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The structure of Lindenstrauss–Pełczyński spaces
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Abstract. Lindenstrauss–Pełczyński (for short LP) spaces were introduced by these
authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from
a subspace of c0 into X can be extended to the whole c0. Here we obtain the following
structure theorem: a separable Banach space X is an LP-space if and only if every subspace
of c0 is placed in X in a unique position, up to automorphisms of X. This, in combination
with a result of Kalton [New York J. Math. 13 (2007)], provides a negative answer to a
problem posed by Lindenstrauss and Pełczyński [J. Funct. Anal. 8 (1971)]. We show that
the class of LP-spaces does not have the 3-space property, which corrects a theorem in an
earlier paper of the authors [Studia Math. 174 (2006)]. We then solve a problem in that
paper showing that L∞ spaces not containing l1 are not necessarily LP-spaces.

1. LP-spaces have all subspaces of c0 in a unique position. In [6]
we introduced the class of Lindenstrauss–Pełczyński spaces (for short LP) as
those Banach spaces E such that all operators from subspaces of c0 into E
can be extended to c0. The spaces are so named because Lindenstrauss and
Pełczyński first proved in [9] that C(K)-spaces have this property. In [6] it
was shown that every LP-space is an L∞-space, that not all L∞-spaces are
LP-spaces, and that complemented subspaces of Lindenstrauss spaces (see
also [9, 7]), separably injective spaces and L∞-spaces not containing c0 are
LP-spaces.

We now prove a fundamental structure theorem for this class; namely,
separable LP-spaces are characterized as those L∞ Banach spaces having all
subspaces of c0 placed in a unique position. Precisely, let Y,X be Banach
spaces. Following [5] we say that X is Y -automorphic if any isomorphism
between two subspaces of X isomorphic to Y can be extended to an au-
tomorphism of X. We agree that if X contains no copies of Y then it is
Y -automorphic. Lindenstrauss and Pełczyński prove in [9] that C[0, 1] is
H-automorphic for all subspaces H of c0 and pose the question of whether
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this property characterizes the subspaces of c0. Kalton shows in [8] that the
answer is no since C[0, 1] is also l1-automorphic. In the opposite direction,
there is the question of whether the property of being H-automorphic for
all subspaces of c0 characterizes separable C(K)-spaces. The answer is no.
In fact, amongst separable Banach spaces which contain an isomorphic copy
of c0, it characterizes being LP.

Theorem 1.

(i) A Banach space that contains c0 and is H-automorphic for all sub-
spaces H of c0 is an LP-space.

(ii) Every separable LP-space is H-automorphic for all subspaces H of c0.

Before entering into the proof, recall (see [4, 6]) the identification of
exact sequences 0→ Y → X → Z → 0 of Banach spaces with z-linear maps
F : Z → Y , i.e. homogeneous maps such that for some constant K > 0
and every finite set x1, . . . , xn one has ‖F (

∑
xj) −

∑
Fxj‖ ≤ K

∑
‖xj‖.

The identification will be written as 0 → Y → X → Z → 0 ≡ F . Two
exact sequences 0 → Y → X → Z → 0 and 0 → Y → X ′ → Z → 0
of Banach spaces are said to be equivalent if there is a continuous linear
operator T : X → X ′ providing a commutative diagram

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0

‖
yT ‖

0 −−−−→ Y −−−−→ X ′ −−−−→ Z −−−−→ 0

Two z-linear maps F,G are said to be equivalent, and written F ≡ G,
when the associated exact sequences are equivalent. Under these identifica-
tions, given an exact sequence 0→ Y → X → Z → 0 ≡ F and an operator
k : Z ′ → Z, the upper sequence in the associated pull-back diagram

0 −−−−→ Y −−−−→ PB −−−−→ Z ′ −−−−→ 0 ≡ Fk

‖
y yk

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0 ≡ F
corresponds to the z-linear map Fk (standard composition of maps). We will
need the following lemma of independent interest.

Lemma 1. Let F : Z → Y be a z-linear map and let k : Z → Z be a
compact operator. Then Fk ≡ F implies F ≡ 0.

Proof. If Fk ≡ F then F − Fk ≡ F (1− k) ≡ 0. If 1 is not an eigenvalue
of k then 1−k is an automorphism of Z, so F (1−k) ≡ 0 implies F ≡ 0. If 1
is an eigenvalue of k then let z1

1 , . . . , z
1
n1

be a basis for the associated space
of eigenvectors. Let Z1 = [z1

1 , . . . , z
1
n1

] and consider the exact sequence
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0→ Z1 → Z
q1−→ Z/Z1 → 0.

Let s1 : Z/Z1 → Z be a continuous linear section for q1. The operator
q1ks1 : Z/Z1 → Z/Z1 is compact. If 1 is not an eigenvalue of q1ks1 then
1Z/Z1

− q1ks1 = q1(1Z − k)s1 is an automorphism of Z/Z1. Since Z1 is
finite-dimensional, F|Z1

≡ 0 and there exists a z-linear map F1 : Z/Z1 → Y
such that F1q ≡ F . Now, F (1 − k) ≡ 0 implies F1q1(1Z − k)s1 ≡ 0, and
therefore F1 ≡ 0. Hence F ≡ 0. It remains to treat the case where 1 is an
eigenvalue of q1ks1. Take then a basis q1(z2

1), . . . , q1(z
2
n2

) for the associated
space of eigenvectors and form the closed linear span

Z2 = [z1
1 , . . . , z

1
n1
, s1q1z

2
1 , . . . , s1q1z

2
n2

].

The exact sequence

0→ Z2 → Z
q2−→ Z/Z2 → 0

admits a continuous linear section s2. If 1 is not an eigenvalue of the operator
q2ks2 the argument as before yields F ≡ 0. It remains to treat the case where
1 is an eigenvalue of q2ks2. We then proceed as follows. Assume that after
n steps, 1 is an eigenvalue of qnksn. Take a basis qn(zn+1

1 ), . . . , qn(zn+1
nn+1

) for
the associated space of eigenvectors and form the closed linear span

Zn+1 = [z1
1 , . . . , z

1
n1
, s1q1z

2
1 , . . . , s1q1z

2
n2
, . . . , snqnz

n+1
1 , . . . , snqnz

n+1
nn+1

].

The exact sequence

0→ Zn+1 → Z
qn+1−−−→ Z/Zn+1 → 0

admits a continuous linear section sn+1. If 1 is not an eigenvalue of qn+1ksn+1

the same argument as before yields F ≡ 0. It remains to treat the case where
1 is an eigenvalue of qn+1ksn+1.

The process must stop because Zn ⊂ ker (1−k)n and k has finite ascent,
i.e. there is a natural N such that ker (1− k)N = ker (1− k)N+1.

Proof of Theorem 1. To prove (i) we adapt the arguments of [10, Thm.
3.2]. Let X be H-automorphic for all subspaces H of c0, and assume that
there is an embedding j : c0 → X. Assume there is a subspace i : H ⊂ c0 and
a norm one operator T : H → X that cannot be extended to c0 through i.
Then for small ε > 0 the operator ji+ εT : H → X is an into isomorphism
that cannot be extended to an operator R : X → X through ji, as otherwise
Rji = ji+ εT and ε−1(Rj − j) would be an extension of T through i.

We show (ii). Let X be a separable LP-space. If X does not contain c0,
then the result is (vacuously) true. So let i : H → X be an embedding where
j : H → c0 is a subspace of c0. The extension J : c0 → X, which exists



108 J. M. F. Castillo et al.

because X is LP, yields the commutative diagram

(1)

0 −−−−→ H
j−−−−→ c0

p−−−−→ c0/H −−−−→ 0

‖
yJ yJ ′

0 −−−−→ H
i−−−−→ X

q−−−−→ X/H −−−−→ 0

We now show that the operator qJ is not weakly compact. Otherwise it
would be compact, hence J ′p = qJ would be compact and thus J ′ would also
be compact. Since X is separable, the embedding i can be extended to c0,
which yields a commutative diagram

(2)

0 −−−−→ H −−−−→
i

X −−−−→
q

X/H −−−−→ 0

‖
yI yI′

0 −−−−→ H
j−−−−→ c0

p−−−−→ c0/H −−−−→ 0

Putting the two diagrams together one gets a commutative pull-back diagram

0 −−−−→ H
j−−−−→ c0

p−−−−→ c0/H −−−−→ 0

‖
yIJ yI′J ′=k

0 −−−−→ H
j−−−−→ c0

p−−−−→ c0/H −−−−→ 0

in which k = I ′J ′ is compact. Lemma 1 shows that is impossible.
A Banach space C is said to have Pełczyński’s property (V ) if every oper-

ator on C is either weakly compact or an isomorphism on a copy of c0. Since
C(K)-spaces have property (V ) [11] and we have shown that the operator qJ
is not weakly compact, it must be an isomorphism on a subspace isomorphic
to c0. Therefore q is also an isomorphism on a subspace isomorphic to c0,
which will necessarily be complemented in both X/H and X. This means
the existence of a commutative diagram

0 −−−−→ H −−−−→
i

X −−−−→
q

X/H −−−−→ 0

‖
yβ yγ

0 −−−−→ H
(i,0)−−−−→ X ⊕ c0 −−−−→ X/H ⊕ c0 −−−−→ 0

in which both β and γ are isomorphisms. An application of the diagonal
principles developed in [5] to the diagrams (1) and (2) yields a commutative
diagram
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0 −−−−→ H −−−−→
(i,0)

X ⊕ c0 −−−−→ X/H ⊕ c0 −−−−→ 0

‖
yσ yµ

0 −−−−→ H
(j,0)−−−−→ c0 ⊕X −−−−→ c0/H ⊕X −−−−→ 0

in which both σ, µ are isomorphisms. Now, starting with a different embed-
ding i′ : H → X would lead to a similar diagram with j replaced by some
embedding j′ : H → c0. But since c0 is H-automorphic by the classical
Lindenstrauss–Pełczyński theorem, we are done.

The conclusion of Theorem 1(ii) clearly fails for nonseparable spaces
since c0 ⊕ l∞ contains a complemented and an uncomplemented copy of c0.
From the proof one is tempted to believe that LP-spaces containing c0 have
Pełczyński’s property (V ), which is not the case: let X be a Schur LP-space
(see [6]) and select a quotient map q : X → c0 to construct the quotient
Q : X ⊕ c0 → c0 given by Q(x, y) = q(x). An immediate consequence of
Theorem 1 and the fact that L∞-spaces not containing c0 are LP-spaces is

Corollary 1. Every L∞-space which is H-automorphic for every sub-
space H of c0 is an LP-space.

A Banach space X was defined in [10] to be extensible if every operator
Y → X from a subspace Y of X can be extended to X. It is clear that an
extensible space that contains c0 must be an LP-space; hence

Corollary 2. An extensible L∞-space is an LP-space.

Thus, even the product of separable automorphic spaces such as l2 ⊕ c0
may fail to be extensible.

2. Counterexamples. Our first counterexample is to show that, unlike
C[0, 1], separable LP-spaces may fail to be l1-automorphic:

A separable LP-space that is not l1-automorphic. Consider an embedding
i : l1 → C[0, 1] and another embedding j : l1 → X of l1 into its corresponding
Bourgain–Pisier space L∞-space X (see [2]). It was proved in [6] that X is
a Schur LP-space. This means that j cannot be extended through i to the
whole C[0, 1] since Pełczyński’s property (V ) of C[0, 1] would make such
an extension a weakly compact operator. The LP-space X ⊕ C[0, 1] is not
l1-automorphic because the embeddings (0, i) : l1 → X ⊕ C[0, 1] and (j, 0) :
l1 → X ⊕ C[0, 1] cannot be transformed to each other by an automorphism
σ : X ⊕ C[0, 1] → X ⊕ C[0, 1]. Otherwise, if σ(0, i) = (j, 0), and π : X ⊕
C[0, 1]→ X is the projection, the operator πσ|C[0,1] : C[0, 1]→ X would be
an extension of j through i.

Our second counterexample shows that the statement of [6, Thm. 2] that
“the class of LP-spaces has the 3-space property” is wrong.
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Proposition 2.1. For every subspace H of c0 different from c0, there is
a twisted sum

0→ C(ωω)→ ΩH → c0 → 0,

and an operator H → ΩH that cannot be extended to c0. Hence the space
ΩH is not an LP-space.

Proof. Consider the exact sequence 0 → C(ωω) → Ω → c0 → 0 ≡ M
constructed in [3] which has the additional property of having the quotient
map q : Ω → c0 strictly singular. Since every quotient of c0 is isomorphic to
a subspace of c0, we can assume that there is an embedding uH : c0/H → c0.
The pull-back sequence 0 → C(ωω) → PH

p→ c0/H → 0 ≡ GuH also has
strictly singular quotient map. We form the commutative diagram

0 = 0x x
0 −−−−→ C(ωω) −−−−→ PH

p−−−−→ c0/H −−−−→ 0

‖
x xt

0 −−−−→ C(ωω) −−−−→ ΩH −−−−→
Q

c0 −−−−→ 0

j

x xi
H = Hx x
0 0

To show that ΩH is not an LP-space we show that j cannot be extended
to c0 through i. Indeed, suppose J is such an extension, and denote by ν
the induced operator between the quotient spaces. There is a commutative
diagram

0 −−−−→ H −−−−→ c0 −−−−→ c0/H −−−−→ 0 ≡ F

‖
x xp

0 −−−−→ H
j−−−−→ ΩH −−−−→ PH −−−−→ 0

‖ J

x xν
0 −−−−→ H −−−−→ c0 −−−−→ c0/H −−−−→ 0 ≡ F

The diagram means that Fpν ≡ F . But since p is strictly singular, pν is
also strictly singular, hence compact. Lemma 1 can be used to conclude the
argument.
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The previous example also provides a negative answer to a question posed
in [6, p. 227]: Is every L∞-space not containing l1 an LP -space? The space
ΩH does not contain l1 since “not containing l1” is a 3-space property (see
[4, Thm. 3.2.d]).

Our last example provides a partial answer to the question of whether
the original space Ω constructed in [3] and which is the starting point in the
proof of Proposition 2.1 is an LP-space.

Proposition 2.2. There exists an LP-space X admitting two nontrivial
exact sequences

0→ X → Ai
qi−→ c0 → 0

such that

(1) A1 is an LP-space and q1 is strictly singular.
(2) A2 is not an LP-space.

Proof. Consider the projective presentation of c0,

0→ K → `1 → c0 → 0,

and embed K into its corresponding Bourgain–Pisier space L∞-space X
(see [2]). It was proved in [6] that X is an LP-space. To construct A1 we
consider the push-out diagram

0 0y y
0 −−−−→ K −−−−→ l1 −−−−→ c0 −−−−→ 0y y ‖

0 −−−−→ X −−−−→ A1 −−−−→ c0 −−−−→ 0y y
S = Sy y
0 0

Since the Schur property is a 3-space property and L∞-spaces with the Schur
property are LP-spaces, A1 is an LP-space, and the quotient A1 → c0 must
be strictly singular.

To obtain A2, let 0→ X → A1 → c0 → 0 be the previously constructed
sequence having strictly singular quotient, and let 0→ H → c0 → c0 → 0 be
the nontrivial sequence constructed by Bourgain in [1]. We form the pull-back
diagram
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0 = 0x x
0 −−−−→ X −−−−→ A1 −−−−→ c0 −−−−→ 0

‖
x x

0 −−−−→ X −−−−→ A2 −−−−→ c0 −−−−→ 0x x
H = Hx x
0 0

and then follow the argument in the proof of Proposition 2.1 to show that
A2 is not an LP-space.

3. Positive results. The first positive result exhibits two situations in
which a twisted sum of two LP-spaces is an LP-space. The counterexamples
in Section 2 show that these results are optimal.

Proposition 3.1. Let 0 → Y
i→ X

q→ Z → 0 be an exact sequence
in which both Y,Z are LP-spaces. Then X is an LP-space in the following
cases:

(1) Z does not contain c0.
(2) Y is separably injective.

Proof. Let j : H → c0 be a subspace of c0 and let t : H → X be an
operator, and consider an extension (qt)e of qt to c0. To prove (1) observe
that (qt)e is weakly compact, hence compact. Since Y is an L∞-space, (qt)e

can be lifted to an operator E : c0 → X through q, so qE = (qt)e. The
operator Ej− t thus takes values in Y , and can therefore be extended to an
operator (Ej − t)e : c0 → Y . The operator E − i(Ej − t)e : c0 → X is the
desired extension of t: (E − i(Ej − t)e)j = Ej − i(Ej − t) = t.

The proof for (2) is analogous: in this case (qt)e can be lifted to an
operator E : c0 → X through q since Y is separably injective.

The second positive result is a correct statement and proof of the 3-space
result presented in [6]. The argument there touches the poorly developed
topic of relative homology with respect to an operator ideal. Precisely, clas-
sical Banach space homology works with the ideal L of continuous linear
operators in the sense that, given an exact sequence 0→ Y → X → Z → 0
and a Banach space E, it produces the homology sequence
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0→ L(Z,E)→ L(X,E)→ L(Y,E)
→ Ext(Z,E)→ Ext(X,E)→ Ext(Y,E)→ · · ·

formed by the derived functors of L. One could expect that a surjective and
injective operator ideal A would also produce a relative homology sequence

0→ A(Z,E)→ A(X,E)→ A(Y,E)
→ A′(Z,E)→ A′(X,E)→ A′(Y,E)→ · · ·

formed by derived functors of A. The problem, however, is that derivation is
a process that can be done via injective or projective presentations, and the
results of the two processes might not coincide. In the classical setting, the
injective and projective derivations of L are equivalent; in the relative setting
the equivalence depends on the following extra property of the ideal A.

Definition. An injective and surjective operator ideal A will be called
balanced if any commutative diagram

0 −−−−→ K −−−−→ l1(Γ ) −−−−→ Z −−−−→ 0

α

y y yγ
0 −−−−→ Y −−−−→ l∞(Λ) −−−−→ l∞(Λ)/Y −−−−→ 0

has the property that there is an operator α′ ∈ A such that α − α′ can be
extended to l1(Γ ) if and only if there exists γ′ ∈ A such that γ − γ′ can be
lifted to l∞(Λ).

The condition is clearly equivalent to the fact that projective and injective
derivations coincide. Let us now define a Banach space X to be A-injective
(resp. separably A-injective) if A′(·, X) = 0 (resp. A′(S,X) = 0 for every
separable space S). The following proposition contains the right statement
of Theorem 2 in [6].

Proposition 3.2. For any surjective and injective balanced operator
ideal A, being A-injective (resp. separably A-injective) is a 3-space property.

Proof. We include the proof (an abstract version of results in [6]) for the
sake of completeness. Let

0→ A
i−→ B

p−→ C → 0

be an exact sequence. By assumption, both A(·, A) and A(·, C) are exact
functors and we need to prove that also A(·, B) is exact. We construct the
commutative diagram
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0 0 0y y y
0 −−−−→ A(Z,A)

q∗−−−−→ A(X,A)
j∗−−−−→ A(Y,A) −−−−→ A′(Z,A)

i∗
y i∗

y i∗
y y

0 −−−−→ A(Z,B)
q∗−−−−→ A(X,B)

j∗−−−−→ A(Y,B) −−−−→ A′(Z,B)

p∗
y p∗

y p∗
y y

0 −−−−→ A(Z,C)
q∗−−−−→ A(X,C)

j∗−−−−→ A(Y,C) −−−−→ A′(Z,C)

The rows are exact by the surjectivity of A, while the first three columns
are also exact by injectivity of A. The fourth column is exact because A is
balanced. By hypothesis,

A′(Z,A) = A′(Z,C) = 0,

and the exactness of the fourth column implies that

A′(Z,B) = 0,

hence A(·, B) is exact.

In [6] it is established that LP-spaces are precisely the relatively separably
injective objects associated with the ideal Γ0 of operators that factorize
through a subspace of c0. The mistake in the proof there is that the ideal Γ0

is not balanced.
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