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Spectral theory of
SG pseudo-differential operators on Lp(Rn)

by

Aparajita Dasgupta and M. W. Wong (Toronto)

Abstract. To every elliptic SG pseudo-differential operator with positive orders, we
associate the minimal and maximal operators on Lp(Rn), 1 < p < ∞, and prove that
they are equal. The domain of the minimal (= maximal) operator is explicitly computed
in terms of a Sobolev space. We prove that an elliptic SG pseudo-differential operator is
Fredholm. The essential spectra of elliptic SG pseudo-differential operators with positive
orders and bounded SG pseudo-differential operators with orders 0, 0 are computed.

1. SG pseudo-differential operators. We give in this section a pre-
cise introduction to the formal properties of SG pseudo-differential oper-
ators, also known as pseudo-differential operators with symbols of global
type. In [7], they are also called pseudo-differential operators with exit be-
havior. SG pseudo-differential operators and related topics can be found in
[3], [4], [6], [10], [12] and the references therein.

Let m1,m2 ∈ (−∞,∞). Then we let Sm1,m2 be the set of all functions in
C∞(Rn×Rn) such that for all multi-indices α and β, there exists a positive
constant Cα,β for which

|(Dα
xD

β
ξ σ)(x, ξ)| ≤ Cα,β〈x〉m2−|α|〈ξ〉m1−|β|, x, ξ ∈ Rn,

where 〈 〉 denotes the function on RN given by

〈z〉 = (1 + |z|2)1/2, z ∈ RN ,

for every positive integer N . A function in Sm1,m2 is said to be an SG
symbol of orders m1,m2. It is clear that if σ ∈ Sm1,m2 , then σ ∈ Sm1 , where
Sm1 is the class of symbols of classical pseudo-differential operators studied
extensively in the book [19] by Wong.
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Let σ ∈ Sm1,m2 . Then we define the pseudo-differential operator Tσ with
symbol σ by

(1.1) (Tσϕ)(x) = (2π)−n/2
�

Rn
eix·ξσ(x, ξ)ϕ̂(ξ) dξ, x ∈ Rn,

for all functions ϕ in the Schwartz space S, where

ϕ̂(ξ) = (2π)−n/2
�

Rn
e−ix·ξϕ(x) dx, ξ ∈ Rn.

It can be proved easily that Tσ : S → S is a continuous linear mapping.
The following two results on the basic calculus of SG pseudo-differential

operators can be found on page 251 of [7].

Theorem 1.1. Let σ ∈ Sm1,m2 and τ ∈ Sµ1, µ2 . Then TσTτ = Tλ, where
λ ∈ Sm1+µ1,m2+µ2 and

λ ∼
∑
µ

(−i)|µ|

µ!
(∂µξ σ)(∂µx τ).

Here, the asymptotic expansion means that for every positive integer M ,
there exists a positive integer N such that

λ−
∑
|µ|<N

(−i)|µ|

µ!
(∂µξ σ)(∂µx τ) ∈ Sm1+µ1−M,m2+µ2−M .

Theorem 1.2. Let σ ∈ Sm1,m2 . Then the formal adjoint T ∗σ of Tσ is a
pseudo-differential operator Tτ , where τ ∈ Sm1,m2 and

τ ∼
∑
µ

(−i)|µ|

µ!
∂µx∂

µ
ξ σ.

Here, the asymptotic expansion means that for every positive integer M ,
there exists a positive integer N such that

τ −
∑
|µ|<N

(−i)|µ|

µ!
∂µx∂

µ
ξ σ ∈ S

m1−M,m2−M .

Using the formal adjoint, we can extend the definition of a pseudo-
differential operator from the Schwartz space S to the space S ′ of all tem-
pered distributions. Indeed, let σ ∈ Sm1,m2 . Then for all u in S ′, we define
the linear functional Tσ : S → C by

(Tσu)(ϕ) = u(T ∗σϕ), ϕ ∈ S.
It is easy to check that Tσ maps S ′ into S ′ continuously. In fact, we have
the following theorem.

Theorem 1.3. Let σ ∈ S0,0. Then Tσ : Lp(Rn) → Lp(Rn) is a bounded
linear operator for 1 < p <∞.
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Theorem 1.3 follows from Theorem 10.7 in [19] and the fact that every
symbol in S0,0 is in S0.

Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞. Then σ is said to be elliptic if
there exist positive constants C and R such that

|σ(x, ξ)| ≥ C〈x〉m2〈ξ〉m1 , |x|2 + |ξ|2 ≥ R.
Theorem 1.4. Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞, be elliptic. Then

there exists a symbol τ in S−m1,−m2 such that

TτTσ = I +R and TσTτ = I + S,

where R and S are infinitely smoothing in the sense that they are SG pseudo-
differential operators with symbols in

⋂
k1,k2∈R S

k1,k2.

The SG pseudo-differential operator Tτ in Theorem 1.4 is known as a
parametrix of Tσ.

The aim of this paper is to investigate the spectral theory of SG pseudo-
differential operators with symbols in Sm1,m2 , m1,m2 > 0, on Lp(Rn),
1 < p <∞, in the context of minimal and maximal operators, the domains
of elliptic SG pseudo-differential operators, Fredholm operators and essen-
tial spectra. Results on essential spectra of bounded SG pseudo-differential
operators of orders 0, 0 on Lp(Rn) are also given. An essential ingredient
in the spectral theory is the family of Lp-Sobolev spaces of orders s1, s2,
1 < p <∞, −∞ < s1, s2 <∞, which we introduce in Section 2. In Section 3,
we present the minimal and maximal operators of SG pseudo-differential
operators with symbols in Sm1,m2 , m1,m2 > 0, and show that they are
equal for elliptic SG pseudo-differential operators. The main tool is an ana-
logue of the Agmon–Douglis–Nirenberg inequalities for elliptic SG pseudo-
differential operators, which we also establish in Section 3. Section 4 is de-
voted to Fredholmness and essential spectra of elliptic SG pseudo-differential
operators with positive orders and bounded SG pseudo-differential operators
with orders 0, 0.

The spectral theory for another class of elliptic pseudo-differential oper-
ators on Lp(Rn), 1 < p <∞, can be found in [20].

2. Sobolev spaces. For s1, s2 ∈ (−∞,∞), we let Js1,s2 be the Bessel
potential of orders s1, s2 defined by

Js1,s2 = Tσs1,s2 ,

where
σs1,s2(x, ξ) = 〈x〉−s2〈ξ〉−s1 , x, ξ ∈ Rn.

Obviously, σs1,s2 ∈ S−s1,−s2 . It can be shown easily that the mapping Js1,s2 :
S ′ → S ′ is a bijection and

(2.1) J−1
s1,s2 = J−s1,0J0,−s2
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and hence, by Theorem 1.1, J−1
s1,s2 is an SG pseudo-differential operator of

orders −s1,−s2.
For 1 < p < ∞ and −∞ < s1, s2 < ∞, we define the Lp-Sobolev space

Hs1,s2,p of orders s1, s2 by

Hs1,s2,p = {u ∈ S ′ : J−s1,−s2u ∈ Lp(Rn)}.
Then Hs1,s2,p is a Banach space in which the norm ‖ ‖s1,s2,p is given by

‖u‖s1,s2,p = ‖J−s1,−s2u‖Lp(Rn), u ∈ Hs1,s2,p,

where ‖ ‖Lp(Rn) is the norm in Lp(Rn). Obviously,

H0,0,p = Lp(Rn).

We also have the following simple proposition.

Proposition 2.1. For 1 < p < ∞ and −∞ < s1, s2 < ∞, J−s1,−s2 :
Hs1,s2,p → Lp(Rn) is a surjective isometry.

Proof. Since

‖J−s1,−s2u‖Lp(Rn) = ‖u‖s1,s2,p, u ∈ Hs1,s2,p,

it follows that J−s1,−s2 : Hs1,s2,p → Lp(Rn) is an isometry. For every v
in Lp(Rn), let u = J−1

−s1,−s2v. Then J−s1,−s2u = v ∈ Lp(Rn), and hence
u ∈ Hs1,s2,p and the surjectivity is established.

We can now extend the Lp-boundedness result in Theorem 1.3 from
symbols in S0,0 to symbols in Sm1,m2 , −∞ < m1,m2 <∞.

Theorem 2.2. Let σ ∈ Sm1,m2 , −∞ < m1,m2 < ∞. Then for 1 < p
< ∞ and −∞ < s1, s2 < ∞, Tσ : Hs1,s2,p → Hs1−m1,s2−m2,p is a bounded
linear operator.

Hs,p Tσ //

J−s
��

Hs−m,p

Jm−s
��

H0,p
Tτ

// H0,p

Fig. 1. The vector notation for subscripts and superscripts is used. Precisely, s = (s1, s2),

m = (m1, m2) and 0 = (0, 0).

Proof. We factorize the pseudo-differential operator Tσ as in Figure 1
and get

Tσ = J−1
m1−s1,m2−s2TτJ−s1,−s2 , where Tτ = Jm1−s1,m2−s2TσJ

−1
−s1,−s2 .

By Theorem 1.1 and (2.1), we see that Tτ is an SG pseudo-differential oper-
ator with symbol in S0,0. Hence, by Theorem 1.3, Tτ : Lp(Rn)→ Lp(Rn) is
a bounded linear operator, and this completes the proof of the theorem.
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The following Sobolev embedding theorem is the Lp-analogue of the one
in [5].

Theorem 2.3. Let s1, s2, t1, t2 ∈ (−∞,∞) be such that s1 ≤ t1 and
s2 ≤ t2. Then Ht1,t2,p ⊆ Hs1,s2,p and the inclusion i : Ht1,t2,p ↪→ Hs1,s2,p is
a bounded linear operator.

We need a lemma.

Lemma 2.4. Let s1, s2 ≥ 0. Then Hs1,s2,p ⊆ Lp(Rn) and

‖u‖Lp(Rn) ≤ ‖u‖s1,s2,p, u ∈ Hs1,s2,p.

Proof. Let u ∈ Hs1,s2,p. Then J−s1,−s2u ∈ Lp(Rn). So,

〈 〉s1J−s2u ∈ Lp(Rn),

where J−s2 is the classical pseudo-differential operator with symbol σ−s2
given by

σ−s2(ξ) = 〈ξ〉s2 , ξ ∈ Rn.

Therefore J−s2u ∈ Lp(Rn), which is the same as saying that u is the classical
Lp-Sobolev space Hs2,p studied in Chapter 11 of [19]. By Theorem 11.5 in
[19], u ∈ Lp(Rn) and

‖u‖Lp(Rn) ≤ ‖u‖s2,p ≤ ‖u‖s1,s2,p,
where ‖ ‖s2,p is the norm in Hs2,p.

Proof of Theorem 2.3. We first suppose that s1 ≤ t1 and s2 ≤ t2. By
Lemma 2.4,

‖u‖s1,s2,p = ‖J−s1,−s2u‖Lp(Rn) ≤ ‖J−s1,−s2u‖t1−s1,t2−s2,p, u ∈ Ht1,t2,p.

By Theorem 2.2, there exists a positive constant C such that

‖J−s1,−s2u‖t1−s1,t2−s2,p ≤ C‖u‖t1,t2,p, u ∈ Ht1,t2,p,

and this completes the proof of the theorem.

Theorem 2.5. Let s1, s2, t1, t2 ∈ (−∞,∞) be such that s1 < t1 and
s2 < t2. Then the inclusion i : Ht1,t2,p ↪→ Hs1,s2,p is a compact operator.

To prove Theorem 2.5, we recall pseudo-differential operators with sym-
bols first introduced by Grushin [8]. Let m ∈ (−∞,∞). Then we let Sm0 be
the set of all functions σ in C∞(Rn × Rn) such that for all multi-indices α
and β, there exists a bounded function Cα,β on Rn for which

|(Dα
xD

β
ξ σ)(x, ξ)| ≤ Cα,β(x)(1 + |ξ|)m−|β|, x, ξ ∈ Rn,

and
lim
|x|→∞

Cα,β(x) = 0



190 A. Dasgupta and M. W. Wong

for |α| 6= 0. For σ ∈ Sm0 , the pseudo-differential operator Tσ is defined as in
(1.1). Then we have the following theorem proved in [17, 18]. The L2-version
of the theorem is in [8].

Theorem 2.6. Let σ ∈ Sm0 , m ∈ (−∞,∞), be such that

lim
|x|→∞

Cα,β(x) = 0

for all multi-indices α and β. Then for every positive number ε, Tσ : Hs+m,p

→ Hs−ε,p is a compact operator for −∞ < s <∞ and 1 < p <∞.

We need the following simple consequence of Theorem 2.6.

Corollary 2.7. For every positive number ε, Jε,ε : Lp(Rn) → Lp(Rn)
is a compact operator for 1 < p <∞.

Proof of Theorem 2.5. Let ε be a positive number such that

t1 − s1 − ε > 0, t2 − s2 − ε > 0.

Since J−1
ε,ε J−s1,−s2 is an SG pseudo-differential operator of orders s1+ε, s2+ε,

it follows that the composition Jε,εiJ
−1
ε,ε J−s1,−s2 of the mappings

J−1
ε,ε J−s1,−s2 : Ht1,t2,p → Ht1−s1−ε,t2−s2−ε,p,

i : Ht1−s1−ε,t2−s2−ε,p ↪→ Lp(Rn),
Jε,ε : Lp(Rn)→ Lp(Rn)

is compact since J−1
ε,ε J−s1,−s2 : Ht1,t2,p → Ht1−s1−ε,t2−s2−ε,p is a bounded

linear operator by Theorem 2.3 and Jε,ε : Lp(Rn) → Lp(Rn) is a compact
operator by Corollary 2.7. Thus, the linear operator

Ht1,t2,p 3 u 7→ Jε,εiJ
−1
ε,ε J−s1,−s2u = J−s1,−s2u ∈ Lp(Rn)

is compact, and this completes the proof.

3. Minimal and maximal operators. Let σ ∈ Sm1,m2 , m1,m2 > 0.
Then we can consider Tσ to be a linear operator from Lp(Rn) into Lp(Rn)
with dense domain S and we can easily prove that it is closable. Thus, the
minimal operator Tσ,0 of Tσ exists. In fact, the domain D(Tσ,0) of Tσ,0 con-
sists of all functions u in Lp(Rn) for which there exists a sequence {ϕk}∞k=1
in S such that ϕk → u in Lp(Rn) and Tσϕk → f for some f in Lp(Rn) as
k → ∞. Moreover, if u ∈ D(Tσ,0), then it can be shown that the limit f
does not depend on the choice of the sequence {ϕk}∞k=1 in S and so we can
define Tσ,0u to be f .

Let u and f be functions in Lp(Rn). Then we say that u ∈ D(Tσ,1) and
Tσ,1u = f if and only if

(u, T ∗σϕ) = (f, ϕ), ϕ ∈ S,
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where
(u, v) =

�

Rn
u(x)v(x) dx

for all measurable functions u and v on Rn, provided that the integral exists.
It can be proved that Tσ,1 is a closed linear operator from Lp(Rn) into Lp(Rn)
with domain D(Tσ,1) and S ⊂ D(Tσ,1). In fact, we can also prove that S is
contained in the domain D(T tσ,1) of the true adjoint T tσ,1 of Tσ,1. Furthermore,
Tσ,1u = Tσu for all u in D(Tσ,1).

It is a simple fact that Tσ,1 is an extension of Tσ,0. Thus, D(T tσ,1) ⊆
D(T tσ,0) and hence S ⊂ D(T tσ,0). In fact, Tσ,1 is the largest closed extension
of Tσ in the sense that if B is any closed extension of Tσ such that S ⊂ D(Bt),
then Tσ,1 is an extension of B. So, Tσ,1 is called the maximal operator of Tσ.

The main results that we want to prove in this section are given by the
following theorems.

Theorem 3.1. If σ ∈ Sm1,m2 , m1,m2 > 0, is elliptic, then Tσ,0 = Tσ,1.

Theorem 3.2. If σ ∈ Sm1,m2 , m1,m2 > 0, is elliptic, then D(Tσ,0) =
Hm1,m2,p.

We give a proof of Theorem 3.2 based on the following result that con-
tains an analogue of the Agmon–Douglis–Nirenberg inequalities in [1] for
SG pseudo-differential operators.

Theorem 3.3. Let σ ∈ Sm1,m2 , m1,m2 > 0, be elliptic. Then there exist
positive constants C1 and C2 such that

C1‖u‖m1,m2,p ≤ ‖Tσu‖Lp(Rn) + ‖u‖Lp(Rn) ≤ C2‖u‖m1,m2,p, u ∈ Hm1,m2,p.

Proof. By Theorem 2.2 on boundedness of SG pseudo-differential oper-
ators between Sobolev spaces and Theorem 2.3 on the boundedness of the
Sobolev embedding, there exists a positive constant C ′ such that

‖Tσu‖Lp(Rn) + ‖u‖Lp(Rn) ≤ C ′‖u‖m1,m2,p, u ∈ Hm1,m2,p.

Since σ is elliptic, Theorem 1.4 ensures that there exists a symbol τ in
S−m1,−m2 such that

u = TτTσu−Ru, u ∈ Hm1,m2,p,

whereR is an SG pseudo-differential operator with symbol in
⋂
k1,k2∈R S

k1,k2 .
So, by Theorem 2.2 again, there exists a positive constant C such that

‖u‖m1,m2,p ≤ C(‖Tσu‖Lp(Rn) + ‖u‖Lp(Rn)), u ∈ Hm1,m2,p.

This completes the proof.

We also need the following result.

Proposition 3.4. For −∞ < s1, s2 <∞ and 1 < p <∞, S is dense in
Hs1,s2,p.
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Proof. Let u ∈ Hs1,s2,p. Then J−s1,−s2u ∈ Lp(Rn). Since S is dense in
Lp(Rn), we can find a sequence {ϕk}∞k=1 in S such that ϕk → u in Hs1,s2,p

as k →∞. For k = 1, 2, . . . , let ψk = J−1
−s1,−s2ϕk. Then ψk ∈ S, k = 1, 2, . . . ,

and

‖ψk−u‖s1,s2,p=‖J−s1,−s2ψk−J−s1,−s2u‖Lp(Rn) =‖ϕk−J−s1,−s2u‖Lp(Rn) → 0

as k →∞, and this completes the proof of the theorem.

Proof of Theorem 3.2. Let u ∈ Hm1,m2,p.By the density of S inHm1,m2,p,
we can find a sequence {ϕk}∞k=1 in S such that ϕk → u in Hm1,m2,p as
k → ∞. By the second of the Agmon–Douglis–Nirenberg inequalities in
Theorem 3.3, we see that {Tσϕk}∞k=1 and {ϕk}∞k=1 are Cauchy sequences
in Lp(Rn). Hence ϕk → u and Tσϕk → f for some u and f in Lp(Rn) as
k → ∞. Hence u ∈ D(Tσ,0) and Tσ,0u = f. Now, let u ∈ D(Tσ,0). Then
there exists a sequence {ϕk}∞k=1 in S such that ϕk → u in Lp(Rn) and
Tσϕk → f for some f in Lp(Rn) as k →∞. So, {ϕ}∞k=1 and {Tσϕk}∞k=1 are
Cauchy sequences in Lp(Rn). By the first of the Agmon–Douglis–Nirenberg
inequalities in Theorem 3.3, we see that {ϕ}∞k=1 is a Cauchy sequence in
Hm1,m2,p. Since Hm1,m2,p is complete, it follows that ϕk → v in Hm1,m2,p

for some v in Hm1,m2,p as k →∞. So, by Theorem 2.3 on the boundedness of
the Sobolev embedding, ϕk → v in Lp(Rn). Hence u = v and u ∈ Hm1,m2,p.

Proof of Theorem 3.1. Since Tσ,1 is an extension of Tσ,0 and D(Tσ,0) =
Hm1,m2,p, it is enough to prove that D(Tσ,1) ⊆ Hm1,m2,p. Let u ∈ D(Tσ,1).
Since σ is elliptic, it follows from Theorem 1.4 that there exists a symbol τ
in S−m1,−m2 such that

u = TτTσu−Ru,

whereR is an SG pseudo-differential operator with symbol in
⋂
k1,k2∈R S

k1,k2 .
Since

Tσu = Tσ,1u ∈ Lp(Rn),

it follows from the boundedness of SG pseudo-differential operators between
Sobolev spaces in Theorem 2.2 that u ∈ Hm1,m2,p. So, D(Tσ,1) ⊆ Hm1,m2,p,
as asserted.

4. Fredholm SG pseudo-differential operators. Let us first recall
that a closed linear operator A from a complex Banach space X into a
complex Banach space Y with dense domain D(A) is said to be Fredholm if
the range R(A) of A is a closed subspace of Y , and the null space N(A) of A
and the null space N(At) of the true adjoint At of A are finite-dimensional.
For a Fredholm operator A, the index i(A) of A is defined by

i(A) = dimN(A)− dimN(At).
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The following criterion for a closed linear operator is usually attributed
to Atkinson [2].

Theorem 4.1. Let A be a closed linear operator from a complex Banach
space X into a complex Banach space Y with dense domain D(A). Then A
is Fredholm if and only if we can find a bounded linear operator B : Y → X,
a compact operator K1 : X → X and a compact operator K2 : Y → Y such
that BA = I +K1 on D(A) and AB = I +K2 on Y .

Let X be a complex Banach space and let A be a closed linear operator
from X into X with dense domain D(A). Then the spectrum Σ(A) of A is
defined in the usual way, i.e.,

Σ(A) = C \ %(A),

where %(A) is the resolvent set of A given by

%(A) = {λ ∈ C : A− λI is bijective}
and I is the identity operator on X. The essential spectrum Σw(A) of A in
the sense of Wolf [16] is defined by

Σw(A) = C \ Φw(A), where Φw(A) = {λ ∈ C : A− λI is Fredholm}.
An important fact is that i(A − λI) is a constant for all λ in a connected
component of Φw(A). The essential spectrum Σs(A) of A in the sense of
Schechter [13] is defined by

Σs(A) = C \ Φs(A), where Φs(A) = {λ ∈ Φw(A) : i(A− λI) = 0}.
All the results on Fredholm operators hitherto described can be found

in the books [14], [15] by Schechter.
The first main result in this section is the following theorem.

Theorem 4.2. Let σ ∈ Sm1,m2 , m1,m2 > 0, be elliptic. Then for 1 <
p < ∞, Tσ,0 is a Fredholm operator on Lp(Rn) with domain Hm1,m2,p.
Furthermore, if σ ∈ S0,0 is elliptic, then the bounded linear operator Tσ :
Lp(Rn)→ Lp(Rn) is Fredholm.

Proof. Since σ is elliptic, it follows from Theorem 1.4 that there exists
a symbol τ in S−m1,−m2,p such that

TτTσ = I +R and TσTτ = I + S,

where R and S are infinitely smoothing in the sense that they are SG pseudo-
differential operators with symbols in

⋂
k1,k2∈R S

k1,k2 . So, for all positive
numbers t1 and t2, the linear operator R : Lp(Rn) → Lp(Rn) is the same
as the composition of the linear operators R : Lp(Rn) → Ht1,t2,p and i :
Ht1,t2,p ↪→ Lp(Rn). Since R : Lp(Rn) → Ht1,t2,p is bounded by Theorem
2.2 and i : Ht1,t2,p ↪→ Lp(Rn) is compact by Theorem 2.5, it follows that
R : Lp(Rn) → Lp(Rn) is compact. Similarly, S : Lp(Rn) → Lp(Rn) is
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compact. So, by Theorem 4.1, Tσ,0 is a compact, as asserted. The proof for
the Fredholmness of Tσ : Lp(Rn)→ Lp(Rn) when σ ∈ S0,0 is the same.

The following theorem gives the essential spectrum in the sense of Wolf
of an elliptic SG pseudo-differential operator.

Theorem 4.3. Let σ ∈ Sm1,m2 , m1,m2 > 0, be elliptic. Then

Σw(Tσ,0) = ∅.
Proof. We only need to prove that σ−λ is elliptic for all λ in C, for then

by Theorem 4.2, Tσ,0 − λI is a Fredholm operator on Lp(Rn) with domain
Hm1,m2,p. By the ellipticity of σ, there exist positive constants C and R such
that

|σ(x, ξ)− λ| ≥ C〈x〉m2〈ξ〉m1 = 〈x〉m2〈ξ〉m1

(
C − |λ|

〈x〉m2〈ξ〉m1

)
whenever |x|2 + |ξ|2 ≥ R. Since 〈x〉m2〈ξ〉m1 → ∞ as |x|2 + |ξ|2 → ∞, it
follows that there exists another positive constant R′ such that

|σ(x, ξ)− λ| ≥ C

2
〈x〉m2 〈ξ〉m1

whenever |x|2 + |ξ|2 ≥ R′. Thus, σ − λ is elliptic.

The proof of Theorem 4.3 depends on the hypothesis that σ is a symbol
with positive orders. If σ ∈ S0,0, then by Theorem 2.2, Tσ : Lp(Rn) →
Lp(Rn) is a bounded linear operator and we have the following result on the
essential spectra of Tσ.

Theorem 4.4. Let σ ∈ S0,0. Then

Σs(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}, Σw(Tσ) ⊆ {λ ∈ C : |λ| ≥ Li},
where

Li = lim inf
|(x,ξ)|→∞

|σ(x, ξ)|, Ls = lim sup
|(x,ξ)|→∞

|σ(x, ξ)|.

Remark 4.5. A proof for Σs(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls} can be found
in [11] by Nicola and Rodino using more advanced techniques. We give a
completely elementary proof here.

Proof of Theorem 4.4. Let λ ∈ C be such that |λ| > Ls. Let ε be a
positive number such that

|λ| − ε > Ls.

Then there exists a positive number R such that

sup
|x|2+|ξ|2≥R

|σ(x, ξ)| < Ls + ε/2.

So, for |x|2 + |ξ|2 ≥ R,
|σ(x, ξ)− λ| ≥ |λ| − |σ(x, ξ)| > Ls + ε− Ls − ε/2 = ε/2.
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Therefore σ−λ is elliptic and hence Tσ−λI : Lp(Rn)→ Lp(Rn) is Fredholm
by Theorem 2.2. Thus, {λ ∈ C : |λ| > Ls} ⊆ Φw(Tσ), which is the same as

Σw(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}.
Since i(Tσ − λI) is constant for all λ in {λ ∈ C : |λ| > Ls} and

%(Tσ) ∩ {λ ∈ C : |λ| > Ls} 6= ∅,
it follows that i(Tσ − λI) = 0 for all λ in {λ ∈ C : |λ| > Ls}. Thus,

Σs(Tσ) ⊆ {λ ∈ C : |λ| ≤ Ls}.
Now, let λ ∈ C be such that |λ| < λi. Let ε be a positive number such

that
|λ|+ ε < Li.

Then there exists a positive number R such that

inf
|x|2+|ξ|2≥R

|σ(x, ξ)| > Li − ε/2.

So, for |x|2 + |ξ|2 ≥ R,
|σ(x, ξ)− λ| ≥ |σ(x, ξ)| − |λ| > Li − ε/2− Li + ε = ε/2.

Therefore σ−λ is elliptic and hence Tσ−λI : Lp(Rn)→ Lp(Rn) is Fredholm
by Theorem 4.2. Thus, {λ ∈ C : |λ| < Li} ⊆ Φw(Tσ), or Σw(Tσ) ⊆ {λ ∈ C :
|λ| ≥ Li}.

As a consequence of Theorem 4.4, we have the following spectral alter-
native for a class of elliptic SG pseudo-differential operators with symbols
in S0,0.

Theorem 4.6. Let σ ∈ S0,0 be such that

lim
|(x,ξ)|→∞

|σ(x, ξ)| = L > 0.

Then

Σw(Tσ) = {λ ∈ C : |λ| = L} or Σs(Tσ) ⊆ {λ ∈ C : |λ| = L}.
Proof. By Theorem 4.4,

Σw(Tσ) ⊆ {λ ∈ C : |λ| = L}.
Suppose that Σw(Tσ) 6= {λ ∈ C : |λ| = L}. Then there exists a complex
number λ0 such that |λ0| = L and λ0 ∈ Φw(Tσ). So, using the first conclusion
in Theorem 4.4, the fact that Φw(Tσ) is an open set and that i(Tσ − λI) is
constant on every connected component of Φw(Tσ), we see that i(Tσ−λI) = 0
for all λ in C with |λ| 6= L. So,

Σs(Tσ) ⊆ {λ ∈ C : |λ| = L},
as asserted.
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Remark 4.7. Suppose that

Σw(Tσ) = {λ ∈ C : |λ| = L}.
Then the best that we can say about Σs(Tσ) is given by the first conclusion
of Theorem 4.4 to the effect that

Σs(Tσ) ⊆ {λ ∈ C : |λ| ≤ L}.
To see this by means of an example, let σ be the symbol in S0,0 given by

σ(x, ξ) = Lei arg(x+iξ)

for all x and ξ in R such that x2 + ξ2 ≥ 1. Then Tσ : L2(R) → L2(R)
is a Fredholm operator with nonzero index. In other words, for p = 2,
0 ∈ Σs(Tσ) \Σw(Tσ). So,

Σs(Tσ) * {λ ∈ C : |λ| = L}.
See, for instance, Theorem 2.3 in Chapter 5 of the book [9] by Kumano-go
for more details.

Acknowledgments. We are grateful to the referee for the very useful
comments that have improved the formulation and the presentation of the
spectral alternative given in Theorem 4.6 and Remark 4.7.
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