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Topological classification of
closed convex sets in Fréchet spaces

by

Taras Banakh (Kielce and Lviv) and Robert Cauty (Paris)

Abstract. We prove that each non-separable completely metrizable convex subset of
a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years
old problem of infinite-dimensional topology. Combined with the topological classification
of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that
each closed convex subset of a Fréchet space is homeomorphic to [0, 1]n × [0, 1)m × `2(κ)
for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1 and κ ≥ 0.

The problem of topological classification of convex sets in linear metric
spaces traces its history back to the founders of functional analysis, S. Ba-
nach and M. Fréchet. For separable closed convex sets in Fréchet spaces
this problem was resolved by combined efforts of Klee [8] (see [3, III.7.1]),
Dobrowolski and Toruńczyk [4], [5]:

Theorem 1 (Klee–Dobrowolski–Toruńczyk). Each separable closed con-
vex subset C of a Fréchet space is homeomorphic to [0, 1]n× [0, 1)m× (0, 1)k

for some cardinals 0 ≤ n, k ≤ ω and 0 ≤ m ≤ 1. In particular, C is hom-
eomorphic to the separable Hilbert space `2 if and only if C is not locally
compact.

By a Fréchet space we mean a locally convex complete linear metric space.
A linear metric space is a linear topological space endowed with an invariant
metric that generates its topology. A topological space is called completely
metrizable if its topology is generated by a complete metric.

In this paper we study the topological structure of non-separable (com-
pletely metrizable) convex sets in Fréchet spaces and prove the following
theorem that answers problem LS10 in Geoghegan’s list [7], repeated in [11]
and [2].

Theorem 2. Each non-separable completely metrizable convex subset of
a Fréchet space is homeomorphic to a Hilbert space.
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Theorems 1 and 2 imply the following topological classification of closed
convex subsets in Fréchet spaces.

Theorem 3. Each closed convex subset C of a Fréchet space is homeo-
morphic to [0, 1]n× [0, 1)m× `2(κ) for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1
and κ ≥ 0. In particular, C is homeomorphic to an infinite-dimensional
Hilbert space if and only if C is not locally compact.

Here `2(κ) stands for the Hilbert space that has an orthonormal basis
of cardinality κ. The topology of infinite-dimensional Hilbert spaces was
characterized by Toruńczyk [9], [10]. This characterization was used in the
proof of the following criterion from [2] which is our main tool for the proof
of Theorem 2.

Theorem 4 (Banakh–Zarichnyi). A convex subset C of a linear metric
space is homeomorphic to an infinite-dimensional Hilbert space if and only
if C is a completely metrizable absolute retract with LFAP.

A topological space X is defined to have the locally finite approximation
property (briefly, LFAP) if for each open cover U of X there is a sequence
of maps fn : X → X, n ∈ ω, such that each fn is U-near to the identity
idX : X → X and the family (fn(X))n∈ω is locally finite in X. The latter
means that each x ∈ X has a neighborhood O(x) ⊂ X that meets only
finitely many sets fn(X), n ∈ ω.

Theorem 2 follows immediately from Theorem 4, the Borsuk–Dugundji
Theorem [3, II.3.1] (saying that convex subsets of Fréchet spaces are absolute
retracts) and the following theorem that will be proved in Section 3.

Theorem 5. Each non-separable convex subset of a Fréchet space has
LFAP.

1. Separatedapproximationproperty. Theorem5 establishing LFAP
of non-separable convex sets will be proved with the help of the metric
counterpart of LFAP, called SAP.

A metric space (X, d) is defined to have the separated approximation
property (briefly, SAP) if for each ε > 0 there is a sequence of maps fn :
X → X, n ∈ ω, such that each fn is ε-homotopic to idX and the family
(fn(X))n∈ω is separated in the sense that infn 6=m d(fn(X), fm(X)) > 0.

Here for two non-empty subsets A,B ⊂ X we put d(A,B) = inf{d(a, b) :
a ∈ A, b ∈ B}. Two maps f, g : A → X are called ε-homotopic if they can
be linked by a homotopy (ht)t∈I : A → X such that h0 = f , h1 = g and
diam{ht(a) : t ∈ I} ≤ ε for all a ∈ A. By I we denote the unit interval [0, 1].

The following lemma is proved by analogy with Lemma 1 of [5] and
Lemma 5.2 of [2].

Lemma 1. Each metric space with SAP satisfies LFAP.
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Proof. Assume that a metric space (X, d) has SAP. To show that X
has LFAP, fix an open cover U of X and find a non-expanding function
ε : X → (0, 1) such that the cover {B̄d(x; ε(x)) : x ∈ X} refines U . Here
B̄d(x; ε) = {x′ ∈ X : d(x′, x) ≤ ε} stands for the closed ε-ball centered at x.

For every k ∈ ω consider the closed subset Xk = {x ∈ X : ε(x) ≥ 2−k}
of X. Put εk = 1/4k+2 for k ∈ {0, 1} and let f0 : X×ω → X, f0 : (x, n) 7→ x,
be the projection. By induction we shall construct a sequence (εk)k∈ω of
positive real numbers and a sequence of maps fk : X × ω → X, k ∈ ω, such
that the following conditions are satisfied:

(1) εk+1 ≤ 1
4εk ≤ 1/4k+3,

(2) fk is εk-homotopic to fk−1,
(3) fk|Xk−3 × ω = fk−1|Xk−3 × ω,
(4) fk|(X \Xk+1)× ω = f0|(X \Xk+1)× ω,
(5) infn 6=m d(fk(Xk × {n}), fk(Xk × {m})) ≥ 4εk+1.

Assume that the maps fi : X × ω → X and numbers εi+1 satisfying the
conditions (1)–(5) have been constructed for all i < k. By SAP, there is an
εk-homotopy (ht)t∈I : X × ω → X such that h0 = f0 and

δ = inf
n6=m

d(h1(X × {n}), h1(X × {m}) > 0.

Choose a continuous function λ : X → [0, 1] such that Xk \Xk−2 ⊂ λ−1(1)
and Xk−3 ∪ (X \Xk+1) ⊂ λ−1(0).

Take any positive number εk+1 ≤ 1
4 min{δ, εk} and define a function

fk : X × ω → X by

fk(x, n) = hλ(x)(fk−1(x, n), n).

It is clear that the conditions (1)–(4) are satisfied. The condition (5) will fol-
low as soon as we check that d(fk(x, n), fk(y,m)) ≥ 4εk+1 for any x, y ∈ Xk

and n 6= m.
There are unique i, j ≤ k such that x ∈ Xi \Xi−1 and y ∈ Xj \Xj−1. If

i, j < k, then

d(fk(x, n), fk(y,m)) ≥ d(fk−1(x, n), fk−1(y,m))− 2εk ≥ 4εk − 2εk ≥ 4εk+1.

It remains to consider the case max{i, j} = k. We lose no generality
assuming that i = k. If j ≥ k − 1, then

d(fk(x, n), fk(y,m)) = d(h1(fk−1(x, n), n), h1(fk−1(y,m),m)) ≥ δ ≥ 4εk+1.

Next, assume that j ≤ k − 2. In this case k ≥ j + 2 ≥ 3. Then

ε(x) < 2−i+1 = 2−k+1 < 2−k+2 ≤ 2−j ≤ ε(y)

and the non-expanding property of ε implies that

d(x, y) ≥ |ε(x)− ε(y)| ≥ 2−j − 2−k+1 ≥ 2−j−1.
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It follows from (4) and (2) that

d(x, fk(x, n)) = d(fi−2(x, n), fk(x, n)) = d(fk−2(x, n), fk(x, n))

≤ εk−1 + εk ≤ 2εk−1 ≤
2

4k+1

and

d(y, fk(y,m)) = d(fj−2(y,m), fk(y,m)) ≤ εj−1 + · · ·+ εk ≤ 2εj−1 ≤
2

4j+1
.

Then

d(fk(x, n), fk(y,m)) ≥ d(x, y)− d(x, fk(x, n))− d(y, fk(y,m))

≥ 1
2j+1

− 2
4k+1

− 2
4j+1

≥ 1
2j+1

− 2
4j+3

− 2
4j+1

≥ 4
4j+5

≥ 4
4k+3

≥ 4εk+1.

This completes the inductive step.
After completing the inductive construction, let

f∞ = lim
k→∞

fk : X × ω → X.

The conditions (1)–(3) guarantee that f∞ is well-defined and continuous. Let
us show that it is ε-near to f0. Given any (x, n) ∈ X × ω, there is a unique
i ∈ ω such that x ∈ Xi \ Xi−1. By (3) and (4), f∞(x, n) = fi+2(x, n) and
f0(x, n) = fi−2(x, n). Then

d(f∞(x, n), x) = d(f∞(x, n), f0(x, n)) = d(fi+2(x, n), fi−2(x, n))

≤ εi+2 + · · ·+ εi−1 ≤ 2εi−1 ≤
2

4i+1
<

1
2i
≤ ε(x).

The choice of ε guarantees that f∞ is U-near to f0 : X × ω → X.
It remains to prove that the family (f∞(X × {n})n∈ω is discrete in X.

Given any x ∈ X, there is a unique i ∈ ω such that x ∈ Xi \Xi−1. Consider
the open ball B(x; 1/2i+2) = {x′ ∈ X : d(x, x′) < 1/2i+2}.

Claim 1. B(x; 1/2i+2) ∩ f∞(X × ω) ⊂ f∞(Xi+1 × ω).

Proof. Assume, contrary to our claim, that d(x, f∞(y,m)) < 1/2i+2 for
some m ∈ ω and y ∈ X \ Xi+1. There is a unique j ∈ ω such that y ∈
Xj \Xj−1. It follows from y /∈ Xi+1 that j ≥ i+ 2. Since

d(f∞(y,m), y) = d(fj+2(y,m), fj−2(y,m)) ≤ 2εj−1 ≤
2

4j+1
≤ 1

2i+2
,

and ε(y) < 1/2j−1 < 1/2i ≤ ε(x), by the non-expanding property of ε, we
get a contradiction:

1
2i+1

≤ 1
2i
− 1

2j−1
≤ |ε(x)− ε(y)| ≤ d(x, y)

≤ d(x, f∞(y,m)) + d(f∞(y,m), y) <
1

2i+2
+

1
2i+2

=
1

2i+1
.
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Now the condition (5) and the inequality εi+2 ≤ 1/4i+4 ≤ 1/2i+2 imply
that the ball B(x; εi+2) meets at most one set f∞(Xi+1×{n}) and hence at
most one set f∞(X ×{n}), which means that the family (f∞(X ×{n}))n∈ω
is discrete in X and hence X has LFAP.

2. SAP in non-separable convex cones. In this section we shall
prove that non-separable convex cones in Fréchet spaces have SAP.

A subset C of a linear metric space (L, d) is called a convex cone if it
is convex and R+ · C = C where R+ = [0,∞). The principal result of this
section is

Lemma 2. Each non-separable convex cone C in a Fréchet space L has
SAP.

In the proof of this lemma we shall use an operator version of the
Josefson–Nissenzweig Theorem proved in [1]:

Lemma 3. For a dense continuous non-compact linear operator S :X→Y
between normed spaces there is a continuous linear operator T : Y → c0 such
that the operator TS : X → c0 is not compact.

Recall that an operator T : X → Y between linear topological spaces is

• dense if TX is dense in Y ;
• compact if the image T (U) of some open neighborhood U ⊂ X of zero

is totally bounded in Y .

A subset B of a linear topological space Y is totally bounded if for each
open neighborhood V ⊂ Y of zero there is a finite subset F ⊂ Y such that
B ⊂ V + F .

Proof of Lemma 2. Assume that C is a non-separable convex cone in
a Fréchet space L. By [3, I.6.4], the topology of the Fréchet space L is
generated by an invariant metric dL such that for every ε > 0 the ε-ball
BL(ε) = {x ∈ L : dL(x, 0) < ε} centered at the origin is convex. We lose no
generality assuming that the linear subspace C − C is dense in L.

Given any ε > 0, we need to construct maps fk : C → C, k ∈ ω, such
that each fk is ε-homotopic to idC and infk 6=n d(fk(C), fn(C)) > 0. Since
the metric d has convex balls, any two ε-near maps into C are ε-homotopic.

Claim 2. There is a linear continuous operator R : L → Y onto a
normed space Y such that R(C) is not separable and R−1(B̄Y ) ⊂ BL(ε/2)
where B̄Y = {y ∈ Y : ‖y‖ ≤ 1}.

Proof. By [3, I.6.4], the Fréchet space L can be identified with a closed
linear subspace of a countable product

∏
i∈ωXi of Banach spaces. For every

n ∈ ω let Yn =
∏
i<nXi and let prn : L → Yn be the natural projection.

Since C is non-separable, there is n ∈ ω such that for every m ≥ n the
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image prm(C) ⊂ Ym is not separable. We can take m ≥ n so large that
BL(ε/2) ⊃ pr−1

m (U) for some open neighborhood U ⊂ Ym of the origin.
The neighborhood U contains the closed r-ball B̄Ym(r) for some r > 0.
Finally, consider the linear space Y = prm(L) ⊂ Ym endowed with the
norm ‖y‖ = r−1‖y‖m where ‖ · ‖m is the norm Ym. Then the operator
R = prm : L→ Y has the desired properties.

In the convex cone C consider the convex subset BC = C∩R−1(B̄Y ) and
observe that C = R+ · BC and hence R(C) = R+ · R(BC). Since R(C) is
non-separable, so is R(BC). Consider the convex bounded symmetric subset
D = R(BC)−R(BC) ⊂ Y and observe that R·D = R(C)−R(C) = R(C−C).
Then the Minkowski functional

‖x‖Z = inf{λ > 0 : x ∈ λD}

is a well-defined norm on the linear space Z = R ·D = R(C − C) and the
identity inclusion I : Z → Y is a bounded linear operator from the normed
space (Z, ‖·‖Z) to the normed space Y . Since I(Z) = Z is non-separable, the
operator I is not compact. By Lemma 3, there is a linear operator T : Y → c0
with ‖T‖ = 1 such that the composition TI : Z → c0 is not compact.
The latter means that the image T (D) = TR(BC)− TR(BC) is not totally
bounded in c0 and hence the bounded set TR(BC) is not totally bounded
in c0.

Consequently, there is δ ∈ (0, 1] such that for every n ∈ ω,

(2.1) TR(BC) 6⊂ {(xi)i∈ω ∈ c0 : max
i≥n
|xi| < δ}.

For every n ∈ ω let e∗n ∈ c∗0, e∗n : (xi)i∈ω 7→ xn, be the nth coordinate
functional of c0 and let z∗n = (TR)∗(e∗n) ∈ L∗.

Claim 3. There are an increasing number sequence (mk)k∈ω and a se-
quence (zk)k∈ω ⊂ BC such that for every k ∈ ω:

(1) |z∗mk(zk)| ≥ δ;
(2) |z∗mi(zk)| < δ3/100 for all i > k.

Proof. The sequences (mk) and (zk) will be constructed by induction. By
(2.1) there are z0 ∈ BC and m0 ∈ ω such that |e∗m0

(z0)| ≥ δ. Now assume
that for some k ∈ ω the points z0, . . . , zk and numbers m0 < m1 < · · · < mk

have been constructed. Since the points TR(zi), i ≤ k, belong to the Banach
space c0, there is an m > mk so large that |e∗n(TR(zi))| < δ3/100 for all
n ≥ m and i ≤ k. By (2.1), there are zk+1 ∈ BC and mk+1 ≥ m such that
|z∗mk+1

(zk+1)| = |e∗mk+1
(TR(zk+1))| ≥ δ. This completes the inductive step.

Decompose ω into a countable union ω =
⋃
k∈ωNk of pairwise disjoint

infinite subsets and by induction define a function ξ : ω × ω → ω such that
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ξ(i, k) ∈ Nk and ξ(i+ 1, k) > ξ(i, k) > i for all i, k ∈ ω. For any i, k ∈ ω let

zi,k := zξ(i,k) and z∗i,k := z∗mξ(i,k) = (TR)∗(e∗mξ(i,k)),

where (zi)i∈ω and (mk)k∈ω are given by Claim 3. It follows that the double
sequences (zi,k)i,k∈ω and (z∗i,k)i,k∈ω have the following properties (to be used
in the proof of Claim 8 below):

Claim 4. If (i, k), (j, n) ∈ ω × ω, then

(1) |z∗i,k(zi,k)| ≥ δ;
(2) |z∗j,k(zi,n)| < δ3/100 provided ξ(j, k) > ξ(i, n);
(3) |z∗i,k(z)| ≤ 1 for any z ∈ BC .

Claim 5. There is a map f : C → C such that d(f, id) < ε/2 and each
x ∈ C has a neighborhood O(x) whose image f(O(x)) lies in the convex hull
conv(Fx) of some finite subset Fx ⊂ C.

Proof. Using the paracompactness of the metrizable space C, find a lo-
cally finite open cover U of X that refines the cover of C by open ε/4-balls.
In each U ∈ U pick a point cU ∈ U . Let {λU : C → [0, 1]}U∈U be a partition
of unity subordinated to the cover U in the sense that λ−1

U ((0, 1]) ⊂ U for
all U ∈ U . Finally, define a map f : C → C by the formula

f(x) =
∑
U∈U

λU (x)cU .

It is standard to check that f has the desired property.

For every k ∈ Z denote by Ck the set of points x ∈ C that have a
neighborhood O(x) ⊂ C such that |z∗mf(x′)| < δ3/100 for each x′ ∈ O(x)
and every m ≥ k. It is clear that each Ck is open in C and lies in Ck+1.

Claim 6. C =
⋃
k∈ω Ck.

Proof. By Claim 5, each x ∈ C has a neighborhood O(x) ⊂ C such
that f(O(x)) ⊂ conv(F ) for some finite F ⊂ C. Taking into account that
TR(F ) is a finite subset of the Banach space c0, we can find m ∈ ω such that
|e∗nTR(z)| < δ3/100 for all n ≥ m and z ∈ F . Then also |e∗nTR(z)| < δ3/100
for all z ∈ conv(F ), in particular, |e∗nTRf(x′)| < δ3/100 for any x′ ∈ O(x).
This means that x ∈ Cm by the definition of Cm.

Claim 7. There is an open cover (Uk)k∈ω of the space C such that Uk ⊂
Ūk ⊂ Ck−1 ∩ Uk+1 for all k ∈ ω.

Proof. If Ck0 = C for some k0 ∈ ω, then put Uk = ∅ for k < k0 and
Uk = C for k ≥ k0. If Ck 6= C for all k ∈ ω, then put Uk = {x ∈ C :
dL(x,C \ Ck−1) > 2−k} for all k ∈ ω.
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By Theorem 5.1.9 of [6] there is a partition of unity {λk : C → [0, 1]}k∈ω
subordinated to the cover {Uk+1\Ūk−1}k∈ω of C in the sense that λ−1

k (0, 1] ⊂
Uk+1 \ Ūk−1 for all k ∈ ω (here we assume that Uk = ∅ for k < 0).

Now, for every k ∈ ω define a map fk : C → C by the formula

fk(x) = f(x) +
∑
i∈ω

λi(x)zi,k = f(x) + λi(x)zi,k + (1− λi(x))zi+1,k,

where i is the unique number such that x ∈ Ui+1 \ Ui. Since fk(x)− f(x) ∈
BC ⊂ Bd(ε/2), we conclude that d(f(x), fk(x)) < ε/2 and hence

d(x, fk(x)) ≤ d(x, f(x)) + d(f(x), fk(x)) < ε/2 + ε/2 = ε

for all x ∈ C. So, each fk is ε-near and ε-homotopic to idC .

Claim 8. The family (fk(C))k∈ω is separated.

Proof. By the continuity of the operator TR : L→ c0, there is η > 0 such
that TR(BL(η)) ⊂ Bc0(δ3/20). We claim that infn6=k d(fn(C), fk(C)) ≥ η.

Fix any distinct n, k ∈ ω and x, y ∈ C. By the choice of η, the inequal-
ity d(fk(x), fn(y)) ≥ η will follow as soon as we check that ‖TR(fk(x) −
fn(y))‖ > δ3/20. The latter will follow as soon as we find m ∈ ω such that
|e∗mTR(fk(x) − fn(y))| > δ3/20. Since e∗mTR(z) = z∗m(z) for all z ∈ L, it
suffices to show that |z∗m(fk(x)− fn(y))| > δ3/20 for some m ∈ ω.

Since C =
⋃
i∈ω(Ui+1 \ Ui), there are unique i, j ∈ ω such that x ∈

Ui+1 \ Ui and y ∈ Uj+1 \ Uj . Then

fk(x) = f(x) + λi(x)zi,k + λi+1(x)zi+1,k,

fn(y) = f(y) + λj(y)zj,n + λj+1(y)zj+1,n.

Without loss of generality, ξ(i+ 1, k) < ξ(j + 1, n).
Since x, y ∈ Umax{i,j}+1 ⊂ Cmax{i,j}, we conclude that

(2.2) max{|z∗m(f(x))|, |z∗m(f(y))|} < δ3/100 for all m ≥ max{i, j}

according to the definition of Cmax{i,j}.
We shall consider five cases.
1) λj+1(y) > δ2/10. In this case, put m = mξ(j+1,n) and observe that

|z∗m(zj+1,n)| = |z∗j+1,n(zj+1,n)| ≥ δ. Since max{ξ(j, n), ξ(i + 1, k), ξ(i, k)} <
ξ(j + 1, n), we conclude that

max{|z∗m(zj,n)|, |z∗m(zi+1,k)|, |z∗m(zi,k)|} < δ3/100

by Claim 4(2). It follows from (2.2) and max{i, j} ≤ max{ξ(i, k), ξ(j, n)}
that

max{|z∗m(f(x))|, |z∗m(f(y))|} < δ3/100.
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Now we see that

|z∗m(fn(y)− fk(x))|
= |z∗m(λj+1(y)zj+1,n + λj(y)zj,n + f(y)− f(x)− λi+1(x)zi+1,k − λi(x)zi,k)|
≥ λj+1(y)|z∗m(zj+1,n)|
− |z∗m(λj(y)zj,n + f(y)− f(x)− λi(x)zi,k + λi+1(x))zi+1,k)|

>
δ2

10
δ − 5

δ3

100
≥ δ3

20
.

2) λj+1(y) ≤ δ2/10 and ξ(j, n) > ξ(i+ 1, k). In this case put m = ξ(j, n).
Arguing as in the preceding case, we can show that

max{|z∗m(f(x))|, |z∗m(f(y))|} < δ3

100
, max{z∗m(zi+1,k)|, |z∗m(zi,k)|} <

δ3

100
.

Then

|e∗m(fn(y)− fk(x))|
= |e∗m(λj(y)zj,n + λj+1(y)zj+1,n + f(y)− f(x)− λi+1(x)zi+1,k − λi(x)zi,k)|
≥ λj(y)|z∗m(zj,n)| − λj+1(y)|z∗m(zj+1,n)|
− |z∗m(f(y)− f(x)− λi(x)zi,k + λi+1(x)zi+1,k)|

≥ (1− λj+1(y))δ − δ2

10
− 4

δ3

100
≥
(

1− δ2

10

)
δ − δ2

10
− δ3

25
>
δ3

20
.

3) λj+1(y) ≤ δ2/10, ξ(j, n) < ξ(i+ 1, k), and λi+1(x) > δ/4. In this case
put m = ξ(i+ 1, k) and observe that

|z∗m(fk(x)− fn(y))| ≥ λi+1(x)|z∗m(zi+1,k)| − λj+1(y)|z∗m(zj+1,n)|
− |z∗m(f(x) + λi(x)zi,k − f(y)− λj(y)zj,n)|

>
δ

4
δ − δ2

10
− 4

δ3

100
>
δ3

20
.

4) λj+1(y) ≤ δ2/10, ξ(j, n) < ξ(i + 1, k), λi+1(x) ≤ δ/4, and ξ(i, k) <
ξ(j, n). In this case putm = mξ(j,n) and observe that λj(y) = (1−λj+1(y)) >
1− δ2/10 ≥ 9/10 and thus

|z∗m(fk(x)− fn(y))| ≥ λj(y)|z∗m(zj,n)| − λj+1(y)|z∗m(zj+1,n)|
− λi+1(x)|z∗m(zi+1,k)| − |z∗m(f(x)− f(y)− λi(x)zi,k)|

≥ 9
10
δ − δ2

10
− δ

4
− 3

δ3

100
>
δ3

20
.

5) λj+1(y) ≤ δ2/10, ξ(j, n) < ξ(i + 1, k), λi+1(x) ≤ δ/4, and ξ(i, k) >
ξ(j, n). In this case put m = mξ(i,k) and observe that λi(x) = 1− λi+1(x) ≥
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1− δ/4 ≥ 3/4. Then

|z∗m(fk(x)− fn(y))| ≥ λi(x)|z∗m(zi,k)| − λi+1(x)|z∗m(zi+1,k)|
−λj+1(y)|z∗m(zj+1,n)|− |z∗m(f(x)−f(y)−λj(y)zj,n)|

≥ 3
4
δ − δ

4
− δ2

10
− 3

δ3

100
>
δ3

20
.

3. Proof of Theorem 5. Given a non-separable convex set X in a
Fréchet space L, consider the convex cone

C = {(tx, t) : x ∈ X, t ∈ [0,∞)} ⊂ L× R
in L× R with base X × {1} which will be identified with X.

Let pr : C → R+, pr : (x, t) 7→ t, denote the projection onto the second
coordinate. Observe that the map r : C \ {0} → X, r : (x, t) 7→ x/t,
determines a retraction of C \ {0} onto X. This retraction restricted to the
set C[1/3,3] = pr−1([1/3, 3]) is a perfect map.

To prove that X has LFAP, fix an open cover U of X. For each open
set U ∈ U consider the set Ũ = {(tx, t) : x ∈ U, 1/3 < t < 3}. Then
Ũ = {pr−1(R \ [1/2, 2]), Ũ : U ∈ U} is an open cover of C.

By Lemma 2, the convex cone C has SAP, and hence LFAP by Lemma 1.
Consequently, there is a map f : C×ω → C that is Ũ-near to the projection
f0 : C × ω → C, f0 : (x, n) 7→ x, and the family (f(C × {n}))n∈ω is locally
finite in C. Let f̃ = f |X × ω and f̃0 = f0|X × ω. It follows from the choice
of the cover Ũ that f̃(X ×ω) ⊂ C[1/3,3] and the map g = r ◦ f̃ : X ×ω → X

is U-near to the projection f̃0 : X × ω → X.
Since the family (f̃(X × {n})n∈ω is locally finite in C[1/3,3] and the map

r : C[1/3,3] → X is perfect, the family (r ◦ f̃(X × {n}))n∈ω is locally finite
in X, witnessing that X has LFAP.

4. Open problems. The proof of Theorem 5 heavily exploits the ma-
chinery of Banach space theory and does not work in the non-locally convex
case. This leaves the following problem open:

Problem 1. Is each non-separable completely metrizable convex AR-
subset of a linear metric space homeomorphic to a Hilbert space?

Even a weaker problem seems to be open:

Problem 2. Is each complete linear metric AR-space homeomorphic to
a Hilbert space?

This is true in the separable case: see [4], [5].
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