof,
v ∈ G0 ⊂ E(G)0 hosts exactly one first-return path in E(G) if and only if
v hosts exactly one first-return path in G. Hence Per(E(G)) is empty if and
only if G satisfies condition (K).
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