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Uniform spe
tral radius and 
ompa
t Gelfand transformby
Alexandru Aleman and Anders Dahlner (Lund)Abstra
t. We 
onsider the quantization of inversion in 
ommutative p-normed quasi-Bana
h algebras with unit. The standard questions 
onsidered for su
h an algebra Awith unit e and Gelfand transform x 7→ x̂ are: (i) Is Kν = sup{‖(e − x)−1‖p : x ∈ A,

‖x‖p ≤ 1, max |x̂| ≤ ν} bounded, where ν ∈ (0, 1)? (ii) For whi
h δ ∈ (0, 1) is Cδ =
sup{‖x−1‖p : x ∈ A, ‖x‖p ≤ 1, min |x̂| ≥ δ} bounded? Both questions are related to a�uniform spe
tral radius� of the algebra, r∞(A), introdu
ed by Björk. Question (i) has ana�rmative answer if and only if r∞(A) < 1, and this result is extended to more generalnonlinear extremal problems of this type. Question (ii) is more di�
ult, but it 
an alsobe related to the uniform spe
tral radius. For algebras with 
ompa
t Gelfand transformwe prove that the answer is �yes� for all δ ∈ (0, 1) if and only if r∞(A) = 0. Finally, wespe
ialize to semisimple Beurling type algebras ℓp

ω(D), where 0 < p < 1 and D = N or
D = Z. We show that the number r∞(ℓp

ω(D)) 
an be e�e
tively 
omputed in terms ofthe underlying weight. In parti
ular, this solves questions (i) and (ii) for many of thesealgebras. We also 
onstru
t weights su
h that the 
orresponding Beurling algebra has a
ompa
t Gelfand transform, but the uniform spe
tral radius equals an arbitrary givennumber in (0, 1].1. Introdu
tion. This paper 
on
erns two fundamental questionsabout inversion in 
ommutative (semisimple) Bana
h algebras with unitwhi
h have attra
ted a lot of attention re
ently. Re
all that an element
x in su
h an algebra A is invertible if and only if its Gelfand transform
x̂ has no zeros in the maximal ideal spa
e of A, and it is natural to askwhether there exist quantitative versions of this fa
t. More pre
isely, we 
anformulate:
Question 1. Given δ > 0 does there exist a positive 
onstant Cδ su
hthat ‖x−1‖ ≤ Cδ for all x ∈ A with ‖x‖ ≤ 1 and |x̂| ≥ δ?
Question 2. Given ε > 0 does there exist a positive 
onstant Kε su
hthat ‖(e − x)−1‖ ≤ Kε for all x ∈ A with ‖x‖ ≤ 1 and |x̂| ≤ ε? (Here e isthe unit in A.)2000 Mathemati
s Subje
t Classi�
ation: Primary 46J05; Se
ondary 43A15.Key words and phrases: uniform spe
tral radius, norm 
ontrolled inversion, boundedinverse property, invisible spe
trum, quasi-Bana
h algebras.[25℄



26 A. Aleman and A. DahlnerWe are going to 
onsider these problems in the slightly more general
ontext of 
ommutative quasi-Bana
h algebras. The reason for this is notonly be
ause our abstra
t results apply to these algebras as well, but alsothe fa
t that in the 
on
rete 
ase of weighted ℓp-algebras we will en
ountera somewhat di�erent situation when 0 < p < 1.A 
omplete metri
 linear spa
e X over C is 
alled a quasi-Bana
h spa
e(also known as p-normed spa
e or lo
ally bounded spa
e) if the metri
 isindu
ed by a p-norm for some �xed p with 0 < p ≤ 1, i.e. a fun
tion
‖ · ‖ : X → R su
h that if x, y ∈ X and λ ∈ C then: ‖x‖ > 0 for x 6= 0,
‖λx‖ = |λ|p‖x‖, and ‖x + y‖ ≤ ‖x‖ + ‖y‖. By a quasi-Bana
h algebra (or
p-normed algebra) we mean a 
ommutative algebra A over C, with unitelement e, su
h that A is a quasi-Bana
h spa
e with a p-norm satisfying
‖e‖ = 1 and ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A.The maximal ideal spa
e of A, denoted by M = M(A), is the set ofall (nonzero) algebra homomorphisms ζ : A → C, and 
arries a 
ompa
tHausdor� topology [15℄. We say that A is semisimple if ⋂

ζ∈M
ker ζ = {0}.The Gelfand transform on A is the operator G : A → C(M) de�ned by

G(x) = x̂, where x̂ is de�ned by x̂(ζ) = ζ(x), and C(M) is the Bana
h spa
eof 
omplex-valued 
ontinuous fun
tions on M. As in the Bana
h algebra
ase, it turns out that for a 
omplex number λ, λe − x ∈ A is invertible ifand only if λ does not belong to the range of the Gelfand transform of x.Consequently, the spe
trum of an element x ∈ A, denoted by σ(x), is therange of x̂, whi
h is a 
ompa
t subset of C. The spe
tral radius of an element
x ∈ A is de�ned by r(x) = supζ∈M |x̂(ζ)|p, or equivalently, by the spe
tralradius formula

r(x) = lim
n→∞

‖xn‖1/n = inf
n

‖xn‖1/n.For an introdu
tion to quasi-Bana
h algebras and quasi-Bana
h spa
es werefer to �elazko's treatise [15℄ and Rolewi
z's book [11℄.A 
lass of examples that are relevant for this work (see Se
tion 4 below)are the weighted ℓp-spa
es with a submultipli
ative weight. They are usually
alled Beurling type algebras. More pre
isely, let D = N or D = Z and let
ω be a stri
tly positive fun
tion on D with the property that ω(m + n) ≤
ω(m)ω(n), ω(0) = 1. Su
h a fun
tion will be 
alled a weight fun
tion. Thespa
e ℓpω(D), p > 0, 
onsists of sequen
es f = (an)n∈D with

‖f‖ℓpω =
∑

n∈D

|an|pω(n) <∞.The produ
t of two su
h sequen
es is de�ned to be their 
onvolution. Itturns out that ℓpω(D) is a quasi-Bana
h algebra if p ≤ 1. Under 
ertainother 
onditions on the weight fun
tion, ℓpω(D) be
omes a Bana
h algebrafor p > 1 as well, with the norm f 7→ ‖f‖1/p

ℓpω
(see [3℄ for more details). The



Uniform spe
tral radius 27algebras ℓpω(Z) are always semisimple, while ℓpω(N) is semisimple if and onlyif inf ω(n)1/n > 0.In his work [1℄ on quantization of inversion in Bana
h algebras Björk
onsidered 
ertain �uniform spe
tral radii� whi
h will play a 
entral role inthis paper. These are numbers that depend only on the algebra A and arede�ned as follows.Definition 1.1. A sequen
e (xn) in A is 
alled a spe
tral null sequen
eprovided ‖xn‖ ≤ 1 and limn→∞ r(xn) = 0. When x = (xn) is a spe
tral nullsequen
e and N is a positive integer we de�ne rN (x) = limn→∞ ‖xNn ‖1/Nand set
rN (A) = sup{rN (x) : x is a spe
tral null sequen
e}.Moreover, we denote by r∞(A) the number infN≥1 rN (A) = limN→∞ rN (A)and refer to it as the uniform spe
tral radius of A. The existen
e of the limitand the last identity follow from the submultipli
ativity of the sequen
e

(rN (A)N ).If Question 1 has an a�rmative answer for some δ ∈ (0, 1) then thequantity
(1) C(A, δ) = sup{‖x−1‖ : x ∈ A, ‖x‖ ≤ 1,

|x̂(ζ)|p ≥ δ for all ζ ∈ M(A)}is �nite and we say that A has norm 
ontrolled inversion of degree δ1(A),where δ1(A) is the �rst 
riti
al 
onstant(2) δ1(A) = inf{δ : δ ∈ (0, 1), C(A, δ) <∞}.The quantity δ1(A) was introdu
ed and studied by Nikolski in [8℄. It hasbeen pointed out to us by the referee that the �rst expli
it appearan
e ofthe problem of norm 
ontrolled inversion is the paper of J. Stafney [13℄ who
onsidered the spe
ial 
ase of the Wiener algebra ℓ1(Z).If Question 2 has an a�rmative answer for some ε ∈ (0, 1) we say that
A has the bounded inverse property and write
Kε(A) = sup{‖(e− x)−1‖ : x ∈ A, ‖x‖ ≤ 1, |x̂(ζ)| ≤ ε for all ζ in M(A)}.Both the bounded inverse property and that of norm 
ontrolled inversionhave been extensively studied in Bana
h algebras (see [1℄, [2℄, [3℄, [8℄, [10℄,and [12℄), that is, in the 
ase when p = 1. For a 
omprehensive survey of theproblems under 
onsideration and their relation to 
lassi
al problems in thetheory of harmoni
 analysis we refer to [9℄.Due to nonlinearity su
h extremal problems are rather di�
ult and havesurprising answers in many 
on
rete 
ases. For example, if A is one of theWiener algebras ℓ1(N) or ℓ1(Z), then Kε(A) = ∞ for all ε > 0, δ1(ℓ1(N)) =

1/2 and 1/2 ≤ δ1(ℓ
1(Z)) ≤ 1/

√
2, where the exa
t value of the last 
onstant



28 A. Aleman and A. Dahlnerseems to be unknown (see for example [3℄, [9℄). In fa
t, as we shall see below,this bad behavior of the inversion in these algebras 
an be explained bythe fa
t that the uniform spe
tral radius r∞(A) takes the maximal value 1.A 
onsiderable amount of work has been devoted to the intrinsi
 relationbetween Björk's uniform spe
tral radius and the quantities des
ribed above.The aim of the present paper is to 
ontinue this investigation; we presentsome new results in this dire
tion that hold even in the more general 
ontextof quasi-Bana
h algebras. Furthermore, the results in the last se
tion aboutBeurling type algebras show that essential di�eren
es 
an o

ur when dealingwith the 
ase p < 1.As we mentioned above, Björk introdu
ed the numbers rN (A) (for Ba-na
h algebras) and the main theorem of [1℄ asserts that a 
ommutative Ba-na
h algebra A has the bounded inverse property if and only if rN (A) < 1for some integer N ≥ 2, or equivalently r∞(A) < 1. The argument in [1℄provides an estimate of Kε(A) in terms of r∞(A) and re
ently, in [10℄, Olof-sson was able to obtain estimates of r∞(A) in terms of Kε(A). Moreover, inthe same paper Olofsson estimated from below the 
riti
al 
onstant δ1(A) interms of the same number r∞(A). Expli
itly, he proved that(3) r∞(A)

1 + r∞(A)
≤ δ1(A).In Se
tion 2 we give a uni�ed approa
h to these problems that not onlyworks for quasi-Bana
h algebras but also applies to more general nonlinearextremal problems. We should point out here that the main te
hni
al dif-�
ulty when working with the 
ase p < 1 is that one needs a repla
ementfor the integration te
hniques that are quite 
ommon in Bana
h algebras.The main result of the se
tion provides two estimates of ‖xn‖ in terms ofthe numbers rN (A), as well as in terms of norms of power series appliedto x. A 
onsequen
e (see Corollary 2.3) is that for any power series ψ in theunit dis
 whose 
oe�
ients are positive and bounded away from zero thenumber

K(ψ, η) = sup{‖ψ(x)‖ : x ∈ A, ‖x‖ ≤ 1, r(x) < η} (η ∈ (0, 1))is �nite if and only if r∞(A) < 1. Our method also yields quantitative es-timates of K(ψ, η) if r∞(A) < 1 and of r∞(A) if K(ψ, η) < ∞. A further
onsequen
e is the fa
t that inequality (3) 
ontinues to hold for any quasi-Bana
h algebra.A more subtle problem is to �nd estimates of δ1(A) from above (see [8℄and [3℄) and this is due to the more 
ompli
ated 
ondition imposed on theGelfand transform in the extremal problem that de�nes these numbers. Animportant tool for showing that δ1(A) = 0 is the use of 
ompa
t embeddingsin larger algebras that have the same maximal ideal spa
e. Su
h methods



Uniform spe
tral radius 29have been used by El-Fallah, Nikolski and Zarrabi [3℄ for 
ertain sequen
eBana
h algebras A that 
ontain some of the Beurling type algebras.Note that the weakest form of 
ompa
t embedding in an algebra with thesame maximal ideal spa
e is the one in C(M(A)) via the Gelfand transform,and also re
all that by (3) we have r∞(A) = 0 whenever δ1(A) = 0. Theaim of our third se
tion is to prove that for every semisimple quasi-Bana
halgebra with 
ompa
t Gelfand transform this impli
ation 
an be reversed,i.e. δ1(A) = 0 whenever r∞(A) = 0. For 
ertain Beurling type algebras thisresult has been proved re
ently by El-Fallah and Ezzaaraoui [2℄.Se
tion 4 is devoted to algebras of semisimple Beurling type in the 
ase
0 < p < 1. We prove a general estimate of ‖fN‖ℓpω for f ∈ ℓpω(D) that yieldsgood estimates for the uniform spe
tral radii rN (ℓpω(D)). These estimatesare then used to obtain an expli
it formula for the number r∞(ℓpω(D)) interms of the weight ω. To avoid some ne
essary normalizations, let us stateour formula only in the 
ase when D = N and limn ω(n)1/n = 1. Then (seeCorollary 4.3) r∞(ℓpω(D)) = 0 whenever the weight is bounded, and if ω isunbounded then

r∞(ℓpω(D)) = inf
k≥1

lim
ω(n)→∞

ω(nk)1/k

ω(n)
.For many weights we have r∞(ℓpω(D)) = infk≥1 lim|n|→∞ ω(nk)1/k/ω(n) = 0and it turns out that this 
ondition automati
ally implies the 
ompa
tnessof the Gelfand transform. Then the main result of Se
tion 3 applies and weobtain δ1(ℓpω(D)) = 0. Nevertheless, the 
onverse to the above statement isfalse. For any given α ∈ (0, 1] we 
onstru
t a weight ωα su
h that the Gelfandtransform on ℓpωα(D) is 
ompa
t, but r∞(ℓpωα(D)) = α for all p ∈ (0, 1].These results are not only sharper than the ones known for p ≥ 1, butthey also reveal a somewhat di�erent situation for these Beurling algebras.Indeed, for p ≥ 1 only 
ertain estimates in terms of more 
ompli
ated ex-pressions of the uniform spe
tral radius are available. Moreover, for boundedweights ω the uniform spe
tral radius of ℓpω(D) 
an assume the maximalvalue 1 when p ≥ 1.

2. General estimates of ‖xn‖. Re
all that A denotes a 
ommutativesemisimple quasi-Bana
h algebra, with unit e and with a p-norm ‖ · ‖, where
p is some number in (0, 1]. In this se
tion we are going to prove two estimatesof the norms of the positive powers of an element x ∈ A with given normand spe
tral radius. These inequalities will then be applied to obtain severalestimates of the 
onstants Kε(A) and δ1(A) in terms of the uniform spe
tralradius r∞(A) introdu
ed in the previous se
tion. In fa
t, we will 
onsider amore general version of Kε(A) de�ned as follows. For an analyti
 fun
tion ψ



30 A. Aleman and A. Dahlnerin the unit dis
 and a number η ∈ (0, 1) let(4) K(ψ, η) = sup{‖ψ(x)‖ : x ∈ A, ‖x‖ ≤ 1, r(x) < η}.Note that if K(ψ, η0) < ∞ for some η0 ∈ (0, 1), then K(ψ, η) < ∞ for all ηwith 0 < η < η0, and the limit
Kψ = lim

η→0
K(ψ, η)exists.For Bana
h algebras, estimates of the type mentioned above rely fre-quently on integration te
hniques whi
h are not available in the more general
ontext 
onsidered here. Instead, our main tool will be the following variantof the maximum prin
iple due to Kalton [7℄ for A-valued analyti
 fun
tions.As usual, for a p-normed spa
e X and an open subset Ω of C, we say thata fun
tion f : Ω → X is analyti
 on Ω if for ea
h z0 ∈ Ω there exists δ > 0su
h that for all z with |z − z0| < δ, f(z) 
an be written as a 
onvergentpower series

f(z) =
∞∑

n=0

f̂(n)(z − z0)
n

with 
oe�
ients f̂(n) ∈ X for n ≥ 0. The 
lassi
al maximum modulustheorem is in general not true for quasi-Bana
h spa
es (see [6℄ and [7℄ fordetails). However, the following weaker result holds:Theorem 2.1 (Theorem 5.2 of [7℄). Let X be a quasi-Bana
h spa
e, andlet 0 < r < 1. Then there exists a 
onstant M = M(X, r) su
h that
‖f(0)‖ ≤M max

r≤|z|≤1
‖f(z)‖for all analyti
 fun
tions f : D → X whi
h are 
ontinuous on D.We now turn to the main result of this se
tion. We shall denote by [a]the integer part of the real number a.Theorem 2.2. Let x ∈ A with ‖x‖ ≤ 1 and r(x) = t < 1. Then:(i) Given a positive integer N and ε > 0 there exists 0< τ = τ(ε,N)< 1su
h that for all integers n ≥ N([log τ/log t] + 1) we have

‖xn‖ ≤ (rN (A) + ε)k(n),where k(n) = k(n,N, ε) = (n+ 1)([log τ/log t] + 1)−1 −N .(ii) Given an analyti
 fun
tion ψ in the unit dis
 and ε > 0 there existsa positive 
onstant Mε depending only on ε su
h that for all positiveintegers n,
|ψ̂(n)|p‖xn‖ ≤Mε(1 − ε)−np(n+ 1)1−p sup

1−ε<|z|<1
‖ψ(zx)‖.



Uniform spe
tral radius 31Proof. (i) If rN (A)+ε ≥ 1 there is nothing to prove. Assume that rN (A)
+ ε < 1 and use the de�nition of rN (A) to 
on
lude that there exists 0 < τ
= τ(ε,N) < 1 su
h that whenever y ∈ A satis�es ‖y‖ ≤ 1, r(y) < τ we have

‖yN‖ ≤ (rN (A) + ε)N .Now let x be as in the statement and set m = [log τ/log t]+1. Then r(xm) =
tm < τ and if n ≥ mN is an integer write n = lmN + j with integers l ≥ 1and 0 ≤ j ≤ mN − 1, and apply the previous inequality to y = xm to obtain

‖xn‖ ≤ ‖xlmN‖ ≤ ‖xmN‖l ≤ (rN (A) + ε)lN ≤ (rN (A) + ε)(n+1−mN)/m,proving the result.(ii) Let ξ = e2πi/(n+1) and 
onsider the A-valued fun
tion
φ(z) =

1

(n+ 1)zn

n∑

k=0

ψ(ξkzx)ξ−kn.We note �rst that this fun
tion is analyti
 in the pun
tured dis
 
entered atthe origin of radius t−1. Moreover, if ψ(w) =
∑∞

j=0 ψ̂(j)wj for |w| < 1, thenfor 0 < |z| < 1,
φ(z) =

1

zn

∞∑

j=0

ψ̂(j)(zx)j
1

n+1

n∑

k=0

ξ(j−n)k =
∞∑

l=0

ψ̂(n+l(n+1))zl(n+1)xn+l(n+1),

whi
h shows that φ extends analyti
ally near the origin as well and satis�es
φ(0) = ψ̂(n)xn. Consequently, we may apply Theorem 2.1 to dedu
e that forevery ε > 0 there exists a 
onstant Mε > 0 su
h that

‖φ(0)‖ = |ψ̂(n)|p‖xn‖ ≤Mε sup
1−ε<|z|<1

‖φ(z)‖.Now for |z| > 0 we have the following straightforward estimate:
‖φ(z)‖ ≤ |z|−np(n+ 1)1−p sup

|ζ|=|z|
‖ψ(ζx)‖,whi
h together with the previous inequality implies the desired result.It turns out that Theorem 2.2 
an be applied to study 
ertain nonlinearextremal problems in the algebra A. We shall be 
on
erned �rst with the
onstants K(ψ, η) de�ned at the beginning of the se
tion. As pointed out inthe introdu
tion, Björk [1℄ and Olofsson [10℄ have 
onsidered this extremalproblem in the 
ase when A is a Bana
h algebra and when ψ(z) = (1−z)−1.The 
orollary below extends their results to many other fun
tions ψ, that is,it provides ne
essary and su�
ient 
onditions in order to have K(ψ, η) <∞for η ∈ (0, 1), as well as an estimate from above for these 
onstants wheneverthey are �nite.



32 A. Aleman and A. DahlnerFor an analyti
 fun
tion F in the unit dis
, we denote as above by F̂ (n)its nth Taylor 
oe�
ient and by F̃p the fun
tion
F̃p(z) =

∞∑

n=0

|F̂ (n)|pzn.Corollary 2.3.(i) If r∞(A) < 1 then for every analyti
 fun
tion ψ in the unit dis
with ψ(0) 6= 0 there exist an absolute 
onstant α > 0 and a positive
onstant C1 depending only on ψ su
h that
K(ψ, η) ≤ C1ψ̃p(η

α) <∞.(ii) Let ψ be analyti
 in the unit dis
. Assume that there exists an integer
s > 0 su
h that the Taylor 
oe�
ients, ψ̂s(n), of ψs are real , and thatthere exists an integer m ≥ 0 su
h that ψ̂s(n) ≥ 1 for all n ≥ m.If K(ψ, η) < ∞ for some 0 < η < 1 then there exists a positive
onstant C2 depending only on ψ su
h that

r∞(A) ≤ (1 − (Kψs + C2)
−1/p)p < 1.In parti
ular , if ψ satis�es the 
onditions in (i) and (ii), then Kψ < ∞ ifand only if r∞(A) < 1.Proof. (i) Fix η ∈ (0, 1). Suppose that r∞(A) < 1 and let ε,N > 0 besu
h that a = rN (A) + ε < 1. Let τ = τ(ε,N) ∈ (0, 1) be the number givenin Theorem 2.2(i) and set N0 = N([log τ/log η] + 1). Theorem 2.2(i) statesthat for all x ∈ A with ‖x‖ ≤ 1 and r(x) < η < 1 we have

‖ψ(x)‖ ≤
N0∑

n=0

|ψ̂(n)|p + a−N
∑

n>N0

|ψ̂(n)|pa(n+1)/([log τ/log η]+1).Fix η0 > 0 and let α > 0 satisfy
α log η ≥ max

{
log a

/([
log τ

log η

]
+ 1

)
,−1/N0

}

for all η ≥ η0. For su
h values of η we have
‖ψ(x)‖ ≤

N0∑

n=0

|ψ̂(n)|p + a−N
∑

n>N0

|ψ̂(n)|pη(n+1)α.Now use the obvious inequality
N0∑

n=0

|ψ̂(n)|p ≤ e

N0∑

n=0

|ψ̂(n)|pe−n/N0 ≤ eψ̃p(e
−1/N0) ≤ eψ̃p(η

α)to 
on
lude that the estimate in the statement holds for all η ≥ η0 with
C1 = e+a−N . Finally, from the fa
t that ψ(0) 6= 0 we see that the inequality
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tral radius 33holds for all η ∈ (0, 1) with a suitable 
hange of the 
onstant C1 that maynow depend on ψ.(ii) Suppose �rst that s = 1 and m = 0, and note that in this 
ase wehave, for all positive integers k, n,(5) ψ̂k(n) =
∑

j1+···+jk=n

ψ̂(j1) · · · ψ̂(jk) ≥
∑

j1+···+jk=n

1 =

(
n+ k − 1

n

)
.Choose a sequen
e (xn) in A su
h that ‖xn‖ ≤ 1, ηn = r(xn) → 0 and

‖xnn‖1/n → r∞(A) as n → ∞. Apply Theorem 2.2(ii) with ε > 0 arbitraryto obtain, for all positive integers n, k,
|ψ̂k(n)|p‖xnn‖ ≤Mε(1 − ε)−np(n+ 1)1−p sup

1−ε<|z|<1
‖ψk(zxn)‖.Together with (5) this yields

(
n+ k − 1

n

)p

‖xnn‖ ≤Mε(1 − ε)−np(n+ 1)1−pKk(ψ, ηn).Now let c > 0 be �xed but arbitrary, take the nth root on both sides ofthe above inequality and let k, n→ ∞ in su
h a manner that |k−cn| < n−1.Then by Stirling's formula (
n+k−1
n

)1/n → (1 + c)1+cc−c and the inequalitybe
omes
r∞(A) ≤ (1 − ε)−p

(
c

1 + c

)cp

Kc
ψ(1 + c)−p.If Kψ > 1, we let c(1 + c)−1 = K

−1/p
ψ , and sin
e ε was arbitrary we get

r∞(A) ≤ (1 −K
−1/p
ψ )p.The same inequality follows by a standard approximation if Kψ = 1. Finally,if s > 0, m ≥ 0 are arbitrary, let C ′

2 = mmax{1+ |ψ̂s(n)|, n = 0, . . . ,m−1}and repla
e in the above argument ψ by ϕ(z) = ψs(z) + (C ′
2/m)

∑m−1
n=0 z

n.Sin
e K(ϕ, ·) ≤ K(ψs, ·) + C2, with C2 = (C ′
2)
pm1−p, the result follows.

Remark. It is easy to 
he
k that the 
ondition imposed on ψ in part(ii) is satis�ed, for example, if ψ̂(n) ≥ c(n + 1)−γ for some 
onstants c > 0and γ < 1. To see this, use the inequality
(k + 1)−γ(n+ 1 − k)−γ ≥ 4γ(n+ 2)−2γ ≥ (n+ 1)−2γ ,whi
h implies that
ψ̂2(n) ≥ c2

n∑

k=0

(k + 1)−γ(n+ 1 − k)−γ ≥ c2(n+ 1)−2γ+1.Sin
e −2γ + 1 > −γ, the result follows by iterating this inequality.We 
lose this se
tion with the extension of Olofsson's estimate of δ1(A)from below (see [10℄) to the 
ase of quasi-Bana
h algebras.



34 A. Aleman and A. DahlnerCorollary 2.4. The following inequality holds:
r∞(A)

1 + r∞(A)
≤ δ1(A).Proof. Suppose that δ1(A) < 1; otherwise there is nothing to prove. Let

ε > 0, 1 > δ > δ1(A) and (xn) be a sequen
e in A su
h that ‖xn‖ ≤ 1,
ηn = r(xn) → 0 and ‖xnn‖1/n → r∞(A) as n → ∞. Further, let ̺n be thepositive solution of the equation

(1 − ̺nηn)
p

1 + ̺pn
= δ.It follows easily from this equality that (̺n) 
onverges to (1/δ − 1)1/p as

n → ∞. For |z| < 1 set yn(z) = (e − z̺nxn)(1 + ̺pn)−1/p, and note that
‖yn(z)‖ ≤ 1 and

|ŷn(z)|p ≥
(1 − ̺nηn)

p

1 + ̺pn
= δ.Then ‖(yn(z))−1‖ ≤ C(A, δ), and hen
e

‖(e− z̺nxn)
−1‖ ≤ ‖(yn(z))−1‖ ≤ C(A, δ).Now apply Theorem 2.2(ii) with ψ(z) = (e−z̺nxn)−1 to obtain the inequal-ity

̺npn ‖xnn‖ ≤Mε(1 − ε)−n(n+ 1)1−pC(A, δ).Take the nth root on both sides and let n→ ∞ to obtain
(1/δ − 1)r∞(A) ≤ (1 − ε)−1.Sin
e ε > 0 and 1 > δ > δ1(A) were arbitrary, the result follows.In view of Theorem 2.2 one might be tempted to 
onsider in the aboveproof other analyti
 fun
tions than z 7→ (e − z̺x)−1 and try to re�ne theinequality. It seems, however, that this parti
ular 
hoi
e is optimal, at leastfor our method of proof. Furthermore, there are even Bana
h algebras A su
hthat δ1(A) = 1 (see [4℄ and [8℄) and hen
e the inequality in Corollary 2.4 
anbe stri
t.3. Algebras with 
ompa
t Gelfand transform. As we have seenin the previous se
tion (Corollary 2.4), in order to have δ1(A) = 0 for aquasi-Bana
h algebra A it is ne
essary that r∞(A) = 0. It is the aim of thisse
tion to show that the impli
ation 
an be reversed for any algebra A witha 
ompa
t Gelfand transform. More pre
isely, we shall prove the followingresult.Theorem 3.1. Let A be a semisimple quasi-Bana
h algebra su
h thatthe Gelfand transform G : A→ C(M(A)) is 
ompa
t. Then δ1(A) = 0 if andonly if r∞(A) = 0.
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tral radius 35The proof is essentially based on two intermediate steps. The �rst is
ontained in the following lemma.Lemma 3.2. Let A be a semisimple quasi-Bana
h algebra su
h that
r∞(A) = 0. Further , let x ∈ A and (xn) be a bounded sequen
e of in-vertible elements of A su
h that the sequen
e (x̂n) 
onverges to x̂ uniformlyon M(A). If x is invertible then supn ‖x−1

n ‖ <∞.Proof. Start with the identity(6) x−1
n =

m−1∑

j=0

(x− xn)
jx−j−1 + x−1

n (x− xn)
mx−mand note that it su�
es to prove that there exists a positive integer m su
hthat(7) γm = lim

n→∞
‖(x− xn)

mx−m‖ < 1.Indeed, assume that (7) holds for some integer m, let 0 < ε < 1 − γm anduse (6) to obtain, for su�
iently large n,
‖x−1

n ‖ ≤
m−1∑

j=0

‖(x− xn)
jx−j−1‖ + (γm + ε)‖x−1

n ‖.If we de�ne C = supn ‖xn‖ + 1 this leads to
(1 − γm − ε)‖x−1

n ‖ ≤
m−1∑

j=0

(‖x‖ + C)j‖x−1‖j+1,and the result follows. To prove (7) note that the sequen
e (yn) de�ned by
yn = (‖x‖ + C)−1/p‖x−1‖−1/p(x− xn)x

−1is a spe
tral null sequen
e in A. Sin
e r∞(A) = 0 we 
an 
hoose m su
h that
rm(A) ≤ 1

(‖x‖ + C)2‖x−1‖ ,and thus
lim
n→∞

‖ymn ‖1/m ≤ 1

(‖x‖ + C)2‖x−1‖ ,whi
h implies
γm = lim

n→∞
‖(x− xn)

mx−m‖ ≤ 1

(‖x‖ + C)m
,and the proof is 
omplete.Of 
ourse, the 
ompa
tness of the Gelfand transform, as assumed in The-orem 3.1, does not ne
essarily lead to the situation 
onsidered in the lemma.For this reason, our next aim is to enlarge our algebra A in a suitable way.



36 A. Aleman and A. DahlnerLet Ã be the set of all x ∈ C(M(A)) su
h that there is a boundedsequen
e (xn) in A whose Gelfand transform (x̂n) 
onverges to x uniformlyon M(A). On Ã we de�ne the p-norm
‖x‖

Ã
= inf lim

n→∞
‖xn‖A,where the in�mum is taken over all bounded sequen
es (xn) as above.This 
onstru
tion is quite 
ommon in the theory of Bana
h algebrasand is usually 
alled relative 
ompletion (see for example [14℄). More pre-
isely, Ã is the relative 
ompletion of A with respe
t to C(M(A)). Clearly,

A 
an be identi�ed with a subalgebra of Ã via the Gelfand transform andthis will be done in what follows, in order to simplify the notation. Some-times Ã 
oin
ides with A via the above identi�
ation. A simple examplewhere the two algebras are di�erent is obtained for A = lipα(T), in whi
h
ase Ã = Lipα(T). The 
onstru
tion has been extensively used in harmoni
analysis. More pre
isely, the so-
alled tilde-algebras are obtained exa
tly bythe above pro
edure, starting with quotient algebras on 
ompa
t groups(see [5, Chapter 12℄). In parti
ular, it turns out that A may not even be
losed in Ã.Let us 
olle
t some properties of the algebra Ã.Proposition 3.3. If A is a semisimple quasi-Bana
h algebra then:(i) Ã is a quasi-Bana
h algebra.(ii) M(Ã) = M(A).(iii) rN (Ã) ≤ rN (A).Proof. (i) This fa
t is known (see [14, p. 94℄); for the 
onvenien
e of thereader we in
lude a sket
h of the argument. Note �rst that if (xn) is a Cau
hysequen
e in Ã then it must 
onverge uniformly on M(A) to some x ∈ Ã. Italso follows immediately from the de�nition that ‖x‖
Ã

≤ lim ‖xn‖Ã. If wenow �x a positive integer k and apply this last inequality to the sequen
e
(xn − xk) we see that

lim
k→∞

‖x− xk‖Ã ≤ lim
k→∞

lim
n→∞

‖xn − xk‖Ã = 0.(ii) The proof is straightforward.(iii) Choose a spe
tral null sequen
e (xn) in Ã with
rN (Ã) ≤ lim

n→∞
‖xNn ‖

1/N

Ã
+ ε, ε > 0.By the de�nition of Ã we 
an �nd a sequen
e (yn) in A su
h that |x̂n − ŷn|

< 1/n on M(A) and
‖yn‖ ≤ 1 + 1/n, ‖xNn ‖

1/N

Ã
≤ ‖yNn ‖1/N + 1/n.
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tral radius 37Clearly, ((1 + 1/n)−pyn) is a spe
tral null sequen
e in A, and thus
rN (Ã) ≤ lim

n→∞
‖xNn ‖1/N

Ã
+ ε ≤ lim

n→∞
‖yNn ‖1/N + ε ≤ rN (A) + ε,whi
h 
on
ludes the proof.An immediate 
onsequen
e of (i) and (ii) is that every invertible elementof A is invertible in Ã.Proof of Theorem 3.1. We have to show that given δ > 0 and a sequen
e

(xn) in A with ‖xn‖ ≤ 1 and |x̂n|p ≥ δ we have supn ‖x−1
n ‖ < ∞. Sin
e theGelfand transform is 
ompa
t we 
an assume, by passing to a subsequen
eif ne
essary, that (x̂n) 
onverges uniformly on M(A) to some x ∈ Ã. Notethat if x ∈ A the statement follows by a dire
t appli
ation of Lemma 3.2.If this is not the 
ase, we 
an still apply Lemma 3.2 to 
on
lude that C1 =

supn ‖x−1
n ‖

Ã
< ∞. By the de�nition of Ã this means that there exists asequen
e (yn) in A with ‖yn‖ ≤ 2C1 and |x̂−1

n − ŷn| < 1/n. In parti
ular,the sequen
e (zn) de�ned by zn = xnyn ∈ A satis�es ‖zn‖ ≤ 2C1 and (ẑn)
onverges uniformly to the 
onstant 1 on M(A). Then, 
learly, zn is invertiblein A for su�
iently large n and another appli
ation of Lemma 3.2 gives
C2 = lim

n→∞
‖z−1
n ‖ <∞.On the other hand, we have the inequality

‖x−1
n ‖ = ‖ynz−1

n ‖ ≤ ‖yn‖ ‖z−1
n ‖,whi
h implies that

lim
n→∞

‖x−1
n ‖ ≤ 2C1C2,and the result follows.

4. Beurling type quasi-Bana
h algebras. As in the introdu
tion, wewrite D = N or D = Z and we let ω : D → (0,∞) be a submultipli
ativefun
tion with ω(0) = 1. We shall 
onsider for 0 < p ≤ 1 the quasi-Bana
halgebra ℓpω(D) of all 
omplex sequen
es f = (an)n∈D su
h that
‖f‖ℓpω =

∑

n∈D

|an|pω(n) <∞,

where the produ
t of two elements f = (an)n∈D, g = (bn)n∈D of ℓpω(D) isde�ned to be the 
onvolution
fg =

( ∑

k,n−k∈D

akbn−k

)

n∈D
.



38 A. Aleman and A. DahlnerLet us write
r+ = r+(ω) = inf

n>0
ω(n)1/n = lim

n→+∞
ω(n)1/n,

r− = r−(ω) =

{
supn>0 ω(−n)−1/n = limn→−∞ ω(n)1/n if D = Z,
0 if D = N.In the 
ase D = N we shall assume, in addition, that r+(ω) > 0 (the ex-ample ω(n) = 1/n! shows that r+ = 0 is possible) to ensure that ℓpω(D) issemisimple. In the 
ase D = Z one has 0 < r− ≤ r+ < ∞ and ℓpω(D) isalways semisimple. The maximal ideal spa
e of ℓpω(D) is then identi�ed withpoint evaluations, i.e. the Gelfand transform is given by
ℓpω(D) ∋ f 7→ f̂(ζ) =

∑

n∈D

anζ
n

where ζ ∈ Ω(ω) = {ζ ∈ C : r− ≤ |ζ|p ≤ r+}. We will frequently identify anelement f ∈ ℓpω(D) with its Gelfand transform.In order to simplify the exposition we introdu
e the fun
tion
σ(n) =

{
ω(n)/rn+ if n ≥ 0,
ω(n)/rn− if D = Z and n < 0.With this notation we have for f = (an)n∈D ∈ ℓpω(D) the 
oe�
ient estimate(8) |an|pω(n) ≤ sup

ζ∈Ω(ω)
|f(ζ)|pσ(n).Indeed, this follows from

|aj|rj/p± =
1

2π

∣∣∣
2π\
0

f̂(r
1/p
± eit)e−ijt dt

∣∣∣ ≤ 1

2π

2π\
0

|f̂(r
1/p
± eit)| dt ≤ sup

Ω(ω)
|f̂(ζ)|.The aim of the present se
tion is to give estimates for the uniform spe
tralradii rN (ℓpω(D)) in the 
ase when 0 < p < 1. These results enable us toe�e
tively 
ompute r∞(ℓpω(D)) for su
h p. Using Theorem 3.1 we will applyour results to norm 
ontrolled inversion in these algebras.The following estimate of the norms of powers of elements of ℓpω(D) willbe essential for our purposes.Theorem 4.1. Let ω : D → (0,∞) be a weight fun
tion, and let p ∈

(0, 1). Let k,m,N ∈ N be su
h that 1 < k ≤ mk < N and de�ne
F (k,m,N) = [(N − (m− 1)k)/(k − 1)]!.Then for every t > 0 and f ∈ ℓpω(D) we have

‖fN‖ℓpω ≤ ‖f‖NℓpωF (k,m,N)p−1(9)
+ tk−1

(
N

k

)
r(f)k−1‖f‖N−k+1

ℓpω
+ sup
σ(j)>t

ω(kj)m

ω(j)km
‖f‖Nℓpω ,where we set the supremum above to equal zero if {j ∈ D : σ(j) > t} = ∅.



Uniform spe
tral radius 39Proof. Let us begin by introdu
ing some notation. For a multi-index
α = (α1, . . . , αN ) in DN we write, as usual, |α| =

∑N
j=1 αj . Given a fun
tion

u : D → C and a multi-index α as above let
ũ(α) =

N∏

j=1

u(αj).Similarly, given a sequen
e g = (bj), for any multi-index α we write
b̃α =

N∏

j=1

bαj
.

For a permutation χ ∈ SN and a multi-index α = (α1, . . . , αN ) ∈ DN wewrite
χα = (αχ(1), . . . , αχ(N)).For an integer k with 1 < k < N and a multi-index α as above we de�ne

s(α) as the greatest nonnegative integer s ≤ N/k with the property thatthere exists χ ∈ SN su
h that χα 
an be written in the form
χα = (β1, . . . , β1︸ ︷︷ ︸

k times , . . . , βs, . . . , βs︸ ︷︷ ︸
k times , βks+1, . . . , βN ).

Note that for every s ≤ s(α) and for every sequen
e (bj)j∈D we 
an write(10) b̃α = b̃kβ b̃γ ,with β ∈ Ds and γ ∈ DN−ks, where b̃γ is taken to be 1 if s = s(α) = N/k.Finally, observe that if s = s(α) < N/k then ea
h entry of the multi-index γ,in the representation (10), o

urs at most k − 1 times, and 
onsequently, atleast [(N − ks(α))/(k − 1)] entries of γ are distin
t.After these preparations we turn to the a
tual proof of the theorem. Startwith the equality(11) ‖fN‖ℓpω =
∑

j∈D

∣∣∣
∑

α∈DN , |α|=j

ãα

∣∣∣
p
ω(j).

Let us de�ne the following sets of multi-indi
es:1) The set Aj,1 of multi-indi
es α with |α| = j and s(α) < m.2) The set Aj,2 of multi-indi
es α with |α| = j, s(α) ≥ m and su
h that,if ãα is written in the form (10) with s = m, then at least one of theentries βi of β = (β1, . . . , βs) satis�es σ(βi) < t.3) The set Aj,3 of multi-indi
es α with |α| = j that do not belong to theprevious sets, that is, s(α) ≥ m and if ãα is written in the form (10)with s = m then all entries βi of β = (β1, . . . , βs) satisfy σ(βi) ≥ t.



40 A. Aleman and A. DahlnerWe have(12) ‖fN‖ℓpω ≤
3∑

µ=1

∑

j∈D

∣∣∣
∑

α∈Aj,µ

ãα

∣∣∣
p
ω(j).

Re
all that every multi-index in Aj,1 has at least [(N − (m − 1)k)/(k − 1)]distin
t entries and we 
an write
∑

α∈Aj,1

ãα = F (k,m,N)
∑

′

α∈Aj,1

ãα,

where ∑′ means that we are summing over all those multi-indi
es whose �rst
[(N − (m− 1)k)/(k − 1)] distin
t entries are ordered. This implies

∑

j∈D

∣∣∣
∑

α∈Aj,1

ãα

∣∣∣
p
ω(j) ≤ F (k,m,N)p

∑

j∈D

∑
′

α∈Aj,1

|ãα|pω̃(α).

On the other hand, the same reasoning shows that
F (k,m,N)

∑

j∈D

∑
′

|α|=j

|ãα|pω̃(α) ≤ ‖f‖Nℓpωand we obtain the estimate(13) ∑

j∈D

∣∣∣
∑

α∈Aj,1

ãα

∣∣∣
p
ω(j) ≤ F (k,m,N)p−1‖f‖Nℓpω .To handle the se
ond sum in (12) we introdu
e the set B of multi-indi
es

α = (α1, . . . , αN ) su
h that ãα 
an be written in the form
ãα = akl alk+1

· · · alN ,where σ(l) < t. Clearly, ⋃
j∈D Aj,2 ⊂ B, whi
h implies the inequality

∑

j∈D

∣∣∣
∑

α∈Aj,2

ãα

∣∣∣
p
ω(j) ≤

∑

α∈B

|ãα|pω̃(α).

Moreover,
∑

α∈B

|ãα|pω̃(α) =

(
N

k

) ∑

σ(l)<t

|al|kpω(l)k
∑

α∈DN−k

|ãα|pω̃(α)

= ‖f‖N−k
ℓpω

(
N

k

) ∑

σ(l)<t

|al|kpω(l)k.

Now use the 
oe�
ient estimate (8) to 
on
lude that
∑

σ(l)<t

|al|kpω(l)k ≤ tk−1r(f)k−1‖f‖ℓpω ,



Uniform spe
tral radius 41whi
h gives(14) ∑

j∈D

∣∣∣
∑

α∈Aj,2

ãα

∣∣∣
p
ω(j) ≤

∑

α∈B

|ãα|pω̃α ≤
(
N

k

)
tk−1r(f)k−1‖f‖N−k+1

ℓpω
.

To estimate the third sum in (12) we note that if α = (α1, . . . , αN ) ∈ Aj,3and
ãα = akl1 · · · aklmalkm+1

· · · alNthen σ(lν) ≥ t, 1 ≤ ν ≤ m, and hen
e
ω(j) ≤ ω̃(α)

m∏

ν=1

ω(klν)

ω(lν)k
≤ ω̃(α) sup

σ(l)>t

ω(kl)m

ω(l)km
.Then

∑

j∈D

∣∣∣
∑

Aj,3

ãα

∣∣∣
p
ω(j) ≤ sup

σ(j)>t

ω(kj)m

ω(j)km

∑

j∈D

∑

Aj,3

|ãα|pω̃(α)(15)
≤ sup

σ(j)>t

ω(kj)m

ω(j)km
‖f‖Nℓpω .The result now follows from (12) and the estimates (13)�(15).Let us now turn to the estimates of the uniform spe
tral radii. To stateour result we need the following notation. Given an unbounded sequen
e

(µn) of positive numbers we de�ne, for arbitrary sequen
es (An),
lim

µn→∞
An = sup{ lim

k→∞
Ank

: lim
k→∞

µnk
= ∞}.We obviously have the equality

lim
µn→∞

An = lim
t→∞

sup{An : µn > t}.Corollary 4.2. Let ω : D → (0,∞) be a weight fun
tion and let
p ∈ (0, 1).(i) If supn∈D σ(n) <∞ then for all integers N ≥ 3 we have

rN (ℓpω(D))N ≤ N !(p−1).(ii) Let (σ(n))n∈D be unbounded , let k,m,N be positive integers with
1 < k ≤ mk < N and set F (k,m,N) = [(N − (m − 1)k)/(k − 1)]!.Then

lim
σ(n)→∞

ω(nN)

ω(n)N
≤ rN (ℓpω(D))N ≤ F (k,m,N)p−1 + lim

σ(n)→∞

ω(kn)m

ω(n)km
.Proof. Re
all that for a spe
tral null sequen
e f = (fn) we have ‖fn‖ℓpω

≤ 1 and limn→∞ r(fn) = 0. Then by an appli
ation of Theorem 4.1 we obtain



42 A. Aleman and A. Dahlnerthe inequality(16) rN (f)N = lim
n→∞

‖fNn ‖ℓpω ≤ F (k,m,N)p−1 + sup
σ(j)>t

ω(kj)m

ω(j)km
,whenever k,m,N, t satisfy the 
onditions in the statement. Then (i) followsby letting k = 2, m = 1 and t > supn∈D σ(n). Re
all also that in this 
asethe supremum on the right hand side of (16) is taken to be zero.For (ii), to see the lower estimate 
onsider a sequen
e nj in D su
h that

limj→∞ σ(nj) = ∞ and let fj be de�ned by f̂j(z) = znj/ω(nj)
1/p. Clearly

(fj) is a spe
tral null sequen
e, and thus
rN (ℓpω(D))N ≥ lim

j→∞
‖fNj ‖ℓpω = lim

j→∞

ω(njN)

ω(nj)N
,whi
h gives the desired inequality. For the upper estimate we just apply (16)and let the parameter t tend to in�nity.Corollary 4.3. Let ω : D → (0,∞) be a weight fun
tion and let p ∈

(0, 1). If (σ(n))n∈D is bounded then r∞(ℓpω(D)) = 0 and if (σ(n))n∈D isunbounded then
r∞(ℓpω(D)) = inf

N≥2
lim

σ(n)→∞

ω(nN)1/N

ω(n)
.Proof. The �rst part of the statement is just a dire
t appli
ation of Corol-lary 4.2(i). Further, from the �rst inequality in part (ii) of the same 
orollarywe see that

r∞(ℓpω(D)) ≥ inf
N≥2

lim
σ(n)→∞

ω(nN)1/N

ω(n)
.To see the reverse inequality, �x an integer k ≥ 2 and a 
onstant c ∈ (0, 1),and let m,N → ∞ in su
h a manner that mk/N → c. Then

N − (m− 1)k

k − 1
→ ∞ and N − (m− 1)k

N(k − 1)
→ 1 − c

k − 1
,whi
h (due to Stirling's formula) implies that F (k,m,N)(p−1)/N → 0. Thenfrom the se
ond inequality in Corollary 4.2(ii) we dedu
e that

rN (ℓpω(D)) ≤ F (k,m,N)(p−1)/N + lim
σ(n)→∞

ω(kn)m/N

ω(n)km/Nand by the above 
onsiderations, when m,N → ∞ so that mk/N → c, wehave
r∞(ℓpω(D)) ≤

(
lim

σ(n)→∞

ω(kn)1/k

ω(n)

)c

.Sin
e k ≥ 2 and c ∈ (0, 1) were arbitrary the result follows.



Uniform spe
tral radius 43We should point out here that the value of the in�mum in Corollary 4.3
an be obtained by letting N → ∞. This follows immediately from the fa
tthat the weight is submultipli
ative.Next we want to apply Theorem 3.1 to the algebras ℓpω(D), 0 < p < 1.It is fairly easy to 
he
k that the Gelfand transform of ℓpω(D) is 
ompa
t ifand only if
lim

n∈D, |n|→∞
σ(n) = ∞.Indeed, if the Gelfand transform is 
ompa
t one 
an use the test fun
tionsde�ned by fn(z) = znω(n)−1/p to 
on
lude that the above limit is in�-nite. Conversely, if the limit is in�nite then the in
lusion map from ℓpω(D)into ℓ1ω0

(D), where ω0(±n) = r
n/p
± , n ≥ 0, is 
ompa
t. Moreover, ℓ1ω0

(D)is 
ontinuously 
ontained in C(Ω(ω)), whi
h proves the 
ompa
tness of theGelfand transform. Note that for su
h weights ω Corollary 4.3 gives
r∞(ℓpω(D)) = inf

k≥1
lim

|n|→∞

ω(nk)1/k

ω(n)
.Corollary 4.4. Let ω : D → (0,∞) be a weight fun
tion su
h that

inf
k≥1

lim
|n|→∞

ω(nk)1/k

ω(n)
= 0.Then the Gelfand transform of ℓpω(D) is 
ompa
t for 0 < p ≤ 1. Moreover ,if 0 < p < 1, then δ1(ℓpω(D)) = 0.Proof. Let us assume D = N, the statement for D = Z is identi
al.By Theorem 3.1 and Corollary 4.3 the se
ond half of the statement followsfrom the �rst. By the remarks pre
eding this proof it su�
es to show that

σ(n) → ∞ as n→ ∞. Note that the hypothesis is equivalent to
inf
k≥1

lim
n→∞

σ(nk)1/k

σ(n)
= 0.Moreover, sin
e r+ = infn ω(n)1/n it follows that σ(n) ≥ 1. Thus,

0 = inf
k≥1

lim
n→∞

σ(nk)1/k

σ(n)
≥ lim

n→∞

1

σ(n)and the proof is 
omplete.Expli
it examples of weights satisfying the assumption of Corollary 4.4are ω : n 7→ (1+ |n|)α and ω : n 7→ exp(|n|β), where α > 0 and β ∈ (0, 1). Infa
t, for these weights limn ω(kn)/ω(n)k = 0 for all k > 1. Our next exampleshows that there are weights ω su
h that the Gelfand transform of ℓpω(D) is
ompa
t, but r∞(ℓpω(D)) > 0.



44 A. Aleman and A. DahlnerExample 4.5. Let 0 < p ≤ 1. Given α ∈ (0, 1] there is a weight fun
tion
ω on N su
h that limn→∞ σ(n) = ∞ and

r∞(ℓpω(N)) = α.Proof. In the 
ase when p ∈ (0, 1) we see from Corollary 4.3 that itsu�
es to 
onstru
t a weight fun
tion ωα : N → R with the properties
limωα(n) = ∞, r+(ω) = 1 and

inf
k≥1

lim
n→∞

ωα(nk)1/k

ωα(n)
= α.Assume �rst that α = 1 and 
onsider a rapidly in
reasing sequen
e of posi-tive integers n1, n2, . . . , where by rapidly in
reasing we mean that for every

k > 1 there are in�nitely many n su
h that nj < n < kn ≤ nj+1 for some
j (depending on n). De�ne f : N → (0, 1) by f(n) = 1/j if nj < n ≤ nj+1and note that f has the following properties: f(n) de
reases to 0 as n growsto in�nity, limnf(n) = ∞, and for k �xed we have f(nk) − f(n) = 0 forin�nitely many n. In other words, ω1 : n 7→ exp(nf(n)) satis�es all the
onditions above. To extend the result to the 
ase when p = 1 we usethe following inequalities. If ω is a weight fun
tion on N with σ(n) → ∞then

inf
k≥1

lim
n→∞

ω(nk)1/k

ω(n)
≤ r∞(ℓ1ω(N))

≤ inf
k≥1

lim
M→∞

sup
n1,...,nk≥M

(
ω(n1 + · · · + nk)

ω(n1) · · ·ω(nk)

)1/k

.The upper estimate follows from [2℄, while the lower estimate is obtainedexa
tly as in Corollary 4.2, using spe
tral null sequen
es (fj) with f̂j(z) =
znj/ω(nj)

1/p. This 
ompletes our 
onstru
tion in the 
ase when α = 1.To see the general 
ase, let α ∈ (0, 1) and de�ne ωα by ωα(0) = 1 and
ωα(n) = α−1ω1(n) otherwise. Then limωα(n) = ∞, r+(ωα) = 1 and asimple 
al
ulation based on the above estimates of r∞(ℓpω(N)) shows that
r∞(ℓpωα(N)) = α.The simple 
onstru
tion given in this example has been suggested to usby S. Naboko. It is interesting to observe that for the weight ω1 
onstru
tedabove we have δ1(ℓpω(N)) = 1/2. Indeed, sin
e r∞(ℓpω(N)) = 1, Corollary 2.4implies that δ1(ℓpω(N)) ≥ 1/2. The reverse inequality is a 
lassi
al result. Itsproof 
an be found in [3℄ or [8℄.Proposition 4.6. If ω is a weight fun
tion on N and 0 < p ≤ 1, then

δ1(ℓ
p
ω(N)) ≤ 1/2.
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tral radius 45Proof. Fix δ > 1/2. Suppose f ∈ ℓpω(N) satis�es ‖f‖ℓpω ≤ 1 and |f̂(z)|p≥ δfor all z ∈ Ω(ω). Then |f̂(0)|p ≥ δ and
‖f−1‖ℓpω =

1

|f̂(0)|p
‖(1 + (f − f̂(0))/f̂(0))−1‖ℓpω

≤ 1

|f̂(0)|p
∞∑

n=0

‖f − f̂(0)‖n
ℓpω

|f̂(0)|np
≤ 1

2δ − 1
.
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