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On the Banach–Stone problem

by

Jyh-Shyang Jeang (Taipei) and Ngai-Ching Wong (Kaohsiung)

Abstract. Let X and Y be locally compact Hausdorff spaces, let E and F be Banach
spaces, and let T be a linear isometry from C0(X,E) into C0(Y,F ). We provide three
new answers to the Banach–Stone problem: (1) T can always be written as a generalized
weighted composition operator if and only if F is strictly convex; (2) if T is onto then T
can be written as a weighted composition operator in a weak sense; and (3) if T is onto
and F does not contain a copy of `∞2 then T can be written as a weighted composition
operator in the classical sense.

1. Introduction. In [18], Jerison got the first vector-valued version
of the Banach–Stone Theorem: Suppose X and Y are compact Hausdorff
spaces and E is a Banach space. Jerison proved that if E is strictly con-
vex then every linear isometry T from C(X,E) onto C(Y,E) is a weighted
composition operator Tf = h · f ◦ ϕ, that is,

Tf(y) = h(y)(f(ϕ(y))), ∀f ∈ C(X,E), ∀y ∈ Y,
for some continuous map (in fact, homeomorphism) ϕ from Y onto X and
some continuous-operator-valued (in fact, onto-isometry-valued) map h from
Y into L(E,E). In [19], Lau gave another version: Suppose the Banach dual
space E∗ of E is strictly convex instead. Then every linear isometry from
C(X,E) onto C(Y,E) is also a weighted composition operator.

Recall that a Banach space E is strictly convex if every vector in the
unit sphere SE of E is an extreme point of the closed unit ball UE of E. We
denote by C0(X,E) the Banach space of continuous vector-valued functions
from the locally compact Hausdorff space X into E vanishing at infinity. We
write C(X,E) for C0(X,E) whenever X is compact, as usual. The norm of
f in C0(X,E) is defined to be ‖f‖ = sup{‖f(x)‖ : x ∈ X}. Moreover, the
vector space L(E,F ) of bounded linear operators from a Banach space E
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into a Banach space F is always equipped with the strong operator topology
(SOT) in this paper.

A Banach space E is said to have the Banach–Stone property if the
existence of a linear isometry T from C0(X,E) onto C0(Y,E) ensures X and
Y being homeomorphic for all locally compact Hausdorff spaces X and Y .
We say that E has the strong Banach–Stone property if all such T can be
written as a weighted composition operator. It is known that `∞2 = R⊕∞ R
does not have the Banach–Stone property, while R ⊕∞ (R ⊕2 R) has the
Banach–Stone property but not the strong Banach–Stone property. In fact,
every 3-dimensional Banach space has the Banach–Stone property except for
R⊕∞R⊕∞R (see e.g. [3, pp. 142–147]). For another example, put E = C(Q),
where Q = [0, 1]∞ is the Hilbert cube. Let X = [0, 1] and Y = {0}. Then
the spaces C(X,E) and C(Y,E) are isometric while there is no map from
Y onto X. In other words, C(Q) does not have the Banach–Stone property.

Definition 1. We say that a Banach space F solves the Banach–Stone
problem if every linear isometry from C0(X,E) onto C0(Y, F ) is a weighted
composition operator for all locally compact Hausdorff spaces X and Y and
Banach spaces E.

Although some authors mainly deal with the case of E = F , their ar-
guments can be modified easily to give us solutions of the Banach–Stone
problem. In particular, Jerison’s result [18] says that strictly convex Banach
spaces solve the Banach–Stone problem, while Lau’s result [19] says that
so do Banach spaces with strictly convex dual. However, not every Banach
space solves the Banach–Stone problem. As a basic counterexample, the
2-dimensional Banach space `∞2 = R⊕∞R does not solve the Banach–Stone
problem. In fact, the linear isometry T from C({1, 2},R) onto C({0}, `∞2 ),
defined by

Tf(0) = (f(1), f(2)),

cannot be written as a weighted composition operator. We note that the
inverse T−1 of T is a weighted composition operation, however. This tells us
that the concept of solving the Banach–Stone problem is a non-symmetric
generalization of the strong Banach–Stone property. Clearly, every solution
of the Banach–Stone problem has the strong Banach–Stone property. We do
not know, however, if the converse implication is always true.

In general, every Banach space containing non-trivial M -summands does
not solve the Banach–Stone problem (see, e.g., [3, p. 149]). Recall that a non-
trivial closed subspace E1 of a Banach space E is called an M -summand of E
if E = E1⊕∞E2 for some closed proper subspace E2 of E. In [10], Cambern
proved that a reflexive Banach space E solves the Banach–Stone problem
if and only if E does not have any non-trivial M -summand. However, a
reflexive space with a non-trivial M -summand may still have the Banach–
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Stone property, for example, R⊕∞ (R⊕2 R). In the non-reflexive case, the
Banach–Stone problem is still open. Many counter-examples have been given
since then. See, for instance, [8, 9, 3]. Several attempts to attack the Banach–
Stone problem have appeared; see [1, 20, 2, 3, 6, 5, 12], to name a few. Among
them are the methods of T -sets of Jerison [18] and M -structures of Behrends
(see, e.g., [3]). These results proved to be very powerful (cf. [4]).

In this paper, without using any technique of T -sets and M -structures
we present three new answers to the Banach–Stone problem. Theorem 3
places the strict convexity in the correct position in solving the Banach–
Stone problem. It states that every isometry from C0(X,E) into C0(Y, F ) is
a generalized weighted composition operator if and only if F is strictly con-
vex. Theorem 4 says that every Banach space does solve the Banach–Stone
problem in a weak sense. Finally, Theorem 6 supplements a well known re-
sult of Behrends ([3, p. 148]; see also [14]) by showing that Banach spaces
containing no copy of `∞2 solve the Banach–Stone problem. The proofs of
these results are modeled on those employed in the scalar version by Hol-
sztyński [13] and Jarosz [15] (cf. [16]). As applications, we shall derive the
classical results of Jerison [18] and Lau [19] (see Corollary 8), and a recent
result of Hernandez, Beckenstein and Narici [12] (see Corollary 9) as natural
consequences of our Theorems 6 and 4, respectively.

We would like to express our deep thanks to Ka-Sing Lau for sharing
with us his conjecture which eventually works out as our Theorem 6, and
to K. Jarosz for useful comments on a preliminary version of this paper. We
are grateful to the referee for many helpful comments.

2. Three new answers to the Banach–Stone problem. In the
following, we always assume X and Y are (non-empty) locally compact
Hausdorff spaces and E and F are (non-zero) Banach spaces without any
additional structure, unless otherwise stated. We first show that the way to
write a linear map from C0(X,E) into C0(Y, F ) as a weighted composition
operator is unique.

Proposition 2. Let T be a linear map from C0(X,E) into C0(Y, F ).
Suppose there exist a map ϕ from a non-empty subset Y0 of Y into X and
a non-vanishing map h from Y0 into L(E,F ) such that

Tf(y) = h(y)(f(ϕ(y))), ∀y ∈ Y0.(1)

Then both ϕ and h are continuous. Moreover , if (Y ′0, ϕ
′, h′) is another triple

satisfying all the above conditions then ϕ(y) = ϕ′(y) and h(y) = h′(y) for
all y in Y0 ∩ Y ′0.

Proof. We divide the proof into the following three claims.

Claim 1. ϕ : Y0 → X is continuous.



98 J. S. Jeang and N. C. Wong

Suppose otherwise, and let {yλ} be a net convergent to y in Y0 such that
{ϕ(yλ)} does not converge to ϕ(y). By passing to a subnet if necessary, we
can assume that {ϕ(yλ)} converges to some other x in X∞ = X ∪ {∞}, the
one-point compactification of X. Let U1 and U2 be disjoint neighborhoods
of x and ϕ(y) in X∞, respectively. Then ϕ(yλ) ∈ U1 eventually. Choose an
f in C0(X,E) such that f vanishes outside U2 and h(y)(f(ϕ(y))) 6= 0. We
then have f(ϕ(yλ)) = 0 and thus Tf(yλ) = 0 for all large λ. As a result,
{Tf(yλ)} cannot converge to Tf(y) = h(y)(f(ϕ(y))) 6= 0, a contradiction.

Claim 2. h : Y0 → (L(E,F ),SOT) is continuous.

Let {yλ} be a net convergent to y in Y0. For each e in E, choose an
f in C0(X,E) such that f(x) = e for all x in a neighborhood of ϕ(y).
Since ϕ is continuous, f(ϕ(yλ)) = e for all large enough λ. Consequently,
‖h(yλ)e− h(y)e‖ = ‖h(yλ)(f(ϕ(yλ)))− h(y)(f(ϕ(y)))‖ = ‖Tf(yλ)− Tf(y)‖
eventually. Since {Tf(yλ)} converges to Tf(y), the claim is verified.

Claim 3. ϕ = ϕ′ and h = h′ on Y0 ∩ Y ′0.

Suppose ϕ(y) 6= ϕ′(y) for some y in Y0∩Y ′0. Let x = ϕ(y) and x′ = ϕ′(y).
Let f ∈ C0(X,E) be such that f(x) = 0 and h′(y)(f(x′)) 6= 0. Then Tf(y) =
h(y)(f(ϕ(y))) = 0 and Tf(y) = h′(y)(f(ϕ′(y))) 6= 0, a contradiction. Hence,
ϕ and ϕ′ agree on Y0 ∩ Y ′0 . It follows that h and h′ also agree on Y0 ∩ Y ′0.

The family of all triples (Y0, ϕ, h) which partially represent a linear isom-
etry T from C0(X,E) into C0(Y, F ) as a weighted composition operator
Tf |Y0 = h · f ◦ ϕ is directed in the natural ordering induced by set inclu-
sion. Theorem 3 below ensures that this family is non-trivial if, for example,
F is strictly convex. Hence, by taking the set-theoretical union of all such
triples, there exists the greatest subset Y0 of Y on which T can be written as
a weighted composition operator. By saying that a linear isometry T from
C0(X,E) into C0(Y, F ) is a generalized weighted composition operator, we
mean there are a subset Y1 of Y , a continuous map ϕ from Y1 onto X and
a continuous operator-valued map h from Y1 into (L(E,F ),SOT) such that
Tf |Y1 = h · f ◦ ϕ and ‖Tf‖ = ‖Tf |Y1‖ = sup{‖Tf(y)‖ : y ∈ Y1}.

Our first theorem places the strict convexity in its correct position in
the context of the Banach–Stone problem. We remark that we always have
the implication (1)⇒(2) of Theorem 3 below, even if the underlying field
K is complex, although the other implication seems open in this case. In
fact, Cambern [11] proved the implication (1)⇒(2) when X and Y are com-
pact Hausdorff spaces and K is either the real or complex field. In [17], we
extended this implication to the locally compact case.

Theorem 3. Let F be a real Banach space. The following two conditions
are equivalent :
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(1) F is strictly convex.
(2) For all locally compact Hausdorff spaces X and Y and for all real

Banach spaces E, every real linear into isometry T from C0(X,E) into
C0(Y, F ) is a generalized weighted composition operator.

Proof. Suppose F is strictly convex. For the underlying field K being
either the reals R or the complex numbers C, we have proved in [17] that
every linear isometry T from C0(X,E) into C0(Y, F ) is a generalized
weighted composition operator. For the sake of completeness, we present
a sketch of the proof below.

The task is to find a subset Y1 of Y , a map ϕ from Y1 onto X and a map
h from Y1 into L(E,F ) such that Tf |Y1 = h · f ◦ ϕ for all f ∈ C0(X,E).
Denote by SE∗ (resp. SF ∗) the unit sphere of the dual space of E (resp. F ).
Let x ∈ X, y ∈ Y , µ ∈ SE∗ and ν ∈ SF ∗ . Consider the sets

Sx,µ = {f ∈ C0(X,E) : µ(f(x)) = ‖f‖ = 1},
Ry,ν = {g ∈ C0(Y, F ) : ν(g(y)) = ‖g‖ = 1}.

Sx,µ (resp. Ry,ν) can be considered as the norm attaining set of the norm
one linear functional µ◦δx (resp. ν ◦δy) of C0(X,E) (resp. C0(Y, F )), where
δx (resp. δy) is the evaluation map at the point x (resp. y). Set

Qx,µ =
{ {y ∈ Y : T (Sx,µ) ⊂ Ry,ν for some ν in SF ∗} if Sx,µ 6= ∅,
∅ if Sx,µ = ∅.

By a compactness argument, we can show that

Qx,µ 6= ∅ whenever Sx,µ 6= ∅.
Since the norm attaining linear functionals are dense in the unit sphere SE∗
of E∗ by the Bishop–Phelps Theorem [7], many Sx,µ are non-empty. Thus

Qx =
⋃

µ∈SE∗
Qx,µ 6= ∅

for each x in X. Let
Y1 =

⋃

x∈X
Qx.

The strict convexity of F implies that Qx1 ∩ Qx2 = ∅ whenever x1 6= x2 in
X. This partition defines a map ϕ from Y1 onto X such that

ϕ(y) = x if y ∈ Qx.
Another key step in the proof is to use the strict convexity of F again

to assert that

ϕ(y) 6∈ supp f ⇒ Tf(y) = 0, ∀f ∈ C0(X,E).

From this we have the inclusion ker δϕ(y) ⊆ ker δy ◦ T by Urysohn’s Lemma.
It follows that there exists a linear map h(y) from E into F such that
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δy ◦ T = h(y)δϕ(y), or Tf(y) = h(y)(f(ϕ(y))) for all f ∈ C0(X,E) and
y ∈ Y1. The continuity of ϕ and h follows from Proposition 2. It is then easy
to see that ‖Tf‖ = ‖Tf |Y1‖ = sup{‖Tf(y)‖ : y ∈ Y1}.

Conversely, we assume that F is not strictly convex. In this case, we also
assume that the underlying field is R. We want to find a linear isometry
T from C0(X,E) into C0(Y, F ) which cannot be written as a generalized
weighted composition operator. To this end, we set X = Y = {1, 2} in
the discrete topology. Let E = R. Since F is not strictly convex, there are
distinct e1 and e2 in the unit sphere SF of F such that t0e1 +(1− t0)e2 ∈ SF
for some 0 < t0 < 1. In fact, te1 + (1− t)e2 belongs to SF for all t in [0, 1].
Consequently,

‖αe1 + βe2‖ = α+ β for all α, β ≥ 0.(2)

Represent functions f in C(X) as column vectors
(
α
β

)
in which f(1) = α

and f(2) = β. Let f1 =
(1

1

)
and f2 =

( 1
−1

)
in C(X). For each f =

(
α
β

)
in

C(X), we can write

f =
α+ β

2
f1 +

α− β
2

f2.

Define a linear map T : C(X)→ C(Y, F ) by

Tf1 =
(
e1

−e1

)
and Tf2 =

(
e2

e2

)

in a similar convention. In other words,

T

(
α

β

)
=
α+ β

2

(
e1

−e1

)
+
α− β

2

(
e2

e2

)
.

Now we show that T is an isometry. First, assume that |α| ≥ |β|. If
α > 0, then (α+ β)/2 ≥ 0 and (α− β)/2 ≥ 0. By (2),

‖Tf(1)‖ =

∥∥∥∥
α+ β

2
e1 +

α− β
2

e2

∥∥∥∥ =
α+ β

2
+
α− β

2
= α.

Moreover,

‖Tf(2)‖ ≤ α+ β

2
‖e1‖+

α− β
2
‖e2‖ = α.

If α < 0, then (α+ β)/2 ≤ 0 and (α− β)/2 ≤ 0. Again by (2),

‖Tf(1)‖ =
∥∥∥∥
α+ β

2
e1 +

α− β
2

e2

∥∥∥∥

=
∥∥∥∥
α+ β

−2
e1 +

α− β
−2

e2

∥∥∥∥ =
α+ β

−2
+
α− β
−2

= −α.

On the other hand,

‖Tf(2)‖ ≤ α+ β

−2
‖−e1‖+

α− β
−2

‖e2‖ = −α.
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So ‖Tf‖ = ‖f‖ = |α| in both cases. When |α| < |β|, a similar argument
applies and also gives ‖Tf‖ = ‖f‖. Hence T is an isometry.

Finally, we show that T is not a generalized weighted composition op-
erator. Suppose it were, and there existed a non-empty subset Y0 of Y , a
continuous map ϕ from Y0 into X and a linear map h(y) : R→ F such that
Tf(y) = h(y)(f(ϕ(y))) for all f ∈ C(X) and all y ∈ Y0. For the case 1 ∈ Y0
and ϕ(1) = 1, we have e1 = Tf1(1) = h(1)(f1(1)) = h(1)(1) = h(1)(f2(1)) =
Tf2(1) = e2, a contradiction. Similar contradictions can be derived for the
other cases.

Our second theorem gives a complete answer to the Banach–Stone prob-
lem in a weak sense. Subject to no constraint on X, Y , E, or F , it says that
every linear isometry T from C0(X,E) onto C0(Y, F ) can be written in a
weak form of a weighted composition operator. This version of the Banach–
Stone Theorem is good enough for many applications. See, for example,
Corollaries 8 and 9 below. Before stating it, recall that if Tf = h · f ◦ϕ is a
weighted composition operator from C0(X,E) into C0(Y, F ) then for each
bounded linear functional ν on F , we have

ν(Tf(y)) = ν ◦ h(y)(f(ϕ(y))), ∀f ∈ C0(X,E), ∀y ∈ Y.
In other words, Tf is again an image of a weighted composition operator
when viewed as a function of y and ν in Y × F ∗. Note that ν ◦ h(y) ∈ E∗.

In the following, UF ∗ (resp. SF ∗) denotes the closed unit ball (resp. unit
sphere) of the dual space F ∗ of F . Since T is a linear isometry, its dual
map T ∗ sends the set of extreme points of the closed dual ball of the range
space onto the set of extreme points of UC0(X,E)∗ , which contains exactly all
functionals of the form δx ⊗ µ. Here, δx is evaluation at some x in X and µ
is an extreme point of UE∗ . Note also that every extreme point of the closed
dual ball of the range space of T can be extended to an extreme point of
UC0(Y,F )∗ . Let AY be the set of all such extensions. In particular, we can
think of AY as a subset of Y × UF ∗ and T ∗AY consists of all δx ⊗ µ with
x in X and µ being an extreme point of UE∗ . Define ϕ̃(y, ν) = x on AY if
T ∗(δy ⊗ ν) = δx ⊗ µ for some µ. In this setting, we have

Theorem 4. Let T be a linear isometry from C0(X,E) into C0(Y, F ).
Then there exist a continuous map ϕ̃ from AY onto X, and a weak∗ con-
tinuous map h̃ from AY into E∗ such that

ν(Tf(y)) = h̃(y, ν)(f(ϕ̃(y, ν))), ∀f ∈ C0(X,E), ∀(y, ν) ∈ AY .
In this case, ‖h̃(y, ν)‖ ≡ 1 for all (y, ν) in AY and ‖Tf‖ = sup{|ν(Tf(y))| :
(y, ν) ∈ AY }. Moreover , if T is onto then the set

By = {ν ∈ SF ∗ : (y, ν) ∈ AY }
contains all extreme points of UF ∗ for each y in Y .



102 J. S. Jeang and N. C. Wong

Theorem 4 can be applied to give some Banach–Stone type theorems in
the classical sense. The following lemma is crucial.

Lemma 5. Let T be a linear isometry from C0(X,E) onto C0(Y, F ).
Then T is a weighted composition operator Tf = h · f ◦ ϕ if and only if
ϕ̃(y, ν1) = ϕ̃(y, ν2) for all ν1, ν2 in By and all y in Y . In this case, we have
h̃(y, ν) = ν ◦ h(y) and ϕ̃(y, ν) = ϕ(y) for all ν ∈ By and all y ∈ Y .

Proof. We verify the sufficiency only. Let ϕ̃(y, ν1) = ϕ̃(y, ν2) for all
ν1, ν2 ∈ By. We can define an onto map ϕ : Y → X by ϕ(y) = ϕ̃(y, ν) for any
ν in By. If f(ϕ(y)) = 0, then ν(Tf(y)) = h̃(y, ν)(f(ϕ(y))) = 0 for all ν ∈ By.
Since By is total, Tf(y) = 0. As a result, ker δϕ(y) ⊆ ker δy◦T . It follows that
there exists a linear map h(y) : E → F such that Tf(y) = h(y)(f(ϕ(y)))
for all f ∈ C0(X,E) and all y ∈ Y . The continuity of ϕ and h follows from
Proposition 2.

We are now ready to provide an answer to the Banach–Stone problem in
the classical sense. Recall that `∞2 = R⊕∞R does not solve the Banach–Stone
problem. We say that a (real or complex) Banach space F does not contain
a copy of `∞2 if there is no real linear isometric embedding of `∞2 into F . It
is easy to see that `∞2 = R ⊕∞ R is real-linear isometrically isomorphic to
`12 = R ⊕1 R since their unit balls are both squares. Consequently, F does
not contain a copy of `∞2 if and only if at least one of the norms ‖e1±e2‖ < 2
whenever ‖e1‖ = ‖e2‖ = 1; for else the linear span of {e1, e2} will be a copy
of `12 (∼= `∞2 ). For comparison, F is strictly convex if and only if both of the
norms ‖e1 ± e2‖ are less than 2 whenever ‖e1‖ = ‖e2‖ = 1.

Theorem 6. Let X and Y be locally compact Hausdorff spaces and let
E and F be Banach spaces. Suppose F does not contain a copy of `∞2 .
Then every linear isometry T from C0(X,E) onto C0(Y, F ) is a weighted
composition operator

Tf(y) = h(y)(f(ϕ(y))), ∀f ∈ C0(X,E), ∀y ∈ Y,
for some continuous map ϕ from Y onto X and continuous map h from Y
into (L(E,F ),SOT).

Proof. We have to verify the condition stated in Lemma 5. Suppose on
the contrary that there exist ν1 and ν2 in SF ∗ such that ϕ̃(y, ν1) = x1 6=
x2 = ϕ̃(y, ν2). By the definition of ϕ̃, there exist extreme points µ1 and µ2
of UE∗ such that T ∗(δy ⊗ ν1) = δx1 ⊗ µ1 and T ∗(δy ⊗ ν2) = δx2 ⊗ µ2. Let
U1 and U2 be disjoint neighborhoods of x1 and x2, respectively. Choose fi
in C0(X,E) such that fi is supported by Ui and µi(fi(xi)) = ‖fi‖ = 1 for
i = 1, 2. Consequently,

‖Tf1(y)‖ = ‖Tf2(y)‖ = 1.(3)
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Moreover, ‖f1±f2‖ = 1 implies ‖T (f1±f2)(y)‖ ≤ 1. In fact, the inequalities

2 = 2‖Tf1(y)‖ = ‖T (f1 + f2)(y) + T (f1 − f2)(y)‖
≤ ‖T (f1 + f2)(y)‖+ ‖T (f1 − f2)(y)‖ ≤ 2

ensure that ‖T (f1 ± f2)(y)‖ = 1. Since F does not contain a copy of `∞2 , at
least one of the norms ‖T (f1 + f2)(y) ± T (f1 − f2)(y)‖ is less than 2. But
this conflicts with (3).

Remark 7. When neither E nor F contains l∞2 , Theorem 6 implies that
every linear surjective isometry T from C0(X,E) onto C0(Y, F ) is a weighted
composition operator Tf = h · f ◦ ϕ such that ϕ is a homeomorphism from
Y onto X. However, a more general statement is known: it is enough to
assume that the sets of centralizers of E and F are both trivial (see e.g.
[3, pp. 147–148]). In fact, every Banach space with non-trivial multipliers
contains `∞2 . See K. Jarosz [14] for details.

We remark that Theorem 6 is still not optimum for the Banach–Stone
problem. For example, the Banach space F = R ⊕1 (R ⊕2 R) does con-
tain a copy of `12 (∼= `∞2 ). Since F is reflexive and contains no non-trivial
M -summand, by a theorem of Cambern [10], F solves the Banach–Stone
problem. Nevertheless, Theorem 6 does include some famous solutions of
the Banach–Stone problem.

Corollary 8 (Jerison [18] and Lau [19]). Let X and Y be locally com-
pact Hausdorff spaces and let E and F be Banach spaces. Suppose F or
its Banach dual F ∗ is strictly convex. Then every linear isometry T from
C0(X,E) onto C0(Y, F ) is a weighted composition operator Tf = h ·f ◦ϕ. In
case E or its Banach dual E∗ is also strictly convex , ϕ is a homeomorphism
from Y onto X and h(y) is a linear isometry from E onto F for all y in Y .

Proof. We claim that a Banach space F does not contain a copy of `∞2
whenever F or its dual F ∗ is not strictly convex. In fact, suppose F contains
a copy of `∞2 . Then it is plain that F cannot be strictly convex. At the same
time, the Banach dual F ∗ of F contains a copy of `12. Thus F ∗ cannot be
strictly convex, either. The desired assertions follow from Theorem 6.

Hernandez, Beckenstein and Narici derived Corollary 8 as a consequence
of their results in [12]. Recall that the cozero of an f in C0(X,E) is the set
{x ∈ X : f(x) 6= 0}. A linear map T from C0(X,E) into C0(Y, F ) is said to
be separating , or disjointness preserving , if Tf and Tg have disjoint cozeroes
whenever f and g have disjoint cozeroes. They showed in [12] that if T is
a linear onto isometry such that both T and its inverse T−1 are separating
then T must be a weighted composition operator. They also verified that a
surjective linear isometry T must be separating if E and F are both strictly
convex. The same also holds if E∗ and F ∗ are both strictly convex instead.
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From these facts, they get Corollary 8. Some parts of their results can also
be obtained by our approach. We present a new proof of the following

Corollary 9 (Hernandez, Beckenstein and Narici [12]). Let X and Y
be locally compact Hausdorff spaces. Let E and F be Banach spaces. Every
separating linear isometry T from C0(X,E) onto C0(Y, F ) is a weighted
composition operator.

Proof. By Theorem 4, we write

ν(Tf(y)) = h̃(y, ν)(f(ϕ̃(y, ν))), ∀(y, ν) ∈ AY .
It suffices to verify the conditions stated in Lemma 5. Suppose, on the con-
trary, that ϕ̃(y, ν1) 6= ϕ̃(y, ν2) for some y in Y and ν1, ν2 in By. Let U1 and
U2 be disjoint open neighborhoods of x1 = ϕ̃(y, ν1) and x2 = ϕ̃(y, ν2) in
X, respectively. Choose fi in C0(X,E) such that fi is supported by Ui and
h̃(y, νi)fi(xi) 6= 0, i = 1, 2. Then f1 and f2 have disjoint cozeroes. Since T is
assumed to be separating, Tf1 and Tf2 also have disjoint cozeroes. However,

ν1(Tf1(y)) = h̃(y, ν1)(f1(ϕ̃(y, ν1))) = h̃(y, ν1)(f1(x1)) 6= 0,

ν2(Tf2(y)) = h̃(y, ν2)(f2(ϕ̃(y, ν2))) = h̃(y, ν2)(f2(x2)) 6= 0,

a contradiction. Hence, we have ϕ̃(y, ν1) = ϕ̃(y, ν2) for all ν1, ν2 ∈ By, and
all y ∈ Y , as asserted.
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