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Asymptotic Fourier and Laplace transformations
for hyperfunctions

by

Michael Langenbruch (Oldenburg)

Abstract. We develop an elementary theory of Fourier and Laplace transformations
for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended
to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic
Fourier and Laplace transformations for hyperfunctions, improving the existing models.
This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy
problem in Fréchet spaces.

1. Introduction. Fourier and Laplace transformations have a wide
scope of applications in analysis and especially in the theory of partial dif-
ferential operators and convolution equations. However, the use of these
basic tools is somehow restricted by the fact that exponential bounds are
needed to apply the transformations directly. To use these methods also in
the case where no bounds are at hand, several models have been proposed to
extend the transformations to asymptotic versions keeping the main struc-
tural properties needed in applications. We will mention here only a few
models connected to the present paper. The reader is referred to the huge
literature for further information. Based on earlier work of Vignaux [33],
Lumer and Neubrander [20, 21] studied an asymptotic Laplace transfor-
mation in L1

loc([0,∞[) by considering the asymptotic behavior of the local
Laplace transforms defined by

Lj(f)(z) :=
j�

0

e−ztf(t) dt for j →∞.

Komatsu proposed a different way in a series of papers [12–14] (see Sec-
tion 6 for definitions needed below): he first extended the hyperfunction
[u] ∈ B(R) to a Laplace hyperfunction [u] ∈ Bexp

[0,∞], i.e. he chose a represent-
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ing function h ∈ [u] with exponential growth outside each cone near [0,∞[,
and then introduced his Laplace transformation LKom on Bexp

[0,∞] obtaining
the space LKomBexp

[0,∞] of germs of holomorphic functions of exponential type 0
near the half-circle S∞ := {∞eiϕ | |ϕ| < π/2} at ∞. The extension of [u]
to [u] ∈ Bexp

[0,∞] is unique only up to Bexp
∞ , i.e. up to Laplace hyperfunctions

supported at ∞. Thus Komatsu’s asymptotic Laplace transform LB,Kom is
a bijection

LB,Kom : B([0,∞[)→ LKomBexp
[0,∞[/LKomBexp

∞

where LKomBexp
∞ is a space of exponentially decreasing holomorphic germs

near S∞ (see Section 6 for the precise definitions). Instead of Laplace hy-
perfunctions, Fourier hyperfunctions (see [11]) or modified hyperfunctions
(see [28]) may be used in this procedure leading to two spaces of holo-
morphic functions of exponential type 0 on the right half-plane as Laplace
images. Bounded hyperfunctions have been considered by Kunstmann [15]
in connection with the Post–Widder inversion formula.

Accordingly, there has been some discussion on the appropriate way of
defining an asymptotic Laplace transform (see e.g. [13, Section 4], [21, Sec-
tion 2] and [15, end of Section 2]). The reader will agree that a satisfactory
theory should meet the following conditions:

(I) The model contains a wide class of generalized functions and is
based on an elementary version of the Laplace transform defined
on a space of generalized functions which has a simple topological
structure.

(II) For (generalized) functions with compact support, the Laplace
transform should coincide with the Fourier–Laplace transform.
Moreover, the Laplace transform should be compatible with con-
volution and multiplication by (a large class of) functions.

(III) The Laplace transform should be asymptotic, i.e. in applications
calculations should be needed near S∞ only.

Apparently, the above theories satisfy these requirements only partially.
In the present paper we will present a model for Fourier and Laplace trans-
formations and their asymptotic versions which is satisfactory in the above
sense. We will explain this here for the asymptotic Laplace transform which
is based on the space G([0,∞]) of exponentially decreasing hyperfunctions
of type −∞ (supported in [0,∞]), defined as follows. Let

H−∞(C \ [0,∞[) := {f ∈ H(C \ [0,∞[) | ∀k ∈ N : sup
z∈Wk

|f(z)|ek|Re z| <∞}

where
Wk := {z ∈ C | |Im z| ≤ k, dist(z, [0,∞[) > 1/k}.
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Then
G([0,∞]) := H−∞(C \ [0,∞[)/H−∞(C)

is the space of corresponding formal boundary values (H−∞(C) is defined at
the beginning of Section 2). Since g ∈ H−∞(C \ [0,∞[) is exponentially de-
creasing of any order on Wk, the Laplace transform L([g]) of [g] ∈ G([0,∞])
can be defined by the natural absolutely convergent integral

L([g])(z) :=
�

γc

e−zξg(ξ) dξ, z ∈ C,

where γc := {t± ic | t ≥ −c}∪{−c+ it | |t| ≤ c} (with clockwise orientation)
and where c > 0 is arbitrary. The Laplace transform on G([0,∞]) is intro-
duced by resorting to the elementary theory of Fourier transformation on
Schwartz’s space S(R), and it is easily seen that the Laplace transformation
is a topological isomorphism from G([0,∞]) onto the weighted space

LG[0,∞] := {f ∈ H(C) | ∀k ∈ N : sup
Re z≥−k

|f(z)|e−|z|/k <∞}

of entire functions (see Section 4). G([0,∞]) and LG[0,∞] are nuclear Fréchet
spaces.

Convolution and multiplication by entire functions of exponential type
can be defined on G([0,∞]) like for functions (see the respective definitions
before Proposition 2.7 and in Proposition 2.9), and for [f ], [g] ∈ G([0,∞])
and entire functions h of exponential type we have

(1.1) L([f ] ∗ [g]) = L([f ])L([g]) and L(h[f ]) = h(−∂)L([f ]).

Since any hyperfunction can be extended to an exponentially decreasing
hyperfunction by [18], our asymptotic Laplace transform LB is a linear bi-
jection

LB : B([0,∞[)→ LG[0,∞]/LG∞
where

LG∞ := {f ∈ H(C) | ∀k ∈ N : sup
Re z≥−k

|f(z)|e−|z|/k+k|Re z| <∞}.

The formulas (1.1) also hold for the asymptotic Laplace transform LB and
general hyperfunctions [f ], [g] ∈ B([0,∞[).

The requirement (III) seems to be impossible in our model since the
asymptotic Laplace image consists of the quotient space LG[0,∞]/LG∞ of
entire functions. However we can prove that the canonical inclusions

LG[0,∞] ⊂ LKomBexp
[0,∞[ and LG∞ ⊂ LKomBexp

∞

define a bijective linear mapping

I : LG[0,∞]/LG∞ → LKomBexp
[0,∞[/LKomBexp

∞
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such that I ◦ LB = LB,Kom. Thus, Komatsu’s and our Laplace range spaces
are canonically linearly isomorphic respecting the Laplace transforms, which
is somehow unexpected (compare also the remarks of Komatsu [13, Sec-
tion 4]). Hence also (III) is satisfied.

The paper is organized as follows: The Fourier transformation and the
asymptotic Fourier transformation are developed in Sections 2 and 3, respec-
tively. These are used to study the Laplace transform and the asymptotic
Laplace transform in Sections 4 and 5. The connection of our asymptotic
Laplace transform to Komatsu’s version is clarified in Section 6. Finally,
we will give some application of our model to existence and uniqueness of
solutions of the abstract Cauchy problem in Fréchet spaces. Here we profit
from the fact that our model space G([0,∞]) is a nuclear Fréchet space. To
illustrate these results we consider an infinite system of a first order differ-
ential equation with constant coefficients, i.e. we study the (ACP) defined
by continuous linear operators in the space ω of all sequences (i.e. by matri-
ces with finite rows; see [19], [31] and [7] for corresponding results on such
systems and references to earlier work on the (ACP) in ω).

2. Fourier transformation. In this section we will study the Fourier
transformation on the space

G(R) := H−∞(C \ R)/H−∞(C)

of exponentially decreasing hyperfunctions of type −∞. Here

H−∞(C \ R) := {f ∈ H(C \ R) | ∀k ∈ N : ‖f‖k := sup
z∈Fk

|f(z)|ek|Re z| <∞}

where Fk := {z ∈ C | 1/k ≤ |Im z| ≤ k} and

H−∞(C) := {f ∈ H(C) | ∀k ∈ N : sup
|Im z|≤k

|f(z)|ek|Re z| <∞}.

In fact, the Fourier transformation on H−∞(C \ R) is introduced by re-
sorting to the elementary theory of Fourier transformation on Schwartz’s
space S(R).

With obvious notation we have H−∞(C \ R) = H−∞(C+) ⊕ H−∞(C−)
where C± := {z ∈ C | ± Im z > 0}. It is thus convenient to study the
Fourier transform first on H−∞(C+) and on H−∞(C−) separately. Since
any function in H−∞(C±) is exponentially decreasing of any order on any
strip in C±, the Fourier transform of g ∈ H−∞(C±) can be defined by the
formula

F±(g)(z) :=
�

Im ξ=±c
e−izξg(ξ) dξ, z ∈ C,

where c > 0 is arbitrary. The integral is absolutely convergent and inde-
pendent of c for any z ∈ C by Cauchy’s theorem. The Fourier image of
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H−∞(C±) can be precisely described using the following weighted spaces of
entire functions. Let w+

j (x) := x/j if x ≥ 0 and w+
j (x) := jx if x ≤ 0, and

set w−j (x) := w+
j (−x). Define

H±0 := {f ∈ H(C) | ∀j ∈ N : |f |±j := sup
|Im z|≤j

|f(z)|e−w
±
j (Re z) <∞}.

Theorem 2.1. The Fourier transformation

F± : H−∞(C±)→ H±0
is a topological isomorphism. The inverse Fourier transform is provided by

(F±)−1(h)(z) := S(h)(z) :=
1

2π

�

Im ξ=c

eizξh(ξ) dξ for z ∈ C±, h ∈ H±0 ,

where c ∈ R is arbitrary.

Proof. We only give the proof for F+ and H−∞(C+) since F−(g)(z) =
F+(ǧ)(−z) for g ∈ H−∞(C−).

(a) For 1/j ≤ c ≤ j and for g ∈ H−∞(C+) we have

|F+(g)(x+ iy)| =
∣∣∣ �

R
e(−ix+y)(t+ic)g(t+ ic) dt

∣∣∣(2.1)

≤ 2ecx‖g‖j+1 for |y| ≤ j.
Hence F+(g) ∈ H+

0 and F+ : H−∞(C+)→ H+
0 is continuous.

(b) The integral defining S(h) is independent of c by Cauchy’s theorem.
For any c ∈ R and h ∈ H+

0 we thus get

|S(h)(x+ iy)| = 1
2π

∣∣∣ �
R
e(ix−y)(t+ic)h(t+ ic) dt

∣∣∣
≤ Cje−cx|h|j+1 if 1/j ≤ y ≤ j and |c| ≤ j.

Hence S(h) ∈ H−∞(C+) and S : H+
0 → H−∞(C+) is continuous.

(c) F+ is injective since (with c = 1)

(2.2) F+(g)(z) = ez ̂g( ·+ i)(z) for g ∈ H−∞(C+)

and since the Fourier transform is injective on S. For h ∈ H+
0 we have

e− · h ∈ S. By the Fourier inversion formula on S we thus get (with c = 0)

(2.3) S(h)(x+ i) = F−1(e− · h)(x) for x ∈ R.
Combining (2.2) and (2.3) we get F+(S(h))(τ) = h(τ) for τ ∈ R and

h ∈ H+
0 . Hence F+ ◦ S = Id on H+

0 , F+ is surjective and S = (F+)−1.

For [g] ∈ H−∞(C \ R)/H−∞(C) the natural definition of the Fourier
transform F([g]) is provided by the formula

F([g])(z) :=
�

|Im ξ|=c

e−izξg(ξ) dξ, z ∈ C,
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with clockwise orientation, where c > 0 is arbitrary. The integral is abso-
lutely convergent and independent of c for any z ∈ C. Moreover, it is well
defined on H−∞(C \ R)/H−∞(C) since�

|Im ξ|=c

e−izξh(ξ) dξ = 0 for any h ∈ H−∞(C)

by Cauchy’s theorem. By Theorem 2.1 the Fourier image of the space
H−∞(C \R)/H−∞(C) is contained in the weighted space of entire functions

FG(R) := {f ∈ H(C) | ∀k ∈ N : |f |k := sup
|Im z|≤k

|f(z)|e−|Re z|/k <∞}.

To see that F(H−∞(C \ R)/H−∞(C)) = FG(R) we notice that we have
the following canonical decomposition of FG(R):

Proposition 2.2. Let

S : H−∞(C)→ H+
0 ×H

−
0 , S(f) := (f |C+ , f |C−),

T : H+
0 ×H

−
0 → FG(R), T (f, g) := f − g.

Then the sequence

0→ H−∞(C) S→ H+
0 ×H

−
0

T→ FG(R)→ 0

is exact and splits.

Proof. S and T are continuous and ker(T ) = S(H−∞(C)). Let

(2.4) ϕ(z) :=
1√
π

z�

−∞
e−ξ

2
dξ.

Then we have for x ≤ −1 by Cauchy’s theorem

|ϕ(x+ iy)| = 1√
π

∣∣∣ x�

−∞
e−(t+iy)2 dt

∣∣∣(2.5)

≤ 1√
π
ey

2
x�

−∞
(−t)e−t2 dt =

1
2
√
π
e−x

2+y2 .

Since
	∞
−∞ e

−t2 dt =
√
π we similarly get, for x ≥ 1,

(2.6) |1− ϕ(x+ iy)| = 1√
π

∣∣∣∞�
x

e−(t+iy)2 dt
∣∣∣ ≤ 1

2
√
π
e−x

2+y2 .

Set W (h) := (hϕ, h(ϕ− 1)) for h ∈ FG(R). Then W : FG(R)→ H+
0 ×H

−
0 is

defined and continuous by (2.5) and (2.6), and clearly T ◦W is the identity
mapping on FG(R).

Combining Theorem 2.1 and Proposition 2.2 we get
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Theorem 2.3. The Fourier transformation

F : G(R)→ FG(R)

is a topological isomorphism.

Proof. The mapping M : (f, g) → (F+(f),F−(g)) defines a topological
isomorphism H−∞(C \ R) → H+

0 × H
−
0 by Theorem 2.1. Since F+ and

F− coincide on H−∞(C) with the Fourier transform which is a topological
isomorphism on H−∞(C) by [17], the claim now follows from Proposition 2.2
since F = T ◦M .

The inverse Fourier transform on FG(R) is given by (the equivalence class
of)

F−1(h)(z) :=
1

2π

�

R
eizξh(ξ)ϕ(ξ) dξ for z ∈ C+,(2.7)

F−1(h)(z) :=
1

2π

�

R
eizξh(ξ)(ϕ(ξ)− 1) dξ for z ∈ C−,(2.8)

with ϕ from (2.4).
The space B(K) := A(K)′ of hyperfunctions with support in a compact

K ⊂ R is canonically embedded in G(R) by means of the following canonical
representing functions for ν ∈ A(K)′:

(2.9) uν(z) :=
〈
ξν,

ie−(z−ξ)2

2π(z − ξ)

〉
for z ∈ C \K.

Example 2.4. Let K ⊂ R be compact and let ν ∈ A(K)′. Then

F([uν ])(z) = 〈ξν, e−izξ〉 =: ν̂(z) for z ∈ C

is the Fourier–Laplace transform of ν.

Proof. Since the Riemann sums converge uniformly for ξ near K, we
have

F([uν ])(z) =
〈
ξν,

�

|Imw|=c

ie−(w−ξ)2

2π(w − ξ)
e−izw dw

〉
= 〈ξν, e−izξ〉

by Cauchy’s integral formula since g(w) := e−(w−ξ)2−izw/(w − ξ) decreases
exponentially at ∞.

We now discuss some standard operations and their connection with the
Fourier transformation, beginning with two easy examples:

Example 2.5. Let τh(f) := f(· − h), h ∈ R, be the shift operator on
H−∞(C \ R). Then

F(τh(f))(z) = F(f)(z)e−ihz.
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Example 2.6. Let P (−i∂) :=
∑∞

k=0
ck
k! (−i∂)k where P is of exponential

type 0, i.e.

∀ε > 0 ∃Cε > 0 ∀k ∈ N0 : |ck| = |P (k)(0)| ≤ Cεεk.
Then P (−i∂) ∈ A({0})′ is a continuous operator on H−∞(C \ R) and on
H−∞(C), hence also on G(R), and for [f ] ∈ G(R) we have

F(P (−i∂)[f ])(z) = P (z)F([f ])(z) for z ∈ C.

Proof. For differential operators of finite order this is clear by partial
integration. Since the sum defining P (−i∂) converges on G(R) and since F
is continuous, this proves the claim.

More generally, we define convolution on H−∞(C \ R) by

(f ∗ g)(z) :=
�

|Im(z−w)|=c

f(w)g(z − w) dw for 0 < c < |Im z|, z ∈ C \ R

with counterclockwise orientation.

Proposition 2.7.

(a) f ∗g ∈ H−∞(C\R) if f, g ∈ H−∞(C\R). The convolution is bilinear,
continuous, commutative and associative.

(b) For f, g ∈ H−∞(C \ R) we have

(2.10) F(f ∗ g) = F(f)F(g).

(c) f ∗ g ∈ H−∞(C) if f ∈ H−∞(C \ R) and g ∈ H−∞(C).
(d) The convolution [f ] ∗ [g] := [f ∗ g] is a well defined bilinear, contin-

uous, commutative and associative operation on G(R) and

(2.11) F([f ] ∗ [g]) = F([f ])F([g]) for [f ], [g] ∈ G(R).

Proof. (a) The first claim follows by an easy estimate directly from the
definitions. The next claims follow from the corresponding results in S(R).

(b) This is proved by changing the order of integration.
(c) Since g ∈ H−∞(C) we may shift the path of integration:

(f ∗ g)(z) = (g ∗ f)(z)

=
�

|Imw|=|Im z|+c

g(w)f(z − w) dw for 0 < c, z ∈ C \ R.

The resulting integral clearly is in H−∞(C).
(d) The convolution is well defined on G(R) by (c); the rest follows from

(a) and (b).

We next discuss multiplication by functions, again starting with a simple
example:
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Example 2.8. For w ∈ C and f ∈ G(R) we have

F([eiw ·f ])(z) = F([f ])(z − w) = eiw(i∂z)F([f ])(z) for z ∈ C.

Proposition 2.9. Let h be an entire function of exponential type, i.e.

∃C,C1 > 0 ∀k ∈ N0 : |h(k)(0)| ≤ C1C
k.

The multiplication operator Mh(f) := hf is continuous on H−∞(C \R) and
on H−∞(C), hence also on G(R), and for [f ] ∈ G(R) we have

(2.12) F(h[f ])(z) = h(i∂)F([f ])(z) for z ∈ C.

Proof. The first claims are obvious. (2.12) holds for polynomials h by
differentiation with respect to the parameter z. Since the Taylor series hn
of h converges with respect to supz∈C |h(z)|e−j|z| for some j ∈ N, we have
hn[f ] → h[f ] in G(R). Since F is continuous on G(R) and since hn(i∂)g →
h(i∂)g in H(C), this proves the claim.

3. Asymptotic Fourier transformation. We will use the results of
the preceding section to define an asymptotic Fourier transform on the space

B(R) := H(C \ R)/H(C)

of hyperfunctions on R in a way similar to Komatsu’s procedure sketched
in the introduction.

The embeddings H−∞(C \R) ↪→ H(C \R) and H−∞(C) ↪→ H(C) define
the canonical (restriction) mapping

R : G(R) := H−∞(C \ R)/H−∞(C)→ H(C \ R)/H(C) =: B(R).

We have shown in [18, Cor. 2.4] that R is surjective. The kernel of R is the
space of exponentially decreasing hyperfunctions supported at {±∞}, i.e.

kerR = EH−∞(C \ R)/H−∞(C) =: G({±∞})

where EH−∞(C \ R) is the space of entire functions in H−∞(C \ R), i.e.

EH−∞(C \ R) := H−∞(C \ R) ∩H(C).

Hence we have

Theorem 3.1. The canonical (restriction) mapping defines a linear iso-
morphism

R : H−∞(C \ R)/EH−∞(C \ R)→ B(R).

The linear bijection E := R−1 is called the extension mapping.
We next show that the Fourier inversion formula (see (2.7) and (2.8))

can be simplified if bounds for the representing functions are ignored.
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Proposition 3.2. For h ∈ FG(R) let g ∈ H(C \ R) be defined by

g(z) :=
1

2π

∞�

0

eizξh(ξ) dξ for z ∈ C+,(3.1)

g(z) :=
1

2π

−∞�

0

eizξh(ξ) dξ for z ∈ C−.(3.2)

Then F−1(h)− g ∈ H(C), i.e. [F−1(h)] = [g] as hyperfunctions.

Proof. For z ∈ C \ R we get, by (2.7) and (2.8),

2πK(h)(z) := 2π(F−1(h)− g)(z)(3.3)

=
∞�

0

eizξh(ξ)(ϕ(ξ)− 1) dξ +
0�

−∞
eizξh(ξ)ϕ(ξ) dξ.

K(h) is an entire function and

(3.4) |K(h)(z)| ≤ C
∞�

0

e|Im z|t+t−t2 dt ≤ Cj if |Im z| ≤ j

by (2.6) and (2.5).

The Fourier image of G({±∞}) is easily determined. Let

H±1 := {f ∈ H(C) | ∀j ∈ N : |f |±j := sup
± Im z≤j

|f(z)|e−|Re z|/j+j|Im z| <∞}.

Proposition 3.3. The Fourier transform is a topological isomorphism

F : G({±∞})→ H−1 ⊕H
+
1 =: FG({±∞}).

Proof. (a) If f ∈ H−1 ∩H
+
1 then

∀j ∈ N0 : |f(iz)| ≤ Cje|Im z|/j−j|Re z| on C.

The Paley–Wiener theorem implies that f = 0.
(b) For f ∈ EH−∞(C \ R) we have (by Cauchy’s theorem)

F([f ])(z) =
�

γ−

e−izξf(ξ) dξ +
�

γ+

e−izξf(ξ) dξ =: F−(z) + F+(z), z ∈ C,

where γ± := ∂{z ∈ C | ±Re z > j and |Im z| < 1/j}. As in (2.1) we see that
F± ∈ H±1 .

(c) By Theorem 2.3 we know that F−1(h) ∈ G(R) if h := h+ + h− ∈
H+

1 ⊕H
−
1 ⊂ FG(R). By Proposition 3.2 we have to show that (3.1) and (3.2)

define one entire function. By Cauchy’s theorem we have, for h+ ∈ H+
1 ,

∞�

0

ei(x+iy)ξh+(ξ) dξ =
−i∞�

0

ei(x+iy)ξh+(ξ) dξ for x = 0 and y > 0,
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and the right hand side is an entire function. Similarly,
−∞�

0

ei(x+iy)ξh+(ξ) dξ =
−i∞�

0

ei(x+iy)ξh+(ξ) dξ for x = 0 and y < 0.

The argument for h− ∈ H−1 is similar. This shows the claim.

Combining Theorems 2.3 and 3.1 and Propositions 3.2 and 3.3 we get

Theorem 3.4. The asymptotic Fourier transform

FB := F ◦ E : B(R)→ FG(R)/FG({±∞})
is a linear isomorphism. For [h] ∈ FG(R)/FG({±∞}) the inverse image
F−1
B ([h]) is given by (the equivalence class of )

f(z) :=
1

2π

∞�

0

eizξh(ξ) dξ for z ∈ C+,(3.5)

f(z) :=
1

2π

−∞�

0

eizξh(ξ) dξ for z ∈ C−.(3.6)

Recall that the space B(K) of hyperfunctions with support in the com-
pact K ⊂ R coincides with the space A(K)′ of analytic functionals on K.
FB coincides on A(K)′ with the Fourier–Laplace transform:

Example 3.5. Let K ⊂ R be compact and let ν ∈ A(K)′. Then

FB(ν) = [ν̂],

i.e. FB(ν) is the equivalence class of ν̂ in FG(R)/FG({±∞}).

Proof. This follows from Example 2.4.

To define a convolution on B(R) by means of the convolution on G(R)
we need the following

Lemma 3.6. f∗g ∈ EH−∞(C\R) if f ∈H−∞(C\R) and g ∈ EH−∞(C\R).

Proof. Since g ∈ EH−∞(C \ R) we may change the original path of
integration to a path γc, c > 0, which in the strip ]−c, c[× iR consists of the
two lines {z ∈ C | |Im z| = c}:

(f ∗ g)(z) = (g ∗ f)(z) =
�

γc

g(w)f(z − w) dw for 0 < |Im z| < c, z ∈ C \ R.

The resulting integral clearly defines an entire function, hence a function in
EH−∞(C \ R) by Proposition 2.7(a).

For [u], [v] ∈ B(R) we may now define a convolution by

[u] ∗B [v] := R(E([u]) ∗ E([v])).
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Theorem 3.7.

(a) The convolution ∗B is well defined, bilinear, commutative and asso-
ciative on B(R)× B(R).

(b) For [u], [v] ∈ B(R) we have

(3.7) FB([u] ∗B [v]) = FB([u])FB([v]).

(c) [ν] ∗B [u] coincides for [u] ∈ B(R) and ν ∈ A(K)′,K ⊂ R compact,
with the usual convolution [ν] ∗ [u] of hyperfunctions.

Proof. (a)&(b) The operation ∗B is well defined by Lemma 3.6. The
remaining statements in (a)–(b) follow from Proposition 2.7.

(c) By the definition of convolution of hyperfunctions, [ν] ∗ [u] = [u] ∗ [ν]
is defined by �

z+γ

w(ξ)v(z − ξ) dξ

where w (and v) are representing functions for [u] (and [ν], respectively) and
where γ is a path around K. Hence we may choose w ∈ E([u]) and v ∈ E([ν])
and then change the path of integration to obtain [u] ∗B [ν] = [ν] ∗B [u].

Example 3.8.

(a) Let τh([u]) := [u(· −h)], h ∈ R, be the shift operator on B(R). Then

FB(τh([u]))(z) = FB([u])(z)e−ihz for [u] ∈ B(R).

(b) Let P (−i∂) :=
∑∞

k=0
ck
k! (−i∂)k where P is of exponential type 0.

Then

FB(P (−i∂)[u])(z) = P (z)FB([u])(z) for [u] ∈ B(R).

Proof. (a) This follows from Example 2.5 since R(τhE([u])) = τh[u] and
therefore E(τh[u]) = τhE([u]).

(b) This follows from Example 2.6 since R(P (−i∂)E([u])) = P (−i∂)[u]
and therefore E(P (−i∂)[u]) = P (−i∂)E([u]).

Multiplication of hyperfunctions by entire functions is naturally defined
by multiplication of the defining functions. This extends multiplication of
(ultra)distributions by entire functions. We include a short proof of this fact
because of the difficulties mentioned in [21, Section 5]:

Remark 3.9. For T ∈ D′(R) let [uT ] be the canonical representation of
T as a hyperfunction. Then

f [uT ] = [u(fT )] for f ∈ H(C).

Proof. It is well known (see [32] and also [16]) that [uT ] is uniquely
determined by the fact that uT can be extended to a distribution uT ∈ D′(C)
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such that ∂(uT ) = T⊗δy where δy is Dirac’s delta distribution (in imaginary
direction). Since

f [uT ] := [fuT ] and ∂(fuT ) = f∂(uT ) = f(T ⊗ δy) = (fT )⊗ δy
the claim is proved.

Proposition 3.10. For any entire function h of exponential type and
[u] ∈ B(R) we have

(3.8) FB(h[u])(z) = h(i∂)FB([u])(z).

Proof. This follows from Proposition 2.9 since R(hE([u])) = h[u] and
therefore E(h[u]) = hE([u]).

4. Laplace transformation. We will use the above results on the
Fourier transformation to obtain corresponding results for the Laplace trans-
formation. Recall that

H−∞(C \ [0,∞[) := {f ∈ H(C \ [0,∞[) | ∀k ∈ N : |f |k <∞}
where

|f |k := sup
z∈Wk

|f(z)|ek|Re z|, Wk := {z ∈C | |Im z| ≤ k, dist(z, [0,∞[)≥ 1/k}.

For an exponentially decreasing hyperfunction [g] supported in [0,∞], i.e.
for

[g] ∈ G([0,∞]) := H−∞(C \ [0,∞[)/H−∞(C)

the path defining F([g]) can be changed by Cauchy’s theorem so that the
Laplace transform L([g]) is defined by

(4.1) L([g])(z) := F([g])(−iz) =
�

Γc

e−zξg(ξ) dξ, z ∈ C,

with clockwise orientation where c > 0 is arbitrary and Γc := {z ∈ C |
dist(z, [0,∞[) = c}. The Laplace image of G([0,∞]) is now precisely the
space

LG[0,∞] := {f ∈ H(C) | ∀k ∈ N : |f |k := sup
Re z≥−k

|f(z)|e−|z|/k <∞}.

Theorem 4.1. The Laplace transformation

L : G([0,∞])→ LG[0,∞]

is a topological isomorphism.

Proof. By (4.1) we have, for any j ∈ N,

|L([g])(z)| ≤ C1|g|je|z|/j if Re z ≥ −j + 1,

hence L([g]) ∈ LG[0,∞] and L is continuous. L is injective on G([0,∞])
by Theorem 2.3. The inverse Laplace transform L−1(h) = F−1(h(i ·)),
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h ∈ LG[0,∞], is given by

L−1(h)(z) = K(h(i ·))(z) + g(z)

where K(h(i ·)) is the entire function given by (3.3) and where g is given
by (3.1) and (3.2), respectively (for h(i ·) instead of h). Notice that h(i ·) ∈
FG(R) if h ∈ LG[0,∞]. Hence by (3.4) we have

(4.2) |K(h(i ·))(z)| ≤ Cj if |Im z| ≤ j.
Also (by Cauchy’s theorem for Re z < −1 and Im z = 1 and using (3.1)),

(4.3) 2πg(z) =
∞�

0

eizξh(iξ) dξ =
−i∞�

0

eizξh(iξ) dξ = −i
∞�

0

ezth(t) dt.

This also holds for Re z < −1 and Im z = −1 (using (3.2)). Thus g(z) for
Re z < 0 is the holomorphic function defined by the right hand side of (4.3)
and we have

(4.4) |g(z)| ≤ Cj if Re z ≤ −1/j.

Using also (4.2) we see that L−1(h)(z) is holomorphic for Re z < 0 and

(4.5) |L−1(h)(z)| ≤ Cj if Re z ≤ −1/j and |Im z| ≤ j.
Since L(e−j ·f)(z) = L(f)(z + j) for j ∈ N by the definition of L we get
L−1(h)(z) = ejzL−1(h( · + j))(z) for h ∈ LG[0,∞], hence (4.5) and Theo-
rem 2.3 show that L−1(h) ∈ G([0,∞]) for h ∈ LG[0,∞].

Formulas for the Laplace transform of convolutions and multiplication
with entire functions of exponential type on G([0,∞]) can be easily derived
from (4.1) and Propositions 2.7 and 2.9:

L([f ] ∗ [g]) = L([f ])L([g]) for [f ], [g] ∈ G([0,∞]),(4.6)
L(h[f ]) = h(−∂)L([f ]) for [f ] ∈ G([0,∞])(4.7)

if h is an entire function of exponential type.

5. Asymptotic Laplace transformation. The asymptotic Laplace
transform on

B([0,∞[) := H(C \ [0,∞[)/H(C)

is defined similarly to the asymptotic Fourier transform in Section 3: Let

EH−∞(C \ [0,∞[) := H(C) ∩H−∞(C \ [0,∞[).

Then we get, as in Section 3 using [18, Cor. 4.2],

Theorem 5.1. The canonical (restriction) mapping defines a linear iso-
morphism

R+ : H−∞(C \ [0,∞[)/EH−∞(C \ [0,∞[)→ B([0,∞[).
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The inverse of R+ is denoted by E+ to emphasize the fact that we are
considering supports in [0,∞] in this section. The Laplace image of

G({∞}) := EH−∞(C \ [0,∞[)/H−∞(C)

is precisely

LG∞ := {f ∈ H(C) | ∀k ∈ N : sup
Re z≥−k

|f(z)|ek|Re z|−|z|/k <∞}.

Proposition 5.2. The Laplace transform is a topological isomorphism

L : G({∞})→ LG∞.

Proof. For [f ] ∈ G({∞}) we have, by Cauchy’s theorem,

L([f ])(z) =
�

γj

e−zξf(ξ) dξ, z ∈ C,

where γj := {z ∈ C | dist(z, [j,∞[) = 1/j}. This shows that L([f ]) ∈ LG∞
and that L : G({∞}) → LG∞ is continuous. It is injective by Theorem 4.1.
For h ∈ LG∞ we have L−1(h) ∈ G([0,∞]) by Theorem 4.1 and L−1(h) =
F−1(h(i ·)) ∈ H(C) by Proposition 3.3 since h( ·) ∈ H−1 .

The asymptotic Laplace transform LB is now naturally defined by

LB := L ◦ E+ : B([0,∞[)→ LG[0,∞]/LG∞.
When transferring the results on Fourier and Laplace transformations to the
asymptotic Laplace transformation we repeatedly use the formula

(5.1) LB([u])(z) = [F(E+([u]))(−iz)] for [u] ∈ B([0,∞[).

Theorem 5.3. The asymptotic Laplace transform is a linear isomor-
phism

LB : B([0,∞[)→ LG[0,∞]/LG∞.

The inverse L−1
B ([h]) is given by (the equivalence class of )

f(z) :=
1

2πi

i∞�

0

ezξh(ξ) dξ for z ∈ C+,(5.2)

f(z) :=
1

2πi

−i∞�

0

ezξh(ξ) dξ for z ∈ C−.(5.3)

Proof. This follows from (5.1) and Proposition 3.2.

The reader should also recall formula (4.3) for L−1
B ([h])(z) for Re z < 0.

Since the sheaf of hyperfunctions is flabby, for any [u] ∈ B([0,∞[) and
any j ∈ N we can find νj ∈ A([0, j])′ such that

(5.4) [u]|]−∞,j[ = [uj ]|]−∞,j[, i.e. [u]− [uj ] ∈ B([j,∞[),
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where uj := uνj is the canonical representation of νj in G([0,∞]) defined
by (2.9). As the notation indicates, the asymptotic Laplace transform
LB([u]) can be viewed as a representation of the asymptotic behavior of
the Fourier–Laplace transforms

ν̃j(z) := 〈ξνj , e−zξ〉
of the local parts νj of [u]. In the proof we need the trivial fact that by the
definition of L,

(5.5) LB(τj([u])) = e−j ·LB([u]) for [u] ∈ B([0,∞[)

where τj([u]) := [u( · − j)], j ≥ 0, is the shift operator from B([0,∞[) onto
B([j,∞[), i.e.

(5.6) LB(B([j,∞[)) = (e−j ·LG[0,∞])/LG∞.
Lemma 5.4.

(a) For [u] ∈ B([0,∞[) and νj ∈ A([0, j])′ as above let h ∈ LB([u]). Then
for any l ∈ N,

(5.7) |h(z)− ν̃j(z)| ≤ Cje|z|/l−j|Re z| if Re z ≥ −l.
(b) Conversely, if h is an entire function satisfying (5.7) for any j ∈ N

then h ∈ LB([u]).

Proof. (a) By (5.6) and Example 2.4 we have

ej ·[h− ν̃j ] = ej ·(LB([u])− LB([uj ])) = ej ·LB([u− uj ]) ∈ LG[0,∞]/LG∞.
This shows (5.7).

(b) To prove the converse statement, it is clear that h ∈ LG[0,∞] and
[h− ν̃j ] ∈ LB(B([j,∞[)) by (5.7) and (5.6) since ν̃j ∈ LG[0,∞]. We thus get,
for any j ∈ N,

L−1
B ([h])− [u] = [(L−1

B ([h])− [uj ])− ([u]− [uj ])] ∈ B([j,∞[)

using Example 2.4 again. Hence L−1
B ([h]) = [u].

As in Lemma 5.4, we will now show that convolution on B([0,∞[) per-
fectly fits the asymptotic Laplace transformation. Recall that the convolu-
tion [u] ∗ [v] for [u], [v] ∈ B([0,∞[) is defined by

(5.8) ([u] ∗ [v])|]−∞,j[ := ([uj ] ∗ [v])|]−∞,j[
where [uj ] ∈ A([0, j])′ is chosen by (5.4). Notice that

(5.9) [u− uj ] ∗ [v] ∈ B([j,∞[)

by (5.8). The convolution is a bilinear commutative and associative opera-
tion on B([0,∞[).

Theorem 5.5. For [u], [v] ∈ B([0,∞[) we have

(5.10) LB([u] ∗ [v]) = LB([u])LB([v]).
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Proof. The right hand side of (5.10) is well defined since LG∞ is a two-
sided ideal in LG[0,∞]. By Theorem 3.7 we get, for any j ∈ N,

LB([u] ∗ [v])− LB([u])LB([v])

= LB([u− uj ] ∗ [v]) + (LB([uj ])− LB([u]))LB([v])
= LB([u− uj ] ∗ [v]) + LB([uj − u])LB([v]).

The right hand side is in LB(B([j,∞[)) = (e−j ·LG[0,∞])/LG∞ by (5.6) and
(5.9) and since LB(B([j,∞[)) is an ideal in LG[0,∞]/LG∞. Thus, an estimate
like (5.7) holds for any j and therefore LB([u] ∗ [v]) = LB([u])LB([v]).

Example 5.6. Let P (∂) :=
∑∞

k=0
ck
k! ∂

k where P is of exponential type
0. Then

LB(P (∂)[u])(z) = P (z)LB([u])(z), z ∈ C, for [u] ∈ B([0,∞[).

From (4.7) we directly get, for [u] ∈ B([0,∞[),

(5.11) LB(h[u]) = h(−∂)LB([u])

if h is an entire function of exponential type.

6. Komatsu’s asymptotic Laplace transform. We will now discuss
the connection of our asymptotic Laplace transform LB with the asymptotic
Laplace transform LKom defined by Komatsu in [14, 13], mentioned in the
introduction. We briefly recall the relevant notation. For 0 < ϕ < π/2 and
r ≥ 0 let

Γr,ϕ := {ρeiψ | ρ ≥ r, |ψ| ≤ ϕ}.
Let U ⊂ C be a postsectorial open set (see [20, 21]), i.e.

∀0 < ϕ < π/2 ∃r > 0 : Γr,ϕ ⊂ U.
Define

LG[0,∞](U) := {f ∈ H(U) | ∀j ∈ N : sup
z∈Γr,ϕ

|f(z)|e−|z|/j <∞ if Γr,ϕ ⊂ U},

LG∞(U) := {f ∈H(U) | ∀j ∈N : sup
z∈Γr,ϕ

|f(z)|e−|z|/j+j|Re z|<∞ if Γr,ϕ⊂ U}.

Set

LKomBexp
[0,∞[ := ind

U
LG[0,∞](U) and LKomBexp

∞ := ind
U

LG∞(U)

where the inductive limit runs over all postsectorial open sets. Then (cf. also
[21, Lemma 1.2])

(6.1) LKom : B([0,∞[)→ LKomBexp
[0,∞[/LKomBexp

∞ is a linear bijection,

in other words, Komatsu’s Laplace transform consists of equivalence classes
of holomorphic functions defined near S∞ := {∞eiϕ | |ϕ| < π/2} and satis-
fying the growth conditions from LG[0,∞] (and LG∞, respectively) only there.



58 M. Langenbruch

Therefore,

(6.2) LG[0,∞] ⊂ LKomBexp
[0,∞[ and LG∞ ⊂ LKomBexp

∞

canonically. Surprisingly enough we can prove much more (see Theorem 6.3
below). The proof is based on the solution of the ∂-problem in the following
L2-variant of LG∞. Let Vn := {z ∈ C | Re z > −n} and

L2(LG∞):=
{
f ∈L2

loc(C)
∣∣∣ ∀n∈N : |f |2n :=

�

Vn

|f(z)|2e−2|z|/n+2n|Re z| dz<∞
}
.

Lemma 6.1. For any f ∈ L2(LG∞) with supp f ⊂ V0 there is g ∈
L2(LG∞) such that ∂g = f .

Proof. (a) Fix j ∈ N. By [9, Theorem 4.4.2] there is gn ∈ L2
loc(C) such

that ∂gn(z) = f(z)ejz and
�

C
|gn(z)|2e−2|z|/n(1 + |z|2)−2 dz ≤

�

C
|f(z)|2e−2|z|/n+2j Re z dz

=
�

V0

|f(z)|2e−2|z|/n+2j|Re z| dz <∞

since supp f ⊂ V0 and f ∈ L2(LG∞). Since the (Taylor) polynomials are
contained in {h ∈ H(C) | ∀n ∈ N : supz∈C |h(z)|e−|z|/n < ∞} and dense in
{f ∈ H(C) | supz∈C |h(z)|e−|z|/n < ∞} for any n and since passing to sup-
norms is allowed by the mean value property, the Mittag-Leffler procedure
provides g ∈ L2

loc(C) such that

∂g(z) = f(z)ejz and
�

C
|g(z)|2e−2|z|/n dz <∞ for any n.

Hence, Gj := ge−jz satisfies ∂Gj = f on C and Gj −Gj−1 ∈ Hj−1 where

Hj :=
{
h ∈ H(C)

∣∣∣ ∀n ∈ N :
�

Vn

|h(z)|2e−2|z|/n+2j|Re z| dz <∞
}
.

(b) LG∞ is dense in Hj with respect to | |j . To prove this we may again
pass from L2-norms to sup-norms. Choose g ∈ LG∞ such that g(0) = 1. The
existence of g follows e.g. from [24, Example 3] where a Fourier hyperfunction
G 6= 0 with support at ∞ is constructed. Then 0 6= G̃(z) := G(z)e−z

2 ∈
G({∞}) and hence 0 6= L(G̃) ∈ LG∞. We may thus set g := L(G̃) (modulo a
real shift). Let f ∈ Hj and set fk(z) := f(z)g(z/k). Then fk ∈ LG∞ by the
definition of Hj and LG∞, and fk → f uniformly on compact sets. Since for
k ≥ 4j and Re z > −j,

|fk(z)− f(z)| = |f(z)| |1− g(z/k)|
≤ C1e

|z|/(4j)−j|Re z|+|z|/k ≤ C2e
|z|/(2j)−j|Re z|
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we have |f(z) − fk(z)|e−|z|/j+j|Re z| < ε outside a compact set for these k.
Thus fk → f with respect to | |j .

(c) Notice that LG∞ = L2(LG∞) ∩ ker ∂ by passing from sup-norms to
L2-norms in the definition of LG∞. By (b) and the Mittag-Leffler argument
applied to the solutions Gj and the seminorms | |j , the claim is proved.

Corollary 6.2. Let U be a postsectorial open set. Then the mapping

T : LG[0,∞] × LG∞(U)→ LG[0,∞](U), (f, g)→ f + g,

is surjective.

Proof. (a) Let U be a postsectorial open set and f ∈ LG[0,∞](U). Then
there are rj , Cj > 0 such that

|f(z)| ≤ Cje|z|/(j+1) ≤ e|z|/j if z ∈ Γj := Γrj ,π/2−1/j .

Let Γ :=
⋃
j∈N Γj and choose ϕ ∈ C∞(C) such that suppϕ ⊂ int(Γ ),

ϕ(z) = 1 if z ∈ Γ and dist(z, ∂Γ ) ≥ 1/2 and such that ‖ϕ‖∞+‖∇ϕ‖∞ <∞.
Notice that supp ∂(fϕ) ⊂ Γ ⊂ V0 and ∂(fϕ) ∈ L2(LG∞) since for any n
there is Cn such that

(6.3) nRe z ≤ Cn + |z|/n if dist(z, ∂Γ ) ≤ 1.

By Lemma 6.1 there is g ∈ L2(LG∞) such that ∂g = ∂(fϕ). Hence, G :=
fϕ−F ∈ LG[0,∞] and f − g = f(1−ϕ) + g ∈ LG∞(U) since (6.3) also holds
on Γr,ϕ \ Γ for any r ≥ 0 and any 0 < ϕ < π/2.

Theorem 6.3. The inclusions (6.2) define a bijective linear mapping

I : LG[0,∞]/LG∞ → LKomBexp
[0,∞[/LKomBexp

∞

such that I ◦ LB = LKom.

Proof. (a) I is well defined by (6.2). Let f ∈ LG[0,∞] be such that f |U ∈
LG∞(U) for some postsectorial open set U . For j ∈ N choose 0 < ϕ0 < π/2
such that cos(ϕ0) ≤ 1/(2j2). For z /∈ Γr0,ϕ0 and Re z > 0 we then have

j Re z ≤ C0 + j cos(ϕ0)|z| ≤ C0 + |z|/(2j)

and therefore, since f ∈ LG[0,∞],

|f(z)| ≤ Cje|z|/(2j) ≤ C̃je|z|/j−j Re z if Re z > 0 and z /∈ Γr0,ϕ0 .

Since U is postsectorial and hence Γr0,ϕ0 ⊂ U for some r0 this shows that
f ∈ LG∞. Thus I is injective. It is surjective by Theorem 6.2.

(b) We now prove that I ◦ LB = LKom. Let [u] ∈ B([0,∞[) and let
LKom([u]) be defined on the postsectorial open set U . Since Komatsu’s
Laplace transform LKom also satisfies (5.7) on Γr0,ϕ0 ⊂ U , by Lemma 5.4(a)
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we get

|I ◦ LB([u])(z)− LKom([u])(z)|
= |(I ◦ LB([u])(z)− ν̃j(z))− (LKom([u])(z)− ν̃j(z))|
≤ Cje|z|/j−j|Re z| on Γr0,ϕ0 ⊂ U,

that is, I ◦ LB(u)− LKom(u) ∈ LKomBexp
∞ .

The surjectivity of I also follows from the results of Komatsu (i.e. from
(6.1)) and the equality I ◦ LB = LKom.

We have in fact proved in Theorem 6.3 that the mappings

LG[0,∞]/LG∞ → LG[0,∞](U)/LG∞(U)→ LG[0,∞](V )/LG∞(V )

are both linear bijections if V ⊂ U are postsectorial open sets.
As mentioned in the introduction, Lumer and Neubrander (see [20]) in-

troduced an asymptotic Laplace transform on L1
loc([0,∞[) and a modified

version LLN (see [21]) and clarified the connection with Komatsu’s Laplace
transform LKom, namely

LKom(f) ⊂ LLN(f) if f ∈ L1
loc([0,∞[).

We therefore get, from Theorem 6.3,

Corollary 6.4. For f ∈ L1
loc([0,∞[) we have LB(f) ⊂ LLN(f).

7. Abstract Cauchy problem in Fréchet spaces. In this section
our elementary theory of asymptotic Laplace transform on B([0,∞[) will be
applied to the abstract Cauchy problem (ACP) for hyperfunctions with val-
ues in Fréchet spaces. This application is based on tensor product methods
and the fact that the spaces used in our model for the (asymptotic) Laplace
transformation are nuclear Fréchet spaces.

In the following, F will always denote a Fréchet space. The space of F -
valued holomorphic functions on an open set U ⊂ C is denoted by H(U,F ).
The space of F -valued hyperfunctions on [0,∞[ is by definition

B([0,∞[, F ) := H(C \ [0,∞[, F )/H(C, F ).

Let

(7.1) x′(t) = Cx(t), x(0) = x0, x0 ∈ E,

be an abstract Cauchy problem (ACP), where E is a Fréchet space and

C : F := D(C) ⊆ E → E

is a closed operator with domain F := D(C). Then F is a Fréchet space
when equipped with the graph topology and C : F → E is continuous.
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An F -valued hyperfunction [u] ∈ B([0,∞[, F ) is called a solution of (7.1)
(in the sense of hyperfunctions) if

(7.2)
d

dt
[u]− C[u] = x0 ⊗ δ0

where δ0 is Dirac’s δ-distribution considered as a hyperfunction.
The (ACP) (7.1) is said to have the uniqueness property (in the sense of

hyperfunctions) if [u] ≡ 0 is the only solution of (7.2) for x0 = 0. To charac-
terize the uniqueness property using the asymptotic Laplace transform we
need vector valued versions of our model spaces. These consist of F -valued
holomorphic functions f such that ‖f‖n satisfies the bounds corresponding
to the scalar spaces for any n ∈ N where (‖ ‖k)k∈N is a system of seminorms
defining the topology of F . In this way,

G([0,∞], F ) := H−∞(C \ [0,∞[, F )/H−∞(C, F ).

Using the π-tensor product and the fact that G([0,∞]) and G({∞}) are
nuclear Fréchet spaces we have shown in [18, Cor. 5.2] that for any Fréchet
space F ,

R+ : G([0,∞], F )/G({∞}, F )→ B([0,∞[, F ) is a bijection

with inverse E+. Also, G([0,∞], F ) = G([0,∞]) ⊗̂π F and G({∞}, F ) =
G({∞}) ⊗̂π F and therefore

LB : G([0,∞], F )→ LG[0,∞](F ) and LB : G({∞}, F )→ LG∞(F )

are topological isomorphisms by Theorem 4.1 and Proposition 5.2. For any
Fréchet space F we thus get a linear isomorphism

(7.3) LB := L ◦ E+ : B([0,∞[, F )→ LG[0,∞](F )/LG∞(F ).

Theorem 7.1. For E, F and C as above the following are equivalent:

(a) The (ACP) (7.1) has the uniqueness property (in the sense of hyper-
functions).

(b) If h ∈ LG[0,∞](F ) and (z − C)h ∈ LG∞(E) then h ∈ LG∞(F ).
(c) If h ∈ LG[0,∞](F ) and (z − C)h ∈ LG∞(E) then {h(t)ent | t ≥ 0} is

weakly bounded in F for any n ∈ N.

Proof. (a)⇒(b). By (7.3) there is [u] ∈ B([0,∞[, F ) such that [h] =
LB([u]) ∈ LG[0,∞](F )/LG∞(F ). By assumption and Example 5.6 we have

LB

(
d

dt
[u]− C[u]

)
= (z − C)LB([u]) = (z − C)[h] = 0,

hence [u] = 0 by (a) and (7.3), and therefore [h] = 0, i.e. h ∈ LG∞(F ).
(b)⇒(c). By the definition of LG∞(F ).
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(c)⇒(a). Let [u] ∈ B([0,∞[, F ) and d
dt [u]−C[u] = 0. Then [h] := LB([u])

satisfies

0 = LB

(
d

dt
[u]− C[u]

)
= (z − C)[h],

hence (z − C)h ∈ LG∞(E). By (c), y ◦ h is exponentially decreasing of
any order on [0,∞[ for any y ∈ F ′. Since y ◦ h ∈ LG[0,∞] this implies that
y◦h ∈ LG∞ for any y ∈ F ′ by the Phragmén–Lindelöf theorem, and therefore
h ∈ LG∞(F ) since LG∞ is nuclear. Thus [u] = 0 by (7.3) again.

From Theorem 7.1 we can deduce an extension of Lyubich’s uniqueness
theorem (see [22]) to Fréchet spaces (see Theorem 7.2 below). For this we
need an appropriate notion of an asymptotic left resolvent for operators in
Fréchet spaces (cf. [1] and [4] for general notions of resolvents in locally
convex spaces). Let Fn := (F/ker ‖ ‖n)˜ denote the canonical local Banach
space for ‖ ‖n and let κFn : F → Fn be the corresponding spectral mapping.
A sequence of operators (Rn(t, C))n∈N ∈ (L(E,Fn))n∈N is an asymptotic left
resolvent on a decreasing sequence of sets Σn ⊂ C if

(7.4) Rn(t, C)(t− C) = κFn + Sn(t) for t ∈ Σn
where

(7.5) ∀n ∈ N ∃m ∈ N : ‖Sn(t)‖L(Em,Fn) ≤ Cne|t|/n−n|Re t| on Σn.

Theorem 7.2. Let E, F and C be as above. The (ACP) (7.1) has the
uniqueness property (in the sense of hyperfunctions) if there is an asymptotic
left resolvent (Rn(t, C))n∈N for Σn := [tn,∞[ such that

(7.6) ∀n ∈ N ∃k ∈ N : ‖Rn(t, C)‖L(Ek,Fn) ≤ Cnekt if t ≥ tn.

Proof. We use the criterion from Theorem 7.1(c). Let h ∈ LG[0,∞](F )
and (z − C)h ∈ LG∞(E). We then have, for any n and t ≥ tn,

‖κFn (h(t))‖n ≤ ‖Rn(t, C)(t− C)h(t)‖n + ‖Sn(t)(h(t))‖n ≤ C̃ne−(n−1)t

by (7.4)—(7.6). Hence {h(t)ent | t ≥ 0} is bounded in F for any n ∈ N.

We can also formulate a sufficient criterion for the uniqueness property
by means of an asymptotic existence assumption for the dual operator:

Theorem 7.3. Let E, F and C be as above. The (ACP) (7.1) has the
uniqueness property (in the sense of hyperfunctions) if for any y ∈ F ′

and any n ∈ N there is ty,n ≥ 0 such that for any t ≥ ty,n there are
yn(t), sy,n(t) ∈ F ′, k ∈ N and C1 > 0 such that for t ≥ ty,n,

(t− tC)yn(t) = y + sy,n(t), |〈yn(t), x〉| ≤ C1‖x‖kekt,
|〈sy,n(t), x〉| ≤ C1‖x‖ke−nt.
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Proof. Let h ∈ LG[0,∞](F ) and v := (z−C)h ∈ LG∞(E). By assumption
we have, for any y ∈ F ′,
〈y, h(t)〉 = 〈(t− tC)yn(t), h(t)〉−〈sy,n(t), h(t)〉 = 〈yn(t), v(t)〉−〈sy,n(t), h(t)〉
for large t. Using the known estimates for yn(t), sy,n(t), h(t) and v(t) for
large t we conclude that {h(t)ent | t ≥ 0} is weakly bounded in F for any
n ∈ N and use Theorem 7.1.

As an illustration of the above results we will briefly discuss the unique-
ness of the solutions of the (ACP) for continuous linear operators C in the
space F := E := ω := CN of all sequences endowed with the canonical prod-
uct topology (see [19], [31] and [7] and the references there for earlier work
on the (ACP) in this space). Any C ∈ L(ω) is given by an infinite, matrix
A := (aij)i,j∈N with finite rows, i.e. for any j ∈ N,

(7.7) lj := l((ajs)s∈N) := max{s ∈ N | ajs 6= 0} <∞
(here lj(v) := 0 if v = 0).

In the following we will not distinguish between the operator C ∈ L(ω)
and the corresponding matrix A. We will also consider the (ACP) in the
classical sense, that is, the problem

(7.8) x′(t) = Ax(t), t > 0, x(0) = x0, x0 ∈ ω,
where x ∈ C1([0,∞[, ω).

Theorem 7.4. Let C ∈ L(ω) be given by the infinite matrix A. The
following are equivalent:

(a) The (ACP) (7.1) has the uniqueness property (in the sense of hyper-
functions).

(b) The (ACP) (7.8) has the uniqueness property (in the classical sense).
(c) For any n ∈ N,

(7.9) sup
k∈N

ln(Ak) <∞.

Proof. (c)⇒(a). We use the criterion of Theorem 7.3(c). Since F ′ = E′

= ω′ is the space ϕ of finite sequences, the condition must be shown only for
the canonical unit vectors ej =: y. By (7.9) we know that G := span{ tAkej |
k ∈ N} is finite-dimensional. Since G is tA-invariant, any operator norm
‖ tA‖ is finite, hence the Neumann series

Y (t) :=
∞∑
l=0

tAlejt
−l−1

exists in G ⊂ ϕ for t ≥ tj . Clearly,

|〈Y (t), x〉| ≤ C1‖x‖l0 and (t− tA)Y (t) = ej for t ≥ tj
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where l0 := maxv∈G l(v). Hence the criterion in 7.3(c) is satisfied for yn := Y
and sej ,n := 0.

(a)⇒(b). Let x ∈ C1([0,∞[, ω) be a solution of (7.8) for x0 := 0. Then
x defines a hyperfunction [u] ∈ B([0,∞[) (e.g. by [2]) which is a solution
of (7.2) for x0 := 0, hence [u] = 0 by assumption and thus x ≡ 0 on [0,∞[.

(b)⇒(c). Let x ∈ C1(R, ω) be a solution of

(7.10) x′(t) = Ax(t), t ∈ R, x(0) = x0, x0 ∈ ω,

for x0 := 0. Then x|[0,∞[ solves (7.8) for x0 = 0, hence x(t) = 0 for t ≥ 0.
(7.10) is solvable for any x0 ∈ ω by [31, Theorem 2.3] (see also Theorem 7.8)
and we have just shown that the solution is unique on [0, 1]. The proof of
[19, Satz 3 (b)⇒(d)] now implies that [19, Satz 3(d)] holds, hence the spec-
trum of A (in the sense used in [19]) is at most countable by [19, Satz 3].
This implies (7.9) by the remarks before [19, Satz 3].

We now discuss the existence of solutions of the (ACP) (7.1). For this
we will have to solve the equation (λ − C)S(λ) = x0 only approximately
near the half-circle S∞ at ∞, and moreover the approximate solution is
needed only in the local Banach spaces Fn of F . To present the precise
formulation and its proof in Theorem 7.6 below, we will use the Laplace
transform of F -valued Laplace hyperfunctions developed in [3]. We briefly
recall the corresponding notation and results from [3]. Let

H := ind
K

(proj
k
HK,k) := ind

K
HK

where

HK,k := {f ∈ H(ΩK) : ‖f‖K,k := sup
z∈ΩK

|f(z)| exp(kRe z) <∞}

and

ΩK :=
{
z ∈ C : |Im z| < Re z

K
+

1
K2

}
.

Then an F -valued Laplace hyperfunction is a continuous linear operator T :
H → F . The Laplace transform L(T ) is not a single holomorphic function,
but a spectral-valued holomorphic function introduced in [3] as follows: let
F := projn Fn with spectral mappings κFn : F → Fn as above and let
κmn : Fm → Fn for m ≥ n be the corresponding linking maps.

Let G := (Gm)m∈N be a decreasing family of non-void domains in C and
let F := (Fn)n∈N. A family S = (Sm)m∈N is called a spectral-valued (or
F-valued) holomorphic function (denoted by S : G → F) if

(i) Sm : Gm → Fm is holomorphic;
(ii) (compatibility) ∀m ≥ n : κmn ◦ Sm = Sn|Gm .
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Finally, we need the space Hexp(F) which is the set of all holomorphic
F-valued maps S : G → F where G consists of postsectorial sets and

∀m,K ∈ N ∀|ϕ| < π/2 : sup
λ∈Γr,ϕ

‖Sm(T )(λ)‖me−Reλ/K <∞ if Γr,ϕ ⊂ Gm.

Notice that Hexp(F) is considered rather as a set of germs near S∞ and thus
is a vector space canonically.

In the case of Fréchet spaces the main result of [3] is the following (see
[3, Theorem 2.4 and Corollary 3.5]):

Theorem 7.5. The Laplace transform L : L(H,F ) → Hexp(F) is a
linear bijection such that L

(
d
dtT
)

= λL(T ).

By continuity of C : F → E, for any m ∈ N there is k ∈ N such that C
defines a continuous linear mapping Ckm : Fk → Em.

A general criterion for the solvability of the (ACP) (7.1) in Fréchet spaces
is the following

Theorem 7.6. Let E, F and C be as above. For x0 ∈ E the following
are equivalent:

(a) The (ACP) (7.1) has a solution (in the sense of hyperfunctions).
(b) There is a spectral-valued holomorphic function S := (Sm)m∈N ∈

Hexp(F) such that for any m ∈ N there is k ∈ N such that

(7.11) (λ− Ckm)Sk(λ) = κEm(x0) + sm(λ) on Gk

where for any j ∈ N and any |ϕ| < π/2 with Γr,ϕ ⊂ Gk there is
C1 > 0 such that

(7.12) ‖sm(λ)‖m ≤ C1e
−j Reλ+|Imλ|/j on Γr,ϕ.

Proof. (a)⇒(b). Let [u] ∈ B([0,∞[, F ) be a solution of (7.2) and [h] :=
LB([u]) ∈ LG[0,∞](F )/LG∞(F ). Then (λ − C)[h] = LB(x0 ⊗ δ0) coincides
with the constant function [x0] in the sense of LG[0,∞](F )/LG∞(F ). Hence
(b) is satisfied for Gm := C and Sm := κm(h).

(b)⇒(a). By Theorem 7.5 there is T ∈ L(H,F ) such that S = L(T ).
By (7.12) and Theorem 7.5 again, there is T̃ ∈ L(H,F ) such that s :=
(sm)m∈N = L(T̃ ) and

(7.13)
(
d

dt
− C

)
T = x0 ⊗ δ0 + T̃ .

To translate this equation from Laplace hyperfunctions to hyperfunctions,
i.e. to general boundary values ignoring growth conditions, we use the func-
tions fλ(t) := −1

2πie
(t−λ)2/(t− λ) for λ /∈ [0,∞[. Since fλ ∈ H the function

uT : C \ [0,∞[→ F, uT (λ) := 〈T, fλ〉,
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is defined. Since the difference quotients with respect to λ converge in H,
uT is holomorphic and

d

dλ
uT (λ) =

〈
T,

d

dλ
fλ

〉
=
〈
T,− d

dt
fλ

〉
=
〈
d

dt
T, fλ

〉
.

By (7.13) and Theorem 7.5 this implies that

(λ− C)uT (λ) = −x0 ⊗ f0(λ) + ueT (λ).

Since −f0 represents Dirac’s δ-distribution we only need to show that ueT is
an entire function. This follows by an argument similar to that in (5.5) and
(5.6): For j ∈ N and T ∈ L(H,F ) let 〈τ−jT, f〉 := 〈T, f( ·+ j)〉. Then

(7.14) L(τ−jT ) = e−j ·L(T )

by the definition of L(T ) in [3]. By (7.12) we know that ej ·s ∈ Hexp(F),
hence there is Tj ∈L(H,F ) such that L(T ) = ej ·s and therefore L(τ−jTj) = s

by (7.14) and finally τ−jTj = T̃ by Theorem 7.5 since L(T̃ ) = s. Hence, for
any j ∈ N,

ueT (λ) = 〈τ−jTj , fλ〉 = 〈Tj , fλ( · + j)〉 = 〈Tj , fλ−j〉
is holomorphic for λ /∈ [j,∞[ since Tj ∈ L(H,F ). The theorem is proved.

As before we can formulate a criterion for the general solvability of the
(ACP) (7.1) using a suitable notion of asymptotic right resolvent. Here
a spectral-valued holomorphic operator function R := (Rm)m∈N : G :=
(Gm)m∈N → L(E,F ) := (L(E,Fm)m∈N is called an asymptotic right resol-
vent if R ∈ Hexp(L(E,F )) and if there is a spectral, valued holomorphic
function T := (Tm)m∈N : G̃ := (G̃m)m∈N → L(E) := (L(E,Em))m∈N such
that for any m ∈ N there is k ∈ N such that

(7.15) (λ− Ckm)Rk(λ) = κEm + Tm(λ) on Gk

where for any j ∈ N and any |ϕ| < π/2 with Γr,ϕ ⊂ Gk,

(7.16) ‖Tm(λ)‖L(Ek,Em) ≤ C1e
−j Reλ+|Imλ|/j on Γr,ϕ.

Theorem 7.7. Let E, F and C be as above. Then the (ACP) (7.1) has
a solution (in the sense of hyperfunctions) for any x0 ∈ E if C admits an
asymptotic right resolvent.

Proof. For x0 ∈ E set Sk(λ) := Rk(λ)x0 and apply Theorem 7.6.

We again discuss the (ACP) for continuous linear operators C in the
space ω as an example, using Theorem 7.6 for a new short proof (see [31]
for the (ACP) of the inhomogeneous equation x′(t) = Cx(t) + f(t)).

Theorem 7.8. For any α ∈ ω the (ACP)

(7.17) x′(t) = Ax(t), t > 0, x(0) = α,

has a classical solution x ∈ C1(R, ω).
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Proof. For α ∈ ω let ϕα ∈ C∞0 (R) be a solution of the Borel problem
ϕ

(j)
α (0) = αj for j ∈ N0. Set ϕ̃α := (ϕα, ϕ′α, . . . ). Then the Laplace transform

fα(λ) :=
	∞
0 e−λtϕ̃α(t) dt is an entire ω-valued function satisfying

(7.18) (λ− L)(fα(λ)) = α,

(7.19) ∀E ∈ FS(ϕ) ∃CE > 0 ∀y ∈ E :
|〈y, fα(λ)〉| ≤ CE‖y‖2/|λ| if Reλ > 0

where L is the left shift and FS(ϕ) is the set of finite-dimensional subspaces
of ϕ . We will construct an ω-valued holomorphic function g, i.e. g = (gk)k∈N
such that for any k, gk(λ) is holomorphic for Reλ > Bk and

(7.20) ∀y ∈ ϕ : 〈y, (λ−A)g(λ)〉 = 〈y, α〉 if Reλ > By,

(7.21) ∀E ∈ FS(ϕ) ∃CE , BE > 0 ∀y ∈ E :
|〈y, g(λ)〉| ≤ CE‖y‖2/|λ| if Reλ > BE .

Then the inverse Laplace transform x = (xk)k of g is a solution of the (ACP)
(7.17) by Theorem 7.6 and xk is a C1-function for each k.

g is constructed inductively. Let E1 := span{wk := ( tA)k−1e1 | k ∈ N};
it is an tA-invariant subspace of ϕ. If dimE1 <∞, we set

〈w, g(λ)〉 :=
〈 ∞∑
k=0

λ−k−1( tA)kw,α
〉

for w ∈ E1.

This defines g(λ) on E1 for large |λ|, and (7.20) and (7.21) hold on E1. If
dimE1 = ∞ then {wk | k ∈ N} is linearly independent and tAwk = wk+1

like a right shift, hence we set

〈w, g(λ)〉 := 〈w, tTfβ(λ)〉 where βj = 〈wj , α〉 for any j ∈ N
and T : E1 → ϕ is the isomorphism mapping wk to the canonical unit
vector ek. Again, (7.20) and (7.21) are easily shown on E1. Now assume
that Ej has been constructed and that Ej 6= ϕ. Then there is l0 minimal
such that el0 /∈ Ej . If vn0+1 := ( tA)n0el0 ∈ Ej for some (minimal) n0 we set,
for vd := ( tA)d−1el0 , 1 ≤ d ≤ n0,

〈vd, g(λ)〉 :=
n0+1−d∑
l=1

λ−l〈vd+l−1, α〉+ λd−n0−1〈vn0+1, g(λ)〉.

(7.20) and (7.21) are easily shown on Ẽj := span{vk | k ≤ n0}, hence they
hold on Ej+1 := span(Ej , Ẽj). If ( tA)nel0 /∈ Ej for any n we proceed as in
the first step to define g(λ) on Ẽj := span{vk | k ∈ N}. In this way we define
g(λ) inductively on ϕ. The theorem is proved.

Acknowledgements. The author wants to thank P. Domański (Po-
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