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Local and global solutions of well-posed
integrated Cauchy problems

by

Pedro J. Miana (Zaragoza)

Abstract. We study the local well-posed integrated Cauchy problem

v′(t) = Av(t) +
tα

Γ (α+ 1)
x, v(0) = 0, t ∈ [0, κ),

with κ > 0, α ≥ 0, and x ∈ X, where X is a Banach space and A a closed operator on X.
We extend solutions increasing the regularity in α. The global case (κ =∞) is also treated
in detail. Growth of solutions is given in both cases.

1. Introduction. Let X be a Banach space, A a closed operator on X
with domain D(A) and f : [0, κ)→ C a continuous function, f ∈ C([0, κ); C)
(0 < κ ≤ ∞). The evolution equations

v′(t) = Av(t) + f(t)x, t ∈ [0, κ),(1)

have a long history. Many ordinary and partial differential equations may
be written in this form. Different ideas and techniques have been developed
to deal with this problem.

Recently local convoluted semigroups have been deeply investigated to
express the solution of this equation (see for example [10] and the refer-
ences therein). α-Times integrated semigroups are examples of convoluted
semigroups obtained for f(t) = tα/Γ (α+ 1) with α ∈ R+ (in this case,
equation (1) defines a local integrated Cauchy problem). α-Times integrated
semigroups were introduced first for α ∈ N ([1]) and later for α ∈ R+ ([8]).
In fact, to generalize n to α may or may not be complicated. Sometimes,
it is straightforward (see Theorem 1); in other circumstances some integral
expressions are needed (see equality (5)) or some estimates about special
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functions (Example 1). The underlying background theory is the fractional
calculus (see Section 3 and [18]).

In the second section, we consider solutions of well-posed integra-
ted Cauchy problems. We show that they are in fact local α-times inte-
grated semigroups or local mild α-times integrated existence families (The-
orem 1). Moreover, we show that every local α-times integrated semigroup
may be extended if one is ready to give up the regularity (Theorem 2). This
interesting extension property appeared in [3] for local n-times integrated
semigroups and in [22] for local C-semigroups.

On the other hand, Lions introduced in 1960 the so-called (vector-valued)
distribution semigroups, in connection with Cauchy problems ([16]). Partic-
ular classes of distribution semigroups have since been considered; for ex-
ample quasi-distribution semigroups were introduced and studied by Wang
in [21]. A brief description of distribution semigroups as well as references
on the subject can be found in [1] and [17].

Local α-times integrated semigroups are equivalent to quasi-distribution
semigroups (see the third section). We show that quasi-distribution semi-
groups of fractional order are equivalent to global solutions of integrated
Cauchy problems with fairly general growth. We present an approach which
allows us to extend some known results ([2, Theorem 4.4], [14, Theorem 3.6],
[21, Theorem 4.13]) quite significantly.

2. Extending solutions of well-posed local integrated Cauchy
problems. Let X be a Banach space, B(X) the set of bounded linear op-
erators on X, (A,D(A)) a closed linear operator on X, x ∈ X and κ > 0.
The local α-times integrated Cauchy problem

Cα(κ) ≡


v ∈ C([0, κ);D(A)) ∩ C(1)([0, κ);X),

v′(t) = Av(t) +
tα−1

Γ (α)
x, t ∈ [0, κ),

v(0) = 0,

has been studied in detail for α ∈ N ([3], [21]) and later for α ∈ R+ ([15]).
The Cauchy problem Cα(κ) is well-posed if for all x ∈ X there exists a

unique solution of Cα(κ). If E(a, b) ⊂ %(A) for some a, b > 0, where

E(a, b) := {λ ∈ C; <λ ≥ b, |=λ| ≤ ea<λ}

(%(A) is the resolvent set of A), and

‖(λ−A)−1‖ ≤M |λ|α−1, λ ∈ E(a, b),

for some α ∈ R+, then the Cauchy problem Cβ(κ) is well-posed with β > α
and κ = a(β − α) ([15, Theorem 2.2]). Using some ideas from special func-
tions, one can also prove a converse result ([15, Theorem 2.1]).
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Given α ∈ R+, the solution (vx(t))t∈[0,κ) of the well-posed abstract
Cauchy problem Cα+1(κ) defines a family (Sα(t))t∈[0,κ) ⊂ B(X) by

Sα(t)x := v′x(t), x ∈ X, t ∈ [0, κ).(2)

In fact, (Sα(t))t∈[0,κ) is a nondegenerate local α-times integrated semigroup,
i.e.,

Sα(t)Sα(s)x =
1

Γ (α)

( t+s�
s

−
t�

0

(t+ s− r)α−1Sα(r)x dr
)

(3)

for κ > t + s ≥ t, s ≥ 0, and x ∈ X (nondegenerate in the usual sense: if
Sα(t)x = 0 for all t ∈ [0, κ) then x = 0); see [2], [15], [21]. It is straightforward
to check that (Sβ(t))t∈[0,κ) defined by

Sβ(t)x =
1

Γ (β − α)

t�

0

(t− s)β−α−1Sα(s)x ds, x ∈ X, t ∈ [0, κ),(4)

for β > α is a local β-times integrated semigroup. For a nondegenerate local
α-times integrated semigroup we may define its generator in the following
way. Let D(A) be the set of all x ∈ X for which there exists y ∈ X such
that

Sα(t)x− tα

Γ (α+ 1)
x =

t�

0

Sα(s)y ds, t ∈ [0, κ);

and set Ax := y. It is easy to check that (A,D(A)) is a closed operator
on X. Moreover Sα(t)x is differentiable in t for t ∈ [0, κ) and x ∈ X if and
only if Sα(t)x ∈ D(A), and in this case

d

dt
Sα(t)x = ASα(t)x+

tα−1

Γ (α)
x, κ > t > 0.

In the case κ = ∞, the growth of ‖Sα(t)‖ as t → ∞ can be faster than
exponential (see for example [17, Example 1.2.5]). If ‖Sα(t)‖ ≤ Ceλ0t with C,
λ0 ≥ 0, the condition (3) is equivalent (via Laplace transform) to

R(λ,A) := λα
∞�

0

e−λtSα(t) dt, <λ > λ0,

being a pseudo-resolvent operator , i.e., satisfying R(λ,A) − R(µ,A) =
(µ − λ)R(λ,A)R(µ,A) for any <λ,<µ > λ0 ([8]). In the nondegenerate
case, λ ∈ %(A) and R(λ,A) = (λ−A)−1 for <λ > λ0.

R. deLaubenfelds introduced the concept of mild n-times integrated ex-
istence family in [13]. Suppose A is a closed operator on X and α ≥ 0.
A strongly continuous family (W (t))t∈[0,κ) ⊂ B(X) is a local mild α-times
integrated existence family for A if for any x ∈ X and t ∈ [0, κ), we have
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	t
0W (s)x ds ∈ D(A) and

A

t�

0

W (s)x ds = W (t)x− tα

Γ (α+ 1)
x

(see [21, Definition 2.3] for α ∈ N). The following theorem is well-known
in the case α ∈ N ∪ {0} (see for example [3, Proposition 2.3] and [21, The-
orem 2.4]). The special case α = 0 appears in [3, Theorem 1.2]. The proof
in the case α ∈ R+ is similar to the case α ∈ N and we omit it.

Theorem 1. Let α ≥ 0 and 0 < κ ≤ ∞. The following are equivalent.

(i) Cα+1(κ) is well-posed.
(ii) A generates a nondegenerate α-times integrated semigroup.

(iii) Cα+1(κ) is well-posed and there exists a local mild α-times integrated
existence family for A.

Example 1. This example appears in [20] for the case α ∈ N (see also
[17, Example 1.2.6]). Let `2 be the Hilbert space of all square-summable
sequences x = (xm)∞m=1 with the usual norm ‖x‖ := (

∑∞
m=1 |xm|2)1/2. Take

T > 0 and define

am =
m

T
+ i

((
em

m

)2

−
(
m

T

)2)1/2

, m ∈ N,

where i2 = −1. For any α ∈ R+, let (Uα(t))t>0 be defined by

Uα(t)x =
(

1
Γ (α)

t�

0

(t− s)α−1eamsxm ds

)∞
m=1

for x ∈ D(Uα(t)), where D(Uα(t)) = {x ∈ `2; Uα(t)x ∈ `2}. Then
(Uα(t))t∈[0,αT ) is a local α-times integrated semigroup on `2:

We consider the case α 6∈ N. Then 0 < α− [α] < 1 and

t�

0

(t− s)α−1

Γ (α)
eams ds =

eamt

a
[α]
m

t�

0

sα−[α]−1

Γ (α− [α])
e−ams ds−

[α]∑
j=1

tα−j

Γ (α+ 1− j)ajm

for t ≥ 0. Moreover,
t�

0

sα−[α]−1

Γ (α− [α])
e−ams ds = tα−[α]

(
e−amt

am
O(1) +

1

a
α−[α]
m

O(1)
)
, t ≥ 0,

when |am| → ∞ (see for example [15, Theorem 2.1]). Since |am| = m−1em

and |eamt| = emt/T , we find that

‖Uα(t)‖ = sup
m∈N

∣∣∣∣ 1
Γ (α)

t�

0

(t− s)α−1eams ds

∣∣∣∣ <∞
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if and only if 0 ≤ t < αT . It is easily shown that (Uα(t))t∈[0,αT ) satisfies (3)
and t 7→ Uα(t)x is strongly continuous (for these ideas in the case α = n
see [20]). Note that (Uα(t))t∈[0,αT ) cannot be extended to t ≥ αT .

Now we prove that solutions in the local well-posed case may be ex-
tended. A loss of regularity appears in the same way as in the integer case
[3, Theorem 4.1]. Note that the extension given in [3, formula (4.2)] for
α ∈ N is not possible in the case α ∈ R+.

Theorem 2. Let κ0 > 0 and α ∈ R+. Suppose that Cα+1(κ0) is well-
posed. Then C2α+1(2κ0) is also well-posed. In particular , for all κ′ > 0 there
exists β > 0 such that Cβ(κ′) is well-posed.

Proof. Take κ < κ0. We will prove that C2α+1(2κ) is well-posed. By
Theorem 1, there exists a nondegenerate local α-times integrated semigroup
(Sα(t))t∈[0,κ0) generated by (A,D(A)). Then we define (S2α(t))t∈[0,κ] by (4)
if 0 ≤ t ≤ κ and

S2α(t)x := Sα(κ)Sα(t− κ)x+
1

Γ (α)

κ�

0

(t− s)α−1Sα(s)x ds(5)

+
1

Γ (α)

t−κ�

0

(t− s)α−1Sα(s)x ds,

if κ ≤ t ≤ 2κ and x ∈ X. It is clear S2α : [0, 2κ]→ B(X) is strongly continu-
ous. To show that C2α+1(2κ) is well-posed, we prove that (S2α(t))t∈[0,2κ] is a
local mild 2α-times integrated existence family for A and apply Theorem 1.

If 0 ≤ t ≤ κ, it is clear that

A

t�

0

S2α(s)x ds = S2α(t)x− t2α

Γ (2α+ 1)
x, x ∈ X.

Take κ ≤ t ≤ 2κ. Then

A

t�

0

S2α(s)x ds = S2α(κ)x− κ2α

Γ (2α+ 1)
x+A

t�

κ

S2α(s)x ds.

We use (5) and the Fubini theorem to obtain

t�

κ

S2α(s)x ds = Sα(κ)
t−κ�

0

Sα(u)x du+
κ�

0

Sα(r)x
t�

κ

(s− r)α−1

Γ (α)
ds dr

+
t−κ�

0

Sα(r)x
t�

r+κ

(s− r)α−1

Γ (α)
ds dr.
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Note that

Sα(κ)A
t−κ�

0

Sα(u)x du = Sα(κ)Sα(t− κ)x− Sα(κ)x
(t− κ)α

Γ (α+ 1)
.

As
t�

κ

(s− r)α−1

Γ (α)
ds =

(t− r)α

Γ (α+ 1)
− (κ− r)α

Γ (α+ 1)
,

we now check easily

A

κ�

0

Sα(r)x
(κ− r)α

Γ (α+ 1)
dr = S2α(κ)x− κ2α

Γ (2α+ 1)
x

and also we conclude that

A

κ�

0

Sα(r)x
(t− r)α

Γ (α+1)
dr =

κ�

0

Sα(s)x
(t− s)α−1

Γ (α)
ds+ Sα(κ)x

(t− κ)α

Γ (α+ 1)

− κα

Γ (α+1)
(t− κ)α

Γ (α+1)
x−

κ�

0

(t−s)α−1

Γ (α)
sα

Γ (α+1)
ds x.

For r > t− k, we use similar ideas and
t�

κ+r

(s− r)α−1

Γ (α)
ds =

(t− r)α

Γ (α+ 1)
− κα

Γ (α+ 1)

to check easily that

A

t−κ�

0

Sα(r)x
κα

Γ (α+ 1)
dr =

κα

Γ (α+ 1)
Sα(t− κ)x− κα

Γ (α+ 1)
(t− κ)α

Γ (α+ 1)
x,

and we obtain

A

t−κ�

0

Sα(r)x
(t− κ)α

Γ (α+1)
dr =

t−κ�

0

Sα(s)x
(t− s)α−1

Γ (α)
ds+

κα

Γ (α+ 1)
Sα(t− κ)x

−
t−κ�

0

(t− s)α−1

Γ (α)
sα

Γ (α+ 1)
ds− κα

Γ (α+ 1)
(t− κ)α

Γ (α+ 1)
x.

Note that
t2α

Γ (2α+ 1)
− κα

Γ (α+ 1)
(t− κ)α

Γ (α+ 1)

=
κ�

0

(t− s)α−1

Γ (α)
sα

Γ (α+ 1)
ds+

t−κ�

0

(t− s)α−1

Γ (α)
sα

Γ (α+ 1)
ds

(see for example [12, Lemma 3.1]). To finish the proof we join together all
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summands to obtain

A

t�

0

S2α(s)x ds = Sα(κ)Sα(t− κ)x+
κ�

0

Sα(s)x
(t− s)α−1

Γ (α)
ds

−
t−κ�

0

Sα(s)x
(t−s)α−1

Γ (α)
ds− t2α

Γ (2α+1)
x = S2α(t)x− t2α

Γ (2α+1)
x,

and this proves the claim.

Remark 3. In the case α = k, we recover the extension given in [3, The-
orem 4.1], in view of the identity

1
Γ (α)

κ�

0

(t− s)α−1Sα(s)x ds+
1

Γ (α)

t−κ�

0

(t− s)α−1Sα(s)x ds

=
k−1∑
m=0

1
m!

(κmS2k−m(t− κ)x+ (t− κ)mS2k−m(κ))x.

Due to uniqueness of the solutions and the proof of Theorem 2, the functional
equation

S2α(t+ s)x = Sα(t)Sα(s)x+
1

Γ (α)

((t�
0

+
s�

0

)
(t+ s− u)α−1Sα(u)x du

)
holds for t, s ∈ [0, κ) and x ∈ X.

Take α ≥ 0 and κ ∈ R+∪{∞}. We denote by Ωα,κ the set of nondecreas-
ing and continuous functions τα on [0, κ) such that infκ>t>0 t

−ατα(t) > 0 and
there exists a constant Cα > 0 with�

[0,r]∪[s,s+r]

tα−1τα(r + s− t) dt ≤ Cατα(r)τα(s), 0 ≤ r ≤ s ≤ s+ r < κ.

If κ′ > κ then Ωα,κ′ ⊂ Ωα,κ. The functions τα(t) = tα; tβ(1 + t)ν with
β ∈ [0, α] and ν ≥ α − β; and tβeτt with τ > 0 and β ∈ [0, α], belong
to Ωα,∞. If τα ∈ Ωα,κ then τν ∈ Ων,κ, where τν(t) := tν−ατα(t) for t ≥ 0
and ν ≥ α. The subset of functions τα(t) = tαw(t) (where w is a continuous
and nondecreasing weight function on [0, κ), w(t+ s) ≤ Cw(t)w(s) for 0 ≤
t, s ≤ t+ s < κ) is denoted by Ωh

α,κ (see [7] for more details).
We use the equality (2) and the proof of Theorem 2 to obtain the fol-

lowing corollary.

Corollary 4. Take α ≥ 0 and τα ∈ Ωα,κ. Let (vx(t))t∈[0,κ) be the
solution of the local well-posed integrated Cauchy problem Cα+1(κ) such that

‖v′x(t)‖ ≤ Cτα(t), t ∈ [0, κ).
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Then the solution (ux(t))t∈[0,2κ) of the local integrated Cauchy problem
C2α+1(2κ) satisfies

‖u′x(t)‖ ≤
{
Ctατα(t), t ∈ [0, κ],
Cτα(κ)(κα + τα(t− κ)), t ∈ [κ, 2κ).

3. Quasi-distribution semigroups and global solutions of the
abstract Cauchy problem. In this section we start considering quasi-
distribution semigroups introduced in [21]. Let D+ be the class of C∞ func-
tions of compact support on [0,∞); D be the class of C∞ functions of
compact support on R; and D0 be the subspace of those φ’s of D with
supp(φ) ⊂ [0,∞). Note that if φ, ψ ∈ D+ then φ ∗ ψ ∈ D+ where

φ ∗ ψ(t) =
t�

0

φ(t− s)ψ(s) ds, t ≥ 0.

We consider the usual topology defined in D+,D and D0. A quasi-distribu-
tion semigroup (QDSG) on X is a continuous linear map G : D+ → B(X)
that satisfes:

(i) G(φ ∗ ψ) = G(φ)G(ψ) for φ, ψ ∈ D+,
(ii)

⋂
{ker(G(φ)); φ ∈ D0} = {0}

(see [21, Definition 3.3]). Although Wang considered maps from D to B(X),
both approaches are equivalent [21, Remark 3.4(ii)]. Quasi-distribution
semigroups extend distribution semigroups in the sense of Lions ([21, Corol-
lary 3.11]).

For a given QDSG G, the operator A1 is defined by

D(A1) =
⋃
{Im(G(φ)); φ ∈ D+},

A1G(φ)(x) := −G(φ′)(x)− φ(0)x, x ∈ X, φ ∈ D+.

It is not difficult to check that (A1, D(A1)) is well-defined and closable (see
[21, Proposition 3.5]). The closure of A1, denoted by A, is called the genera-
tor of the QDSG G, and for any φ ∈ D+, we have G(φ)A ⊆ AG(φ) ([21, Pro-
position 3.7]). An alternative definition of a generator is given in [11, Defi-
nition 3.3]. The generator is defined by A := G(−δ′) and it may be proved
that D(A) = span{G(D+)X}, where span denotes the linear span (see more
details in [11]).

It is well-known that QDSGs are equivalent to well-posed Cauchy prob-
lems Cα+1(κ).

Theorem 5 ([21, Theorems 2.4 and 3.8]). Let A be a closed operator.
Then the following are equivalent.

(i) There exist α ≥ 0 and κ > 0 such that Cα+1(κ) is well-posed.
(ii) A generates a QDSG.
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A direct proof of (i)⇒(ii) involves Weyl fractional derivatives. For a
function f ∈ D+ and α ∈ R+, the Weyl fractional integral W−α+ f of order
α is defined by

W−α+ f(t) :=
1

Γ (α)

∞�

t

(s− t)α−1f(s) ds

for t ≥ 0, and the Weyl fractional derivative Wα
+f of order α is defined by

Wα
+f(t) :=

(−1)n

Γ (n− α)
dn

dtn

∞�

t

(s− t)n−α−1f(s) ds

with n = [α] + 1 and t ≥ 0. It can be seen that Wα+β
+ = Wα

+(W β
+) for any

α, β ∈ R, where W 0
+ = Id is the identity operator ([19]). The Weyl fractional

calculus can be applied to more functions than those belonging to D+ (see
[19, p. 248]). In this sense, for example, let f and g be measurable functions
on [0,∞) such that W−α+ f exists and g = W−α+ f a.e. Then we consider
Wα

+g = f and we follow the same notation.
To show that (i)⇒(ii) let (Sα(t))t∈[0,κ) be the nondegenerate α-times in-

tegrated semigroup which gives the solution of the problem Cα+1(κ) (see (2))
and let φ ∈ D+ with supp(φ) ⊂ [0, R]. Then there exists n ∈ N ∪ {0} such
that 2nα > R, and we define G(φ) by

G(φ)x :=
2nα�

0

W 2nα
+ φ(t)S2nα(t)x dt, x ∈ X,

where (S2nα(t))t is defined recursively from the extension given in Theo-
rem 2. To prove that

G(φ ∗ ψ) = G(φ)G(ψ)

for φ, ψ ∈ D+, see similar ideas in [18, Theorem 3.1]. We may conclude that
G is a QDSG.

Now we consider the case κ = ∞. Although there are local α-times
integrated semigroups which cannot be extended (see Example 1), differen-
tial operators in Euclidean spaces are important examples of global α-times
integrated semigroups ([9]).

Let ω : [0,∞) → (0,∞) be a weight function and L1(R+, ω) the usual
convolution Banach algebra of measurable functions on [0,∞) such that
‖f‖ω :=

	∞
0 |f(t)|ω(t) dt <∞. The Riesz functions (Rθt )t≥0 are defined by

Rθt (s) :=
(t− s)θ

Γ (θ + 1)
χ(0,t)(s), s ≥ 0, t > 0,

Rθ0 = 0 and θ > −1. We denote by Mul(A) the set of multipliers of a Banach
algebra A.
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Theorem 6 ([7, Propositions 1.4 and 1.5]). Let α ∈ R+ and τα ∈ Ωα,∞.
The expression

qτα(f) :=
1

Γ (α+ 1)

∞�

0

τα(t)|Wα
+f(t)| dt

defines a norm on D+. Moreover , qτα(f ∗g) ≤ Cαqτα(f)qτα(g) for f, g ∈ D+,

and Cα > 0 is independent of f and g. Denote by T (α)
+ (τα) the Banach

algebra obtained as the completion of D+ in the norm qτα with τα ∈ Ωα,∞.
Then we have the following continuous embeddings:

(i) T (α)
+ (τα) ↪→ T (α)

+ (tα) ↪→ L1(R+).
(ii) If β > α ∈ R+, and τβ ∈ Ωβ,∞ is such that

1
Γ (β − α)Γ (α+ 1)

t�

0

(t−s)β−α−1τα(s) ds ≤ 1
Γ (β + 1)

τβ(t), t ≥ 0,

then T (β)
+ (τβ) ↪→ T (α)

+ (τα), in particular T (β)
+ (tβ) ↪→ T (α)

+ (tα).
(iii) Rν−1

t ∈ T (α)
+ (τα) with t > 0 and ν > α; qτα(Rν−1

t ) ≤ Cν,αtν−ατα(t)
for any t > 0, where Cν,α > 0 is independent of t

(iv) Rα−1
t ∈ Mul(T (α)

+ (τα)) and ‖Rα−1
t ‖

Mul(T (α)
+ (τα))

≤Cτα(t) with t > 0.

In the case α = 0, we identify T (0)
+ (τ0) and L1(R+, τ0). If α = n and

τn(t) = tn for any t ≥ 0, the algebra T (n)
+ (tn) is T +

n as defined in [2] and
considered in [4] and [5]. If α = n and τn(t) = ert (r > 0, t ≥ 0), then the
algebra T (n)

+ (ert) is D+
r,n defined as in [21].

If τα ∈ Ωh
α,∞ with α ≥ 0, the algebra T (α)

+ (τα) has bounded approximate

identities (take φ ∈ T (α)
+ (τα) such that

	∞
0 φ(t) dt = 1 and consider (φs =

1
sφ( ·s ))0<s<1). In general, the algebras T (α)

+ (τα) do not have any bounded
approximate identity ([7]).

Definition 7. We say that a quasi-distribution semigroup G : D+ →
B(X) is of order α ∈ R+ and growth τα ∈ Ωα,∞ if G can be extended
to a continuous algebra homomorphism from T (α)

+ (τα) into B(X), i.e., G :
T (α)

+ (τα)→ B(X).

This definition contains [21, Definitions 4.3 and 4.7].

Lemma 8. Let α ≥ 0, τα ∈ Ωh
α,∞, and let (A,D(A)) be a closed and

densely defined operator which generates a quasi-distribution semigroup G
on X of order α ∈ R+ and growth τα. Then G(T (α)

+ (τα))X is dense in X.

Proof. As τα(t) = tαω(t) for some continuous and nondecreasing weight
ω : [0,∞) → [0,∞) and ω(t) ≤ Ceκt (t ≥ 0, C, κ > 0), we deduce
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that (κ,∞) ⊂ %(A) and supλ>κ+1 ‖λR(λ,A)‖ < ∞. By [1, Lemma 3.3.12],
limλ→∞ λR(λ,A)x = x for all x ∈ X. Since G(e−λ(·)) = R(λ,A) for λ > κ,
we conclude that G(T (α)

+ (τα))X is dense in X.

The following theorem extends results from [2], [14] and [18] given in
terms of integrated semigroups.

Theorem 9. Suppose that (vx(t))t≥0 is the solution of Cα+1(∞) such
that

‖v′x(t)‖ ≤ Cτα(t)‖x‖, x ∈ X,
with τα ∈ Ωα,∞. Then there exists a quasi-distribution semigroup of order
α and growth τα, G : T (α)

+ (τα)→ B(X), given by

G(f)x =
∞�

0

Wα
+f(t)v′x(t) dt, x ∈ X,

with f ∈ T (α)
+ (τα), generated by (A,D(A)).

Proof. By Theorem 5, (A,D(A)) is the generator of a quasi-distribution
semigroup, G̃ : D+ → B(X). Since ‖v′x(t)‖ ≤ Cτα(t)‖x‖ for any t ≥ 0, the
expression

G(f)x :=
∞�

0

Wα
+f(t)v′x(t) dt, f ∈ T (α)

+ (τα), x ∈ X,

defines a continuous linear homomorphism G : T (α)
+ (τα)→ B(X). There are

several ways to conclude that G|D+
= G̃. We do this by checking that G is a

quasi-distribution semigroup generated by (A,D(A)) and (v′x(t))t≥0 defines
an α-times integrated semigroup (see similar proof in [18, Theorem 3.1]).

Remark 10. Note that in this theorem we do not assume that A is a
densely defined operator.

Example 2. The function Ec : R+ → R+ defined by Ec(t) := ect
2

(t > 0) does not belong to Ω1,∞ for any c > 0. We have

lim
t→∞

	t+r
t ecs

2
ds

ect2
= lim

t→∞

ec(t+r)
2 − ect2

2ctect2
=∞.

Thus there is no C > 0 such that
	t+r
t ecs

2
ds ≤ Cect

2
ecr

2
for 0 < r

< t. However, there are 1-integrated semigroups such that ‖S1(t)‖ = et
2/4

(t ≥ 0) ([17, Example 1.2.5]). In this case we cannot apply Theorem 9 with
τ1(t) = et

2/4.

We now prove the first converse to Theorem 9. Some precedents of this
result are [2, Theorem 4.4], [14, Theorem 3.6] and [21, Theorem 4.16]. They
consider integer derivation and particular growths τα.
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Theorem 11. Given α ≥ 0, τα ∈ Ωα,∞, and a quasi-distribution semi-
group G : T (α)

+ (τα) → B(X) generated by (A,D(A)). Then for any
ν > α, the abstract Cauchy problem Cν+1(∞) is well-posed and the solution
(vx(t))t≥0 satisfies

‖v′x(t)‖ ≤ Cνtν−ατα(t)‖x‖, t ≥ 0.

Proof. Take ν > α. The family (Rν−1
t )t≥0 of Riesz functions, is a ν-times

integrated semigroup in T (α)
+ (τα) and qτα(Rν−1

t ) ≤ Cν,αtν−ατα(t) for ν > α,

t ≥ 0 (see Theorem 6(iii)). Put Sν(t) := G(Rν−1
t ) for any t ≥ 0. It is clear

that (Sν(t))t≥0 satisfies (3) and is a ν-times integrated semigroup. From
the continuity of G we have ‖Sν(t)‖ ≤ Cν,αt

ν−ατα(t) for any t ≥ 0. It is
straightforward to check that (Sν(t))t≥0 is generated by (A,D(A)).

By Theorem 6(iv), the Riesz function Rα−1
t is a multiplier of the algebra

T (α)
+ (τα) for every t > 0. If T (α)

+ (τα) has a bounded approximate identity,
we may calculate (G(Rα−1

t ))t≥0 to get the second converse to Theorem 9.

Theorem 12. Let α ≥ 0, τα ∈ Ωh
α,∞, and let (A,D(A)) be a closed and

densely defined operator on X. The following conditions are equivalent.

(i) The abstract Cauchy problem Cα+1(∞) is well-posed and the solution
(vx(t))t≥0 satisfies

‖v′x(t)‖ ≤ Cατα(t)‖x‖, t ≥ 0.

(ii) (A,D(A)) generates a quasi-distribution semigroup G of order α∈R+

and growth τα.

Proof. Defining G as in Theorem 9, we obtain (i)⇒(ii).

(ii)⇒(i). As τα ∈ Ωh
α,∞, T (α)

+ (τα) has a bounded approximate iden-

tity. Since G(T (α)
+ (τα))X is dense in X (see Lemma 8), we have X =

G(T (α)
+ (τα))X by Cohen’s factorization theorem. The map G extends to

a Banach algebra homomorphism G̃ : Mul(T (α)
+ (τα)) → B(X). Then, if

T ∈ Mul(T (α)
+ (τα)) and x = G(f)y (f ∈ T (α)

+ (τα), y ∈ X) we define
G̃(T )x := G(T (f))y (see [6, Proposition 5.2]). By Theorem 6(iv), Rα−1

t ∈
Mul(T (α)

+ (τα)) and we put Sα(t) := G̃(Rα−1
t ) for all t ≥ 0. The proof is

finished in the similar way as the proof in Theorem 11.
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