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JOP’s counting function and Jones’ square function

by

Karin Reinhold (Albany, NY)

Abstract. We study a class of square functions in a general framework with applica-
tions to a variety of situations: samples along subsequences, averages of Z

d
+ actions and of

positive L1 contractions. We also study the relationship between a counting function first
introduced by Jamison, Orey and Pruitt, in a variety of situations, and the corresponding
ergodic averages. We show that the maximal counting function is not dominated by the
square functions.

1. Introduction. In [8], Roger Jones introduced the square function
for ergodic averages together with the following result.

Theorem 1.1 (Jones). Let τ be a measure preserving transformation

on a probability space (X, β, m). Let 1 < p < ∞. Then, for any sequence

{nk} ⊂ N, the operator

Spf(x) =

( ∞∑

k=1

|f(τnkx)|p

kp

)1/p

is finite a.e. and is of weak type (1, 1).

Jones proved Theorem 1.1 for p = 2, but his technique works for any
p > 1.

In Section 3 we examine what is behind this theorem and extend it to a
much larger framework, which can then be applied to a variety of different
situations.

Another operator we study is the maximal function associated with a
counting function. In [7], B. Jamison, S. Orey and W. Pruitt realized that
what was behind the convergence of weighted independent random vari-
ables was the behavior of the following counting function. Let {Xi} be in-
dependent identically distributed random variables and {wi} a sequence
of positive numbers. Let Sn =

∑n
i=1 wiXi and Wn =

∑n
i=1 wi. Define

N(x) = |{n : Wn/wn ≤ x}|. Jamison, Orey and Pruitt gave conditions
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on the counting function N necessary to obtain strong laws for the averages
Sn/Wn. Later I. Assani in [4] applied this technique to ergodic averages and
to sums of independent random variables with weights given by return time
sequences.

In Section 4 we examine the counting function associated to averages
of operators induced by positive contractions. When these operators are
actually induced by measure preserving transformations, we show the rela-
tionships between the maximal function associated to the counting functions
and the maximal function of the corresponding ergodic averages. Otherwise,
we show a domination of a maximal function corresponding to the counting
functions by the appropriate square function.

In the measure preserving case, one of the relations between the above
mentioned maximal functions is related to extending a restricted weak type
inequality to a weak type inequality. Therefore, before we introduce such
maximal operators, we discuss what is known about such extensions in Sec-
tion 2.

Lastly, in Section 5, we apply the results of the previous two sections
to averages along subsequences, averages of Z

d
+ actions, and averages of

positive L1 contractions. We answer the question of whether the counting
function is dominated by the square function in the negative.

As in the definition of the counting function N(x) above, we use hence-
forth the notation |A| for the cardinality of the set A.

2. Restricted weak type. Let (R, µ) be a σ-finite measure space and
f a measurable function on it. Define f∗ to be the rearrangement function
of f ,

f∗(t) = sup{λ : µ(|f | > λ) > t}.

The Lorentz space Lp,q consists of all measurable functions, up to measure
zero, for which

‖f‖p,q =





{∞\
0

[t1/pf∗(t)]q
dt

t

}1/q

if 0 < q < ∞,

sup
0<t<∞

{t1/pf∗(t)} if q = ∞,

is finite.
The space Lp,p coincides with the Lebesgue space Lp, and ‖f‖p,p = ‖f‖p.

Definitions 2.1. Let (R, µ) and (S, ν) be two σ-finite measure spaces.
Suppose 1 ≤ p, q ≤ ∞.

(1) L is a weak type (p, q) operator if it is a bounded operator from Lp,1

to Lq,∞. That is, there exists a constant C such that

‖Lf‖q,∞ ≤ C‖f‖p,1.
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(2) L is a uniformly weak type (p, q) operator if it is a bounded operator
from Lp to Lq,∞. That is, there exists a constant C such that

‖Lf‖q,∞ ≤ C‖f‖p.

(3) L is a strong type (p, q) operator if it is a bounded operator from Lp

to Lq. That is, there exists a constant C such that

‖Lf‖q ≤ C‖f‖p.

Notice that weak type (1, 1) and uniformly weak type (1, 1) coincide,
but since ‖f‖p ≤ ‖f‖p,1, uniformly weak type is a stronger condition than
weak type for p > 1. The following is an even weaker condition than weak
type.

Definition 2.2. Let (R, µ) and (S, ν) be two σ-finite measure spaces.
Suppose 1 ≤ p < ∞ and 1 < q ≤ ∞. Let L be an operator defined on the
µ-simple functions on R and taking values in the ν-measurable functions
on S. Then L is of restricted weak type (p, q) if there is a constant C such
that

(2.1) sup
t>0

t1/q(LχE)∗(t) ≤ Cµ(E)1/p

for all measurable sets E ⊂ R.

When q < ∞, (2.1) can be reformulated as

ν(|LχE| > λ) ≤

(
C

λ
µ(E)1/p

)q

for any λ > 0.

The natural question is when restricted weak type (p, q) implies uni-
formly weak type (p, q). The following theorem from Bennett and Sharp-
ley [5] shows that restricted weak type (p, q) implies weak type (p, q) if
q > 1. In the case of restricted weak type (1, 1), Theorem 2.10 below shows
that it does not always extend to weak type (1, 1).

Theorem 2.3. Suppose 1 ≤ p < ∞ and 1 < q ≤ ∞. Let L be a linear

(respectively , nonnegative sublinear) operator defined on the simple func-

tions and suppose L is of restricted weak type (p, q). Then L has a unique

extension to a linear (respectively , nonnegative sublinear) operator of weak

type (p, q).

Note 2.4. When p = 1 and 1 < q, this theorem extends to operators L
satisfying (a) L is continuous in measure, (b) L(f + g) ≤ L(f) + L(g) if the
supports of f and g are disjoint, and L(af) = |a|Lf .

As a consequence of this theorem, we obtain uniformly weak type for
finite measure spaces.
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Corollary 2.5. Let (R, µ) be a probability space. Suppose 1 ≤ p < ∞
and 1 < q ≤ ∞ and let L be a linear (respectively , nonnegative sublinear)
operator defined on the simple functions. If L is of restricted weak type

(p, q) then L has a unique extension to a linear (respectively , nonnegative

sublinear) operator of uniformly weak type (r, q) for any r > p.

Proof. This corollary follows straightforwardly from Theorem 2.3 and
the following observation about the norm. For any 1 ≤ r ≤ ∞, let r′ denote
the conjugate index of r, that is, 1/r + 1/r′ = 1. Now assume r > p.

By definition, since µ(|f | > λ) ≤ µ(R) = 1, we have f∗(t) = 0 if t > 1.
Thus

‖f‖p,1 =

∞\
0

f∗(t)

t1/p′
dt =

1\
0

f∗(t)

t1/p′
dt

≤
[ 1\

0

f∗(t)r dt
]1/r

[ 1\
0

1

tr′/p′
dt

]1/r′

= ‖f‖r

(
p′

p′ − r′

)1/r′

= ‖f‖r

(
p(r − 1)

r − p

)(r−1)/r

,

because r′ < p′ as r > p. Then, by Theorem 2.3,

‖Lf‖q,∞ ≤ C(p, r)‖f‖r.

The following interpolation theorem for restricted weak type operators
is a consequence of the Marcinkiewicz interpolation theorem. Both can be
found in [5].

Theorem 2.6 (E. M. Stein & G. Weiss). Suppose 1 ≤ p0 < p1 < ∞
and 1 ≤ q0, q1 ≤ ∞ with q0 6= q1. Let p and q be defined by 1/p =
(1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1 for some 0 < θ < 1. Let

L be a linear (respectively , nonnegative sublinear) operator defined on the

simple functions, and suppose that L is of restricted weak types (p0, q0) and

(p1, q1). If 1 ≤ r ≤ ∞, then L has a unique extension to a linear (re-
spectively , nonnegative sublinear) operator , again denoted by L, which is

bounded from Lp,r into Lq,r. If in addition pj ≤ qj (j = 0, 1), then L is of

strong type (p, q).

Curiously, the above theorem does not take care of the case p1 = ∞,
whereas the interpolation theorem of Marcinkiewicz does. But the interpo-
lation with L∞ is easily obtained.

Corollary 2.7. Let L be a linear (respectively , nonnegative sublinear)
operator defined on the simple functions. If L is of restricted weak type (p, p)
and satisfies |LχA| ≤ 1 for any measurable set A, then L is of strong type

(q, q) for any q > p.
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Proof. Since L is of restricted weak type (p, p), it is also of restricted
weak type (q, q) for any q > p. Indeed, if 0 < λ < 1,

ν(x : |LχE| > λ) ≤ C
µ(E)

λp
≤ C

µ(E)

λq
,

and if λ ≥ 1,

ν(x : |LχE| > λ) = 0 ≤ C
µ(E)

λq
.

For any p < r < q, there is 0 < θ < 1 such that

1

r
=

1 − θ

p
+

θ

q
.

Since the operator L is of restricted weak types (p, p) and (q, q), Theorem 2.6
asserts that L is of strong type (r, r).

The only satisfactory extensions from restricted weak type to uniformly
weak type are Moon’s Theorem [13] for convolution operators, and Ash’s
Theorem [3] for operators that commute with translations.

Theorem 2.8 (Moon’s Theorem). Let {hn}n≥1 be a sequence of inte-

grable functions on R
d (or T

d). Let Lf = supn |f∗hn|. Then L is of restricted

weak type (1, 1) if and only if L is a uniformly weak type (1, 1) operator ,
that is, there is a constant C > 0 such that

m(x : Lf > λ) ≤ C
‖f‖1

λ
,

where m is the Lebesgue measure.

Theorem 2.9 (Ash’s Theorem). Let X = R or T = R/Z, with Lebesgue

measure. Let T be an operator defined on L2. If T commutes with transla-

tions, then the following are equivalent :

(1) T is of strong type (2, 2),
(2) T is of restricted weak type (2, 2).

However, for discrete systems, Akcoglu, Baxter, Bellow and Jones [1]
showed that the extension may fail. The next theorem considers convolution
operators on l1(Z), where Z is equipped with counting measure.

Theorem 2.10. There exists a countable set C of probability densities

ϕ ∈ l1(Z) such that

Mf = sup
ϕ∈C

ϕ ∗ f

is of restricted weak type (1, 1) but not of weak type (1, 1).



6 K. Reinhold

3. Jones’ square function. The main theorem of this section gives
a necessary condition for a certain type of “square function” to be a weak
(1, 1) operator. Square functions were introduced in ergodic theory by Roger
Jones when he proved Theorem 1.1 in [8]. The next theorem was inspired
by his work.

Let (X, β) be a set and a σ-algebra. Let m, ν be two positive Borel
measures that are σ-finite on that space. Let Γ be a countable infinite set,
and {Tn}n∈Γ a collection of operators defined on the measurable functions
on X.

Definition 3.1. A collection {gn}n∈Γ of nonnegative measurable func-
tions is adapted to the operators {Tn}n∈Γ with respect to the pair of mea-
sures (m, ν) if there exists a constant M > 0 such that

(3.1)
∑

n∈Γ

ν(|Tnf(x)| ≥ λgn(x)) ≤
M

λ

\
|f | dm

for all λ > 0 and f ∈ L1(m).

Example 3.2. Let (X, β, m) be a probability space, and τ : X → X a
measure preserving point transformation. Let Γ = N. Given any sequence
{sn} ⊂ N, let Tnf(x) = f(τ snx). Let gn = n. Then the integrability of
functions gives that {gn} is adapted to the operators {Tn} with respect to
the pair (m, m). Indeed, if f ∈ L1(X),

∞∑

n=1

m(|Tnf(x)| ≥ λgn(x)) =
∞∑

n=1

m(|f(τ snx)| ≥ λn)

=
∞∑

n=1

m(|f | ≥ λn) ≤
\|f |

λ
dm.

Definition 3.3. An operator T is said to be of weak type (L1(m), L1(ν))
if there exists a positive constant C such that for any λ > 0, and any
f ∈ L1(m),

ν(x : |Tf(x)| > λ) ≤
C

λ

\
|f | dm.

For a nondecreasing function Φ : [0,∞) → [0,∞), its inverse is defined
by Φ−1(u) = inf{t : Φ(t) ≥ u}. Such a function defines a “square” operator
as follows. Let {Tn}n∈Γ be a sequence of linear operators and {gn}n∈Γ a
sequence of functions adapted to it with respect to the measures (m, ν).
Define, for integrable functions on (X, β, m), the operator

SΦf(x) = Φ−1

( ∑

n∈Γ

Φ

(
|Tnf(x)|

gn(x)

))
.
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We are now ready to prove a general version of Theorem 1.1 for such a
general class of “square” operators.

Theorem 3.4. Let {Tn}n∈Γ be a sequence of linear operators, {gn}n∈Γ

a sequence of functions adapted to it with respect to the measures (m, ν),
Φ : [0,∞) → [0,∞) a nondecreasing function, and SΦf the corresponding

operator as defined above. Let β(λ) =
T∞
1/(4λ) Φ(1/t) dt.

(a) If there exists λ such that β(λ) < ∞, then SΦf(x) < ∞ ν-a.e. for

all f ∈ L1(m).
(b) If in addition limλ→∞ β(λ)/Φ(λ) = 0, then SΦf satisfies a pseudo-

weak (1, 1) inequality , that is, there exists a function C(λ) with

limλ→∞ C(λ) = 0 such that

ν(SΦf ≥ λ) ≤ C(λ)
\
|f | dm

for all λ > 0 and f ∈ L1(m). If the operator SΦ is homogeneous of

degree one, SΦ(af) = |a|SΦf , then SΦ is a weak type (L1(m), L1(ν))
operator.

(c) If there exists a constant K such that for all λ > 0,

λβ(λ) ≤ KΦ(λ),

then SΦf is a weak type (L1(m), L1(ν)) operator.

Proof. Let λ > 0. For each x ∈ X, split the index set Γ into two pieces:
Γ1 = Γ1(x, λ) = {n ∈ Γ : |Tnf(x)| ≤ λgn(x)} and Γ2 = Γ2(x, λ) = Γ \ Γ1.
Both Γ1 and Γ2 depend on x and λ, but for simplicity we drop their indexing.

(a) Let λ be such that β(λ) < ∞. Let [|t|] denote the integer part of
t ∈ R. By noticing that

∑

n∈Γ1

Φ

(
|Tnf |

gn

)
=

∑

n∈Γ

χ[|Tnf |≤λgn]Φ

(
|Tnf |

gn

)
,

we have

(3.2)
\∑

n∈Γ1

Φ

(
|Tnf |

gn

)
dν ≤

∑

n∈Γ

\
[|Tnf |≤λgn]

Φ

(
|Tnf |

gn

)
dν

≤
∑

n∈Γ

∑

j≥[|log2(1/λ)|]

\
[1/2j+1<|Tnf |/gn≤1/2j ]

Φ

(
|Tnf |

gn

)
dν

≤
∑

j≥[|log2(1/λ)|]

Φ

(
1

2j

) ∑

n∈Γ

ν

(
1

2j+1
<

|Tnf |

gn
≤

1

2j

)

≤ M
∑

j≥[|log2(1/λ)|]

2j+1Φ

(
1

2j

)\
|f | dm
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≤ M
∑

j≥[|log2(1/λ)|]

4

2j\
2j−1

Φ(1/t) dt
\
|f | dm

≤ 4M
\

2log2(1/λ)−2

Φ(1/t) dt
\
|f | dm ≤ 4Mβ(λ)

\
|f | dm,

where the fourth inequality is due to (3.1).
Since β(λ) < ∞, we see that for any f ∈ L1(m),

∑

n∈Γ1

Φ

(
|Tnf |

gn

)
=

∑

n∈Γ

χ[|Tnf |≤λgn]Φ

(
|Tnf |

gn

)
< ∞

for ν-almost every x.
The sums over Γ2 are also finite for ν-almost every x, for any f ∈ L1(m),

because, by (3.1), Γ2 = Γ2(x, λ) is a finite set for ν-almost every x. Indeed,\
|Γ2| dν =

∑

n∈Γ

ν(|Tnf | > λgn) ≤
M

λ

\
|f | dm.

Combining the sums over Γ1 and Γ2 yields SΦf(x) < ∞ for ν-almost
every x, for any f ∈ L1(m).

(b) Since Φ is increasing and Φ(0) ≥ 0, there exists λ0 = inf{λ > 0 :
Φ(λ) > 0}. If 0 < λ ≤ λ0,

ν(SΦf ≥ λ) ≤ ν(SΦf > 0) ≤
∑

n∈Γ

ν

(
Φ

(
|Tnf |

gn

)
> 0

)

≤
∑

n∈Γ

ν(|Tnf | ≥ λ0gn) ≤
M

λ0

\
|f | dm ≤

M

λ

\
|f | dm.

If λ > λ0,

ν(SΦf ≥ λ) ≤ ν

[ ∑

n∈Γ

Φ

(
|Tnf |

gn

)
≥ Φ(λ)

]

≤ ν

[ ∑

n∈Γ1

Φ

(
|Tnf |

gn

)
≥

Φ(λ)

2

]
+ ν

[ ∑

n∈Γ2

Φ

(
|Tnf |

gn

)
≥

Φ(λ)

2

]
.

To handle the first term, we use the estimate obtained in (3.2),

ν

[ ∑

n∈Γ1

Φ

(
|Tnf |

gn

)
>

Φ(λ)

2

]
≤

2

Φ(λ)

\∑

n∈Γ1

Φ

(
|Tnf |

gn

)
dν

≤ 8M
β(λ)

Φ(λ)

\
|f | dm.
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For the other term,

ν

[ ∑

n∈Γ2

Φ

(
|Tnf |

gn

)
>

Φ(λ)

2

]
≤ ν

[ ∑

n∈Γ2

Φ

(
|Tnf |

gn

)
> 0

]
.

But ∑

n∈Γ2

Φ

(
|Tnf |

gn

)
=

∑

n∈Γ

χ[|Tnf |>λgn]Φ

(
|Tnf |

gn

)
.

Thus

ν

[ ∑

n∈Γ2

Φ

(
|Tnf |

gn

)
> 0

]
≤

∑

n∈Γ

ν(|Tnf | > λgn) ≤
M

λ

\
|f | dm.

Letting

C(λ) = 8M
β(λ)

Φ(λ)
+

M

λ
,

we have proven

ν(SΦf > λ) ≤ C(λ)
\
|f | dm,

where under the assumption of (b), C(λ) → 0 as λ → ∞.
(c) Under the assumption of (c), β(λ)/Φ(λ) ≤ K/λ. Hence, C(λ) ≤ C ′/λ,

proving the desired weak type (L1(m), L1(ν)) inequality.

Corollary 3.5. Let {Tn}n∈Γ and {gn}n∈Γ be as in Theorem 3.4. Then

Spf =

[ ∑

n∈Γ

(
|Tnf |

gn

)p]1/p

is a weak type (L1(m), L1(ν)) operator for any 1 < p < ∞.

Theorem 3.4 has applications to a variety of situations. We will use it
for averages of Z

d actions and averages of positive L1 contraction operators
in Section 5.

4. JOP’s counting function. Let Γ be a countable set, and {Γi}
∞
i=1

a nested sequence of finite sets such that
⋃∞

i=1 Γi = Γ . Let Di = Γi \ Γi−1,
with Γ0 = ∅.

Let (X, β) be a set endowed with a σ-algebra, and ν, m two positive
Borel σ-finite measures on it. Let {Tn}n∈Γ be a family of linear operators
defined on the measurables functions on (X, β).

Given a sequence {gk}k∈Γ of positive functions, adapted to the family
{Tk} with respect to (m, ν), define Gn(x), their dominant on each Γn, by

(4.1) Gn(x) = max
k∈Γn

gk(x).

Since the Γn’s are nested, {Gn(x)}n is increasing for each x.
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Define the partial sums and the averages operators respectively by

Snf =
∑

k∈Γn

Tkf and Bnf =
Snf

Gn
,

and, for any given α > 0, the counting function

Nαf(x) =
∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
|Tkf(x)|

Gn(x)
≥

1

α

}∣∣∣∣.

The corresponding maximal functions for the averages and the counting
functions are

B∗f = sup
1≤n<∞

|Bnf | and N∗f = sup
α>0

Nαf

α

respectively. The counting functions Nα first appeared in Jamison, Orey and
Pruitt [7] to study strong laws of weighted averages of independent random
variables. Later Assani [4] applied them to ergodic theory.

The following lemmas state the basic properties of these operators.

Lemma 4.1. The operators Nα have the following properties:

(a) Nαf(x) is increasing in α, that is, if α < β, then Nαf(x) ≤ Nβf(x).

(b) Nα(af) = N|a|αf for any a 6= 0.

(c) Nα(f1 + f2) ≤ N2αf1 + N2αf2 for any pair of measurable functions

and any α > 0.

(d)
\Nαf

α
dν ≤ M

\
|f | dm

for all α > 0, where M is the constant in (3.1).

Proof. (a) is immediate by definition of Nα, and (b) follows by the lin-
earity of the operators Tk. Property (c) follows from the inequality

Nα(f + g)(x) =

∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
|Tkf1(x) + Tkf2(x)|

Gn(x)
>

1

α

}∣∣∣∣

≤
∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
|Tkf1(x)|

Gn(x)
>

1

2α

}∣∣∣∣

+
∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
|Tkf2(x)|

Gn(x)
>

1

2α

}∣∣∣∣

= N2αf1(x) + N2αf2(x).
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Since {gn} is adapted to {Tn} with respect to the measures (m, ν), inequal-
ity (3.1) gives property (d):\Nαf

α
dν ≤

1

α

∑

n

∑

k∈Dn

ν

(
|Tkf | ≥

Gn

α

)

≤
1

α

∑

k∈Γ

ν

(
|Tkf | ≥

gk

α

)
≤ M

\
|f | dm.

Lemma 4.2. The operator N∗ has the following properties:

(a) N∗ is homogeneous of degree 1, that is, N∗(af) = |a|N∗f for all

scalar a.
(b) N∗(f + g) ≤ 2(N∗f + N∗g).

Proof. Property (a) follows from Lemma 4.1(b), and property (b) from
Lemma 4.1(c).

For the next lemma, we need to know which Gn’s are the same. Define
then, for each x,

m(n) = m(n, x) = max{r : Gr(x) = Gn(x)}.

Lemma 4.3. Let the operators Tk be induced by measure preserving trans-

formations τk, Tkf(x) = f(τkx). Then

(a) for any measurable set A,

NGm(n)(x)χA(x)

Gm(n)(x)
= Bm(n)χA(x) and N∗χA = B∗χA, ν-a.e.;

(b) if supn |Γn|/Gn ≤ C < ∞ ν-almost everywhere, then N∗ is a bounded

operator in L∞. Moreover

N∗f ≤ sup
n≥1

|Γn|

Gn
‖f‖∞ ν-almost everywhere.

Proof. Given α > 0, let n(α) = n(α, x) = max{n : Gn(x) ≤ α} (we drop
the x to simplify notation).

(a) We have

NαχA(x) =
∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
TkχA(x)

Gn(x)
≥

1

α

}∣∣∣∣ = |{k ∈ Γn(α) : χA(τkx) = 1}|

=
∑

k∈Γn(α)

χA(τkx) = Sn(α)χA(x).

Thus
NαχA

α
= Bn(α)χA

Gn(α)

α
≤ Bn(α)χA,
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which shows

N∗χA(x) ≤ B∗χA(x).

On the other hand,

NGm(n)(x)χA(x)

Gm(n)(x)
= Bm(n)χA(x) and B∗χA = sup

n
Bm(n)χA.

Therefore B∗χA(x) ≤ N∗χA(x). Thus N∗χA = B∗χA.
(b) Assume f ∈ L∞. Then

Nαf(x) =
∞∑

n=1

∣∣∣∣
{

k ∈ Dn :
|f(τkx)|

Gn(x)
≥

1

α

}∣∣∣∣

≤
∑

{n : Gn(x)≤α‖f‖∞}

|Dn| =
∑

1≤n≤n(α‖f‖∞)

|Dn| = |Γn(α‖f‖∞)|.

Thus
Nαf(x)

α
≤

|Γn(α‖f‖∞)|

Gn(α‖f‖∞)
‖f‖∞ ≤ sup

n

|Γn|

Gn
‖f‖∞.

The following theorem is the main ingredient of this section. It shows the
interrelationship between the maximal operators N∗ and B∗. We will apply
this result later on to two types of averages with different natures: averages
on Z

d, and averages along subsequences (in Z). For both we obtain similar
results, but the structure needed to handle both cases simultaneously is a
little intricate. Bear in mind that, in these applications, Gn = nd for some
d ∈ N.

Theorem 4.4. Let (X, β, m) be a probability space. Let {Tk}n∈Γ be a

family of operators induced by measure preserving transformations as above,
and let {gk}n∈Γ be a sequence of functions adapted to it with respect to the

pair (m, m). Assume that {gk} also satisfies the following growth conditions,
given in terms of the sequence {Gn} defined in (4.1):

(a) there exists a constant K such that supn Gn+1/Gn ≤ K a.e.,
(b) there exists a constant κ such that supn Gs−1

n

∑
j≥n[Gj − Gj−1]/Gs

j

≤ κ a.e. for any 1 < s < ∞,
(c) supn |Γn|/Gn ∈ L∞,
(d) G1 ≥ 1.

Let 1 ≤ p < ∞.

(i) If N∗ is of uniformly weak type (p, p) then B∗ is of strong type (r, r)
for all r > p, and if p > 1 then B∗ is also of weak type (p, p).

(ii) If B∗ is of uniformly weak type (p, p) then N∗ is of strong type (r, r)
for all r > p.
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Proof. (i) Since by Lemma 4.3, N∗χA = B∗χA, and N∗ is a uniformly
weak type (p, p) operator, B∗ is of restricted weak type (p, p). Thus, since
B∗ is a nonnegative sublinear operator, by Corollary 2.7, it is of strong type
(r, r) for all r > p. Now, if p > 1, then by Theorem 2.3, B∗ is of weak type
(p, p) as well.

(ii) Since B∗ is a uniformly weak type (p, p) operator and N∗χA = B∗χA,
N∗ is of restricted weak type (p, p). However, N∗ may fail to be subadditive,
and hence we cannot apply the results of Section 2. Instead, this direction
follows as in Assani’s [4].

First note that by (3.1), if we let

f̃(x) = sup
n≥1

max
k∈Dn

|Tkf(x)|

Gn(x)
,

then f̃ is finite almost everywhere for any f ∈ L1.
Let r > p and f ∈ Lr. Write r = ps, with s > 1. Let

N∗f ≤ sup
0<α≤1

Nαf

α
+ sup

α≥1

Nαf

α
= N∗

1 f + N∗
2 f.

The first term is simple to handle. Indeed, if α0 = [2f̃(x)]−1, then
Nαf(x) = 0 for all α < α0. And since Nαf is increasing in α,

(4.2) N∗
1 f(x) = sup

α0≤α≤1

Nαf

α
≤

N1f(x)

α0
= 2f̃(x)N1f(x).

Since f ∈ Lr ⊂ L1, (3.1) gives that N1f is finite almost everywhere. Thus
N∗

1 f(x) < ∞ almost everywhere.
For the second term, observe that by the growth condition (c), and the

fact that Γn → Γ and Γ is an infinite set, we have Gn(x) → ∞ for al-
most every x. Then, since Nαf(x) is increasing in α, and by the growth
condition (a),

N∗
2 f(x) ≤ K sup

n≥1

NGn(x)f(x)

Gn(x)
a.e.

Now,

NGn(x)f(x) ≤ |Γn| +
∑

j≥n

∣∣∣∣
{

k ∈ Dj :
|Tkf(x)|

Gj(x)
≥

1

Gn(x)

}∣∣∣∣ = |Γn| + Rnf(x).

The last term is estimated by

Rnf

Gs
n

≤
∑

j≥n

∑

k∈Dj

(
|Tkf |

Gj

)s

=
∑

j≥n

1

Gs
j

∑

k∈Dj

Tk(|f |
s)

=
∑

j≥n

1

Gs−1
j

Sj(|f |
s) − Sj−1(|f |

s)

Gj
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=
∑

j≥n

1

Gs−1
j

[Bj(|f |
s) − Bj−1(|f |

s)] +
∑

j≥n

Gj − Gj−1

Gs
j

Bj−1(|f |
s)

≤
∑

j≥n

[
1

Gs−1
j

−
1

Gs−1
j+1

]
Bj(|f |

s) + Bn−1(|f |
s)

1

Gs−1
n

+ B∗|f |s
∑

j≥n

Gj − Gj−1

Gs
j

≤ (1 + κ)B∗|f |s
1

Gs−1
n

,

where the last inequality is due to the growth condition (b). Let L =
‖supn |Γn|/Gn‖∞, which is finite by condition (c), and put κ′ = 1 + κ.
Since G1 ≥ 1,

(4.3) sup
n≥1

NGnf

Gn
≤ sup

n≥1

|Γn|

Gn
+ sup

n≥1

Rnf

Gn
≤ L + κ′B∗|f |s.

Since f ∈ Lr and r = ps, we have |f |s ∈ Lp. By hypothesis, B∗ is of
uniformly weak type (p, p). Therefore B∗|f |s is finite a.e., showing that
supn≥1 NGnf/Gn is also finite almost everywhere.

From (4.2) and (4.3), we have

N∗f ≤ 2f̃N1f + K(L + κ′ B∗|f |s).

But then

m[N∗f ≥ 2 + K(L + κ′)] ≤ m(f̃N1f ≥ 1) + m(B∗|f |s ≥ 1)

≤ m(f̃ > 1) + m(N1f ≥ 1) + m(B∗|f |s ≥ 1)

≤ C1

\
[|f |≥1]

|f | dm + C2

\
|f |r dm ≤ C3

\
|f |rdm.

Thus, if λ > 0, by the homogeneity of N∗,

m(N∗f ≥ λ) = m

[
N∗

(
2 + K(L + κ′)

λ
f

)
≥ 2 + K(L + κ′)

]

≤ C3

[
2 + K(L + κ′)

λ

]r

‖f‖r
r.

The above theorem yields convergence results. The same techniques used
in Assani [4] prove the following corollary. Part of this corollary was already
obtained by Jones, Rosenblatt and Wierdl [11].

Corollary 4.5. With the assumptions of Theorem 4.4 and assuming

that limn→∞ BnχA(x) exists a.e. for all measurable sets A, we have:
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(a) If N∗ is of uniformly weak type (p, p), then limn→∞ NGnf(x)/Gn

exists a.e. for all f ∈ Lp and limn→∞ Bnf(x) exists a.e. for all

f ∈ Lr, r > p.
(b) If B∗ is of uniformly weak type (p, p), then limn→∞ Bnf(x) exists

a.e. for all f ∈ Lp and limn→∞ Nnf(x)/n exists a.e. for all f ∈ Lr,
r > p.

5. Applications

5.1. Counting along a subsequence. Let (X, β, m) be a probability space
and τ : X → X a measure preserving transformation. Let nk be an increas-
ing sequence of positive integers. Define

(5.1) Bnf(x) =
1

n

n∑

k=1

f(τnkx), Nαf(x) =

∣∣∣∣
{

k ≥ 1 :
|f(τnkx)|

k
≥

1

α

}∣∣∣∣.

Let also

B∗f = sup
n

|Bnf |, N∗f = sup
α>0

Nαf

α
.

Corollary 5.1. Let nk be an increasing sequence of positive integers.

Let 1 ≤ p < ∞.

(a) If N∗ is of uniformly weak type (p, p) then B∗ is of strong type (r, r)
for all r > p, and if p > 1 then B∗ is also of weak type (p, p).

(b) If B∗ is of uniformly weak type (p, p) then N∗ is of strong type (r, r)
for all r > p.

Proof. If we let Γ = Z+, Γn = [1, n], Tkf(x) = f(τnkx), and gk = k, all
the hypotheses of Theorem 4.4 are satisfied.

Jones, Rosenblatt and Wierdl in [11] showed that if f ∈ L1, then for any

1 < p < ∞, Spf = (
∑

k |f(τnkx)/k|p)1/p < ∞ a.e. whenever N∗f < ∞ a.e.
But we already know, by Corollary 3.5, that Spf < ∞ a.e. for any f ∈ L1.
However, N∗f may fail to be finite.

Using Corollary 5.3 below, we will show how to construct an f ∈ L1 such
that N∗f = ∞ on a set of positive measure.

Definition 5.2. Let (X, β, m) denote a measurable space and {Rn} a
sequence of positive operators defined on simple functions. Given δ > 0,
{Rn} is δ-sweeping out if for all ε > 0, there exists a measurable set A
with m(A) < ε such that lim supn→∞ Rn(χA) ≥ δ a.e.; and {Rn} is strongly

sweeping out if it is 1-sweeping out.

Corollary 5.3. {Bn}n is δ-sweeping out if and only if {Nn/n}n is

δ-sweeping out.
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Proof. This result is an immediate consequence of the relationship from
Lemma 4.3,

NnχA

n
= BnχA.

Example 5.4. Let τ be an ergodic measure preserving transformation
on a probability space (X, β, m). Let {nk} be a strongly sweeping out se-
quence, meaning that the averages along this subsequence, n−1

∑n
k=1f(τnkx),

form a sequence of strongly sweeping out operators. An example of such a
sequence is nk = 2k. See [2].

Now construct a sequence of measurable sets Ak as follows.
Let Ak be sets such that m(Ak) < 1/2k and

lim sup
n→∞

Nn(χAk
)

n
= lim sup

n→∞
Bn(χAk

) = 1 a.e.

Define f =
∑∞

k=1 kχAk
. Then f ∈ L1. But since f ≥ kχAk

for any k ≥ 1, we
have Nn(f) ≥ Nn(kχAk

) for any n ≥ 1, and

lim sup
n→∞

Nnf

n
≥ lim sup

n→∞

Nn(kχAk
)

n
= k lim sup

n→∞

Nkn(χAk
)

kn

≥
k

2
lim sup

n→∞

Nn(χAk
)

n
≥

k

2
a.e.

for any k ≥ 1. Hence N∗f = ∞ a.e. as desired.

Consider now the operators

SBpf(x) =

[ ∞∑

k=1

Bkf(x)p

kp

]1/p

and

Vpf(x) =
[ ∞∑

k=1

|Bkf(x) − Bk−1f(x)|p
]1/p

where B0f = 0.

Let Spf(x) =
[∑∞

k=1 |f(τnkx)|p/kp
]1/p

.

Lemma 5.5.

SBpf(x) ≤ C(p)Spf(x).

Hence SBp is a weak type (1, 1) operator and a bounded operator on L∞.

Before we prove this lemma, note that it does not follow from Corol-
lary 5.11 because we are not dealing with blocks along the powers of one
transformation. The proof in this one-dimensional case is quite simple and
does not require the use of martingales as Theorem 5.12, used for Corol-
lary 5.11, did.
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Proof. By the Hölder inequality,

|Bkf(x)|p ≤
1

k

k∑

j=1

|f |p(τnjx) = Bk(|f |
p)(x).

Thus,

SBp
pf =

∑

k

|Bkf |
p

kp
≤

∑

k

k∑

j=1

|f(τnjx)|p)

kp+1

≤
∑

j

|f(τnjx)|p
∑

k≥j

1

kp+1
= C(p)

∑

j

|f(τnjx)|p

jp
= C(p)Sp

pf.

Proposition 5.6. Let 1 < p < ∞. Then

Vpf(x) ≤ C[Spf(x) + SBpf(x)].

Hence, Vpf is a weak type (1, 1) operator and is a bounded operator on L∞.

Hence it is a strong type (q, q) operator for 1 < q < ∞.

Proof. For k > 1,

(5.2) Bkf(x) − Bk−1f(x) =
f(τnkx)

k − 1
−

Bkf(x)

k − 1
.

Then

V p
p f(x) ≤ 2p+1[Sp

pf(x) + SBp
pf(x)].

The rest of the proposition follows from Theorem 1.1 and Lemma 5.5.

Remark 5.7. This result is interesting specially for sequences {nj} for
which the averages Bkf fail to converge. It shows that, even though the
averages Bkf may fail to converge, the difference of consecutive terms
Bkf − Bk−1f always goes to zero a.e. as k → ∞.

Note 5.8. Both results 5.5 and 5.6 also hold without changes if one
replaces the composition operators with τnk by a sequence of operators Tk

satisfying
∞∑

k=1

m(|Tkf(x)| ≥ λk) ≤
C

λ
‖f‖1.

5.2. Counting for Z
d
+-actions. Let τ1, . . . , τd be commuting measure pre-

serving transformations of a probability space (X, β, m). They define a Z
d
+

semigroup action {τk}k∈Z
d
+

by letting τkx = τk1
1 · · · τkd

d x for k ∈ Z
d
+.

Let Γ = Z
d
+, Γn = [1, n]d, and

Snf(x) =
∑

k∈Γn

f(τkx), Ad
nf(x) = Snf(x)/nd.
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Define now the counting function

Nαf(x) =

∣∣∣∣
{

k ∈ Z
d
+ :

|f(τkx)|

‖k‖d
∞

>
1

α

}∣∣∣∣

where k = (k1, . . ., kd) and ‖k‖∞ = max{k1, . . . , kd}. Define the maximal
functions

A∗f(x) = sup
n≥1

|Anf(x)|, N∗f(x) = sup
α>0

Nαf(x)

α
.

In this situation we have operators Tk induced by the point transforma-
tions τk: Tkf(x) = f(τkx). Let gk = ‖k‖d

∞, which gives Gn = nd. It is easy
to see that the gk’s are adapted to the operators Tk’s with respect to the
pair (m, m), due to the integrability of the functions.

The index sets are Γn = {k ∈ Z
d
+ : ‖k‖∞ ≤ n}. Then {Tk} and {gk}

satisfy the hypotheses of Theorem 4.4. Indeed,

(a)
Gn+1

Gn
=

[
1 +

1

n

]d

≤ 2d,

(b)
∑

j≥n

Gj − Gj−1

Gp
j

=
∑

j≥n

jd − (j − 1)d

jdp
≤ c(d)

1

nd(p−1)
,

(c) |Γn| = Gn.

Since the operators Ad
nf are the regular ergodic averages, A∗ is a weak type

(1, 1) operator ([15]). Thus Theorem 4.4 gives the following corollary.

Corollary 5.9. For any p > 1, N∗ is a strong type (p, p) operator.

Definition 5.10. A sequence Rn of nondegenerate rectangles in Z
d
+ is

pseudo-increasing if (a) for each n there exists kn ∈ Z
d such that Rn + kn

⊂ Rn+1, and (b) |Rn| → ∞ as n → ∞.

This definition says that the rectangles are nested after a shift is per-
formed on them.

Corollary 5.11. Let T be a measure preserving action of Z
d
+ on a

probability space (X, β, m). Define ARnf(x) = |Rn|
−1

∑
k∈Rn

f(Tkx) where

Rn is a pseudo-increasing sequence of nondegenerate rectangles in Z
d
+. Then,

for any 1 < p < ∞, the operator

Spf(x) =
( ∞∑

n=1

|ARnf(x)|p

np

)1/p

is of weak type (1, 1).



Square functions 19

This corollary follows from Theorem 3.4 and the following result in
Rosenblatt and Wierdl [14].

Theorem 5.12 (Rosenblatt & Wierdl). Under the hypothesis of Corol-

lary 5.11, there exists a constant C(d) such that for any f ∈ L1 and λ > 0,
∞∑

n=1

m(|ARnf | > λn) ≤
C(d)

λ
‖f‖1.

The following result was already obtained for p ≥ 2 and d = 1 in [9], and
for d > 1 in [10]. Here is a simple proof for 1 < p < ∞ and d ≥ 1.

Lemma 5.13. For any 1 < p < ∞, the operator

Vpf(x) =
( ∑

n≥1

|Ad
nf(x) − Ad

n+1f(x)|p
)1/p

is of weak type (1, 1) and bounded in L∞.

Proof. We have

|Ad
nf(x) − Ad

n+1f(x)| ≤ |Snf(x)|

[
1

nd
−

1

(n + 1)d

]

+ |Sn+1f(x) − Snf(x)|
1

(n + 1)d

≤ c(d)
|Ad

nf(x)|

n
+ |Sn+1f(x) − Snf(x)|

1

(n + 1)d
.

The first term is handled by Corollary 5.11. The second term can be seen
as the sum of d averages of a Z

d−1
+ action, divided by n. Indeed,

|Sn+1f(x) − Snf(x)| ≤
d∑

i=1

Sn+1|f |(T
n+1
i x)

where the ith term of the sum corresponds to the (n + 1)th sum of a Z
d−1
+

action:

Sn+1|f |(y) =
∑

k∈[1,n+1]d−1

|f |(σk1
1 · · ·σ

kd−1

d−1 y),

with σj = τj if j < i and σj = τj+1 if j > i. Thus

|Sn+1f(x) − Snf(x)|

(n + 1)d
≤

d∑

i=1

Ad−1
n+1|f |(τ

n+1
i x)

n
.

Let

Spf =

[ ∞∑

n=1

(
Ad

n+1f(x)

n

)p]1/p

,
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and for 1 ≤ i ≤ d,

Si
pf =

[ ∞∑

n=1

(
Ad−1

n+1f(τn+1
i x)

n

)p]1/p

.

By Corollary 5.11, Sp and each Si
p, 1 ≤ i ≤ d, is a weak type (1, 1) operator.

Hence Vp is also a weak type (1, 1) operator. Moreover, Sp and the Si
p are

also bounded in L∞, thus Vp is also bounded in L∞.

5.3. Positive contractions in L1. Let (X, β, m) be a σ-finite measure
space, and U a linear operator defined on the measurable functions on X
satisfying

(a) U is positive, that is, Uf ≥ 0 if f ≥ 0,
(b) U is an L1 contraction.

Given g ≥ 0, g ∈ L1, and f ∈ L1, define Sng =
∑n−1

k=0 Ukg and

Nαf(x) =

∣∣∣∣
{

k ≥ 1 :
|Ukf(x)|

Sk+1g(x)
≥

1

α

}∣∣∣∣, N∗f = sup
α>0

Nαf

α
.

Lemmas 4.1 and 4.2 now apply with Γ = Z+, gn = Gn = Sn+1g and
Tnf = Unf .

Let mg denote the measure induced by g, mg(A) =
T
A g dm, and

Spf =

[∑

k

(
|Ukf |

Sk+1g

)p]1/p

.

From the proof of the Chacon–Ornstein Theorem (Lemma 2.3 in [12]),
we have the following estimate.

Lemma 5.14.
∞∑

k=1

mg(U
kf(x) > λSk+1g(x)) ≤

‖f‖1

λ
.

Theorem 3.4 and Lemma 5.14 now give the following square function
result.

Corollary 5.15. For any 1 < p < ∞,

mg(Spf > λ) ≤
C

λ

\
|f | dm.

Unfortunately, in this situation, the operators are not induced by mea-
sure preserving transformations, so we do not get the full strength of The-
orem 4.4. Instead we obtain the following result.

Proposition 5.16. For any 1 < p < ∞ and f ∈ L1(m), the operator

N∗
p f = sup

α>0

(Nαf)1/p

α
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satisfies:

(a) N∗
p f ≤ 2

[
sup

k

|Ukf |

Sk+1g
+ 1

]
Spf

almost everywhere on the set [g > 0],
(b) N∗

p is a weak type (L1(m), L1(mg)) operator , that is, there exists a

constant C > 0 such that for any f ∈ L1(m) and λ > 0,

mg(N
∗
p f > λ) ≤

C

λ

\
|f | dm.

Proof. First note that

sup
α≥1

(Nαf)1/p

α
≤ 2 sup

n≥1

(Nnf)1/p

n

and

Nnf

np
≤

∞∑

k=1

(
|Ukf |

Sk+1g

)p

= Sp
pf.

For α < 1, let α0 = α0(x) be such that 1/α0 = 2 supk |U
kf(x)|/Sk+1g(x).

Then

sup
0<α≤1

Nαf

αp
= sup

α0<α≤1

Nαf

αp
≤

1

αp
0

N1f ≤ 2p sup
k

(
|Ukf |

Sk+1g

)p ∞∑

k=1

(
|Ukf |

Sk+1g

)p

.

Hence

N∗
p f ≤ 2

[
sup

k

|Ukf |

Sk+1g
+ 1

]
Spf.

Thus,

mg(N
∗
p f > 4) ≤ mg

(
sup

k

|Ukf |

Sk+1g
Spf > 1

)
+ mg(Spf > 1)

≤ mg

(
sup

k

|Ukf |

Sk+1g
> 1

)
+ 2mg(Spf > 1)

≤
∑

k

mg(|U
kf | ≥ Sk+1g) + 2mg(Spf > 1) ≤ C

\
|f | dm.

The weak inequality then follows because the operators N∗
p are homogeneous

of degree 1.

Proposition 5.17. Let Bkf = Skf/Skg. Then for any 1 < p < ∞, both

Vpf =
[ ∞∑

k=1

|Bk+1f − Bkf |
p
]1/p
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and

SBp
pf =

∞∑

k=1

(
Ukg

Sk+1g

)p

|Bkf |
p

are weak type (L1(m), L1(mg)) operators.

Proof. To show that SBp satisfies a weak type inequality from L1(m) to
L1(mg), it suffices, by Theorem 3.4, to show that

∑

k

mg(U
kg|Sk+1f | > S2

k+1g) ≤ c‖f‖1.

But since Ukg ≤ Sk+1g, we have

mg(U
kg|Sk+1f | > S2

k+1g) ≤ mg(|Sk+1f | > Sk+1g)

and the result follows by Lemma 5.14.
For the other operator, write

Bk+1f − Bkf =
Ukf

Sk+1g
−

Ukg

Sk+1g
Bkf.

Then

V p
p f ≤ 2p[Sp

pf + SBp
pf ].

The weak type inequality for Vp now follows from those for Sp and SBp.
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