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Convergence at the origin of integrated semigroups

by

Vincent Cachia (Genève)

Abstract. We study a classification of κ-times integrated semigroups (for κ > 0) by
their (uniform) rate of convergence at the origin: ‖S(t)‖ = O(tα) as t → 0 (0 ≤ α ≤ κ).
By an improved generation theorem we characterize this behaviour by Hille–Yosida type
estimates. Then we consider integrated semigroups with holomorphic extension and char-
acterize their convergence at the origin, as well as the existence of boundary values, by
estimates of the associated holomorphic semigroup. Various examples illustrate these re-
sults. The particular case α = κ, which corresponds to the notions of Riesz means or
tempered integrated semigroups, is of special interest; as an application, it leads to an
integrated version of Euler’s exponential formula.

1. Introduction. In the theory of semigroups, convergence at the ori-
gin is a key property on which the standard classification in the well-known
treatise of Hille and Phillips [10] is based. In the more general theory of
integrated semigroups, introduced by Arendt [1], it seems that no such sys-
tematic study has been done. The aim of this paper is to describe and to
characterize the convergence at the origin of integrated semigroups. We cite
[2] as a general reference on the subject. In the first section we consider
general integrated semigroups, following [2, 8]:

Definition 1.1. Let A be a (multivalued) closed linear operator on
a Banach space X with non-empty resolvent set %(A), and κ ≥ 0. The
operator A is called the generator of a κ-times integrated semigroup if there
exist ω ≥ 0 and a strongly continuous function S : [0,∞)→ L(X) having a
Laplace transform for λ > ω, such that (ω,∞) ⊂ %(A) and

(1.1) R(λ,A) = λκ
∞�

0

e−λtS(t) dt (λ > ω).

In this case S is called the κ-times integrated semigroup generated by A.
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The mention of multivalued operators is just a way to include degenerate
semigroups [13]. Hence in general R(λ,A) is a pseudo-resolvent, which is not
necessarily the resolvent of a closed univalent operator. From this definition
one deduces that [8, Proposition 2.4]

(1.2) S(t)x =
tκ

Γ (κ+ 1)
x+

t�

0

S(s)Axds, x ∈ dom(A),

and thus limt→0 S(t)x = 0 for x ∈ dom(A), for any integrated semigroup of
order κ > 0. However, at least when S(t) is simply the κth integral of some
C0-semigroup, the expected convergence at the origin is ‖S(t)‖ = O(tκ)
as t → 0. Such an estimate has actually been proved for many non-trivial
κ-times integrated semigroups, called tempered (see §5.1 below and [7, 5]).
In fact, we show that κ is the highest possible power for the convergence at
the origin of a non-zero κ-times integrated semigroup (κ > 0). Therefore we
aim to study the κ-times integrated semigroups satisfying ‖S(t)‖ = O(tα)
as t→ 0 for a given 0 ≤ α ≤ κ.

2. Hille–Yosida type estimates. Various generation theorems have
been proved with Hille–Yosida type estimates (cf. [1, Theorem 4.1], [8, The-
orem 3.4]). An improvement of these results provides a characterization of
the generators of κ-times integrated semigroups satisfying ‖S(t)‖ = O(tα)
as t→ 0 for some 0 ≤ α ≤ κ.

Theorem 2.1. Let {R(λ)}λ∈Ω be a pseudo-resolvent on a Banach space
X with (ω,∞) ⊂ Ω ⊂ C for some real ω. For any κ ≥ α ≥ 0 the following
are equivalent :

(i) There exist M > 0 and a ≥ max{ω, 0} such that

(2.1) sup
n∈N∪{0}, λ>a

∥∥∥∥(λ− ω)n+α+1

Γ (n+ α+ 1)

(
R(λ)
λκ

)(n)∥∥∥∥ ≤M.

(ii) For each δ > 0 there exist a (κ + δ)-times integrated semigroup
{Sδ(t)}t≥0 such that R(λ) = λκ+δ

	∞
0 e−λtSδ(t) dt (λ > ω), and a

constant M ′ > 0 such that

(2.2) ‖Sδ(t)− Sδ(s)‖ ≤M ′|t− s|δtαeωt, t > s ≥ 0.

In fact, this theorem appears as a particular case of a result on vector-
valued Laplace transforms (a simpler version of this result can be found in
[2, Corollary 2.5.4]).

Theorem 2.2. Let r ∈ C∞((a,∞), X), a, α ≥ 0 and ω ≤ a. Then the
following assertions are equivalent :
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(i) There exists M > 0 such that

(2.3) sup
n∈N∪{0}, λ>a

∥∥∥∥(λ− ω)n+α+1

Γ (n+ α+ 1)
r(n)(λ)

∥∥∥∥ ≤M.

(ii) For each δ > 0 there exists a function Fδ : [0,∞) → X such that
Fδ(0) = 0, r(λ) = λδ

	∞
0 e−λtFδ(t) dt (λ > a), and there exists

M ′ > 0 such that

(2.4) ‖Fδ(t)− Fδ(s)‖ ≤M ′|t− s|δtαeωt, t > s ≥ 0.

The proof of this result makes use of fractional integration techniques
and includes the following lemma.

Lemma 2.3. Let r ∈ C∞((a,∞), X) (a > 0) and δ > 0 be such that
‖λδr(λ)‖ is bounded as λ→∞. Then

rα(λ) =
∞�

λ

(u− λ)α−1

Γ (α)
r(u) du

is a well defined function on (a,∞) for 0 < α < δ. Moreover , (rα)β = rα+β

for 0 < α, β < δ and α + β < δ, and (rα)(n) = (−1)nrα−n for n ≤ α < δ
(with the convention r0 = r). If supλ>a λn+δ‖r(n)(λ)‖ is bounded for each
n ∈ N, then (rα)(n) = (r(n))α for all n ∈ N and 0 < α < δ. If f is a function
such that fβ = rβ for some 0 < β < [δ], then f = r.

Proof. The condition 0 < α < δ ensures the convergence of the integral
in the sense of Bochner. Moreover, from ‖r(λ)‖ ≤ M/λδ one deduces the
estimate

‖rα(λ)‖ ≤
∞�

λ

(u− λ)α−1

Γ (α)
M

uδ
du ≤ M

Γ (α)

1�

0

(1− t)α−1 t
δ−α−1

λδ−α
dt

≤ M

λδ−α
Γ (δ − α)
Γ (δ)

.

If 0 < β < δ and α+ β < δ, then

(rα)β(λ) =
∞�

λ

(u− λ)β−1

Γ (β)

∞�

u

(v − u)α−1

Γ (α)
r(v) dv du

=
∞�

λ

r(v)
v�

λ

(u− λ)β−1(v − u)α−1

Γ (α)Γ (β)
du dv

=
∞�

λ

r(v)
(v − λ)α+β−1

Γ (α+ β)
dv,

which means (rα)β = rα+β.
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Let n be an integer with n < α < δ. Then the integral defining rα is n
times differentiable, which leads to (rα)(n) = (−1)nrα−n. If n = α < δ, one
obtains (rn)(n) = (−1)nr.

Let n ∈ N be such that supλ>a λδ+n‖r(n)(λ)‖ is bounded. Then (r(n))α+n

=(−1)nrα by n integrations by parts. Moreover, ((r(n))α+n)(n) =(−1)n(r(n))α
by the preceding observation. Finally, (rα)(n) = (r(n))α.

Suppose that fβ = rβ for some β such that 0 < β < [δ]; here and below, [·]
denotes the integer part function. Let ε = [δ]−β. Then (fβ)ε = (rβ)ε = r[δ].

Moreover, since [δ] ∈ N, one has r([δ])[δ] = (−1)[δ]r and f
([δ])
[δ] = (−1)[δ]f .

Therefore f = r.

Proof of Theorem 2.2. If α = 0, this is the real representation theorem
[8, Theorem 3.2]. Let now α > 0, and consider

(2.5) rα(λ) =
∞�

λ

(u− λ)α−1

Γ (α)
r(u) du.

By Lemma 2.3 we have (rα)(n) = (r(n))α and we deduce from (2.3) that for
each λ > a,

‖r(n)
α (λ)‖ ≤

∞�

λ

M
Γ (n+ α+ 1)

Γ (α)
(u− λ)α−1

(u− ω)n+α+1
du

≤M Γ (n+ α+ 1)
Γ (α)

1�

0

(1− t)α−1 tn

(λ− ω)n+1
dt

≤M n!
(λ− ω)n+1

.

Then for each element x′ in the dual space X ′, by Widder’s classical theorem
there exists a unique measurable function f(·, x′) satisfying ‖e−ω·f(·, x′)‖∞
≤M‖x′‖ such that

〈rα(λ), x′〉 =
∞�

0

e−λtf(t, x′) dt, λ > a.

In particular one observes that f(t, x′) is linear in x′. We now set r̃(λ) =	∞
0 e−λttαf(t, x′) dt for λ > a to obtain

r̃α(λ) =
∞�

λ

(u− λ)α−1

Γ (α)

∞�

0

e−uttαf(t, x′) dt du

=
∞�

0

f(t, x′)
∞�

0

(vt)α−1

Γ (α)
e−vt−λtt dv dt

=
∞�

0

e−λtf(t, x′) dt = 〈rα(λ), x′〉,
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where we have set v = (u−λ)t. This shows by Lemma 2.3 that 〈r(λ), x′〉 =
r̃(λ) for λ > a. Now for each δ > 0 we set

Fδ(t, x′) =
t�

0

(t− τ)δ−1

Γ (δ)
ταf(τ, x′) dτ

(cf. [10, Theorem 6.2.4]), so that

〈r(λ), x′〉 = λδ
∞�

0

e−λtFδ(t, x′) dt.

Similarly to the proof of [8, Theorem 3.2], one has

(2.6) |Fδ(t, x′)− Fδ(s, x′)| ≤
2M
Γ (δ)

|t− s|δtαeωt‖x′‖, t > s ≥ 0,

and there exists Fδ(t) ∈ X ′′ such that Fδ(t, x′) = 〈Fδ(t), x′〉 for all x′ ∈ X ′.
Moreover, from the uniqueness theorem for the Laplace transform it can be
shown that actually Fδ(t) ∈ X for all t ≥ 0 (see [8]). The norm estimate of
Fδ(t) follows easily from (2.6).

To prove the converse implication, let δ = 1 and let F1 : [0,∞)→ X be
a function which satisfies (ii). Let x′ ∈ X ′. Since x′ ◦F1 is a locally Lipschitz
continuous numerical function, it is differentiable almost everywhere. For
f(t, x′) = (d/dt)〈F1(t), x′〉, we obtain the estimate |f(t, x′)| ≤ M ′tαeωt‖x′‖
and

〈r(λ), x′〉 = λ

∞�

0

eλt〈F1(t), x′〉 dt =
∞�

0

e−λtf(t, x′) dt

for all λ > max{ω, 0}. Thus we have

|〈r(n)(λ), x′〉| ≤
∞�

0

tne−λt|f(t, x′)| dt ≤M ′
∞�

0

tn+αe−(λ−ω)t dt ‖x′‖

≤M ′ Γ (n+ α+ 1)
(λ− ω)n+α+1

‖x′‖,

which leads to the assertion (i).

Now it follows easily that the exponent α in the convergence rate of a
non-zero κ-times integrated semigroup cannot be greater than κ:

Corollary 2.4. Condition (i) of Theorem 2.1 for α > κ implies that
R(λ) = 0: this means that a κ-times integrated semigroup satisfying ‖S(t)‖ =
O(tα) near zero with α > κ is necessarily trivial : S(t) = 0 for all t ≥ 0.

Proof. Consider a pseudo-resolvent {R(λ)}λ∈Ω satisfying (2.1) for some
α > κ. It follows (with n = 0 in (2.1)) that supλ>a ‖λ1+εR(λ)‖ < ∞
for ε = α − κ > 0. Then supλ>a ‖λR(λ)‖ < ∞, and by the resolvent
equation, limλ→∞(λR(λ) − I)R(µ) = 0 for any fixed µ. This shows that



204 V. Cachia

limλ→∞ λR(λ)x = x for any x ∈ ranR(µ). However, limλ→∞ ‖λR(λ)‖ = 0,
and thus ranR(µ) is reduced to {0}.

Arguing as in [2, Proposition 2.2.2] one can show that a weaker form of
the condition (2.1) is sufficient:

Corollary 2.5. In order to have the estimate (2.1), it is sufficient that

(2.7) sup
λ>a

∥∥∥∥(λ− ω)n+α+1

Γ (n+ α+ 1)

(
R(λ,A)
λκ

)(n)∥∥∥∥ ≤M
for each n in an infinite subset of N. Moreover , if (2.1) holds for some α, κ,
then it also holds for α+ δ, κ+ δ for any δ > 0.

If only the issues of growth of integrated semigroups are concerned, then
one can state a simpler version of Theorem 2.1.

Theorem 2.6. Let {S(t)}t≥0 be a κ-times integrated semigroup with
generator A, a ≥ 0, ω ≤ a and 0 ≤ α ≤ κ. Then the following assertions
are equivalent :

sup
t>0

t−αe−ωt‖S(t)‖ <∞,(2.8)

sup
n∈N∪{0}

sup
λ>a

∥∥∥∥(λ− ω)n+α+1

Γ (n+ α+ 1)

(
R(λ,A)
λκ

)(n)∥∥∥∥ <∞.(2.9)

Proof. Suppose that the κ-times integrated semigroup {S(t)}t≥0 satisfies
(2.8). Then the associated resolvent is given by R(λ,A)/λκ =

	∞
0 e−λtS(t) dt,

and thus∥∥∥∥(R(λ,A)
λκ

)(n)∥∥∥∥ ≤ ∞�
0

Mtn+αe−(Reλ−ω)t dt ≤M Γ (n+ α+ 1)
(λ− ω)n+α+1

for any λ > max{ω, 0}.
Conversely, suppose that {S(t)}t≥0 is a κ-times integrated semigroup

and that the resolvent of the generator satisfies the estimate (2.9). Then
by the Post–Widder inversion formula [2, Theorem 1.7.7] we have, for each
x ∈ X,

‖S(t)x‖ ≤ lim
n→∞

1
n!

(
n

t

)n+1∥∥∥∥(R(λ,A)x
λκ

)(n)

λ=n/t

∥∥∥∥
≤ lim sup

n→∞

Γ (n+ α+ 1)
n!(n/t− ω)n+α+1

(
n

t

)n+1

‖x‖ ≤M ′tαeωt‖x‖.

3. Euler’s exponential formula for k-times integrated semi-
groups. For any once integrated semigroup, an integrated form of Euler’s
exponential formula limn→∞(I − tA/n)−n = etA has been established in [4,
Theorem 2.5]. We show here a generalization to k-times integrated semi-
groups (k ∈ N), subject to some convergence condition at the origin.
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Theorem 3.1. Let {S(t)}t≥0 be a k-times integrated semigroup such that
‖S(t)‖ ≤ Mtαeωt with k − 1 < α ≤ k and k ∈ N. Let R(λ) = λkŜ(λ) be
the associated pseudo-resolvent. Then the k-times integrated Euler’s formula
holds in the strong operator topology : define F (t) = t−1R(t−1), 0 < t <
ω−1; then for any t0 > 0, F (t/n)n is Bochner integrable on (0, t0) (for n
sufficiently large) and

(3.1) s- lim
n→∞

t0�

0

(t0 − τ)k−1

(k − 1)!
F (τ/n)n dτ = S(t0).

Proof. Here the integrals make sense as strong Bochner integrals (see e.g.
[2, Ch. 1.1]). From R(λ)/λk =

	∞
0 e−λtS(t) dt, λ > max{ω, 0}, one deduces

[4, Lemma 2.3] that Euler’s approximation for n sufficiently large can be
written as

(3.2) [(n/τ)R(n/τ)]n =
(n/τ)k+1

(n− 1)!

∞�

0

(
nt

τ

)n−k−1

Pn,k(nt/τ)e−nt/τS(t) dt,

where τ > 0 and Pn,k denotes the polynomial (for n > k)

(3.3) Pn,k(λ) =
k∑
l=0

(−1)l
(
k

l

)
λk−l

(n− 1)!
(n− l − 1)!

.

One has to verify that Euler’s approximation F (t/n)n is Bochner integrable
near the origin t = 0. This follows from the convergence condition at the
origin for the k-times integrated semigroup. For the l-term of the sum in
(3.3) one has the estimate (up to some factor depending on n, l)(

n

τ

)k+1∞�

0

(
nt

τ

)n−l−1

e−nt/τ‖S(t)‖ dt

≤ M(n/τ)n−l+k

(n/τ − ω)n−l+α

∞�

0

un−l+α−1e−u du = O(τα−k)

as τ → 0 (for given n, l). Thus one has ‖F (τ/n)n‖ = O(τα−k) as τ → 0 for a
given n, and since α− k > −1, Euler’s approximation is Bochner integrable
near the origin. By using the representation (3.2) and by setting λ = n/τ
one has

(3.4)
t0�

0

(t0 − τ)k−1

(k − 1)!
F (τ/n)n dτ

=
∞�

nt−1
0

ndλ

(n− 1)!

∞�

0

dt S(t)
(λt0 − n)k−1

(k − 1)!
(λt)n−k−1e−λtPn,k(λt).

By Fubini’s theorem and the relation

Pn,k(λt)λn−k−1e−λt =
dk

dλk
(λn−1e−λt)
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(see [4, Lemma 2.4]), (3.4) is equal to
∞�

0

dt S(t)
ntk−1

0 tn−k−1

(n− 1)!

∞�

nt−1
0

dλ
(λ− nt−1

0 )k−1

(k − 1)!
dk

dλk
(λn−1e−λt).

Then by k − 1 integrations by parts, with all boundary terms vanishing,
t0�

0

(t0 − τ)k−1

(k − 1)!
F (τ/n)n dτ =

nn

(n− 1)!

∞�

0

dt

t0
S(t)

(
t

t0

)n−k−1

e−nt/t0 .

Since S(t) is strongly continuous, this integral converges strongly to S(t0)
as n→∞ by an argument similar to the one in [4, Theorem 1.3] using the
Chebyshev inequality.

4. Holomorphic extension estimates. In this section we consider
integrated semigroups with holomorphic extension into some sector in the
complex plane. We shall study norm estimates in this complex domain and
existence of boundary values, extending results from [3, 7].

4.1. Holomorphic integrated semigroups. We first state a generation the-
orem for holomorphic integrated semigroups, and for this it is convenient to
consider also κ-times integrated semigroups that are not strongly continuous
at the origin:

Definition 4.1. The closed (multivalued) operator A is said to generate
a κ-times integrated semigroup {S(t)}t>0 in the extended sense if there exists
ω ≥ 0 such that (ω,∞) ⊂ %(A), t 7→ S(t) is strongly continuous on (0,∞),
admits a Laplace transform Ŝ(λ) for λ > ω, and λκŜ(λ) = R(λ,A) for
λ > ω.

We mention that if A generates a κ-times integrated semigroup in the
extended sense, then A generates a κ′-times integrated semigroup in the
sense of Definition 1.1, for any κ′ > κ.

Definition 4.2. A κ-times integrated semigroup (in the sense of Defini-
tion 1.1 or 4.1) is said to be holomorphic of semi-angle θ if it admits a holo-
morphic extension into the open sector Σθ = {z ∈ C : z 6= 0, |arg z| < θ}.

A direct application of [2, Theorem 2.6.1] characterizes the generators of
holomorphic integrated semigroups in the extended sense:

Theorem 4.3. Let A be a (multivalued) operator in a Banach space
X, with resolvent set %(A). Then the following assertions are equivalent for
ω ≥ 0 and 0 < θ ≤ π/2:

(i) The operator A generates a holomorphic κ-times integrated semi-
group of semi-angle θ in the extended sense S : Σθ → L(X) such
that supz∈Σϕ ‖e

−ωzS(z)‖ <∞ for each 0 < ϕ < θ.
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(ii) The sector ω +Σθ+π/2 is included in %(A) and for each 0 < ϕ < θ,
sup

λ−ω∈Σϕ+π/2

‖(λ− ω)R(λ,A)/λκ‖ <∞.

Moreover , if (i) or (ii) is satisfied , one has the representations

(4.1) R(λ,A) = λκ
∞�

0

e−λtS(t) dt and S(z) =
1

2πi

�

C

eλz
R(λ,A)
λκ

dλ,

where C is an oriented path in ω + Σθ+π/2, running from ∞e−i(ϕ+π/2) to
∞ei(ϕ+π/2) with 0 < ϕ < θ − |arg z|.

Let A satisfy one of the assertions (i), (ii) above. For each σ ∈ R we
consider the holomorphic function Sσ : Σθ → L(X) defined by

(4.2) Sσ(z) =
1

2πi

�

C

eλz
R(λ,A)
λσ

dλ.

Then for σ > κ, Sσ is the σ-times integrated semigroup with generator A
(in the sense of Definition 1.1), and Sσ−k = S

(k)
σ for any σ ∈ R and k ∈ N.

The case σ = 0 is of particular interest, since the holomorphic function S0

satisfies the semigroup equation S0(z1)S0(z2) = S0(z1 + z2) by a standard
argument on Cauchy’s integrals. This motivates the following definition.

Definition 4.4. Let Sκ be a holomorphic κ-times integrated semigroup
generated by A and of semi-angle θ. We define

S0(z) =
1

2πi

�

C

eλzR(λ,A) dλ

where C is an oriented path in ω + Σθ+π/2, running from ∞e−i(ϕ+π/2) to
∞ei(ϕ+π/2) with 0 < ϕ < θ− |arg z|. The function S0 : Σθ → L(X) is called
the holomorphic semigroup associated to the holomorphic κ-times integrated
semigroup Sκ.

Notice that the function S0 is in general neither bounded, nor Laplace
transformable, thus S0 does not fit the standard definition of a holomorphic
semigroup. The behaviours of the holomorphic functions Sσ (for different
values of σ) are related: we show how to deduce norm estimates and bound-
ary properties of the integrated semigroups Sσ (depending on σ) from a
norm estimate of S0 in the complex domain. For simplicity we consider
holomorphic extension in the open right half-plane Σπ/2.

We shall present the results from two points of view. In the first one
(Section 4.2) the starting point is an operator-valued function on (0,∞)
satisfying the semigroup equation and admitting a Laplace transform (we
then assume that there is a holomorphic extension), whereas in the second
one (Section 4.3) the starting point is a κ-times integrated semigroup with
holomorphic extension.
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4.2. Laplace transformable holomorphic semigroups. In this section we
consider an operator family {T (t)}t>0 ⊂ L(X) satisfying the semigroup
equation and having a Laplace transform. This allows us to identify the
generator A of the semigroup T with the generator of the once integrated
semigroup S1(t) =

	t
0 T (s) ds, and we also have R(λ,A) = T̂ (λ).

Assuming that T admits a holomorphic extension, we show that certain
norm estimates for T (t) in the complex domain are equivalent to related con-
vergence estimates at the origin for the integrated semigroups Sσ. Moreover,
for σ sufficiently large, the holomorphic function Sσ admits boundary values
on iR: it extends to a continuous function on the closed right half-plane.

Theorem 4.5. Let {T (t)}t>0 be a semigroup on X having a Laplace
transform with abscissa of convergence ω0. Then T̂ (λ) is the resolvent
R(λ,A) of a (multivalued) operator A in X, with (ω0,∞) ⊂ %(A). More-
over , the following assertions are equivalent for any numbers γ ≥ 0 and
0 ≤ β < 1:

(i) The semigroup T has a holomorphic extension into the open right
half-plane and for each α > γ there exist M > 0 and ω ≥ 0 such
that

(4.3) ‖T (z)‖ ≤Meω|z|
|z|α

(Re z)α+β
, Re z > 0.

(ii) For each α > γ, A is the generator of a holomorphic (α + β)-
times integrated semigroup Sα+β in the open right half-plane, ad-
mitting boundary values on iR, and there exist M,ω > 0 such that
‖Sα+β(z)‖ ≤Meω|z||z|α for Re z ≥ 0.

Proof. By [1, Proposition 2.2] the function T̂ satisfies the resolvent equa-
tion, thus it is a pseudo-resolvent. It may happen that ker T̂ (λ) 6= {0}, but in
the theory of multivalued linear operators [13] its inverse is always defined,
and any pseudo-resolvent can be considered as the resolvent of a multivalued
operator. Since T̂ (λ) is a univalent and bounded operator for λ > ω0, one
has (ω0,∞) ⊂ %(A).

Suppose that (i) is satisfied for some γ ≥ 0 and 0 ≤ β < 1. Since β < 1,
‖T (z)‖ is locally integrable at the origin by estimate (4.3). Then we follow
an argument due to El-Mennaoui (cf. [5, Theorem 5.1]). For each α′ > 0 the
α′-times integrated semigroup generated by A is given by

(4.4) Sα′(z) =
1

Γ (α′)

z�

0

(z − s)α′−1T (s) ds, Re z > 0,

where the integral is absolutely convergent and does not depend on the
path from 0 to z in the open right half-plane. Without loss of generality, let
arg(z) > 0. We then consider the path consisting of two parts: the straight
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line segment [0, |z|] and the arc {|z|eit : 0 ≤ t ≤ arg z}. We let S1
α′(z) and

S2
α′(z) be the integrals corresponding to the two parts, and estimate them

separately with the help of (4.3), for some α > γ. For the first part we have

‖S1
α′(z)‖ ≤

Meω|z|

Γ (α′)

|z|�

0

|z − s|α′−1

sβ
ds ≤Meω|z||z|α′−β

Cα′,β
Γ (α′)

,

where Cα′,β = sup|θ|≤π/2
	1
0
|eiθ−u|α′−1

uβ
du <∞. For the second part we have

‖S2
α′(z)‖ ≤

Meω|z|

Γ (α′)

arg z�

0

|z|α′−1|ei arg z − eit|α′−1 |z|α

(|z| cos t)α+β
|z| dt.

By observing that |ei arg z− eit| = 2 sin
(arg z−t

2

)
and that cos t ≥ sin

(arg z−t
2

)
,

and by setting θ = (arg z − t)/2 we obtain the estimate

(4.5) ‖S2
α′(z)‖ ≤

Meω|z|

Γ (α′)
|z|α′−β

(arg z)/2�

0

2α
′
(sin θ)α

′−α−β−1 dθ,

where the last integral is finite provided α′ > α + β. Therefore for each
α′ > γ + β one can choose α > γ such that α′ > α+ β and then ‖Sα′(z)‖ ≤
M ′eω|z||z|α′−β for Re z > 0. Moreover, the integral in (4.5) also converges for
arg z = π/2, hence the integral (4.4) with z ∈ iR defines bounded boundary
values for Sα′ with the same estimate. Thus assertion (ii) is proved.

Conversely, suppose that (ii) is satisfied, and let α > γ. For any integer
k > α+ β we obtain, by integration of Sα+β (cf. (2.6)),

(4.6) ‖Sk(z + h)− Sk(z)‖ ≤M(|z|+ |h|)α|h|k−α−βeω(|z|+|h|).

Then by Cauchy’s formula

T (z) =
k!

2πi

�

Cz

Sk(ζ)
(ζ − z)k+1

dζ =
k!

2πi

�

Cz

Sk(ζ)− Sk(z)
(ζ − z)k+1

dζ,

where Cz denotes the path defined by the circle with centre z and radius
r = Re z/2. Then by (4.6) we have

‖T (z)‖ ≤ k!
2πrk

∥∥∥∥ 2π�

0

(Sk(z + reit)− Sk(z))e−ikt dt
∥∥∥∥

≤ k!
rα+β

M

∣∣∣∣3z2
∣∣∣∣αe3ω|z|/2 ≤ k!2β3αM

|z|α

(Re z)α+β
e3ω|z|/2,

which leads to (i).

Remark 4.6. In order that a strongly continuous (for t > 0) semigroup
{T (t)}t>0 admits a Laplace transform, it is sufficient that

	1
0 ‖T (t)‖ dt <∞.

This follows from the observation that
	n+1
n ‖T (t)‖ dt ≤ ‖T (1)‖n

	1
0 ‖T (t)‖ dt.

In fact, for each t0 > 0, ‖T (t)‖ is exponentially bounded for t ≥ t0.
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Remark 4.7. Let {T (z)}Re z>0 be a holomorphic semigroup and α, β≥0.
In order that there exist ω,M > 0 such that the estimate (4.3) holds in the
open right half-plane, it is sufficient that such an estimate holds in the ver-
tical strip 0 < Re z < 1.

Proof. Suppose that (4.3) holds for some ω0,M0 > 0 and 0 < Re z < 1.
Then for some M ≥M0 and ω ≥ ω0 we have

‖T (z)‖ ≤Meω|z|, 1/2 < Re z < 1.
For any z = a + ib such that a > 1 we set k = [a] + 1 ∈ N so that
1/2 ≤ a/k < 1. Therefore 1/2 ≤ Re z/k < 1 and we have

‖T (z)‖ ≤ ‖T (z/k)‖k ≤Mkeω|z| ≤Me(ω+lnM)|z|, Re z > 1.
This leads to an estimate of type (4.3) in the open right half-plane, with
possibly new constants M,ω.

4.3. Non-integrable estimates. The question arises: what could be de-
duced from an estimate of type (4.3) with β ≥ 1 (which does not ensure
the integrability near the origin)? In this case we are not, in general, able
to express the resolvent of the generator by the Laplace transform of the
semigroup. To circumvent this difficulty we assume that the semigroup T (z)
is actually the derivative of some κ-times integrated semigroup. The fol-
lowing result is an improvement of [2, Theorem 3.9.13], on the existence of
boundary values of holomorphic integrated semigroups.

Theorem 4.8. Let A generate a holomorphic κ-times integrated semi-
group Sκ in the open right half-plane for some κ > 0, and let T = S0 denote
the holomorphic semigroup associated to Sκ by Definition 4.4. Consider the
following assertions for α, β, γ, δ ≥ 0:

(E1
α,β) there exists ω1,M1 > 0 such that

‖T (z)‖ ≤M1e
ω1|z| |z|α

(Re z)α+β
, Re z > 0.

(E2
γ,δ) there exists ω2,M2 > 0 such that

‖Sγ+δ(z)‖ ≤M2e
ω2|z||z|γ , Re z ≥ 0.

Then (E1
α,β)⇒(E2

γ,δ) for γ > α and δ > β, and (E2
γ,δ)⇒(E1

γ,δ).

Proof. If β < 1, then the result follows from Theorem 4.5. Now we
suppose that β ≥ 1. By [2, Proposition 3.2.6], we may rescale the problem
and consider A − a instead of A (a > 0). Then the k-times integrated
semigroup generated by A− a is related to that generated by A as follows:

Sa(t) = e−atS(t) +
k∑
j=1

(
k

j

)
aj

t�

0

(t− s)j−1

(j − 1)!
e−asS(s) ds.

Thus the estimate ‖S(t)‖ ≤ Mtαeωt implies ‖Sa(t)‖ ≤ Mat
αeωat for some
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Ma ≥ M and ωa ≤ ω. This shows that the assertion (E2
γ,δ) for Sa is equiv-

alent to that for S. For the associated holomorphic semigroup, T (z) is re-
placed by Ta(z) = e−azT (z) by the integral formula (4.1). Thus for a > ω
the estimate (E1

α,β) gives

(4.7) ‖Ta(z)‖ ≤Meωi|Im z| |z|αe−ωr Re z

(Re z)α+β

for some M,ωi, ωr > 0, which is again of the same type. From now on we
consider the rescaled problem and omit the mention of a. Thus without loss
of generality we may assume that A has a bounded inverse.

For any integer k such that A generates a k-times integrated semigroup
Sk one has, by iteration of (1.2),

dk

dtk
Sk(t)x = Sk(t)Akx+

tk−1

(k − 1)!
Ak−1x(4.8)

+ · · ·+ tAx+ x, x ∈ dom(Ak).
Since by hypothesis A generates a κ-times integrated semigroup, the identity
(4.8) holds for any integer k ≥ κ. Hence T (t)x = dk

dtk
Sk(t)x is Laplace

transformable for x ∈ dom(Ak) and k ≥ κ, and we have, for each x ∈
dom(Ak),

R(λ,A)x =
∞�

0

e−λuT (u)x du, λ > −ωr,

which leads to

R(λ,A)nx =
(−1)n−1

(n− 1)!
R(λ,A)(n−1)x

=
∞�

0

e−λu
un−1

(n− 1)!
T (u)x du, n = 1, 2, . . . .

Let z = t + is with Re z = t > 0. Since T (z) is a holomorphic semigroup,
ranT (z) ⊂ dom(Ak) for each k ∈ N, in particular for k ≥ κ. Then we have,
by setting λ = 0 and x = T (z)y, for any y ∈ X,

A−nT (z)y =
∞�

0

un−1

(n− 1)!
T (u+ z)y du, n = 1, 2, . . . .

Then by the estimate (4.7) one obtains

‖A−nT (z)y‖ ≤ Meωi|s|

(n− 1)!

∞�

0

un−1 |u+ z|α

(u+ t)α
e−ωr(u+t)

(u+ t)β
‖y‖ du, n = 1, 2, . . .

We observe that 1 < |u+ z|/Re(u+ z) ≤ |z|/Re z for all u ≥ 0. Now choose
n ≥ 1 and ε ∈ (0, 1) and set β′ = β− [β] + ε. By observing that (u+ t)−β =
(u + t)−[β]+ε(u + t)−β

′ ≤ u−[β]+εt−β
′

for all u, t > 0, one finds that, for all
x ∈ X,
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‖A−[β]T (z)y‖ ≤ M |z|αeωi|s|

(Re z)α([β]− 1)!

∞�

0

uε−1 e
−ωr(u+t)

tβ′
‖y‖ du

≤M ′ |z|
αeωi|s|e−ωrt

tα+β′
‖y‖.

By (4.8) one deduces that for each β′ > β − [β], there exist M̃, ω > 0 such
that

‖S[β](z)‖ ≤
M̃ |z|αeω|z|

(Re z)α+β′
.

By choosing β′ < 1 it follows that the integral
z�

0

(z − ζ)α
′−1

Γ (α′)
S[β](ζ) dζ

converges for Re z > 0 and α′ > 0; moreover, it clearly coincides with the
holomorphic ([β]+α′)-times integrated semigroup generated by A. By using
an estimation method similar to that used for the proof of Theorem 4.5, one
finds that for each α′ > α + β′, S[β]+α′ admits boundary values on iR and
there exist M0, ω > 0 such that

‖S[β]+α′‖ ≤M0|z|α
′−β′eω|z|, Re z ≥ 0,

which is (E2
γ,δ) by setting γ = α′ − β′ > α and δ = [β] + β′ > β.

The converse implication (E2
γ,δ) ⇒ (E1

γ,δ) is proved exactly as in Theo-
rem 4.5.

We now complete the study by establishing estimates for all functions
Sσ, similar to (E2

γ,δ). We mention that a holomorphic (γ + δ)-times inte-
grated semigroup satisfying (E2

γ,δ) is always obtained by integration of some
holomorphic δ-times integrated semigroup in the extended sense. This prop-
erty is not satisfied by integrated semigroups without holomorphic extension
(see Proposition 5.1).

Corollary 4.9. Let A generate a holomorphic κ-times integrated semi-
group in the open right half-plane and suppose that estimate (E1

α,β) holds.
Then for each γ > α, δ > β and σ < γ + δ,

(E3
σ,γ,δ) there exists ω3,M3 > 0 such that

‖Sσ(z)‖ ≤M3e
ω3|z| |z|γ

(Re z)γ+δ−σ
, Re z > 0.

For each σ > β, Sσ is a holomorphic σ-times integrated semigroup with
generator A, with exponential bounds in each sector Σθ, θ < π/2.

For each σ > α + β, iA is the generator of a σ-times integrated group:
e−iσπ/2Sσ(it) for t > 0 and eiσπ/2Sσ(it) for t < 0, with bound Meω|t||t|σ−δ,
t ∈ R, for each δ > β.
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Proof. By Theorem 4.8, the estimate (E1
α,β) implies (E2

γ,δ) for any γ > α
and δ > β. Similarly to the implication (ii)⇒(i) in Theorem 4.5, we deduce
that (E2

γ,δ)⇒(E3
σ,γ,δ). Then it follows that Sσ is exponentially bounded in

each sector Σθ, θ < π/2, for σ > β.
If σ > α+ β, then one can choose γ > α and δ > β such that σ = γ + δ

and Sσ satisfies (E2
γ,δ). Now we show that

(4.9)
∞�

0

e−λtSσ(t) dt =
�

(0,∞eiθ)

e−λzSσ(z) dz

for 0 ≤ θ ≤ π/2 and λ in some domain to be specified. Let us close the
integration path consisting of the segments [0, R], [0, Reiθ] by the arc ΓR =
{|z|eit : 0 ≤ t ≤ θ}. We have to estimate the integral on ΓR:∥∥∥∥ �

ΓR

e−λzSσ(z) dz
∥∥∥∥ ≤ θ�

0

e−Re(λReiϕ)‖Sσ(Reiϕ)‖Rdϕ.

Let η ∈ (0, π/2). Then Re(λeiϕ) ≥ |λ| cos η for any 0 ≤ ϕ ≤ θ and for any
λ such that −π/2 + η ≤ arg λ ≤ π/2 − θ − η. Therefore for such λ the
integral on ΓR is bounded by M2θR

γ+1eR(ω2−|λ| cos η), and thus tends to 0
as R→∞ provided |λ| is sufficiently large. This leads to the equality (4.9)
for the specified values of λ.

Since
	∞
0 e
−λtSσ(t) dt coincides with the holomorphic functionR(λ,A)/λσ

(for Reλ > ω0, the abscissa of convergence), one deduces that

λσ
∞�

0

e−λe
iθtSσ(eiθt)eiθ dt = R(λ,A) = eiθR(λeiθ, Aeiθ)

for any λ such that the integral is defined. Hence

R(µ, eiθA) = e−iσθµσ
∞�

0

e−µtSσ(eiθt) dt,

which means that {e−iσθSσ(eiθt)}t≥0 is a σ-times integrated semigroup with
generator eiθA. Since the same is true for θ = π/2 and θ = −π/2 one
concludes that iA generates a σ-times integrated group.

Remark 4.10. In fact, Theorems 4.5 or 4.8 could be stated in the more
general case where the analyticity sector Σθ has a semi-angle θ ≤ π/2: in the
estimates one just has to replace Re z by dist(z, ∂Σθ), where the boundary
∂Σθ is e±iθR+.

5. Examples

5.1. The optimal convergence case α = κ. Many examples of integrated
semigroups have been shown to exhibit such behaviour. These integrated
semigroups are also called tempered, and they admit bounded Riesz means.
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The typical example is the Gaussian semigroup Tp(z) = ez∆p in Lp(Rn),
which satisfies the estimates [2, (3.61) and (3.62)]

2−n/2p
(
|z|

Re z

)n|1/p−1/2|
≤ ‖Tp(z)‖L(Lp(Rn)) ≤

(
|z|

Re z

)n|1/p−1/2|

for Re z > 0 and 1 ≤ p ≤ ∞. For the Schrödinger group, similar results were
obtained in [5]. We mention here a particularly interesting result, which is
taken from [9, Theorems 4.2, 4.3], it shows that the convergence at the origin
is optimal for a large class of differential operators. Moreover, the associated
κ-times integrated semigroup admits boundary values only for sufficiently
large κ.

Proposition 5.1. Let A be a differential operator on Lp(Rn) (1≤p≤∞)
with maximal domain and symbol of the form ia(ξ), where a(ξ) is a real ,
homogeneous, elliptic polynomial on Rn. Then A generates an α-times inte-
grated semigroup S(t) on Lp(Rn) satisfying ‖S(t)‖ ≤Mtα for some M > 0
and all t > 0, whenever α > n|1/2−1/p|. Moreover , if the symbol of A is of
the form ±i|ξ|m for some m > 0 with m 6= 1, then A generates an α-times
integrated semigroup: if and only if α > n/2 for p = 1 and for p = ∞, if
and only if α ≥ n|1/2− 1/p| for 1 < p <∞.

In particular, for any κ > 0 there is a generator of a κ-times integrated
semigroup with optimal convergence rate which does not generate a σ-times
integrated semigroup for σ < κ.

Another situation where the optimal convergence takes place is for the
fractional powers of an operator. Let B be an operator in X such that
(−∞, 0] ⊂ %(B) and supλ≤0(1− λ)‖R(λ,B)‖ <∞. Then (following [2, Th.
3.8.1]) the fractional power

B−z =
1

2πi

�

Γ

λ−zR(λ,B) dλ, Re z > 0,

(where Γ is a smooth path in %(B) going from ∞e−iδ to ∞eiδ for some
δ > 0) defines a holomorphic semigroup on X, and satisfies the estimate

‖B−z‖ ≤M |sinπz|
sin(πRe z)

, 0 < Re z < 1.

We thus have an estimate of type eω|z||z|/Re z (cf. Remark 4.7). By Theorem
4.5, for each κ > 1, the associated κ-times integrated semigroup admits
boundary values which satisfy an estimate near the origin with the optimal
exponent κ.

The property α = κ is a useful hypothesis for various other results on
integrated semigroups, e.g. [8, Theorem 4.1].

5.2. The intermediate case 0 ≤ α ≤ κ. It seems that no example outside
the optimal convergence case has been explicitly described. The following
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one is inspired by [11, §I.8.1], and illustrates all different cases by varying
the parameter β. Let us consider the Banach space X = Lp(R)× Lp(R) for
some p ∈ [1,∞], with norm ‖(u, v)‖ = ‖u‖p + ‖v‖p, and β ≥ 0. We define a
multiplication operator A on X by the matrix

(5.1) a(x) =
(
−(1 + x2) |x|β

0 −(1 + x2)

)
= −(1 + x2)I + |x|βN,

where x ∈ R, I denotes the identity 2 × 2 matrix, and N =
(

0 1
0 0

)
. It

follows that a(x)n = (−1 − x2)nI + n(−1 − x2)n−1|x|βN and then eta(x) =
e−t(1+x2)(I + t|x|βN) for each x ∈ R and t ∈ C.

Lemma 5.2. The multiplication operator T (t) associated to eta(x) is
bounded on X for Re t > 0 and β ≥ 0. The operator-valued function t 7→ T (t)
is holomorphic in the open right half-plane and satisfies the semigroup equa-
tion T (t+ s) = T (t)T (s). Moreover , one has the estimate

max
{

1, Cβ
|t|e−Re t

(Re t)β/2

}
≤ ‖T (t)‖ ≤ 1 + Cβ

|t|e−Re t

(Re t)β/2

where Cβ = (β/2)β/2e−β/2. If 0 ≤ β < 2, {T (t)}Re t>0 is a holomorphic
C0-semigroup; if 2 ≤ β < 4, it is of class (1, A); if β = 4, it is still Abel
summable; and finally if β > 4, the resolvent set of A is empty.

Proof. The argument is based on the following equalities for Re t > 0:

sup
x∈R
|x|β|te−t(1+x2)| = sup

x∈R

|t|e−Re t

(Re t)β/2
(x2 Re t)β/2e−x

2 Re t(5.2)

= Cβ
|t|e−Re t

(Re t)β/2
,

where Cβ = supy>0 y
β/2e−y = (β/2)β/2e−β/2. This gives lower and upper

bounds for the norm of the multiplication operator eta(x). If 0 ≤ β < 2, the
convergence at t→ 0 is easily verified and we have a C0-semigroup.

From the expression of a(x) we see that (λ−A)−1 is the multiplication
operator by the matrix (λ−a(x))−1 = (λ+1+x2)−1I+ |x|β(λ+1+x2)−2N .
This shows that %(A) = C\ (−∞,−1] for 0 ≤ β ≤ 4 and %(A) = ∅ for β > 4.
Furthermore, for β ≤ 4 one has limλ→∞ λR(λ,A)f = f for each f ∈ X,
which means that T (t) is Abel summable [10, §10.6]. When β < 4 it is also
integrable near the origin, thus it is in the class (1, A).

The semigroup {T (t)}Re t>0 satisfies the estimate (E1
1,β/2−1). If t /∈ R and

β > 0, the operator norm of T (t) becomes infinite as Re t→ 0, which shows
that {T (t)}Re t>0 has no boundary values on iR. However, Theorem 4.5
applies for β < 4 and shows that the associated κ-times integrated semigroup
admits boundary values for sufficiently large κ.
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Lemma 5.3. Let 0 ≤ β ≤ 4. For each κ > β/2, the operator A generates
a holomorphic κ-times integrated semigroup with boundary values on iR.
Moreover , one has the estimates (for some M > 0): ‖Sκ(z)‖ ≤ M |z|κ if
0 ≤ β ≤ 2, and ‖Sκ(z)‖ ≤M |z|1+κ−β/2 if 2 ≤ β ≤ 4.

Proof. For β < 4 the result follows directly from Theorem 4.5. The case
β = 4 requires more attention. In fact, an explicit calculation gives the once
integrated semigroup of generator A: for t > 0, S1(t) is the multiplication
operator associated to the matrix

s1(x, t) =
t�

0

eτa(x) dτ

=
1− e−t(1+x2)

1 + x2
I + |x|βN

[
−te−t(1+x2)

1 + x2
+

1− e−t(1+x2)

(1 + x2)2

]
.

Hence by (5.2), S1(t) is a bounded operator for t > 0 and 0 ≤ β ≤ 4. Then
S1(t) has a bounded holomorphic extension to the open right half-plane,
which admits boundary values for t ∈ iR whenever 0 ≤ β ≤ 2. Moreover,
by observing that for Re t ≥ 0, (1 + x2)−1|1− e−t(1+x2)| ≤ |t| uniformly for
x ∈ R, we obtain ‖S1(t)‖ ≤ 3|t| for Re t ≥ 0 whenever 0 ≤ β ≤ 2. For
2 < β ≤ 4, one has an estimate ‖S1(t)‖ ≤ M |t|eRe t/(Re t)β/2−1 (for some
M > 0). Hence for β = 4, S1(t) is a holomorphic once integrated semigroup
(only in the extended sense if p = ∞), and thus Theorem 4.8 applies. By
using directly the estimate ‖S1(z)‖ = O(|z|/Re z) for Re z > 0, one obtains
by integration the estimate |z|κ−1 for Sκ(z), κ > 2.

In conclusion, this example illustrates the full range of convergence rate
for integrated semigroups. Let us restrict ourselves to the once integrated
semigroup {S1(t)}t≥0: for 0 ≤ β ≤ 2, we have the optimal exponent 1; for
2 < β < 4 we have the exponent 2− β/2; and for β = 4 the operator norm
‖S1(t)‖ does not tend to 0 (strong convergence still holds provided p <∞).
Finally, for β > 4 the fact that %(A) = ∅ makes the theory of integrated
semigroups unusable, and shows that Theorem 4.8 does not apply here.

5.3. A singular semigroup. The following example shows that Theorem
4.5 can be used in more pathological cases, where the associated semigroup
is not Abel summable. Here the semigroup {T (t)}t>0 is such that X0 =⋃
t>0 ranT (t) is not dense, which implies that it is not strongly continuous;

it is inspired by [6, Example 1.26]. Let X be the Banach space C[0, 1], and
β ≥ 0. We define for each t > 0 the bounded operators Tβ(t) on X by

[Tβ(t)f ](x) = xt[f(x)− f(0)(− lnx)β], 0 < x ≤ 1, [Tβ(t)f ](0) = 0.
The function t 7→ Tβ(t) satisfies the semigroup equation and has a holomor-
phic extension into the half-plane Re z > 0. If β = 0, then the semigroup is
degenerate. If β > 0, T (t) is one-to-one but its range is not dense: in fact,
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X0 = {f ∈ X : f(0) = 0} is the subspace of strong continuity, and the
restriction of T (t) to X0 is a C0-semigroup. Moreover, T (t) is singular when
t tends to 0: one has

sup
0<x<1

|ez lnx(1− (− lnx)β)| ≤ ‖T (z)‖ ≤ 1 + sup
0<x<1

|ez lnx(− lnx)β|,

which leads to a bound of type (Re z)−β for the operator norm ‖T (z)‖ for
Re z > 0.

If β < 1, Theorem 4.5 applies: the associated κ-times integrated semi-
group is bounded for κ > β, admits boundary values, and satisfies the
estimate (for some M > 0)

‖Sκ(z)‖ ≤M |z|κ−β, Re z > 0.
The resolvent of the generator is

[R(λ,Aβ)f ](x) = T̂β(λ) = (λ− lnx)−1[f(x)− (− lnx)βf(0)].
This shows that ranR(λ,Aβ) is not dense in X and that limλ→∞ λR(λ,Aβ)f
= f holds only for functions f such that f(0) = 0. Therefore {Tβ(t)}t>0 is
not an Abel summable semigroup.

If however β ≥ 1, no resolvent can be associated to Tβ. In fact, the numer-
ical function 〈Tβ(t)f, δx〉 is Laplace transformable for each Dirac measure
δx ∈ X ′ (x 6= 0). Thus the resolvent, if defined, should coincide with

∞�

0

e−λt〈Tβ(t)f, δx〉 dt = (λ− lnx)−1[f(x)− (− lnx)βf(0)].

But this expression does not define a resolvent operator for β ≥ 1: for β > 1
it is not bounded, and for β = 1 the resolvent equation is not satisfied.

5.4. Concluding remark. In view of the special properties of hermitian
integrated semigroups [12], the question arises whether there are holomor-
phic κ-times integrated semigroups for κ > 1 that are not obtained by in-
tegration of some holomorphic once integrated semigroup (in the extended
sense). In other words, is it possible that the associated holomorphic semi-
group satisfies (E1

α,β) with β > 1 and not with β = 1? As far as we know,
the examples of such highly singular semigroups cannot be associated to
holomorphic integrated semigroups (for example: the generator has empty
resolvent set, see e.g. [10, §20.5]).
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