STUDIA MATHEMATICA 172 (1) (2006)

Uniform spectral radius and compact Gelfand transform
by

ALEXANDRU ALEMAN and ANDERS DAHLNER (Lund)

Abstract. We consider the quantization of inversion in commutative p-normed quasi-
Banach algebras with unit. The standard questions considered for such an algebra A
with unit e and Gelfand transform z +— Z are: (i) Is K, = sup{|[(e — )7 '||, : = € A,
lz|l, < 1, max|Z| < v} bounded, where v € (0,1)? (ii) For which § € (0,1) is C5 =
sup{llz™ |, : € A, ||z|l, < 1, min|zZ| > §} bounded? Both questions are related to a
“uniform spectral radius” of the algebra, ro(A), introduced by Bjérk. Question (i) has an
affirmative answer if and only if ro(A4) < 1, and this result is extended to more general
nonlinear extremal problems of this type. Question (ii) is more difficult, but it can also
be related to the uniform spectral radius. For algebras with compact Gelfand transform
we prove that the answer is “yes” for all § € (0,1) if and only if ro(A) = 0. Finally, we
specialize to semisimple Beurling type algebras ¢ (D), where 0 < p < 1 and D = N or
D = Z. We show that the number ro(¢Z(D)) can be effectively computed in terms of
the underlying weight. In particular, this solves questions (i) and (ii) for many of these
algebras. We also construct weights such that the corresponding Beurling algebra has a
compact Gelfand transform, but the uniform spectral radius equals an arbitrary given
number in (0, 1].

1. Introduction. This paper concerns two fundamental questions
about inversion in commutative (semisimple) Banach algebras with unit
which have attracted a lot of attention recently. Recall that an element
x in such an algebra A is invertible if and only if its Gelfand transform
7 has no zeros in the maximal ideal space of A, and it is natural to ask
whether there exist quantitative versions of this fact. More precisely, we can
formulate:

QUESTION 1. Given § > 0 does there exist a positive constant Cy such
that ||271|| < Cs for all z € A with ||z|| <1 and |Z| > 6?

QUESTION 2. Given ¢ > 0 does there exist a positive constant K. such
that ||(e — z)7!|| < K¢ for all x € A with ||z|| < 1 and |Z| < €? (Here ¢ is
the unit in A.)
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We are going to consider these problems in the slightly more general
context of commutative quasi-Banach algebras. The reason for this is not
only because our abstract results apply to these algebras as well, but also
the fact that in the concrete case of weighted ¢P-algebras we will encounter
a somewhat different situation when 0 < p < 1.

A complete metric linear space X over C is called a quasi-Banach space
(also known as p-normed space or locally bounded space) if the metric is
induced by a p-norm for some fixed p with 0 < p < 1, i.e. a function
Il -] - X — R such that if z,y € X and A € C then: [|z|| > 0 for x # 0,
|IAz|| = [AP||lz||, and ||z + y|| < ||z|| + ||ly||. By a quasi-Banach algebra (or
p-normed algebra) we mean a commutative algebra A over C, with unit
element e, such that A is a quasi-Banach space with a p-norm satisfying
lell =1 and [[zy| < ||z [ly]| for all z,y € A.

The mazimal ideal space of A, denoted by 9 = 9M(A), is the set of
all (nonzero) algebra homomorphisms ¢ : A — C, and carries a compact
Hausdorff topology [15]. We say that A is semisimple if () cqpker ¢ = {0}.
The Gelfand transform on A is the operator G : A — C(9M) defined by
G(z) = 7z, where 7 is defined by Z(¢) = ((z), and C(9) is the Banach space
of complex-valued continuous functions on 9. As in the Banach algebra
case, it turns out that for a complex number A\, Ae — 2 € A is invertible if
and only if A does not belong to the range of the Gelfand transform of .
Consequently, the spectrum of an element z € A, denoted by o(z), is the
range of , which is a compact subset of C. The spectral radius of an element
z € A is defined by r(z) = supecon |7(¢)|P, or equivalently, by the spectral
radius formula

r(z) = lim || = inf ||z

n—oo n
For an introduction to quasi-Banach algebras and quasi-Banach spaces we
refer to Zelazko's treatise [15] and Rolewicz’s book [11].

A class of examples that are relevant for this work (see Section 4 below)
are the weighted ¢P-spaces with a submultiplicative weight. They are usually
called Beurling type algebras. More precisely, let D = N or D = Z and let
w be a strictly positive function on D with the property that w(m + n) <
w(m)w(n), w(0) = 1. Such a function will be called a weight function. The

space /5, (D), p > 0, consists of sequences f = (an)nep With
1l = lanPw(n) < oo.
neD

The product of two such sequences is defined to be their convolution. It
turns out that ¢4(D) is a quasi-Banach algebra if p < 1. Under certain
other conditions on the weight function, ¢%,(D) becomes a Banach algebra

for p > 1 as well, with the norm f — Hszp/p (see [3] for more details). The
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algebras (%,(Z) are always semisimple, while ¢%,(N) is semisimple if and only
if inf w(n)/™ > 0.

In his work [1] on quantization of inversion in Banach algebras Bjork
considered certain “uniform spectral radii” which will play a central role in
this paper. These are numbers that depend only on the algebra A and are
defined as follows.

DEFINITION 1.1. A sequence (z,) in A is called a spectral null sequence
provided ||z, || < 1 and lim;, . 7(z,) = 0. When = = (z,,) is a spectral null
sequence and N is a positive integer we define ry(z) = limy, o ||z |"/V
and set

rn(A) = sup{ry(x) : x is a spectral null sequence}.

Moreover, we denote by 7o (A) the number infy>q ry(A) = limy_o 7N (A)
and refer to it as the uniform spectral radius of A. The existence of the limit
and the last identity follow from the submultiplicativity of the sequence

(rn (A7)
If Question 1 has an affirmative answer for some 6 € (0,1) then the
quantity

(1) C(A,6) =sup{lla™"| :z € A4, [l <1,
|Z(C)|P > ¢ for all ¢ € M(A)}

is finite and we say that A has norm controlled inversion of degree 61(A),
where d1(A) is the first critical constant

2) 51(A) = inf{6: § € (0,1), C(A,8) < oo}

The quantity §;(A) was introduced and studied by Nikolski in [8]. It has
been pointed out to us by the referee that the first explicit appearance of
the problem of norm controlled inversion is the paper of J. Stafney [13] who
considered the special case of the Wiener algebra ¢!(Z).

If Question 2 has an affirmative answer for some ¢ € (0,1) we say that
A has the bounded inverse property and write

K.(A) =sup{||(e —2) 7 !||: 2 € A, ||z|| <1, |Z(¢)] < ¢ for all ¢ in M(A)}.

Both the bounded inverse property and that of norm controlled inversion
have been extensively studied in Banach algebras (see [1], [2], [3], [8], [10],
and [12]), that is, in the case when p = 1. For a comprehensive survey of the
problems under consideration and their relation to classical problems in the
theory of harmonic analysis we refer to [9].

Due to nonlinearity such extremal problems are rather difficult and have
surprising answers in many concrete cases. For example, if A is one of the
Wiener algebras ¢}(N) or £}(Z), then K.(A) = oo for all € > 0, §;(¢}(N)) =
1/2 and 1/2 < §1(£1(Z)) < 1/v/2, where the exact value of the last constant
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seems to be unknown (see for example [3], [9]). In fact, as we shall see below,
this bad behavior of the inversion in these algebras can be explained by
the fact that the uniform spectral radius ro,(A) takes the maximal value 1.
A considerable amount of work has been devoted to the intrinsic relation
between Bjork’s uniform spectral radius and the quantities described above.
The aim of the present paper is to continue this investigation; we present
some new results in this direction that hold even in the more general context
of quasi-Banach algebras. Furthermore, the results in the last section about
Beurling type algebras show that essential differences can occur when dealing
with the case p < 1.

As we mentioned above, Bjork introduced the numbers rx(A) (for Ba-
nach algebras) and the main theorem of [1] asserts that a commutative Ba-
nach algebra A has the bounded inverse property if and only if ry(A) < 1
for some integer N > 2, or equivalently 7o (A) < 1. The argument in [1]
provides an estimate of K.(A) in terms of 7o (A) and recently, in [10], Olof-
sson was able to obtain estimates of ro(A) in terms of K.(A). Moreover, in
the same paper Olofsson estimated from below the critical constant d;(A4) in
terms of the same number 7, (A). Explicitly, he proved that

roo(A)

(3) s <),
In Section 2 we give a unified approach to these problems that not only
works for quasi-Banach algebras but also applies to more general nonlinear
extremal problems. We should point out here that the main technical dif-
ficulty when working with the case p < 1 is that one needs a replacement
for the integration techniques that are quite common in Banach algebras.
The main result of the section provides two estimates of ||z"|| in terms of
the numbers rx(A), as well as in terms of norms of power series applied
to z. A consequence (see Corollary 2.3) is that for any power series ¢ in the
unit disc whose coefficients are positive and bounded away from zero the
number

K(,n) =sup{l[d(a)]| -z € A, [z <1, r(z) <np (1 €(0,1))

is finite if and only if roo(A) < 1. Our method also yields quantitative es-
timates of K (1, n) if 7o0(A) < 1 and of ro(A4) if K(1),n) < co. A further
consequence is the fact that inequality (3) continues to hold for any quasi-
Banach algebra.

A more subtle problem is to find estimates of §;(A) from above (see [§]
and [3]) and this is due to the more complicated condition imposed on the
Gelfand transform in the extremal problem that defines these numbers. An
important tool for showing that 6;(A) = 0 is the use of compact embeddings
in larger algebras that have the same maximal ideal space. Such methods
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have been used by El-Fallah, Nikolski and Zarrabi [3] for certain sequence
Banach algebras A that contain some of the Beurling type algebras.

Note that the weakest form of compact embedding in an algebra with the
same maximal ideal space is the one in C'(9(A)) via the Gelfand transform,
and also recall that by (3) we have ro(A) = 0 whenever §;(A4) = 0. The
aim of our third section is to prove that for every semisimple quasi-Banach
algebra with compact Gelfand transform this implication can be reversed,
i.e. 61(A) = 0 whenever ro(A) = 0. For certain Beurling type algebras this
result has been proved recently by El-Fallah and Ezzaaraoui [2].

Section 4 is devoted to algebras of semisimple Beurling type in the case
0 < p < 1. We prove a general estimate of || f" |z for f € ¢4,(D) that yields
good estimates for the uniform spectral radii ry(¢%(D)). These estimates
are then used to obtain an explicit formula for the number 7o (¢5(D)) in
terms of the weight w. To avoid some necessary normalizations, let us state
our formula only in the case when D = N and lim,, w(n)'/™ = 1. Then (see
Corollary 4.3) 7o (#4(D)) = 0 whenever the weight is bounded, and if w is
unbounded then

Ik
P e g woR)Vr
roo(£5(D)) Iyzlﬁw(}zl)rgoo win)

For many weights we have 7o (¢%,(D)) = infj>1 lim, o w(nk)*Jw(n) =0
and it turns out that this condition automatically implies the compactness
of the Gelfand transform. Then the main result of Section 3 applies and we
obtain 61(¢4(D)) = 0. Nevertheless, the converse to the above statement is
false. For any given « € (0, 1] we construct a weight w,, such that the Gelfand
transform on ¢, (D) is compact, but 7+ (¢, (D)) = « for all p € (0, 1].

These results are not only sharper than the ones known for p > 1, but
they also reveal a somewhat different situation for these Beurling algebras.
Indeed, for p > 1 only certain estimates in terms of more complicated ex-
pressions of the uniform spectral radius are available. Moreover, for bounded
weights w the uniform spectral radius of ¢,(D) can assume the maximal
value 1 when p > 1.

2. General estimates of ||z"|. Recall that A denotes a commutative
semisimple quasi-Banach algebra, with unit e and with a p-norm || - ||, where
p is some number in (0, 1]. In this section we are going to prove two estimates
of the norms of the positive powers of an element x € A with given norm
and spectral radius. These inequalities will then be applied to obtain several
estimates of the constants K.(A) and 0;(A) in terms of the uniform spectral
radius 7 (A) introduced in the previous section. In fact, we will consider a
more general version of K.(A) defined as follows. For an analytic function
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in the unit disc and a number n € (0,1) let

(4) K(¢,n) = sup{[[¢ () : = € A, [|zf| <1, r(z) <n}.
Note that if K(1,19) < oo for some 1y € (0,1), then K(1),n) < oo for all
with 0 < 1 < np, and the limit

Ky = %lg% K(v¢,n)

exists.

For Banach algebras, estimates of the type mentioned above rely fre-
quently on integration techniques which are not available in the more general
context considered here. Instead, our main tool will be the following variant
of the maximum principle due to Kalton [7]| for A-valued analytic functions.
As usual, for a p-normed space X and an open subset {2 of C, we say that
a function f: 2 — X is analytic on {2 if for each zp € {2 there exists § > 0
such that for all z with |z — 29| < §, f(2) can be written as a convergent

power series
E Fn)(z — zo)"

with coefficients ]/”\(n) € X for n > 0. The classical maximum modulus
theorem is in general not true for quasi-Banach spaces (see [6] and [7] for
details). However, the following weaker result holds:

THEOREM 2.1 (Theorem 5.2 of [7]). Let X be a quasi-Banach space, and
let 0 <r < 1. Then there exists a constant M = M (X,r) such that

IF(Off <M max |[f(2)]

r<|z|<1
for all analytic functions f : D — X which are continuous on D.

We now turn to the main result of this section. We shall denote by [qa]
the integer part of the real number a.

THEOREM 2.2. Let x € A with ||z|| <1 and r(x) =t < 1. Then:

(i) Given a positive integer N and € > 0 there ezists 0 <T=7(e,N) <1
such that for all integers n > N ([log7/logt] + 1) we have

2] < (ra(A) + )",
where k(n) = k(n,N,e) = (n+ 1)([log7/logt] + 1)1 — N.
(ii) Given an analytic function v in the unit disc and £ > 0 there exists
a positive constant M. depending only on € such that for all positive
integers n,

[b()Plla"| < Mo(1 =)™ (n+1)'"7  sup (=),
1—e<|z|<1



Uniform spectral radius 31

Proof. (i) If rn(A)+4¢€ > 1 there is nothing to prove. Assume that ry(A)
+ e < 1 and use the definition of rx(A) to conclude that there exists 0 < 7
= 7(e,N) < 1 such that whenever y € A satisfies |y|| <1, r(y) < 7 we have

™| < (ra(A) + ).

Now let = be as in the statement and set m = [log 7/log t]+ 1. Then r(2™) =
t" < 7 and if n > mN is an integer write n = ImN + j with integers [ > 1
and 0 < 5 < mN —1, and apply the previous inequality to y = 2™ to obtain

o < B < eV < (v (A4) + )N < (r(A) + ) I,

proving the result.
(ii) Let & = €2™/(»*+1) and consider the A-valued function

1 ko N e—hn
P(2) = mkz_owﬁ zx)§
We note first that this function is analytic in the punctured disc centered at
the origin of radius t~1. Moreover, if ¢(w) = >0 P (§)w for |w| < 1, then
for 0 < |z| < 1,

B) = o D) P — S =S Gt 1)l gl
=0 k=0 1=0

n+1

which shows that ¢ extends analytically near the origin as well and satisfies
#(0) = ¢(n)a™. Consequently, we may apply Theorem 2.1 to deduce that for
every € > 0 there exists a constant M, > 0 such that

)l = [$m)Plla"| < Mz sup [|é(z)]]-

1-e<|z|<1

Now for |z| > 0 we have the following straightforward estimate:

lo(2)ll < |27 (n + 1)1 7P o [ (¢l

which together with the previous inequality implies the desired result. =

It turns out that Theorem 2.2 can be applied to study certain nonlinear
extremal problems in the algebra A. We shall be concerned first with the
constants K (1, 7n) defined at the beginning of the section. As pointed out in
the introduction, Bjork [1] and Olofsson [10] have considered this extremal
problem in the case when A is a Banach algebra and when 9(z) = (1—2)"1.
The corollary below extends their results to many other functions 1, that is,
it provides necessary and sufficient conditions in order to have K (v, 7n) < oo
for n € (0,1), as well as an estimate from above for these constants whenever
they are finite.
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For an analytic function F' in the unit disc, we denote as above by ﬁ(n)
its nth Taylor coefficient and by F}, the function

o0
= " |F(n)Pz".
n=0
COROLLARY 2.3.

(i) If ro(A) < 1 then for every analytic function 1) in the unit disc
with 1 (0) # 0 there exist an absolute constant o > 0 and a positive
constant C depending only on 1 such that

K (i, n) < C1ihp(n™) < oo.
(i1) Let ¢ be analytic in the unit disc. Assume that there exists an integer
s > 0 such that the Taylor coefficients, 1*(n), of 1¥*® are real, and that
there exists an integer m > 0 such that ¥*(n) > 1 for all n > m.
If K(v,n) < oo for some 0 < n < 1 then there exists a positive
constant Co depending only on 1 such that
Too(A) < (1 — (Kys + Co) VPP < 1.
In particular, if 1 satisfies the conditions in (i) and (ii), then Ky < oo if
and only if roo(A) < 1.

Proof. (i) Fix n € (0,1). Suppose that ro(A) < 1 and let &, N > 0 be
such that a = ry(A) +e < 1. Let 7 = 7(¢,N) € (0,1) be the number given
in Theorem 2.2(i) and set Ny = N ([log7/logn] + 1). Theorem 2.2(i) states
that for all x € A with ||z|| <1 and r(z) < n < 1 we have

(2| < Z|w |p+a—N Z ’¢ |pa (n+1)/([log 7/logn]+1)

n>Np
Fix ng > 0 and let a > 0 satisfy

1
alogn > max{loga/<[ OgT] + 1>,—1/N0}
logn

for all 7 > ngp. For such values of n we have

[ (= ||<Z|¢ WP +a™™ 3 [dn) Pyt

n>Nog

Now use the obvious 1nequahty

No No - ~
S )P < e [dn)PeNo < eghy(e7N0) < eghy(n°)
n=0 n=0

to conclude that the estimate in the statement holds for all n > 1y with
Cy = e+a~". Finally, from the fact that 1(0) # 0 we see that the inequality
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holds for all n € (0,1) with a suitable change of the constant C; that may
now depend on 1.

(ii) Suppose first that s = 1 and m = 0, and note that in this case we
have, for all positive integers k,n,

_— . ~ n+k—-1

® o= ¥ duediwz X o1=("TE)
Jitetiv=n itetie=n

Choose a sequence (x,) in A such that [|z,| < 1, n, = r(z,) — 0 and
27|/ — roo(A) as n — oco. Apply Theorem 2.2(ii) with € > 0 arbitrary
to obtain, for all positive integers n, k,

[F)Pllapll < Me(L—e) ™ (n+1)'7  sup  [[F(zan)].

1—e<|z|<1

Together with (5) this yields

+k—-1\" - _
(") bl < 31 )+ 0 PR ),
Now let ¢ > 0 be fixed but arbitrary, take the nth root on both sides of

the above inequality and let k,n — oo in such a manner that |k —cn| < n= 1.

1
n+s—1) n (1 + ¢)'*¢c=¢ and the inequality

Then by Stirling’s formula (
becomes

c \?
T'OO(A) < (1_8)_p<1——|—c> be(l—i-c)_p
IfKy>1,welet c(1+¢)7! = K;l/p, and since ¢ was arbitrary we get

roo(A) < (1— K V7).
The same inequality follows by a standard approximation if K, = 1. Finally,
if s > 0, m > 0 are arbitrary, let C;, = mmax{1+ [¢*(n)|,n=0,...,m—1}
and replace in the above argument v by o(2) = ¥°(2) 4 (Ch/m) 7" 2"
Since K(g,-) < K(1*,-) + Oy, with Cy = (C5)Pm!~P, the result follows. =

REMARK. It is easy to check that the condition imposed on ¢ in part
(ii) is satisfied, for example, if ¢)(n) > ¢(n + 1)77 for some constants ¢ > 0
and v < 1. To see this, use the inequality

4+ n+1-k) 7 >4 n+2)72>(n+1)"2,
which implies that

¥3(n) > ¢ Z(k + 1) (n+1—k)7 > E(n+ 1),
k=0

Since —2v + 1 > —~, the result follows by iterating this inequality.

We close this section with the extension of Olofsson’s estimate of §;(A)
from below (see [10]) to the case of quasi-Banach algebras.
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COROLLARY 2.4. The following inequality holds:
roo(A)
— < §(A).
Tt oAy = 1A
Proof. Suppose that §;(A) < 1; otherwise there is nothing to prove. Let
e>0,1>0>01(A) and (x,) be a sequence in A such that ||z,| < 1,
N = r(z,) — 0 and |27/ — ro(A) as n — oo. Further, let g, be the
positive solution of the equation
1+ on '
It follows easily from this equality that (o,) converges to (1/6 — 1)'/7 as
n — oo. For |z| < 1 set yn(2) = (e — 20n2,)(1 4+ 0h)~'/?, and note that
lyn ()] <1 and

S (1 — 0nmn)?
n P> =T
B
Then ||(yn(2)) || < C(A,6), and hence
(e = zonmn) | < [[(yn(2)) '] < C(4,6).
Now apply Theorem 2.2(ii) with 1(z) = (e —z0,2,) ! to obtain the inequal-
ity

oPl|lanll < Me(1— )™ (n+ 1) "PCO(A, ).
Take the nth root on both sides and let n — oo to obtain
(1/6 = Droo(A) < (1 —e) L.
Since € > 0 and 1 > § > §;(A) were arbitrary, the result follows. =

In view of Theorem 2.2 one might be tempted to consider in the above
proof other analytic functions than z — (e — zpz)™! and try to refine the
inequality. It seems, however, that this particular choice is optimal, at least
for our method of proof. Furthermore, there are even Banach algebras A such
that 61(A) = 1 (see [4] and [8]) and hence the inequality in Corollary 2.4 can
be strict.

3. Algebras with compact Gelfand transform. As we have seen
in the previous section (Corollary 2.4), in order to have §;(A) = 0 for a
quasi-Banach algebra A it is necessary that ro,(A) = 0. It is the aim of this
section to show that the implication can be reversed for any algebra A with
a compact Gelfand transform. More precisely, we shall prove the following
result.

THEOREM 3.1. Let A be a semisimple quasi-Banach algebra such that
the Gelfand transform G : A — C(9M(A)) is compact. Then §1(A) =0 if and
only if ro(A) =0.
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The proof is essentially based on two intermediate steps. The first is
contained in the following lemma.

LEMMA 3.2. Let A be a semisimple quasi-Banach algebra such that
Too(A) = 0. Further, let x € A and (x,) be a bounded sequence of in-
vertible elements of A such that the sequence (T,) converges to T uniformly
on M(A). If x is invertible then sup,, ||z, || < oo.

Proof. Start with the identity
m—1

(6) = Z (z —xp)xd  pa N (z — xp) ™™

j=0
and note that it suffices to prove that there exists a positive integer m such
that
(7) Y = lim |(z — z,)™2" ™| < 1.

n—oo

Indeed, assume that (7) holds for some integer m, let 0 < e < 1 — ~,,, and
use (6) to obtain, for sufficiently large n,

m—1

' < > M@ = @) 27 4 (g + )l -
=0
If we define C' = sup,, ||z, || + 1 this leads to

m—1

(1= =z I < D (llzll + Y[l 7+,
j=0

and the result follows. To prove (7) note that the sequence (y,) defined by
v = (2l + C)7VPllz M| 7P (@ — zp)a ™!

is a spectral null sequence in A. Since 7+, (A) = 0 we can choose m such that

1
rm(A) < —,
" (lzll + C)2{lz= 1
and thus )
Tim |y ]|"/™ < :
n—oo 7" (lzll + C)? flz= 1
which implies
— 1
— 1' . m,,—m < -
Tm nl_{rolo||(ﬂf zp) "] < (lz| + C)™"

and the proof is complete. =

Of course, the compactness of the Gelfand transform, as assumed in The-
orem 3.1, does not necessarily lead to the situation considered in the lemma.
For this reason, our next aim is to enlarge our algebra A in a suitable way.
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Let A be the set of all z € C(9M(A)) such that there is a bounded
sequence () in A whose Gelfand transform (Z,) converges to x uniformly

on M(A). On A we define the p-norm

2]l 7 = inf lim [z,[|4,
n—oo

where the infimum is taken over all bounded sequences (z,,) as above.

This construction is quite common in the theory of Banach algebras
and is usually called relative completion (see for example [14]). More pre-
cisely, A is the relative completion of A with respect to C(9M(A)). Clearly,
A can be identified with a subalgebra of A via the Gelfand transform and
this will be done in what follows, in order to simplify the notation. Some-
times A coincides with A via the above identification. A simple example
where the two algebras are different is obtained for A = lip,(T), in which
case A = Lip,(T). The construction has been extensively used in harmonic
analysis. More precisely, the so-called tilde-algebras are obtained exactly by
the above procedure, starting with quotient algebras on compact groups
(see |5, Chapter 12]). In particular, it turns out that A may not even be
closed in A.

Let us collect some properties of the algebra A.

PROPOSITION 3.3. If A is a semisimple quasi-Banach algebra then:

(i) A is a quasi-Banach algebra.

(i) M(A) = M(A).

(iii) rn(A) < ry(A).

Proof. (i) This fact is known (see [14, p. 94]); for the convenience of the
reader we include a sketch of the argument. Note first that if (zy,) is a Cauchy
sequence in A then it must converge uniformly on 90(A) to some z € A. It
also follows immediately from the definition that ||z|| 7 < lim ||z, ;. If we

now fix a positive integer k and apply this last inequality to the sequence
(xy, — z1) we see that

hm |z — 2] 7 < hrn lim ||z, — 2| 7 = 0.
—0 n—oo

(ii) The proof is straightforward.
(iii) Choose a spectral null sequence (z,,) in A with

ry(A) < hm HacNHl/N +e, >0
n—

By the definition of A we can find a sequence (y,) in A such that |Z, — Jn|
< 1/n on M(A) and

1/N
lyall < 1+ 1/n X IL™ < N 1YY + 1/m.
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Clearly, ((1 + 1/n)"Py,) is a spectral null sequence in A, and thus
ra(A) < Tim oYY + ¢ < T [y |17V + e < ra(A) + e,
n—oo n—oo
which concludes the proof. »

An immediate consequence of (i) and (ii) is that every invertible element
of A is invertible in A.

Proof of Theorem 3.1. We have to show that given § > 0 and a sequence
(z,,) in A with ||z,,|| < 1 and |Z,[P > § we have sup,, ||z, || < co. Since the
Gelfand transform is compact we can assume, by passing to a subsequence
if necessary, that (Z,) converges uniformly on 90(A) to some z € A. Note
that if x € A the statement follows by a direct application of Lemma 3.2.
If this is not the case, we can still apply Lemma 3.2 to conclude that C; =
sup,, ||x;1|]g < 00. By the definition of A this means that there exists a
sequence (y,) in A with |ly,|| < 2C; and |Z,! — §,| < 1/n. In particular,
the sequence (z,) defined by z, = z,y, € A satisfies ||z,|| < 2C and (Z,)
converges uniformly to the constant 1 on 9t(A). Then, clearly, z, is invertible
in A for sufficiently large n and another application of Lemma 3.2 gives

Cy = Tim |z} < oc.
n—oo
On the other hand, we have the inequality

lzm = Nynza Il < lyall 227,
which implies that
lim H.Z‘T_LlH <2C10s,
n—oo

and the result follows. =

4. Beurling type quasi-Banach algebras. As in the introduction, we
write D = N or D = Z and we let w : D — (0,00) be a submultiplicative
function with w(0) = 1. We shall consider for 0 < p < 1 the quasi-Banach
algebra /£,(D) of all complex sequences f = (a,)nep such that

£l =D lanPw(n) < oo,
neD

where the product of two elements f = (an)nep, 9 = (bn)nep of £5(D) is
defined to be the convolution

fQZ( Z akbn—k>nep.

k,n—keD
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Let us write

ry =ri(w) = igf(')w(n)l/” = nEme(n)l/”,

ro=r_(w) = { SUP,0 w(—n) /" = limy, . _sow(n)/" i D =17,
0 ifD=N.
In the case D = N we shall assume, in addition, that r;(w) > 0 (the ex-
ample w(n) = 1/n! shows that 7, = 0 is possible) to ensure that ¢%,(D) is
semisimple. In the case D = Z one has 0 < r_ < r; < oo and (D) is
always semisimple. The maximal ideal space of ¢,(D) is then identified with
point evaluations, i.e. the Gelfand transform is given by
AGENESOED NG
neD
where ( € 2(w) = {( € C:r_ <[P <7y} We will frequently identify an
element f € (%,(D) with its Gelfand transform.
In order to simplify the exposition we introduce the function
w(n)/ry ifn >0,
o(n) = 0o
w(n)/r® if D=Zand n <0.
With this notation we have for f = (an)nep € £4(D) the coefficient estimate

(8) |an|Pw(n) < sup [f(Q)[Po(n).
(en(w)
Indeed, this follows from
27
1 N —1 i
aslrll? = | § FeriPete it ar| < UﬂVPWﬁ<$MﬂM
0 0

The aim of the present section is to give estimates for the uniform spectral
radii 7y (¢4(D)) in the case when 0 < p < 1. These results enable us to
effectively compute 7o, (¢5,(D)) for such p. Using Theorem 3.1 we will apply
our results to norm controlled inversion in these algebras.

The following estimate of the norms of powers of elements of (D) will
be essential for our purposes.

THEOREM 4.1. Let w : D — (0,00) be a weight function, and let p €
(0,1). Let k,m,N € N be such that 1 < k < mk < N and define

F(k,m, N) = [(N = (m — Dk)/(k — D]
Then for every t > 0 and f € ¢£(D) we have
@) 1 e, < 11 F (kym, NYP
(N (k)™
1k 1( ) klka;—H sup _ FIIN,
N R e I

where we set the supremum above to equal zero if {j € D: o(j) >t} = 0.
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Proof. Let us begin by introducing some notation. For a multi-index
a=(ai,...,ay) in DV we write, as usual, |a| = ZjV:1 a;. Given a function
u: D — C and a multi-index « as above let

N
() = [ ] ulay).
Jj=1

Similarly, given a sequence g = (b;), for any multi-index o we write

_ N
ba = [ ] ba;-
j=1

For a permutation y € Sy and a multi-index o = (v, ...,ay) € DV we
write

xXoa = (ax(l), ey aX(N)).
For an integer £ with 1 < £ < N and a multi-index « as above we define

s(a) as the greatest nonnegative integer s < N/k with the property that
there exists x € Sy such that ya can be written in the form

X = (ﬁl""vﬁla'- 'aﬁsw' wﬁmﬁks—i—la"-aﬁN)-
— —_——
k times k times

Note that for every s < s(«) and for every sequence (b;);cp we can write
(10) o = 55,

with 3 € D* and v € DV~ where 57 is taken to be 1 if s = s(a) = N/k.
Finally, observe that if s = s(«) < N/k then each entry of the multi-index =,
in the representation (10), occurs at most k — 1 times, and consequently, at
least [(N — ks(a))/(k — 1)] entries of ~y are distinct.

After these preparations we turn to the actual proof of the theorem. Start
with the equality

(11) M =Y >

JED aeDN,|al=j

w(j)-

Let us define the following sets of multi-indices:

1) The set A;; of multi-indices « with |a| = j and s(a) < m.

2) The set A; 2 of multi-indices o with || = j, s(a) > m and such that,
if @, is written in the form (10) with s = m, then at least one of the
entries 3; of 8= (01, ...,0s) satisfies o(3;) < t.

3) The set A;3 of multi-indices o with |a| = j that do not belong to the
previous sets, that is, s(«) > m and if a, is written in the form (10)
with s = m then all entries 3; of 8 = (1, ..., [s) satisfy o(5;) > t.
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We have
3
P
(12) 1, <3000 Y | wli)
u=1j€D a€cA;,
Recall that every multi-index in Aj;; has at least [((N — (m — 1)k)/(k — 1)]
distinct entries and we can write
> o =F(k,m,N) > G,
OéEA]',l OZEAJ"l

where >’ means that we are summing over all those multi-indices whose first
[(N — (m —1)k)/(k — 1)] distinct entries are ordered. This implies

S| S et < Fem P Y Y bt
JED a€Aj 1 JED acAj,
On the other hand, the same reasoning shows that
F(k,m,N) Y Y M aalPo(e) < |IFII,
J€D |al=5

and we obtain the estimate

(13) 3 ‘

Jj€D OCEAJ 1

w(j) < F(k,m, NP7 £l

To handle the second sum in (12) we introduce the set B of multi-indices
a = (a1,...,ay) such that @, can be written in the form

Uy = af“alwrl Sy,
where o (1) < t. Clearly, |J..p Aj2 C B, which implies the inequality

> DESICALCY

JED a€cA; 2 aeB

€D

Moreover,

Z |aaPO(a) = (]Z) Z |ag[FPw(1)k Z |a|P@ ()

a€B o(l)<t ac€DN—k
N—k N kp k
=A™ > lalFo)®.

o(l)<t

Now use the coefficient estimate (8) to conclude that

o lalPo@F < () f e
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which gives

(14) Z‘ P “w(j) < D laalPGa < (J;r)tk_lr(f)k—l”f”é\é—kﬂ

JED a€Aj aeB

To estimate the third sum in (12) we note that if o = (aq,..
and

.,OZN) € Aj’g

_ .k k
Qo = all e almalkm+1 [ alN

then o(l,) > t, 1 < v < m, and hence

w w(a T £ he) w(a) su w(kD™
() < o( )1/1;[1w<l”)k < o( )U(l)gt w(l)Fm”
Then
(15) Z ‘ Z&a pw(j) < sup w(k:]km ZZ |an|Po(a
JED Aj3 o(j)>t w(J) JED Aj 3
< sup LTy

o(j)>t W(F)Fm

The result now follows from (12) and the estimates (13)-(15). =

Let us now turn to the estimates of the uniform spectral radii. To state
our result we need the following notation. Given an unbounded sequence
() of positive numbers we define, for arbitrary sequences (A,,),

hm A, = sup{ hm Ank : lim py,, = oo}
Hn— k—o0
We obviously have the equality
lim A, = hm sup{A fn >t}

[ —00

COROLLARY 4.2. Let w : D — (0,00) be a weight function and let
€ (0,1).

(i) If sup,ecpo(n) < oo then for all integers N > 3 we have

rn(2(D))N < N1,

(ii) Let (o(n))nep be unbounded, let k,m,N be positive integers with
1 <k<mk< N and set F(k,m,N)=[(N —(m —1)k)/(k—1)].
Then

—  w(nN)

lim
o(n)—oo w(n)N B

_ — kn)™
P (DY) < F NPl T .
TN(gw( )) = (k7m7 ) +o-(nl)ril>oo w(n)km

Proof. Recall that for a spectral null sequence f = (f,) we have || f,|»
< 1and lim,, o r(fn) = 0. Then by an application of Theorem 4.1 we obtain
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the inequality

(16) rn ()Y = Tim [|[fN]p < F(k,m, NP~ + su wlky)™

n—oo UM e — Y o(j)>t w(])km ’
whenever k, m, N, t satisfy the conditions in the statement. Then (i) follows
by letting k = 2, m = 1 and ¢ > sup,cp o(n). Recall also that in this case
the supremum on the right hand side of (16) is taken to be zero.

For (ii), to see the lower estimate consider a sequence n; in D such that
limj o0 0(nj) = 0o and let f; be defined by f;(z) = 2™ Jw(n;)!/P. Clearly
(f;) is a spectral null sequence, and thus
w(n;N)

e (E(D))Y = lim || f}Y]| = lim ;
j—00 J w )N

Jj—00 w(nj
which gives the desired inequality. For the upper estimate we just apply (16)
and let the parameter ¢ tend to infinity. m

COROLLARY 4.3. Let w: D — (0,00) be a weight function and let p €
(0,1). If (o(n))nep is bounded then ro(¢%(D)) = 0 and if (o(n))nep is

unbounded then
. — w(nN)l/N
(D)) = inf 1 _—
Too(6(D)) o oy
Proof. The first part of the statement is just a direct application of Corol-
lary 4.2(i). Further, from the first inequality in part (ii) of the same corollary
we see that
. — w(nN)l/N
(D)) > inf 1 _—
roo(t(D)) 2 o oy
To see the reverse inequality, fix an integer k£ > 2 and a constant ¢ € (0, 1),
and let m, N — oo in such a manner that mk/N — c. Then

N —(m—-1)k N—-—(m-1)k 1-c¢
_— d —
k—1 oo an N(k—1) k-1
which (due to Stirling’s formula) implies that F(k,m, N)®=D/N — 0. Then

from the second inequality in Corollary 4.2(ii) we deduce that

m/N
» w-yN . o wkEn)™™
P(E(D) < Flkm, NP0 B 2T

and by the above considerations, when m, N — oo so that mk/N — ¢, we

have
— w(kn)V/k\C
o < (Fm “ )

Since k > 2 and ¢ € (0,1) were arbitrary the result follows. =
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We should point out here that the value of the infimum in Corollary 4.3
can be obtained by letting N — oo. This follows immediately from the fact
that the weight is submultiplicative.

Next we want to apply Theorem 3.1 to the algebras ¢,(D), 0 < p < 1.
It is fairly easy to check that the Gelfand transform of ¢%,(D) is compact if
and only if

lim o(n) =oc.
n€D, |n|—o0
Indeed, if the Gelfand transform is compact one can use the test functions
defined by f.(z) = z"w(n)~'/P? to conclude that the above limit is infi-
nite. Conversely, if the limit is infinite then the inclusion map from ¢ (D)
into £, (D), where wy(+£n) = rl/p, n > 0, is compact. Moreover, ¢}, (D)
is continuously contained in C'(£2(w)), which proves the compactness of the
Gelfand transform. Note that for such weights w Corollary 4.3 gives

Jk
» . — w(nk)l
reo(5(D)) = Juf, lim ="

COROLLARY 4.4. Let w:D — (0,00) be a weight function such that

— k)1/k
R il Uy

k>1|nj—oo  w(n)
Then the Gelfand transform of (5,(D) is compact for 0 < p < 1. Moreover,

if 0<p<1, then §;(¢5(D)) =0.

Proof. Let us assume D = N, the statement for D = 7Z is identical.
By Theorem 3.1 and Corollary 4.3 the second half of the statement follows
from the first. By the remarks preceding this proof it suffices to show that
o(n) — oo as n — oo. Note that the hypothesis is equivalent to

1/k
e )
k>1n—co  a(n)

= 0.

Moreover, since 4 = inf,, w(n)'/™ it follows that o'(n) > 1. Thus,

- Uk
0= inf Iim Mz Tm
k>1n—oco  o(n) n—oo g (n)

and the proof is complete. n

Explicit examples of weights satisfying the assumption of Corollary 4.4
are w: n — (1+|n|)® and w : n +— exp(|n|?), where a > 0 and 8 € (0,1). In
fact, for these weights lim,, w(kn)/w(n)* = 0 for all k£ > 1. Our next example
shows that there are weights w such that the Gelfand transform of #,(D) is
compact, but 7o (¢5(D)) > 0.
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EXAMPLE 4.5. Let 0 < p < 1. Given o € (0, 1] there is a weight function
w on N such that lim,,_. o(n) = oo and

reo(@(N)) = a

Proof. In the case when p € (0,1) we see from Corollary 4.3 that it
suffices to construct a weight function w, : N — R with the properties
limwq(n) = oo, r4(w) =1 and

1/k
inf lim M —
k>1n—00  wq(n)
Assume first that o = 1 and consider a rapidly increasing sequence of posi-
tive integers ni,no, ..., where by rapidly increasing we mean that for every
k > 1 there are infinitely many n such that n; < n < kn < njy; for some
J (depending on n). Define f : N — (0,1) by f(n) =1/jifn; <n <n;u
and note that f has the following properties: f(n) decreases to 0 as n grows
to infinity, limnf(n) = oo, and for k fixed we have f(nk) — f(n) = 0 for
infinitely many n. In other words, w1 : n — exp(nf(n)) satisfies all the
conditions above. To extend the result to the case when p = 1 we use
the following inequalities. If w is a weight function on N with o(n) — oo
then
1/k
inf lim M
k>1n—oo  w(n)

< 70 (£, (N)

< inf lim sup
k21 M—00ny np>M

<w(n1+~-~+nk)>l/k'

w(ny) -+ w(ng)

The upper estimate follows from [2], while the lower estimate is obtained
exactly as in Corollary 4.2, using spectral null sequences (f;) with f](z) =
2" Jw(n;)'/P. This completes our construction in the case when a = 1.

To see the general case, let o € (0,1) and define w, by w,(0) = 1 and
wa(n) = alwi(n) otherwise. Then limwy(n) = oo, 7+ (ws) = 1 and a
simple calculation based on the above estimates of 7o (¢4 (N)) shows that

Too (0, (N)) = . m

The simple construction given in this example has been suggested to us
by S. Naboko. It is interesting to observe that for the weight w; constructed
above we have 41 (¢, (N)) = 1/2. Indeed, since 7 (¢)(N)) = 1, Corollary 2.4
implies that d; (¢4, (N)) > 1/2. The reverse inequality is a classical result. Its
proof can be found in [3] or [§].

PROPOSITION 4.6. If w s a weight function on N and 0 < p <1, then

n(P(N)) <1/2.
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~

Proof. Fix 6 >1/2. Suppose f € (§,(N) satisfies || f||,, <1 and |f(z)[P >4

~

for all z € 2(w). Then |f(0)|P > ¢ and

177 e = s N0+ 7 = TN/ FO) ey

= |f-FOly 1

1
= Z — §25—1.l

CrO)P = 10

=)
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