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Banach algebras with unique uniform norm II

by

S. J. Bhatt and H. V. Dedania (Vallabh Vidyanagar)

Abstract. Semisimple commutative Banach algebras A admitting exactly one uni-
form norm (not necessarily complete) are investigated. A has this Unique Uniform Norm
Property iff the completion U(A) of A in the spectral radius r(·) has UUNP and, for any
non-zero spectral synthesis ideal I of U(A), I ∩ A is non-zero. A is regular iff U(A) is
regular and, for any spectral synthesis ideal I of A, A/I has UUNP iff U(A) is regular
and for any spectral synthesis ideal I of U(A), I = k(h(A ∩ I)) (hulls and kernels in
U(A)). A has UUNP and the Shilov boundary coincides with the Gelfand space iff A is
weakly regular in the sense that, given a proper, closed subset F of the Gelfand space,
there exists a non-zero x in A having its Gelfand transform vanishing on F . Several classes
of Banach algebras that are weakly regular but not regular, as well as those that are not
weakly regular but have UUNP are exhibited. The UUNP is investigated for quotients,
tensor products, and multiplier algebras. The property UUNP compares with the unique
C∗-norm property on (not necessarily commutative) Banach ∗-algebras. The results are
applied to multivariate holomorphic function algebras as well as to the measure algebra of
a locally compact abelian group G. For a continuous weight ω on G, the Beurling algebra
L1(G,ω) (assumed semisimple) has UUNP iff it is regular.

1. Introduction. A uniform norm on a normed algebra (A, ‖ · ‖) is a
(not necessarily complete) submultiplicative norm | · | satisfying the square
property |x2| = |x|2 (x ∈ A). In fact, in the presence of the square property,
submultiplicativity is automatic [De]. If | · | is a uniform norm on A, then
A is semisimple and commutative; further, if (A, ‖ · ‖) is complete, then the
spectral radius r(·) = rA(·) is (in fact, the greatest) uniform norm. A has
UUNP (unique uniform norm property) if A admits exactly one uniform
norm. Notice that any two equivalent uniform norms are equal. This aes-
thetically pleasing property arises naturally in [BhDe1] in the investigations
of incomplete algebra norms on Banach algebras [TY] and spectral exten-
sion properties [Me1], and it is a natural companion of the celebrated unique
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complete norm property in Banach algebras ([BaDa], [DL]), as well as the
unique C∗-norm property (UC∗NP) in Banach ∗-algebras ([Ba], [HKV]).
The present paper is a third paper in continuation of [BhDe1], [BhDe2];
however, it is independent of them.

The first purpose of the present paper is to place UUNP in proper per-
spective in the general theory of commutative Banach algebras. Our ap-
proach to UUNP exhibits the role of the enveloping uniform algebra U(A)
(which is the Hausdorff completion of A in the spectral radius) in under-
standing A. In Section 2, we show that A has UUNP iff U(A) has UUNP
and for any non-zero spectral synthesis ideal I of U(A), I ∩ A is non-zero.
We discuss a simple example of A such that U(A) has UUNP, but A does
not have UUNP. We also show that, if A has UUNP and if I is a spec-
tral synthesis ideal of A, then I has UUNP, but A/I fails to have UUNP.
The property UUNP turns out to be closely related with regularity. A Ba-
nach algebra (A, ‖ · ‖) (assumed semisimple and commutative) is regular
(called completely regular in [BD]) if, given a closed subset F of the Gelfand
space ∆(A) and ϕ ∈ ∆(A) \ F , there exists x ∈ A such that x̂(F ) = {0},
x̂(ϕ) 6= 0. Regularity implies UUNP but not conversely [BhDe1]. The rel-
evance of UUNP to regularity is revealed by Theorem 2.6, which is one of
the main results of Section 2. It states that A is regular iff U(A) is regu-
lar and A/I has UUNP for any spectral synthesis ideal I of A iff U(A) is
regular and I = k(h(A∩ I)) (the kernel and hull in U(A)) for any spectral
synthesis ideal I of U(A). Following [BhDe1], A is weakly regular if given a
proper closed set F in ∆(A), there exists x 6= 0 in A such that x̂(F ) = {0}.
This notion seems to be of independent interest. We give a fairly general
construction of Banach algebras which are weakly regular, but not regular.
It so happens that A is weakly regular iff ∆(A) = ∂(A) (Shilov boundary)
and A has UUNP. This is used to discuss conditions under which regularity
is equivalent to UUNP. A has SEP (spectral extension property) [Me1] if for
any (submultiplicative) norm | · | on A, r(x) ≤ |x| (x ∈ A). The following
graph summarizes the inter-relations among these four properties.
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Does UUNP imply SEP? Our conjecture is that it does not.
The second purpose of the paper is to compare a commutative (not nec-

essarily involutive) Banach algebra A having UUNP with a (not necessarily
commutative) Banach ∗-algebra B having UC∗NP. This is motivated by the
apparent similarity between the C∗-property ‖x∗x‖ = ‖x‖2 of a C∗-norm
and the square property ‖x2‖ = ‖x‖2 of a uniform norm. Then U(A) corre-
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sponds to C∗(B), the enveloping C∗-algebra of B; and regularity corresponds
to ∗-regularity [Ba], [P]. Though our results for A relating regularity and
UUNP are comparable to the results in [Ba] for B relating ∗-regularity and
UC∗NP, the present paper also exhibits that both these aspects are not com-
pletely analogous. This is expected in view of the facts that though C∗(B)
has UC∗NP and is ∗-regular, U(A) need neither have UUNP nor be regular;
on the other hand, A is inverse closed in U(A), while B need not be inverse
closed in C∗(B), unless it is hermitian. It is shown in Section 3 that the
algebraic tensor product A ⊗ B has UUNP iff both A and B have UUNP.
This supplements Tomiyama’s result that A ⊗̂α B (completion in a cross
norm α) is regular iff both A and B are regular; on the other hand, it com-
pares with the result in [HKV] that if A and B are Banach ∗-algebras, then
A⊗ B is ∗-regular (resp. has UC∗NP) iff each of A, B and C∗(A)⊗ C∗(B)
is ∗-regular (resp. has UC∗NP). In [BhDe2], it is shown that unlike UC∗NP
[Ba, p. 849], A has UUNP iff the unitization Ae has UUNP. This throws fur-
ther light on the Metatheorem envisaged in [Bh1], [Bh2] that there exists
a structural analogy between certain (and not all) aspects of C∗-algebras
and uniform Banach algebras (uB-algebras); more generally, between her-
mitian Banach ∗-algebras and Banach algebras commutative modulo the
radical. This also implies that if A has UUNP, then each of the A-valued
function algebras C0(X,A), Cn([a, b],A), lipα([a, b],A), L1(G,A), Lp(G,A)
(G a compact abelian group, 1 < p <∞) has UUNP.

In Section 4, we investigate the UUNP for the Beurling algebras L1(G,ω).
It is shown that if L1(G,ω) is semisimple, then it has UUNP iff it is regular.
If H is a subgroup of the rationals Q containing 1, and if ω is a weight
on H, then `1(H,ω) has UUNP iff `1(Z, ω) has UUNP. It is shown that
the semigroup algebras L1(R+, ω) and `1(Z+, ω) do not have UUNP for all
weights ω.

In the brief Section 5, we investigate sufficient conditions under which
a uB-algebra has UUNP. This leads to the constructions of the variants
of the polydisc algebra and the ball algebra in Cn, as well as those of the
H∞-algebras on the polydisc and the ball which have UUNP, but are not
weakly regular. Note that the polydisc algebra and the ball algebra in Cn,
as well as their H∞-analogues, do not have UUNP.

In Section 6, we investigate UUNP for the multiplier algebra M(A) of
A. If M(A) has UUNP, then A has UUNP; and the converse holds if A
is a uB-algebra. In the case where A is weakly regular, the closed ideal
M00(A) = {T ∈ M(A) : T̂ = 0 on h(A)} has UUNP; while the closed ideal
M0(A) = {T ∈ M(A) : T̂ |∆(A) ∈ C0(∆(A))} fails to have UUNP. When A
is weakly regular, the closed subalgebra DecM(A) consisting of multipliers
defining decomposable operators on M(A) by multiplication has UUNP;
whereas the subalgebra DM(A) consisting of decomposable multipliers on A
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fails to have UUNP. These results are applied to the measure algebra M(G)
of a locally compact abelian group G. Note that M(G) ∼= M(L1(G)). Like
regularity, M(G) has UUNP iff G is discrete [BhDe1]. In the non-discrete
case, M(G) admits minimum and maximum uniform norms. The Banach
subalgebras of M(G) which have UUNP include the algebra L1(G), the
closed subalgebra generated by {L1(G),Md(G)}, the algebra DecM(G) con-
sisting of measures µ whose Fourier–Stieltjes transform µ̂ are hull-kernel con-
tinuous on ∆(M(G)), as well as the algebra DM(G) consisting of measures
defining decomposable convolution operators on L1(G). In fact, DecM(G)
and DM(G) are weakly regular, non-regular, having hermitian involution
and having UUNP.

2. Ideals, quotients, UUNP and regularity. Throughout the paper,
let (A, ‖ · ‖) be a semisimple commutative Banach algebra, not necessarily
unital. Let ∆(A) be its Gelfand space. Let U(A) be the uB-algebra obtained
by completing (A, r(·)), where r(x) = sup{|ϕ(x)| : ϕ ∈ ∆(A)} (x ∈ A), the
spectral radius. An ideal I of A is a spectral synthesis ideal (or a semisimple
ideal) if I = k(h(I)), the kernel of the hull of I in A; equivalently, the
quotient algebra A/I is semisimple. A closed set F ⊂ ∆(A) is a set of
uniqueness for a subalgebra B of A if |x|F = sup{|ϕ(x)| : ϕ ∈ F} (x ∈ B)
defines a norm on the algebra B.

It is shown in [Ba, Proposition 2.4] that a ∗-semisimple Banach ∗-algebra
B has UC∗NP iff, for any non-zero closed ideal I of C∗(B), B ∩ I 6= (0).
The following compares with this.

Proposition 2.1. The following are equivalent :

(i) A has UUNP ;
(ii) U(A) has UUNP , and every closed subset F of ∆(U(A)) which is a

set of uniqueness for A is also a set of uniqueness for U(A);
(iii) U(A) has UUNP , and I∩A 6= (0) for any non-zero spectral synthesis

ideal I of U(A).

Proof. (i)⇒(ii). Clearly U(A) has UUNP. Let F ⊂ ∆(U(A)) be a closed
set of uniqueness forA. Define |x|F = sup{|ϕ(x)| : ϕ ∈ F} (x ∈ U(A)). Then
|·|F is a uniform seminorm on U(A) which is a norm on A. By (i), |·|F = r(·)
on A. Since A is dense in U(A), | · |F = r(·) on U(A) too. Thus F is a set of
uniqueness for U(A).

(ii)⇒(iii). Let I be a non-zero spectral synthesis ideal of U(A). Define
F = h(I) = {ϕ ∈ ∆(U(A)) : ϕ(x) = 0 for all x ∈ I} . Then F is not a set
of uniqueness for U(A). Hence, by (ii), F is not a set of uniqueness for A,
and so I ∩ A = k(F ) ∩ A 6= (0).

(iii)⇒(i). Let | · | be a uniform norm on A. Then | · | ≤ r(·) on A, and so
| · | can be extended as a uniform seminorm on U(A). Let I = ker(| · |). Then
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I is a spectral synthesis ideal of U(A). Since | · | is a norm on A, I∩A = (0).
Hence I = (0) by (iii). Thus | · | is a norm on U(A). Since U(A) has UUNP,
| · | = r(·) on U(A), and so on A. Thus A has UUNP.

Example 2.2. There exists A not having UUNP, but U(A) is regular.
Let ω = (ωn)∞n=−∞ be defined as ωn = exp(αn), where α0 = 1, and αn =
|n|/{log(|n|)+1} (n ∈ Z\{0}). Let `1(Z, ω) = {a = (an)∞n=−∞ : each an ∈ C,
and

∑∞
n=−∞ |an|ωn < ∞}, a convolution Banach ∗-algebra with the norm

‖a‖ =
∑∞
n=−∞ |an|ωn and the involution (an)∗ = (a−n). Then `1(Z, ω) is a

hermitian, semisimple, commutative Banach ∗-algebra with more than one
C∗-norm [Ba, p. 847]. Now, in a commutative Banach ∗-algebra, a C∗-norm
is a uniform norm. Thus A does not have UUNP. On the other hand, the
hermiticity of A implies that r(x) = m(x) (x ∈ A), where m is the Gelfand–
Naimark pseudo-norm [BD, Theorem 3, p. 188]. Hence U(A) = C∗(A),
which is regular.

The following compares with the well known fact that, if I is a closed
ideal of A and if A is regular, then both I and A/I are regular.

Proposition 2.3. Let A have UUNP and I be a closed ideal of A. If
I is a spectral synthesis ideal of A, or if I (closure in U(A)) is a spectral
synthesis ideal of U(A), then I has UUNP. The quotient algebra A/I need
not have UUNP.

Proof. (A) Note that ∆(I) ∼= ∆(A) \ h(I) and ∂(I) ⊆ ∂(A). Let F be a
closed subset of ∆(I) not containing ∂(I). By [BhDe1, Theorem 2.3], it is
sufficient to prove that F is not a set of uniqueness for I. Let W = ∆(I)\F ,
and K = ∆(A) \W . Since ∆(I) is open in ∆(A), K is closed in ∆(A), and
K does not contain ∂(A). Again by [BhDe1, Theorem 2.3] applied to A,
there exists a ∈ A, a 6= 0, such that â|K = 0. Fix ϕ ∈W , ϕ(a) 6= 0. We may
assume ϕ(a) = 1. Since ψ(a) = 0 for all ψ ∈ h(I), we have a ∈ k(h(I)).

Case (i). Let I be a spectral synthesis ideal of A. Then k(h(I)) = I.
Thus a ∈ I. Since F ⊆ K and â|K = 0, we have â|F = 0. This shows that
F is not a set of uniqueness for I.

Case (ii). Assume that I is a spectral synthesis ideal of U(A). Noting
that ∆(A) = ∆(U(A)) and h(I) = h(I), we see that a ∈ k(h(I)) ⊂ k(h(I))
= I. Thus a ∈ I ∩A. Choose y ∈ I such that r(a−y)r(a) < 1. Then ya ∈ I
and (ya)∧|F = 0. If (ya)∧(ϕ) = 0, then

1 = (a2)∧(ϕ)− (ya)∧(ϕ) = |(a− y)∧(ϕ)â(ϕ)| ≤ r(a− y)r(a) < 1,

which is a contradiction. Thus (ya)∧(ϕ) 6= 0, and so F is not a closed set of
uniqueness for I.

(B) Let ∆r = {z ∈ C : |z| < r}. For a bounded open set U , let H(U)
denote the algebra of all holomorphic functions on U , C(U) denote the
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algebra of all continuous functions on U . LetA = {f ∈ C(∆2) : f ∈ H(∆1)},
a uB-algebra with pointwise operations and the norm ‖f‖∞ = sup{|f(z)| :
z ∈ ∆2}. By [Me1, Example 2], A has SEP, and hence it has UUNP. Now
I = {f ∈ A : f = 0 on ∆1} is a spectral synthesis ideal of A, and A/I
is isometrically isomorphic to the disc algebra A(∆1) = {f ∈ C(∆1) : f ∈
H(∆1)}, which obviously admits infinitely many distinct uniform norms.

Does there exist a spectral synthesis ideal I of A such that both I and
A/I have UUNP, but A does not have UUNP? Let I be a closed ideal of A.
Let A have UUNP. Does I have UUNP? (Note that the proof of Theorem
6.1 implies that the answer is affirmative if I satisfies: a ∈ A, aI = {0}
implies a = 0.)

Lemma 2.4. Let B be a dense subalgebra of A. If B has UUNP , then A
has UUNP.

Proof. Let | · | be a uniform norm on A. Then | · | ≤ rA(·) ≤ ‖ · ‖
on A. Let y ∈ A. Choose a sequence (yn) in B such that ‖yn−y‖ → 0. Then
|yn−y| → 0. Since B has UUNP, |yn| = rA(yn) for all n, and so |y| = rA(y).
Thus A has UUNP.

Lemma 2.5. Let I be a spectral synthesis ideal of U(A). If A/(A ∩ I)
has UUNP , then I = k(h(A ∩ I)).

Proof. Let J = (A∩I)− (closure in U(A)). Then k(h(J )) = k(h(A∩I)).
Consider the homomorphisms φ : A/(A ∩ I) → U(A)/I, φ(x + (A ∩ I)) =
x+I, and ψ : A/(A∩I)→ U(A)/k(h(A∩I)), ψ(x+A∩I) = x+k(h(A∩I)).
Now φ is one-one. Also, ψ is one-one. Indeed, since A/(A ∩ I) has UUNP,
A∩ I is a spectral synthesis ideal of A, and so A∩ I = k(h(J )) ∩A. Thus
ψ(x+A∩I) = 0 implies that x ∈ k(h(A∩I))∩A = k(h(J ))∩A = A∩I,
showing that ψ is one-one. Now, as A/(A ∩ I) has UUNP, the subalgebra
{x+I : x ∈ A} of U(A)/I as well as the subalgebra {x+k(h(J )) : x ∈ A} of
U(A)/k(h(J )) have UUNP. Also, U(A)/I is semisimple and φ(A/(A∩I)) is
dense in U(A)/I. Hence by Lemma 2.4, U(A)/I also has UUNP. For x in A,
|x+A∩I|1 = rU(A)/I(x+I) and |x+A∩I|2 = rU(A)/k(h(J ))(x+k(h(J )))
define uniform seminorms on A/(A ∩ I). Further, | · |1 and | · |2 are norms
because I and k(h(J )) are spectral synthesis ideals of U(A). As A/(A∩I)
has UUNP, | · |1 = | · |2 on A/(A ∩ I).

Suppose, if possible, that x ∈ I, but x 6∈ k(h(J )). Choose a sequence
(xn) in A such that rU(A)(xn − x)→ 0. Then

0 = rU(A)/I(x+ I) = lim rU(A)/I(xn + I) = lim |xn +A ∩ I|1
= lim |xn +A ∩ I|2 = lim rU(A)/k(h(J ))(xn + k(h(J )))

= rU(A)/k(h(J ))(x+ k(h(J ))) 6= 0
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because U(A)/k(h(J )) is semisimple and x 6∈ k(h(J )). This contradiction
proves that I = k(h(J )) = k(h(A∩ I)).

Following [Ba], a ∗-semisimple Banach ∗-algebra B is ∗-regular if for any
closed subset F of the primitive ideal spaceΠ(B) of C∗(B) and P ∈ Π(B)\F ,
there exists x in A such that x̂(F ) = (0) and x̂(P ) 6= 0. Here x̂(I) = x+ I
(I ∈ Π(B)). By [Ba, Theorem 2.3 and Proposition 2.4], B is ∗-regular iff
for any ‖ · ‖C∗(B)-closed ∗-ideal I of B, B/I has UC∗NP iff for any closed
ideal I of C∗(B), I ∩B is dense in I. The following, which provides a UUNP
analogue of this, is one of the main results of this paper.

Theorem 2.6. The following are equivalent :

(i) A is regular ;
(ii) U(A) is regular , and the quotient algebra A/I has UUNP for every

spectral synthesis ideal I of A;
(iii) U(A) is regular , and I = k(h(A ∩ I)) for every spectral synthesis

ideal I of U(A).

Proof. (i)⇒(ii). Let A be regular. Then U(A) is regular. Let I be a
spectral synthesis ideal of A. Then A/I is regular and semisimple. As ev-
ery regular, semisimple, commutative Banach algebra has UUNP, A/I has
UUNP.

(ii)⇒(iii). Let I be a spectral synthesis ideal of U(A). Then U(A)/I is
semisimple, and so A/(A∩I) is semisimple. By (ii), A/(A∩I) has UUNP.
Hence, Lemma 2.5 implies that I = k(h(A∩ I)).

(iii)⇒(i). Let Γ be closed subset of ∆(A) in the Gelfand topology. Since
∆(A) is topologically homeomorphic to ∆(U(A)) in the Gelfand topologies,
corresponding to the set Γ , there exists a unique closed subset Γ̃ of ∆(U(A))
in the Gelfand topology. Since U(A) is regular, h[k(Γ̃ )] = Γ̃ . To prove that
A is regular, it is enough to show that h[k(Γ )] ⊆ Γ . So let ϕ ∈ h[k(Γ )]. Then
there exists a unique ϕ̃ ∈ ∆(U(A)) such that ϕ̃ = ϕ on A. Since ϕ ∈ h[k(Γ )],
we have ϕ̃ = 0 on k(Γ ). But k(Γ ) = A∩k(Γ̃ ). Therefore ϕ̃ = 0 on A∩k(Γ̃ ).
Since k(Γ̃ ) is a spectral synthesis ideal, we have k(Γ̃ ) = k[h(A∩ k(Γ̃ ))] due
to the assumption. Hence ϕ̃ = 0 on k(Γ̃ ). Thus ϕ̃ ∈ h[k(Γ̃ )] = Γ̃ because
U(A) is regular. So ϕ ∈ Γ . This proves that A is regular.

A semisimple, commutative Banach algebra A is an N -algebra [Ri, p. 92]
if every closed ideal of A is a spectral synthesis ideal. We omit the proof of
the following result.

Proposition 2.7. Consider the following.

(i) A is regular ;
(ii) U(A) is regular , and for every spectral synthesis ideal I of U(A),

A ∩ I is dense in I.
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Then (ii) implies (i). Further , if U(A) is an N -algebra, then (i) implies
(ii).

Note that ifA is a hermitian, semisimple, commutative Banach ∗-algebra,
then U(A) = C0(∆(A)), which is an N -algebra. It would be interesting to
find an example of a uB-algebra other than C0(X), which is an N -algebra.

By [BhDe1], if dimA > 1 and A has UUNP, then A cannot be an inte-
gral domain. The following shows that the converse does not hold, thereby
answering a query in [BhDe1, p. 581].

Proposition 2.8. There exists a semisimple commutative Banach alge-
bra A having the following properties:

(1) dimA > 1;
(2) A does not have UUNP ;
(3) A is not an integral domain.

Proof. Let (A1, ‖ ·‖1) and (A2, ‖ ·‖2) be unital, semisimple commutative
Banach algebras such that A1 does not have UUNP and A2 is not an integral
domain. Define A = A1 × A2, with co-ordinatewise operations and the
norm ‖(a1, a2)‖ = max(‖a1‖1, ‖a2‖2). Then A is not an integral domain.
Let I = A1×{0}. Then k(h(I)) = I, which does not have UUNP. Hence A
cannot have UUNP due to Proposition 2.3.

We recall that for semisimple Banach algebras, regularity implies weak
regularity implies UUNP, and that these implications are strict. Weak reg-
ularity, introduced in [BhDe1], seems to be of independent interest. By
[BhDe1, p. 581], A is weakly regular iff ∂(A) = ∆(A) and A has UUNP. The
following gives a large class of weakly regular, non-regular Banach algebras.

Proposition 2.9. Let (B, ‖ · ‖B) be a unital semisimple commutative
Banach algebra. Let Ω = ∆(B)× [0, 1]. Let A = {f ∈ C(Ω) : f(ϕ, 0) = b̂(ϕ)
(ϕ ∈ ∆(B)) for some b ∈ B} with norm ‖f‖ = max(‖f‖Ω, ‖f(·, 0)‖B), where
‖ · ‖Ω denotes the supnorm on Ω. Then:

(1) (A, ‖ · ‖) is a semisimple commutative Banach algebra with pointwise
operations.

(2) ∆(A) ∼= Ω and ∂(A) = ∆(A).
(3) A has SEP , and hence UUNP.
(4) A is weakly regular.
(5) A is a uB-algebra iff B is a uB-algebra iff ‖ · ‖ = ‖ · ‖Ω on A.
(6) A is regular iff B is regular.
(7) A is hermitian with complex conjugation iff B is hermitian with re-

spect to some involution.
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Proof. (1) This is clear.
(2) Define T : Ω → ∆(A) as T (x, t) = ϕx,t where ϕx,t(f) = f(x, t)

(f ∈ A). Clearly T is continuous. To show that T is one-one, let (x1, t1) 6=
(x2, t2). If t1 = t2 = 0, then x1 6= x2. Since B is semisimple, there exists
b ∈ B such that b̂(x1) 6= b̂(x2). But b has an extension to Ω belonging
to A. Now, if one of t1, t2 is non-zero, say t1 6= 0, then there exists a
continuous function f : Ω → [0, 1] such that f(x1, t1) = 1, f(K) = {0},
where K = ∆(B)× {0} ∪ {(x2, t2)}. Thus T is one-one. Now it is enough to
prove that any ϕ ∈ ∆(A) is of the form ϕ = ϕx,t for some (x, t) ∈ ∆(A).
Define I = {f ∈ A : f(∆(B)× {0}) = {0}}, J = {f ∈ A : f(x, t) = f(x, 0),
0 ≤ t ≤ 1}. Then I is a closed ideal of A, and J is a closed subalgebra of
A. In fact, I ∼= C0(∆(B)× (0, 1]) and J ∼= B. Let f ∈ A and b ∈ B be such
that f = b̂ on ∆(B)×{0}. Then f = (f − b̂) + b̂ ∈ I+J . Hence A = I ⊕J .
Since J contains the identity, ϕ is non-zero on J . So there exists x ∈ ∆(B)
such that

(A) ϕ(f) = f(x, 0) (f ∈ J ).

Now if ϕ(I) = {0}, then clearly ϕ = ϕx,0. If ϕ(I) 6= {0}, then there exists
(y, t) ∈ ∆(B)× (0, 1] such that

(B) ϕ(f) = f(y, t) (f ∈ I).

For f ∈ I and g ∈ J , we have f(y, t)g(y, t) = (fg)(y, t) = ϕ(fg) =
ϕ(f)ϕ(g) = f(y, t)g(x, 0). Choosing an f such that f(y, t) 6= 0, we have

(C) g(y, t) = g(x, 0) (g ∈ J ).

Now let f = f1 + f2 ∈ I ⊕ J = A. Using (A)–(C), we get ϕ(f) = ϕ(f1) +
ϕ(f2) = f1(y, t) +f2(x, 0) = f1(y, t) +f2(y, t) = f(y, t). Thus ϕ = ϕy,t. This
proves that ∆(A) = Ω. Now ∂(A) = ∆(A) is obvious.

(3) Let G = ∆(B) × (0, 1]. Then G = ∆(A) = ∂(A). Let U ⊂ G be
an open subset of G, and hence of ∆(A). Let (x, t) ∈ U . Then there exists
a continuous function f : Ω → [0, 1] such that f ≡ 1 on V ⊂ U , but
f ≡ 0 outside U , where V is a compact neighbourhood of (x, t). Thus f ∈ A,
f(V ) = {1} and f(U c) = {0}. Hence by [Me2, Theorem 7, p. 73], A has
SEP; and hence it has UUNP.

(4) Since A has UUNP and ∂(A) = ∆(A), [BhDe1, Theorem 2.3] implies
that A is weakly regular.

(5) This follows from the definition of ‖ · ‖ and A having UUNP.
(6) Suppose B is not regular. Then there exists a closed set F ⊂ ∆(B)

and ϕ ∈ ∆(B)\F such that there is no b ∈ B satisfying b̂(F ) = {0}, b̂(ϕ) = 1.
Take F1 = F ×{0} and (x, t) = (ϕ, 0). Then there exists no f ∈ A such that
f(F1) = {0} and f(x, t) = 1. Hence A is not regular.
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Conversely, suppose that B is regular. Let F be a closed set in ∆(A)
and (x, t) ∈ ∆(A) \ F . If t 6= 0, then F1 = F ∩ H is closed in H and
(x, t) ∈ H\F1, where H = ∆(B)×(0, 1]. Hence there exists f ∈ I (∼= C0(H))
such that f(x, t) = 1, f(F1) = (0), and hence f(F ) = (0). Now suppose that
t = 0. Then there exists an open neighbourhood Ux of x in ∆(B) such
that Ux × [0, ε] ∩ F = ∅ for some ε > 0. Now define F1 = ∆(B) \ Ux.
Then x 6∈ F1. Since B is regular, there exists b ∈ B such that b̂(x) = 1
and b̂(F1) = (0). Define f1(y, t) = b̂(y) ((y, t) ∈ Ω). Then f1 ∈ A, and
f1((x, 0)) = 1, f1(F ) = (0). Let F2 = ∆(B) × [ε/2, 1]. Then there exists
f ∈ C(Ω) such that f(F2) = (0) and f(∆(B)× (0)) = 1. Thus f ∈ A. Take
g = ff1 ∈ A. Then g(x, 0) = 1. For any (y, s) ∈ F , there are two cases.
If 0 ≤ s < ε/2, then y 6∈ Ux, hence f1(y, s) = b̂(y) = 0. If s ≥ ε/2, then
(y, s) ∈ F2. All these imply that g(F ) = (0). Thus A is regular.

(7) Let B be hermitian with some involution b 7→ b∗. Let f ∈ A,
f(ϕ, 0) = b̂(ϕ). Then f(ϕ, 0) = b̂∗(ϕ). Thus A is hermitian. Conversely,
if A is hermitian, then b̂∗(ϕ) = f(ϕ, 0), for given f ∈ A, defines a hermitian
involution on B.

We call A U -regular if, given a closed set F ⊂ ∆(A) and ϕ ∈ ∂(A) \ F ,
there exists x ∈ A such that x̂(F ) = {0} and x̂(ϕ) 6= 0. Thus A is regular
iff ∂(A) = ∆(A) and A is U -regular. By [BhDe1, Theorem 2.3], UUNP is
equivalent to weak-U -regularity; i.e., given any closed set F ⊂ ∆(A) having
∂(A) ∩ (∆(A) \ F ) 6= ∅, there exists x 6= 0 in A such that x̂(F ) = {0}.

In the case of involutive algebras, the following describes the inter-
relations among UUNP, UC∗NP, weak regularity and hermiticity. We omit
its simple proof.

Proposition 2.10. Let A be a commutative Banach ∗-algebra.

(1) Any two of the following imply the third :

(i) A has UUNP ;
(ii) A has UC∗NP ;
(iii) A is hermitian.

(2) Let A be ∗-semisimple. Then:

(i) If A has UUNP , then A has UC∗NP and A is hermitian;
(ii) A is weakly regular iff A is hermitian and has UUNP.

(3) Let A be hermitian. Then A is U -regular iff A is ∗-regular iff A is
regular.

By [BD, Theorem 35.3, p. 188] and the above, it follows that a ∗-semi-
simple, non-hermitian commutative Banach ∗-algebra admits more than one
uniform norms.
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Proposition 2.11. (1) Suppose that there exists a topological group G
acting on ∆(A) from the left satisfying the following conditions.

(A) For each x ∈ A, g ∈ G, there exists y ∈ A such that ŷ(ϕ) = x̂(g · ϕ)
for all ϕ in ∆(A).

(B) For each ϕ ∈ ∆(A), {U · ϕ : U is a neighbourhood of identity in G}
form an open neighbourhood base for ϕ in ∆(A).

Then A has UUNP iff A is U -regular.
(2) Further , assume that ∂(A) = ∆(A). Then A has UUNP iff A is

regular.

Proof. (1) Assume that A has UUNP. Then A is weakly U -regular. Let
F ⊂ ∆(A) be a closed set, and ϕ ∈ ∂(A) \ F . Set V = ∆(A) \ F . By (B),
there exists an open neighbourhood U of e in G such that U · ϕ ⊂ V . By
standard topological group theory, there exists an open neighbourhood W
of e in G such that W 2 ⊂ U and W−1 = W . Now ∆(A) \Wϕ is a closed
set in ∆(A) such that ϕ ∈ ∂(A) ∩ (Wϕ) 6= ∅. By the weak U -regularity of
A, there exist x 6= 0 in A and g ∈ W such that x̂(∆(A) \Wϕ) = 0 and
x̂(g ·ϕ) 6= 0. Note that, if ψ ∈ F , then g ·ψ 6∈Wϕ (since g ·ψ ∈Wϕ implies
that ψ ∈ g−1Wϕ ⊂ W 2ϕ ⊂ V ). Define x̂g(η) := x̂(g · η) (η ∈ ∆(A)). This
defines an element y ∈ A such that ŷ = x̂g. Then ŷ(ϕ) = x̂(g · ϕ) 6= 0, and
ŷ(ψ) = x̂(gψ) ∈ x̂((Wϕ)c) = (0) for all ψ ∈ F . Thus A is U -regular. This
proves (1).

(2) This follows from (1).

The following supplements the fact that every Segal algebra on a locally
compact abelian group has UUNP [BhDe1].

Corollary 2.12. Let G be a locally compact abelian group. Suppose A
is a dense subalgebra of L1(G) satisfying the following :

(1) A is a Banach algebra with respect to some norm;
(2) ∆(A) = Ĝ (the dual group of G);
(3) x ∈ A, ϕ ∈ Ĝ implies ϕ · x ∈ A, where (ϕ · x)(g) = ϕ(g)x(g);
(4) ∂(A) = ∆(A).

Then A is regular iff A has UUNP.

Proposition 2.13. Let ∆(A) be homeomorphic to either a subset of R
or a subset of the unit circle. Then A is regular iff A is weakly regular.

Proof. Suppose that ∆(A) ⊂ R. Let A be weakly regular, so that A
has UUNP. We show that A is regular. Let Ae be the algebra obtained by
adjoining an identity to A. By [BhDe2], Ae has UUNP, ∂(Ae) = ∆(Ae),
and Ae is weakly regular. Thus we can assume that A has an identity. Then
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∆(A) is a compact subset of R. For any α ∈ R, let Kα = ∆(A) ∩ (−∞, α],
Jα = ∆(A) ∩ [α,∞). Fix α, β in ∆(A) such that α < β.

Case (i): There exists δ 6∈ ∆(A) such that α < δ < β. Then Jδ is open
and compact in ∆(A). Hence by Shilov’s idempotent theorem, there exists
an idempotent e ∈ A such that ê(Kδ) = (0) and ê(Jδ) = (1).

Case (ii): (α, β) ⊂ ∆(A). Let Γ = {ϕ ∈ ∆(A) : x̂(ϕ) = 0 for all x ∈ A
such that x̂(Kα) = 0} = h(k(Kα)). Suppose that β ∈ Γ . Since A is weakly
regular, there exists y ∈ A such that ŷ(ϕ) = 0 (ϕ ∈ ∆(A) \ (α, β)) and
y 6= 0. Hence there exists τ 6∈ Γ , α < τ < β, such that ŷ(τ) 6= 0. Let
I = {x ∈ A : x̂(Γ ) = 0} = k(h(k(Γ ))) = k(Γ ), which is a semisimple ideal
of A, and ∆(A/I) ∼= Γ . As ŷ(τ) 6= 0 and ∆(A/I) ∼= Γ , Case (i) applies
to A/I showing that there exists an idempotent h + I ∈ A/I such that
(h+ I)∧(ϕ) = 0 (ϕ ∈ Γ, ϕ < τ), (h+ I)∧(ϕ) = 1 (ϕ ∈ Γ, τ < ϕ). But then
ĥ(Kα) = {0} and ĥ(β) = 1. Thus A is regular.

Remark 2.14. Albrecht [A] has shown that every commutative Banach
algebra A contains a largest closed subalgebra RegA which is regular. If
A is semisimple, then RegA has UUNP. For a ∈ A, let La : A → A be
the multiplication operator Lax = ax. Let DecA = {a ∈ A : La is a
decomposable operator}. By [LN], DecA is a closed subalgebra of A and
RegA ⊂ DecA. Does the Banach algebra DecA have UUNP or is weakly
regular? This is a weaker version of the open problem whether RegA =
DecA [LN, p. 203]. DoesA contain a largest closed subalgebra Unp(A) which
has UUNP? The following example shows that, if it exists, it can be much
larger than DecA. Let 0 < r < 1 and A = {f ∈ C(∆1) : f is holomorphic in
∆r}. Then A has UUNP and RegA = DecA 6= A. Indeed, let I = {f ∈ A :
f = 0 on ∆r}. Then I = C0(H), where H = {z ∈ C : r < |z| ≤ 1}, so that
I is regular. Hence Ie, obtained by adjoining an identity to I, is regular.
Thus Ie ⊆ RegA ⊆ DecA. By [N2, Theorem 1.2], DecA = {a ∈ A : â
is hull-kernel continuous on ∆(A)}. Now if f 6∈ Ie, then f is not constant
on ∆r. Let z ∈ ∆r, U = U(z, ε) ⊂ ∆r, F = f(U). Then F is a Gelfand
closed subset of ∆(A) = ∆1. But h(k(f−1(F ))) = ∆r 6= f−1(F ) showing
that f−1(F ) is not hull-kernel closed. Thus DecA ⊆ Ie. Hence DecA = Ie,
while Unp(A) = A.

3. Tensor products. Let A and B be ∗-semisimple Banach ∗-algebras.
It follows from [HKV, Theorems 3.3 and 3.4] that the algebraic tensor prod-
uct A ⊗ B has UC∗NP (respectively, is ∗-regular) iff each of A, B and
C∗(A) ⊗ C∗(B) has UC∗NP (respectively, is ∗-regular). Taking A to be
a non-nuclear C∗-algebra, there exists a C∗-algebra B such that A⊗B fails
to have UC∗NP, even though A and B obviously have UC∗NP. The follow-
ing shows that UUNP behaves canonically with respect to tensor products;
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this should also be compared with the result that, if α is a submultiplicative
cross-norm on A⊗ B dominating the injective cross-norm λ, then the com-
pletion A ⊗̂α B is regular precisely when A and B are regular [KN, p. 226].

Theorem 3.1. Let A and B be semisimple commutative Banach alge-
bras. Then A⊗ B has UUNP iff each of A and B has UUNP.

Proof. Suppose that A and B have UUNP. For z ∈ A⊗ B, define

|z|∞ = sup{|ϕ(z)| : ϕ ∈ ∆(A⊗ B)}.
Since each ϕ ∈ ∆(A ⊗ B) ∼= ∆(A) × ∆(B) is continuous with respect to
the projective tensor product p(·) on A ⊗ B, we have |z|∞ ≤ p(z) for all
z ∈ A⊗B. Hence, as in the proof of [BD, Proposition 20, p. 237], | · |∞ is a
uniform norm on A⊗B. Let | · | be any uniform norm on A⊗B. Then there
exists a closed subset F of ∆(A⊗ B) such that

|z| = sup{|ϕ(z)| : ϕ ∈ F} (z ∈ A⊗ B);

in fact, F = {ϕ ∈ ∆(A⊗B) : ϕ is |·|-continuous}. So it is clear that |·| ≤ |·|∞
on A ⊗ B. Next we prove that | · |∞ ≤ | · |. For this, it is enough to prove
that ∂(A⊗ B) ⊆ F . Suppose, if possible, F does not contain ∂(A⊗ B). By
[BD, Theorem 19, p. 236], ∂(A⊗B) ∼= ∂(A)×∂(B). So there exist ϕ ∈ ∂(A)
and ψ ∈ ∂(B) such that ϕ ⊗ ψ ∈ ∂(A ⊗ B), but ϕ ⊗ ψ 6∈ F . This, in turn,
implies that there exist open sets U and V in ∆(A) and ∆(B) respectively
such that (U ⊗ V ) ∩ F = ∅, where U ⊗ V = {γ ⊗ δ : γ ∈ U and δ ∈ V }. Set
FA = ∆(A) \U and FB = ∆(B) \ V . Then FA and FB do not contain ∂(A)
and ∂(B), respectively. Since A and B are assumed to have UUNP, there
exist non-zero a ∈ A and non-zero b ∈ B such that â = 0 on FA and b̂ = 0
on FB. Then a ⊗ b 6= 0. On the other hand, for any θ ∈ F , θ(a ⊗ b) = 0,
and so |a⊗ b| = 0, which implies that a⊗ b = 0 because | · | is a norm. This
is a contradiction. Hence ∂(A⊗ B) ⊂ F , i.e., | · |∞ ≤ | · | and so A⊗ B has
UUNP.

Conversely, suppose that A⊗B has UUNP. Let F ⊆ ∆(A) be a closed set
of uniqueness for A. Then F⊗∂(B) = {ϕ⊗ψ : ϕ ∈ F,ψ ∈ ∂(B)} ⊆ ∆(A⊗B)
is a closed set of uniqueness for A ⊗ B. Since A ⊗ B has UUNP, we have
∂(A) × ∂(B) ∼= ∂(A ⊗ B) ⊆ F ⊗ ∂(B), which implies that ∂(A) ⊆ F . Thus
∂(A) is the smallest closed set of uniqueness for A, and so A has UUNP by
[BhDe1, Theorem 2.3]. Similarly, B has UUNP.

Corollary 3.2. Let α be a submultiplicative norm on A⊗ B such that
A ⊗̂α B is semisimple. If each of A and B has UUNP , then A ⊗̂α B has
UUNP.

Proof. Let K = A ⊗̂α B, W = A⊗ B. Let | · | be a uniform norm on K.
Then | · | ≤ rK(·) ≤ α(·) on K. By the above theorem, | · |∞ = | · | = rK(·)
on W , and hence | · | = rK(·) on K. The corollary follows.
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It should be noted that, if A and B are semisimple, then A⊗̂αB may fail
to be semisimple, though A⊗B is semisimple [BD, p. 237]. In the above, if
A⊗̂α B has UUNP, do both A and B have UUNP? If A and B have UUNP,
is A ⊗̂α B necessarily semisimple?

Remark 3.3. The above shows that C∗-norms and uniform norms do
not behave identically in tensor products. Here is another instance. Let A
and B be C∗-algebras. It is well known that every C∗-norm on the algebraic
tensor product A⊗B is a cross norm. However, a uniform norm on the tensor
product of uB-algebras need not be a cross norm. Take A = B = A(∆), the
disc algebra. Let F = {(z, w) : |z| = |w| = 1/2} ⊂ ∆ × ∆ = ∆(A ⊗ A).
Then for h =

∑n
i=1 fi⊗gi ∈ A⊗B, the formula |h|F = sup{|∑ fi(z)gi(w)| :

(z, w) ∈ F} defines a uniform norm on A⊗ B. For any non-constant f, g in
A(∆), we have |f ⊗ g|F = sup{|f(z)| : |z| = 1/2} sup{|g(z)| : |z| = 1/2} <
‖f‖‖g‖, ‖ · ‖ denoting the supnorm on A(∆). On the other hand, let A and
B be uB-algebras with UUNP. Let | · | be any uniform norm on A ⊗ B.
Then, for each x ∈ A and y ∈ B, |x⊗ y| = sup{|ϕ1(x)| · |ϕ2(y)| : ϕ1 ∈ ∆(A),
ϕ2 ∈ ∆(B)} = rA(x)rB(y) = |x| · |y|.

The above theorem applies to a number of vector-valued Banach function
algebras. Let A be a semisimple commutative Banach algebra. Let X be a
locally compact Hausdorff space. Then the Banach algebra C0(X,A) of A-
valued continuous functions vanishing at infinity is C0(X,A) = C0(X)⊗̂λA,
which has UUNP provided A has UUNP. Let G be a locally compact abelian
group. The convolution algebra L1(G,A) = L1(G)⊗̂γA has UUNP if A
has UUNP. Further, let G be compact and 1 < p < ∞. Let Lp(G,A) be
the convolution Banach algebra of measurable functions f : G → A with
|f | = [

�
G
‖f(s)‖p dµ]1/p <∞. Then Lp(G,A) is known to be realizable as a

completed tensor product Lp(G) ⊗̂η A, where, for f =
∑
xi ⊗ yi, the norm

ηp(f) = [
�
‖∑xi(g)yi‖p dµ]1/p. Now Lp(G) is a Segal algebra on G, and

hence has UUNP [BhDe1]. Thus Lp(G,A) has UUNP if A has UUNP. Let
[a, b] be a compact interval in R. Let Cn([a, b],A) be the Banach algebra of
n-times continuously differentiable A-valued functions f : [a, b]→ A having
norm ‖f‖ =

∑n
k=0(1/k!)‖f (k)‖∞. Let 0 < α < 1. Let Lipα([a, b],A) consist

of all A-valued functions f : [a, b]→ A such that sα(f) <∞, where sα(f) =
sup{‖f(u) − f(v)‖/|u − v|α : u 6= v in [a, b]}. The vector-valued Lipschitz
algebra Lipα([a, b],A) is a Banach algebra with norm ‖f‖α = ‖f‖∞+sα(f).
Let lipα([a, b],A) = {f ∈ Lipα([a, b],A) : mα(f, δ) → 0 as δ → 0} where
mα(f, δ) = sup{‖f(u) − f(v)‖/|u − v|α : u, v in [a, b], 0 < |u − v| ≤ δ}.
As discussed in [KN], Cn([a, b],A) and lipα([a, b],A) can be represented
as completed tensor products with canonical norms, and hence both have
UUNP if A has UUNP.
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4. Beurling algebras. Let G be a locally compact abelian group.
A weight on G is a continuous function ω : G → (0,∞) such that ω(s + t)
≤ ω(s)ω(t) (s, t ∈ G). Then L1(G,ω) is the set of all equivalence classes of
complex-valued, Borel measurable functions on G such that fω ∈ L1(G).
Then L1(G,ω) is a commutative Banach algebra with the convolution prod-
uct, the norm being the weighted L1-norm; namely,

‖f‖ = �
G

|f(s)|ω(s) dλ(s) (f ∈ L1(G,ω)),

where λ is the Haar measure on G. The following is the main result of this
section.

Theorem 4.1. Let L1(G,ω) be semisimple. Then L1(G,ω) is regular iff
it has UUNP.

Let 0 ≤ γ ≤ 1, ωγ(s) = exp(|s|γ) on R. It follows from [Do] that
L1(R, ωγ), γ < 1, has UUNP; whereas L1(R, ω1) fails to have UUNP.

In order to prove the above theorem we shall need some preliminaries.
By an ω-bounded generalized character on G we mean a non-zero, complex-
valued, continuous function α on G such that

|α(s)| ≤ ω(s) (s ∈ G) and α(s+ t) = α(s)α(t) (s, t ∈ G).

Let H(G,ω) denote the set of all ω-bounded generalized characters on G.
We do not know whether H(G,ω) is always non-empty. However, we have
the following.

Lemma 4.2. Let G be an LCA group, and let ω be a weight on G. Then
the following are equivalent :

(i) H(G,ω) is non-empty ;
(ii) L1(G,ω) is semisimple;
(iii) L1(G,ω) is not a radical Banach algebra.

Proof. (i)⇒(ii). Suppose that H(G,ω) is non-empty. Fix α in H(G,ω).
Then, for any s ∈ G, α(s) 6= 0. For θ ∈ Ĝ, define αθ : L1(G,ω) → C as
αθ(f) = f̂(αθ) =

�
G
f(s)α(s)θ(s) dλ(s) (f ∈ L1(G,ω)). Then αθ is a com-

plex homomorphism on L1(G,ω). Let f ∈ radL1(G,ω). Since fα belongs
to L1(G) and (fα)∧(θ) = f̂(αθ) = 0 for all θ ∈ Ĝ, fα = 0 a.e. Hence f = 0
a.e. because α(s) 6= 0 for each s ∈ G. Thus L1(G,ω) is semisimple.

(ii)⇒(iii). This is obvious.
(iii)⇒(i). Suppose that L1(G,ω) is not radical. Then there exists a com-

plex homomorphism on L1(G,ω), say ϕ. Since L1(G,ω)∗ = L∞(G, 1/ω),
there exists α ∈ L∞(G, 1/ω) such that

ϕ(f) = �
G

f(s)α(s) dλ(s) (f ∈ L1(G,ω)).
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By a standard argument as for L1(G), α is an ω-bounded generalized char-
acter on G. Thus H(G,ω) is non-empty.

Corollary 4.3. In each of the following cases, L1(G,ω) is semisimple:

(1) G = R, the real line;
(2) G is discrete;
(3) ω(s) ≥ 1 for all s ∈ G.

Proof. (1) Define

σ1 = sup{− logω(−s)/s : s > 0}, σ2 = inf{logω(s)/s : s > 0}.
Then −∞ < σ1 ≤ σ2 <∞. Let z ∈ C such that σ1 ≤ Re z ≤ σ2. Define

αz(f) = �
R
f(s) exp(−zs) dλ(s) (f ∈ L1(R, ω)).

Then αz ∈ H(R, ω). Hence L1(R, ω) is semisimple.
(2) For s ∈ G, define δs(s) = 1 and δs(t) = 0 for all t 6= s. Then

δs ∈ L1(G,ω) and

lim
n→∞

‖δns ‖1/n = lim
n→∞

‖δns‖1/n = lim
n→∞

ω(ns)1/n 6= 0.

This implies that L1(G,ω) is not a radical Banach algebra. Hence it is
semisimple.

(3) In this case L1(G,ω) ⊆ L1(G). The conclusion follows from the fact
that a subalgebra of a semisimple, commutative Banach algebra is semi-
simple.

The following technical result (and its proof) are analogous to the cor-
responding result for L1(G) [La2, Theorem 4.7.5, p. 123].

Proposition 4.4. The Gelfand space ∆(L1(G,ω)) is homeomorphic to
H(G,ω) equipped with the compact-open topology.

Proof of Theorem 4.1. The “only if” part is clear.
Conversely, suppose that L1(G,ω) has UUNP. Fix α ∈ H(G,ω). Define

Tα : Ĝ → H(G,ω), Tα(θ) = αθ. Then Tα is a one-one, continuous map.
Moreover Tα(Ĝ) is closed in H(G,ω). Next we show that Tα(Ĝ) = Ĝ. If
possible, choose β ∈ H(G,ω)\Tα(Ĝ). Then Tα(Ĝ)∩Tβ(Ĝ) is empty. Define
pα(f) = sup{|f̂(αθ)| : θ ∈ Ĝ} and pβ(f) = sup{|f̂(βθ)| : θ ∈ Ĝ}. Then pα(·)
and pβ(·) are uniform norms on L1(G,ω). Thus Tα(Ĝ) and Tβ(Ĝ) are closed
sets of uniqueness for L1(G,ω). By [BhDe1, Theorem 2.3], ∂(L1(G,ω)) ⊆
Tα(Ĝ) ∩ Tβ(Ĝ), which is empty. This is a contradiction. Thus Tα(Ĝ) =
Ĝ. Hence H(G,ω) = ∆(L1(G,ω)) ∼= Ĝ. Since ∂(L1(G,ω)) is closed under
translation, ∂(L1(G,ω)) = Ĝ. Thus L1(G,ω) is weakly regular. Now we
prove that it is in fact regular.
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Let F ⊂ Ĝ be closed and θ ∈ Ĝ \ F . Let U be a symmetric open neigh-
bourhood of the identity in Ĝ such that U2θ ∩ F = ∅. By weak regularity,
there exists a non-zero f ∈ L1(G,ω) such that f̂(δ) = 0 (δ ∈ Uθ). Since
f is non-zero, there exists θ0 in U such that f̂(θ0θ) 6= 0. Define g = fθ0.
Then g ∈ L1(G,ω), ĝ(θ) = f̂(θ0θ) 6= 0, and ĝ(δ) = f̂(θ0δ) = 0 for all δ in F .
Hence L1(G,ω) is regular.

Theorem 4.5. Let L1(G,ω) be semisimple.

(1) There exists a constant m > 0 such that ω(s) ≤ ω(−s) (s ∈ G)
iff L1(G,ω) is a ∗-algebra with the involution f∗(s) = f(−s) (s ∈ G, f ∈
L1(G,ω)). In this case, ω(s) ≥ 1 for all s ∈ G.

(2) Suppose that L1(G,ω) is a ∗-algebra with the above involution. Then
L1(G,ω) is hermitian iff ∆(L1(G,ω)) ∼= Ĝ.

Proof. (1) Suppose that there exists m > 0 such that ω(s) ≤ mω(−s)
(s ∈ G). Then L1(G,ω) is clearly a ∗-algebra. Conversely, let L1(G,ω) be
a ∗-algebra with the above involution. Since L1(G,ω) is semisimple, the
involution ∗ is continuous. So there exists m > 0 such that ‖f ∗‖ ≤ m‖f‖
(f ∈ L1(G,ω)), which implies that ω(s) ≤ mω(−s) for almost all s ∈ G.
Since ω is continuous, the inequality holds for all s ∈ G. Finally, for any
n ∈ N and s ∈ G,

1 ≤ ω(ns)ω(−ns) ≤ mω(ns)2 ≤ mω(s)2n.

Hence ω(s) ≥ 1 (s ∈ G). This proves (1).
(2) Let L1(G,ω) be hermitian and α ∈ H(G,ω). Then for each f ∈

L1(G,ω), (f∗)∧(α) = f̂(α), which implies that

�
G

f(−s)α(s) dλ(s) = �
G

f(−s) α(−s) dλ(s).

Hence α(s) = α(−s) (s ∈ G) because α is continuous. Now |α(s)|2 =
α(s)α(s) = α(s)α(−s) = α(0) = 1, and so |α(s)| = 1 (s ∈ G). Hence α ∈ Ĝ.
Thus ∆(L1(G,ω)) = H(G,ω) ∼= Ĝ. Conversely, suppose that L1(G,ω) is
a Banach ∗-algebra and ∆(L1(G,ω)) ∼= Ĝ. Then the hermiticity of L1(G)

implies that (f∗)∧(θ) = f̂(θ) for each θ ∈ Ĝ. Hence L1(G,ω) is hermitian.
This proves (2).

Proposition 4.6. Let H be an additive subgroup of the rationals Q con-
taining 1. Let ω(s) ≥ 1 for all s in H. Then `1(H,ω) has UUNP iff `1(Z, ω)
has UUNP.

Proof. By the above, it is sufficient to show that `1(Z, ω) is regular iff
`1(H,ω) is regular. We shall use a result due to Domar [Do] that for an
abelian group G with a weight ω such that ω(s) ≥ 1 for all s ∈ G, `1(G,ω)
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is regular iff it is non-quasi-analytic in the sense that
∑{logω(ns)/n2 :

n ∈ N} < ∞ for all s ∈ H. Assume that `1(Z, w) is regular. Fix s = p/q ∈
H+ \ (0), (p, q) = 1. Then

∞∑

n=1

logω(ns)
n2 =

q∑

j=1

( ∞∑

k=0

logω((kq + j)s)
(kq + j)2

)

≤
q∑

j=1

( ∞∑

k=0

logω(kp) + logω(js)
(kq + j)2

)

≤
q∑

j=1

( ∞∑

k=0

p logω(k)
(kq + j)2 +

∞∑

k=0

logω(js)
(kq + j)2

)
<∞.

Similarly we can prove that
∑∞
n=1(logω(ns))/n2 < ∞ when s ∈ H− \ (0).

Thus `1(H,ω) is regular.

The Beurling algebras L1(G,ω) can also be considered when G is a semi-
group. The following illustrates what can happen in this case.

Proposition 4.7. (1) L1(R+, ω) does not have UUNP for any weight ω.
(2) `1(Z+, ω) does not have UUNP for any weight ω.

Proof. (1) Let σ = inf{logω(s)/s : s > 0} > −∞. Now ∆(L1(R+, ω)) ∼=
Πσ = {z = x+iy : x ≥ σ} via Laplace transform, and L1(R+, ω) is identified
with a subalgebra of A(Πσ) = {f ∈ C(Πσ) : f is analytic in Πσ}, which
obviously does not have UUNP. If σ = −∞, then L1(R+, ω) is radical.

(2) Let % = inf{ω(n)1/n : n > 0} > 0. Then ∆(`1(Z+, ω)) = D% = {z ∈
C : |z| ≤ %}, and `1(Z+, ω) is identified with a subalgebra of the disc algebra,
which does not have UUNP. If % = 0, then `1(Z+, ω) is not semisimple.

5. Uniform algebras on polydiscs and balls in Cn. For z = (z1, . . .
. . . , zn) ∈ Cn, let |z|∞ = max(|z1|, . . . , |zn|), |z|2 = (|z1|2+. . .+|zn|2)1/2. Let
∆n = {z ∈ Cn : |z|∞ < 1} be the open polydisc, Bn = {z ∈ Cn : |z|2 < 1}
the open ball. Then the polydisc algebra A(∆

n
) = {f ∈ C(∆

n
) : f is holo-

morphic in ∆n} (∆
n

= ∆n) [R1], the ball algebra A(Bn) = {f ∈ C(Bn) : f
is holomorphic in Bn} [R2], as well as the algebras H∞(∆n) and H∞(Bn) of
bounded holomorphic functions (all with supnorms on their respective do-
mains) fail to have UUNP. We construct variants of these algebras that have
UUNP (in fact, SEP), but are not weakly regular. These will be particular
cases of an abstract construction described below.

Let X be a compact Hausdorff space, and let A be a uniform Banach
algebra of continuous functions on X. For a closed subset K of X, let IK =
{f ∈ C(X) : f = 0 on K}, A|K = {f |K : f ∈ A}. Then A+ IK = {f + g :
f ∈ A, g ∈ IK} is an algebra of functions on X, and its closure in C(X) is
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the uB-algebra B = (A + IK)− = {f ∈ C(X) : f |K ∈ (A|K)− (closure in
C(K))}.

Proposition 5.1. Assume that :

(a) ∂((A|K)−) = bdryK, the topological boundary of K.
(b) K = (intK)−.

Then:

(1) B has SEP , and hence has UUNP ;
(2) B is not weakly regular.

Lemma 5.2. Let K be a closed subset of a compact Hausdorff space X.
Let A be a uB-algebra of continuous functions on X. Then:

(1) ∆((A+ IK)−) = X ∪̇∆(A|K) (∪̇ denotes disjoint union).
(2) ∂((A+ IK)−) = (X \K)− ∪ ∂(A|K).

Proof. The essential set E(A) of A (defined to be the zero set of the
largest ideal of C(X) contained in A) is known to satisfy E(A)c ⊂ Ch(A),
Ch(·) denoting the Choquet boundary. Also, E((A + IK)−) ⊂ K. Hence
Kc ⊂ E((A+ IK)−)c ⊂ Ch((A+ IK)−). It follows that Ch((A+ IK)−) =
[Ch((A+IK)−)∩K]∪Kc. Also, as E((A+IK)−) ⊆ K, K is a peak set in the
weak sense for (A+IK)−. Hence Ch((A+IK)−)∩K = Ch((A+IK)−|K) =
Ch((A|K)−). It follows that Ch((A+IK)−) = Ch((A|K)−)∪Kc. Now taking
closures, we obtain ∂((A+ IK)−) = ∂((A|K)−) ∪ (Kc)−.

Proof of Proposition 5.1. To prove that B has SEP, it is sufficient to
show, in view of [Me1, Theorem 1], that, given a closed subset F of ∆(B)
not containing ∂(B), there exists a non-zero f ∈ B such that f ≡ 0 on F
but rp(f) > 0. Here rp(f) is the permanent radius rp(f) = inf{‖f‖ : ‖ · ‖
is any submultiplicative, not necessarily complete, norm on B}. By [Me1,
Proposition 2], rp(f) > 1 follows if there exists a non-zero g ∈ B such that
fg = g. Note that, by (a) and (b) above and Lemma 5.2, ∂(B) = ∂(A|K) ∪
Kc = bdryK ∪ Kc, (∂(B))c = (bdryK)c ∩ (Kc)c = (bdryK)c ∩ intK =
intK, hence ((∂(B))c)− = K.

Let F be as above.

Case (i): ∂(B) ∩ F 6= ∅. Let F1 = F ∪ ((∂(B))c)−, a closed set. There
exists x ∈ ∆(B) \ F1. There exists a compact neighbourhood K0 of x in
∆(B) such that K0 ⊂ F c

1 . Let U = intK0. By Urysohn’s lemma, there
exists f ∈ C(∆(B)) such that 0 ≤ f ≤ 1, f ≡ 1 on K0, and supp f ⊂ F c

1 .
Since f ≡ 0 on F1 ⊇ K, f ∈ IK , and hence f ∈ B. Further, there exists a
non-zero g ∈ C(∆(B)) such that supp g ⊂ U . Hence g ≡ 0 on U c ⊇ K, so
that g ∈ IK ⊂ B. Clearly fg = g.
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Case (ii): ∂(B) ∩ F = ∅. Then F ⊂ ((∂(B))c)− = K. There exists a
non-empty open set U in ∆(B)\K such that U ⊂ ∆(B)\K, and then there
exists f ∈ C(∆(B)) with f ≡ 0 on K and f ≡ 1 on U . Taking g as above,
we get fg = g. This proves that B has SEP [Me1, Theorem 1], and hence
has UUNP. Since ∂(B) 6= ∆(B), B is not weakly regular.

Remark 5.3. Let X = ∆, and let 0 < r < 1. Set K = {z ∈ ∆ :
r ≤ |z| ≤ 1}. Let A = A(∆). Take B = (A + IK)− = {f ∈ C(∆) :
f |K ∈ A|K} = {f ∈ C(∆) : f |K ∈ A|K}. Let ∆r = {z : |z| < r}. Then
∂(A|K) = ∂(A) = Γ = {z : |z| = 1} 6= bdryK, ∂(B) = ∆r ∪ Γ , K does not
satisfy (a) of 5.1, and B fails to have UUNP. Thus (a) cannot be omitted.
On the other hand, take K to be Γ = {z : |z| = 1}. Then A|Γ = A(Γ ) is the
disc algebra on Γ , B = A(∆) + IΓ = {f ∈ C(∆) : f |Γ ∈ A(Γ )}, ∆(B) = ∆,
and ∂(B) = ∂(A(Γ ))∪Γ c = ∆. Note that (b) of 5.1 is not satisfied. However,
if K0 is a proper closed subset of ∆, then there exists a non-empty, compact
set F in ∆ such that F ⊂ (K0 ∪ Γ )c. By Urysohn’s lemma, there exists
f ∈ C(∆) such that f ≡ 1 on F and supp f ⊂ (K0 ∪ Γ )c. Hence f = 0
on Γ , so that f ∈ IΓ ⊂ B. Thus no proper closed subset of ∆ is a set of
uniqueness for B. Hence B has UUNP. This shows that assumption (b) can
possibly be improved. However, for the applications that follow, it suffices.

Now let 0 < r < 1. Let ∆n
r = {z ∈ Cn : |z|∞ < r}, Bnr = {z ∈ Cn :

|z|2 < r}. Consider the following uniform algebras:

Ar(∆n) = {f ∈ C(∆
n
) : f is holomorphic in ∆n

r },
Ar(Bn) = {f ∈ C(Bn) : f is holomorphic in Bnr },
H∞r (∆n) = {f ∈ Cb(∆n) : f is holomorphic in ∆n

r },
H∞r (Bn) = {f ∈ Cb(Bn) : f is holomorphic in Bnr }.

Proposition 5.1 gives the following.

Corollary 5.4. Each of Ar(∆n), Ar(Bn), H∞r (∆n) and H∞r (Bn) has
SEP and UUNP , but neither of them is weakly regular.

6. Multipliers and measure algebras. Let A be a semisimple com-
mutative Banach algebra. A multiplier on A is a linear map T : A → A
such that (Tx)y = x(Ty) = T (xy) (x, y ∈ A). Let M(A) denote the al-
gebra of all (automatically) continuous multipliers on A. Then M(A) is a
semisimple commutative Banach algebra with the operator norm ‖T‖ =
sup{‖Tx‖ : ‖x‖ ≤ 1}. For a ∈ A, let La : A → A be the multiplication
operator La(x) = ax (x ∈ A). Then the mapping a 7→ La is a one-one,
continuous homomorphism from A onto the ideal {La : a ∈ A} of M(A).
This map is an isometry if A has a bounded approximate identity, say {ei},
satisfying ‖ei‖ ≤ 1 for all i. The derived algebra A0 of A is the subalgebra
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A0 = {x ∈ A : ψx̂ ∈ Â for all ψ ∈ C0(∆(A))}. If A is selfadjoint (i.e.
having a hermitian involution), then A0 = {x ∈ A : sup{‖xy‖ : r(y) ≤ 1,
y ∈ A} <∞}. For multipliers, we refer to [La1].

Theorem 6.1. (1) If M(A) has UUNP , then A has UUNP.
(2) Let A be a uB-algebra. Then A has UUNP iff M(A) has UUNP.
(3) Assume that A admits a hermitian involution. Then A0 has UUNP.

If A is weakly complete or if A2
0 is dense in A0, then M(A0) has UUNP.

(4) Let A be an H∗-algebra. Then each of A, M(A) and K(A) (compact
multipliers) has UUNP.

(1) above compares with [La1, Theorem 1.4.4] that if M(A) is regular,
then A is regular, but the converse does not hold. We do not know whether
there exists a regularity analogue of (2) above.

Proof of Theorem 6.1. (1) Assume M(A) has UUNP. Let | · | be any
uniform norm on A. On M(A), define | · |r by |T |r = sup{|Tx| : r(x) ≤ 1}.
Notice that for any x ∈ A, rA(x) = rM(A)(Lx) = r(x) (say). Then |Tx| ≤
r(Tx) = r(TLx) ≤ r(T )r(Lx) = r(T )r(x). Thus |T |r < ∞, and |Tx| ≤
|T |rr(x) (x ∈ A, T ∈M(A)). Clearly, | · |r is a norm on M(A). Further,

|T |2r = sup{|Tx|2 : r(x) ≤ 1, x ∈ A} = sup{|(Tx)2| : r(x) ≤ 1, x ∈ A}
= sup{|T 2x2| : r(x) ≤ 1, x ∈ A} = sup{|T 2x| : r(x) ≤ 1, x ∈ A}
= |T 2|r

showing that | · |r is a uniform norm. Since M(A) has UUNP, it follows that
|T |r = r(T ) for all T ∈M(A). Then, for any a ∈ A, |La|r = r(La) = r(a) ≥
|a|; whereas |La|r = sup{|ax| : r(x) ≤ 1} ≤ |a| sup{|x| : r(x) ≤ 1} ≤ |a|.
Hence |a| = |La|r = r(a) (a ∈ A), showing that A has UUNP.

(2) By [La1, Theorem 1.4.1, p. 24] every ϕ ∈ ∆(A) can be uniquely
extended to a ϕ′ ∈ ∆(M(A)). This defines a homeomorphic embedding
Φ : ϕ ∈ ∆(A) 7→ ϕ′ ∈ ∆(M(A)) for respective Gelfand topologies [La1,
Theorem 1.4.2, p. 25] having ∆1(A) = {ϕ′ : ϕ ∈ ∆(A)} = Φ(∆(A)) open in
∆(M(A)). Suppose that A is a uB-algebra. By [La1, Corollary 1.4.4, p. 26],
M(A) becomes a uB-algebra. Let ∂1(A) = Φ(∂(A)). By [La1, Theorem
1.5.2, p. 29] the Shilov boundary of M(A) is ∂(M(A)) = (∂1(A))− (closure
in ∆(M(A))). Let K ⊂ ∆(M(A)) be a closed set of uniqueness for M(A).
Then Φ−1(K ∩∆1(A)) is a closed set of uniqueness for A. If A has UUNP,
then ∂(A) ⊂ Φ−1(K ∩∆1(A)). Hence ∂(M(A)) = (∂1(A))− ⊂ K, showing
that ∂(M(A)) is the smallest closed set of uniqueness for M(A). By [BhDe1,
Theorem 2.3], M(A) has UUNP.

(3) Assume that A is also a hermitian Banach ∗-algebra. Then by [La1,
Theorem 1.8.3, p. 47], A0 is semisimple, regular, and hermitian. Hence A0

has UUNP. IfA is weakly complete or ifA2
0 is dense inA0, then by [La1, The-
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orems 1.8.4 and 1.8.5], M(A0) is isomorphic to Cb(∆(A0)), hence M(A0)
has UUNP.

(4) Let A be an H∗-algebra. By [La1, Theorem 2.1.1, p. 62], M(A)
is isometric to Cb(∆(A)) and K(A) is isomorphic to C0(∆(A)) by [La1,
Theorem 2.2.1, p. 64]. Hence M(A) and K(A) have UUNP. By (1), then A
also has UUNP.

In the remaining part of this section, we identify A with the ideal {La :
a ∈ A} of M(A), so that ∆(A) = ∆1(A) ⊂ ∆(M(A)) = ∆(A)∪h(A), where
h(A) = {ϕ ∈ ∆(M(A)) : ϕ(x) = 0 for all x ∈ A}.

Proposition 6.2. (1) |T |∞ = sup{|T̂ (ϕ)| : ϕ ∈ ∆(A)} (T ∈ M(A))
defines a uniform seminorm on M(A). The spectral radius T 7→ rM(A)(T )
is the greatest uniform norm on M(A).

(2) Let A be weakly regular. Then for any uniform norm | · | on M(A),
| · |∞ ≤ | · | ≤ r(·) on M(A).

Proof. (1) is immediate. That r(·) is a norm on M(A) is a consequence
of commutativity and semisimplicity of M(A).

(2) Let | · | be any uniform norm on M(A). Then there exists a closed set
of uniqueness F in ∆(M(A)) such that |T | = |T |F = sup{|ϕ(T )| : ϕ ∈ F}
(T ∈M(A)). Since the Gelfand topology of ∆(A) is the inherited topology
of ∆(M(A)), F1 = F ∩ ∆(A) is a closed subset of ∆(A). If F 6= ∆(A),
then by the weak regularity of A, there exists a non-zero a ∈ A such that
â(F1) = (0). Since ∆(M(A)) = ∆(A) ∪ h(A), we have â(F ) = (0). As F is
a set of uniqueness, this implies that a = 0. This contradiction shows that
F1 = ∆(A). Thus ∆(A) ⊂ F . This gives |T |∞ ≤ |T | (T ∈M(A)).

It would be interesting to know whether in (2) above, weak regularity
can be replaced by UUNP.

Corollary 6.3. Let A be weakly regular. If ∆(A) is a set of uniqueness
for M(A), then the seminorm |·|∞ is the smallest uniform norm on M(A).

Following [LN], let M00(A) = {T ∈ M(A) : T̂ = 0 on h(A)} = k(h(A)),
and M0(A) = {T ∈M(A) : T̂ |∆(A) ∈ C0(∆(A))}. Then M00(A) and M0(A)
are closed ideals of M(A); and A ⊂M00(A) ⊂M0(A) ⊂M(A).

Corollary 6.4. Let A be weakly regular. Then M00(A) has UUNP , but
M0(A) need not have UUNP.

Proof. By [LN, Proposition 2.1], for all T ∈ M00(A), we have sp(T ) =
T̂ (∆(A)) ∪ (0) = (T̂ (∆(A))− (closure), hence r(T ) = |T |∞. If A is weakly
regular, then for any uniform norm | · | on M00(A), |T |∞ ≤ |T | ≤ r(T ) by
an argument as in the proof of Proposition 6.2(2). The remaining assertion
follows from the discussion on measure algebras at the end of this section.
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Besides M00(A) and M0(A), other sets of interest in M(A) are the fol-
lowing.

RegM(A) = the largest regular closed subalgebra of M(A);

DecM(A) = {T ∈M(A) : LT is a decomposable operator on M(A)};
DM(A) = {T ∈M(A) : T is a decomposable operator on A};
NσM(A) = {T ∈M(A) : sp(T ) = T̂ (∆(A))−}.
By [LN, Theorem 2.10], RegM(A) ⊂ DecM(A) ⊂ DM(A) ⊂ NσM(A);

and if A has a bounded approximate identity, then DM(A) is a closed
subalgebra of M(A). We shall show that DM(A) need not have UUNP,
even if A is regular. On the other hand, if A is regular, then DecM(A)
has UUNP. This follows from the proposition below. Note that NσM(A) is
known not to be a subalgebra of M(A).

Proposition 6.5. Let K be a closed subalgebra of M(A). Suppose that
A is weakly regular and A ⊂ K ⊂ NσM(A). Then K has UUNP.

Proof. Let | · | be a uniform norm on K. Since K is closed in M(A) and
since K ⊆ NσM(A), we have |T |∞ = rM(A)(T ) = rK(T ) ≥ |T | for all T in
K. On the other hand, as in the proof of Proposition 6.2(2) one can see that
|T |∞ ≤ |T | for all T ∈ K. It follows that | · |∞ = | · | on K.

Let G be a locally compact abelian group. Then the convolution Banach
algebra L1(G) is a regular, hermitian, semisimple, commutative, Banach
∗-algebra with involution f 7→ f∗, f∗(s) = f(−s) (s ∈ G). Hence, by Propo-
sition 2.10, L1(G) has both UUNP and UC∗NP as well as is ∗-regular. Let
M(G) be the measure algebra of all complex regular Borel measures on G.
It is a unital, semisimple, commutative Banach ∗-algebra with involution
µ 7→ µ∗, µ∗(E) = µ(−E). By [La1, Theorem 0.1.1], M(L1(G)) ∼= M(G) and
L1(G) can be identified with the ideal Ma(G) of measures on G that are
absolutely continuous with respect to the Haar measure. Let Ĝ denote the
dual group of G. Then we have Ĝ ∼= ∆(L1(G)) ⊂ ∆(M(G)).

(1) By the uniqueness theorem of Fourier–Stieltjes transform, Ĝ is a
set of uniqueness for M(G). By Corollary 6.3, M(G) admits a smallest
uniform norm; namely |µ|∞ = sup{|µ̂(θ)| : θ ∈ Ĝ}. If G is non-discrete, then
| · |∞ 6= r(·), in which case, M(G) fails to have UUNP. In fact, it follows
from Proposition 2.10, [La1, p. 27] and [A, p. 31] that M(G) has UUNP iff
M(G) is hermitian iff M(G) is regular iff G is discrete iff M(G) = DM(G).
This shows that the converse of Theorem 6.1(1) is not true.

(2) The ideal M00(L1(G)) ∼= M00(G) := {µ ∈ M(G) : µ̂ = 0 off Ĝ};
whereas M0(L1(G)) ∼= M0(G) := {µ ∈ M(G) : µ̂|Ĝ ∈ C0(Ĝ)}. Then
L1(G) ⊂ M00(G) ⊂ M0(G) ⊂ M(G). For non-discrete G, L1(G) 6= M00(G)
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[A, p. 31], but it has UUNP due to Corollary 6.4. On the other hand, by
[N1, p. 309], M0(G) is not hermitian, and so Proposition 2.10 implies that
M0(G) does not have UUNP.

(3) NσM(G) = {µ ∈ M(G) : spM(G)(µ) = (µ̂(Ĝ))− = µ̂(Ĝ) ∪ (0)},
measures with natural spectra [LN]. By [LN, Theorem 4.1], DecM(G) ⊂
NσM(G); and Proposition 6.5 implies that

DecM(G) = {µ ∈M(G) : ν ∈M(G)→ µ ∗ ν ∈M(G) is decomposable}
= {µ ∈M(G) : µ̂ is hull-kernel continuous on ∆(M(G))}

has UUNP. By [A, Theorem 2.6], and by [LN, Theorem 2.10], DM(L1(G)) =
DM(G) = {µ ∈ M(G) : f ∈ L1(G)→ µ ∗ f ∈ L1(G) is decomposable} is a
closed subalgebra of M(G). Again by Proposition 6.5, DM(G) has UUNP.

(4) Assume that G is compact. Then L2(G) is a regular H∗-algebra. By
Theorem 6.1, L2(G) and M(L2(G)) have UUNP. However by [A, p. 32],
D(M(L2(G))) = M(G), which does not have UUNP unless G is finite. This
exhibits that DM(A) need not have UUNP, even if A is regular. On the
other hand DecM(L2(G)) always has UUNP.

(5) Let K be a closed ∗-subalgebra of M(G). Further, let L1(G) ⊂ K ⊂
NσM(G). Then, by Proposition 6.5, K has UUNP. By Proposition 2.10, K
has UC∗NP, and is hermitian as well as weakly regular.
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