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Global Schauder estimates for a class of degenerate
Kolmogorov equations

by

Enrico Priola (Torino)

Abstract. We consider a class of possibly degenerate second order elliptic operators
A on Rn. This class includes hypoelliptic Ornstein–Uhlenbeck type operators having an
additional first order term with unbounded coefficients. We establish global Schauder
estimates in Hölder spaces both for elliptic equations and for parabolic Cauchy problems
involving A. The Hölder spaces in question are defined with respect to a possibly non-
Euclidean metric related to the operator A. Schauder estimates are deduced by sharp
L∞-Cθ estimates on the spatial derivatives of the associated diffusion semigroup which
are of independent interest. In the proof we also use probabilistic techniques.

1. Introduction. Let us consider the following possibly degenerate sec-
ond order elliptic operator A on Rn:

Au(x) = 1
2 Tr(QD2u(x)) + 〈Ax,Du(x)〉+ 〈F (x), Du(x)〉(1.1)

= A0u(x) + 〈F (x), Du(x)〉, x ∈ Rn.

Here Q and A are n×n real matrices, Q is symmetric and non-negative defi-
nite, Tr(·) denotes the trace and 〈·, ·〉 the inner product in Rn. Furthermore,
F : Rn → Rn is a regular possibly unbounded vector field. The operator
A in the special case F = 0 reduces to the extensively studied possibly
degenerate Ornstein–Uhlenbeck operator A0. Degenerate Kolmogorov oper-
ators like A arise in kinetic theory (see [8] and the references therein) and
in mathematical finance (see the survey paper [9]). Following [8], consider
the linear Fokker–Planck equation

∂th = 〈v,Dxh〉+ divv(Dvh+ vh),

where h(t, x, v) is the density of particles at position x ∈ Rd at time t ≥ 0
with velocity v ∈ Rd. The degenerate operator B given by Bh = 〈v,Dxh〉+
divv(Dvh+vh)−dh, is a particular case of A occurring when Rn = R2d. We
also mention that operators like A arise naturally in connection with the
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so-called Smoluchowski–Kramers approximation for stochastic differential
equations (see [13]).

The aim of the present paper is to prove global Schauder estimates for
elliptic equations and parabolic Cauchy problems involving the operator A.
We obtain optimal regularity results in Hölder spaces for both

(1.2) λu(x)−Au(x) = f(x), x ∈ Rn,

and

(1.3)

{
∂tv(t, x) = Av(t, x) + H(t, x), t ∈ (0, T ], x ∈ Rn,

v(0, x) = g(x), x ∈ Rn,

where λ > 0 and the functions f , g and H are given. These results are
deduced by sharp L∞-estimates on the spatial derivatives of the solution of
(1.3) when H = 0, involving Hölder norms of the initial datum g.

Global Schauder estimates have been used recently in connection with
stochastic differential equations (see [1, 6, 11]). In [6] Schauder estimates for
degenerate elliptic operators L in non-smooth domains are a key ingredient
to investigate well-posedness of the martingale problem associated to L.
In [11] parabolic Schauder estimates are used to prove the existence of a
differentiable stochastic flow in the case of stochastic differential equations
with Hölder continuous drift term.

Let us collect our assumptions on the operator A (cf. [29]).

Hypothesis 1.1. (i) The symmetric matrix Q = (qij)ni,j=1 is given by
Q =

(
Q0 0
0 0

)
, where

(1.4) Q0 is a positive definite p̃× p̃ matrix, 1 ≤ p̃ ≤ n;

ν1 and ν2 stand for the smallest and the largest eigenvalue of Q0 respectively
(0 < ν1 ≤ ν2);

(ii) the vector field F : Rn → Rn has the form

F (x) = (F1(x), . . . , Fp̃(x), 0, . . . , 0), x ∈ Rn,

i.e., F (x) ∈ Im(Q) for any x ∈ Rn;
(iii) the non-zero coefficients of F , i.e., Fi : Rn → R, i = 1, . . . , , p̃, are

Lipschitz continuous having continuous and bounded partial derivatives up
to the third order on Rn;

(iv) there exists a non-negative integer k such that the vectors

(1.5) {e1, . . . , ep̃, Ae1, . . . , Aep̃, . . . , Ake1, . . . , Akep̃} generate Rn;

here e1, . . . , ep̃ are the first p̃ elements of the canonical basis in Rn; we
denote by k the smallest non-negative integer such that (1.5) holds (one has
0 ≤ k ≤ n− 1).
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Condition (1.5) can also be written as Rank[Q1/2, AQ1/2, . . . , AkQ1/2]
= n. By the Hörmander condition on commutators, (1.5) is equivalent to
the hypoellipticity of the operator A0 − ∂t in n+ 1 variables (t, x1, . . . , xn);
see [18]. Our operator A has the form

Au(x)=
1
2

p̃∑
i,j=1

qij∂
2
xixju(x)+

p̃∑
i=1

Fi(x)∂xiu(x)+
n∑

i,j=1

aij xj∂xiu(x), x ∈ Rn,

where the aij are the components of the matrix A and ∂xi and ∂2
xixj are

partial derivatives. Clearly, the operator A is non-degenerate only when
p̃ = n (this implies k = 0).

Let us describe our results for (1.2) and (1.3). In the elliptic equation
(1.2) we assume that f ∈ Cθd(Rn), θ ∈ (0, 1), i.e., f is a real bounded function
on Rn, which is Hölder continuous with respect to a suitable possibly non-
Euclidean metric d related to A (see Section 2). We show that (1.2) has
a unique bounded distributional solution u ∈ C2+θ

d (Rn) and, furthermore,
that there exists a positive constant C, independent of f and u, such that
‖u‖C2+θd (Rn) ≤ C‖f‖Cθd(Rn). Note that this implies

‖u‖0 +
p̃∑

i,j=1

‖∂2
xixju‖Cθd(Rn) ≤ C‖f‖Cθd(Rn),

where ‖u‖0 denotes the sup-norm of u and ∂2
xixju are the classical par-

tial derivatives of u for i, j = 1, . . . , p̃ (see Theorem 4.2). Concerning the
Cauchy problem (1.3) we prove analogous parabolic Schauder estimates, as-
suming that g ∈ C2+θ

d (Rn) and H(t, ·) ∈ Cθd(Rn) uniformly in t ∈ [0, T ].
We find that (1.3) has a unique bounded distributional solution v such that
v(t, ·) ∈ C2+θ

d (Rn) for t ∈ [0, T ], and, furthermore, that there exists a positive
constant c, independent of g, v and H, such that

sup
t∈[0,T ]

‖v(t, ·)‖C2+θd (Rn) ≤ c(‖g‖C2+θd (Rn) + sup
t∈[0,T ]

‖H(t, ·)‖Cθd(Rn))

(see Theorem 4.3). The above mentioned metric d is considered in [33, p. 11]
and is related to certain distances associated to degenerate operators such as
Hörmander’s sum of squares of vector fields (see in particular the metric ρ3 in
[26, p. 112]). Furthermore, d is a special case of the parabolic pseudo-metric
considered in [10] (see also [18]). We refer to Section 2 for a precise definition
of the metric d. Here we give an example of d. Consider the following two-
dimensional operator A:

(1.6) Au(x, y) = 1
2∂

2
xxu(x, y) + F1(x, y)∂xu(x, y) + (x+ y)∂yu(x, y)

for (x, y) ∈ R2, which satisfies Hypothesis 1.1 with p̃ = 1 and k = 1.
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In this case, the metric d is given by d(z, z′) = |x − x′| + |y − y′|1/3 for
z = (x, y), z′ = (x′, y′) ∈ R2.

Let us now examine related papers on Schauder estimates. A general
theory of local regularity in Sobolev and Hölder spaces is available for de-
generate operators which are sums of squares of vector fields (see in par-
ticular [12, 30, 16]). Local Cθ-estimates for operators more general than A,
in which also qij are variable and time-dependent, can be found in [10] (see
also [18, 25, 27] and the references therein).

Concerning global regularity results for solutions of possibly degenerate
equations like (1.2) and (1.3) in spaces of continuous functions, we men-
tion [21, 19, 20, 27, 31]. In [21] Schauder estimates are established for the
Ornstein–Uhlenbeck operator A0 only assuming (1.4) and (1.5). In [19, 20]
Schauder estimates are proved for Ornstein–Uhlenbeck type operators A0

when Fi = 0 but qij are not constant and can be unbounded; in [19, 20] it is
assumed that k ≤ 1 in hypothesis (1.5). Uniform estimates for solutions to
the Cauchy problem (1.3) involving A with H = 0 are given in [29]; these are
obtained without any restriction on k and are preliminary to the Schauder
estimates of the present paper. In [31] Schauder estimates for A are proved
assuming k ≤ 1 in (1.5) and imposing an additional hypothesis (which is
not satisfied in (1.6)).

To prove elliptic Schauder estimates, one considers the function

(1.7) u(x) =
∞�

0

e−λtPtf(x) dt, x ∈ Rn,

where Pt is the diffusion Markov semigroup associated to A (i.e., v(t, x) =
(Ptf)(x) = Ptf(x) provides the classical solution to (1.3) when H = 0
and g = f ; see [29]). The function u is the unique bounded distributional
solution to (1.2) (see Theorem 4.1). One proves global regularity properties
for u by means of sharp L∞-estimates on the spatial partial derivatives of
Ptf involving the Hölder norm of f like

‖∂3
xixjxrPtf‖0 ≤ c

(
1

t(3−θ)/2
+ 1
)
‖f‖θ,d, t > 0, i, j, r = 1, . . . , p̃

(see Theorem 3.3). The behaviour in t of such estimates as t tends to 0+

is crucial. This is the basic idea indicated in [7] in order to study Schauder
estimates for non-degenerate Kolmogorov operators. This method has been
much used in recent papers also in combination with [22] (see [5, Chapter 1],
[3, Chapter 6] and the references therein). In [21] the L∞-estimates have been
proved using the explicit formula for the Ornstein–Uhlenbeck semigroup Pt
associated to A0. In [19, 20, 31] the uniform estimates are obtained by a
priori estimates of Bernstein type combined with an interpolation result
proved in [20, Lemma 5.1] when k ≤ 1. Here we get the L∞-estimates
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involving Hölder norms by working directly on some probabilistic formulae
for the spatial derivatives of Ptf (which replace the explicit formulae used
in [21]). Such formulae have been obtained in [29] using Malliavin calculus
(see also [4, 17, 14]).

We believe that the probabilistic approach used here could be useful
to get sharp L∞-estimates involving Hölder norms also in other situations.
Specifically, one could consider a degenerate Kolmogorov operator like A in
which the drift term Ax+ F is replaced by a C∞-vector field G : Rn → Rn

having additional properties. G should have all derivatives bounded up to
some order k ∈ N and furthermore, e1, . . . , ep̃ and G together with their
commutators of length at most k should span Rn at each point x ∈ Rn. In
this case global Schauder estimates are a largely open problem.

From the previous L∞-estimates we derive in a direct and relatively short
way Schauder estimates for u (see Theorem 4.2). This does not require the
interpolation method of [22] which has been used in [21, 5, 20, 3, 31]. Our
direct approach can be applied to prove parabolic Schauder estimates as well
(see Theorem 4.3). In order to study the parabolic Cauchy problem (1.3) one
proceeds initially as in the elliptic case, replacing (1.7) with the variation
of constant formula (see (4.5)). However, the parabolic Schauder estimates
are more involved than the corresponding elliptic ones (see Remark 3.4). In
particular, they require not only the L∞-estimates involving Hölder norms
but also the hard estimate ‖Ptg‖2+θ,d ≤ C‖g‖2+θ,d for any g ∈C2+θ

d (Rn),
t ≥ 0, where C is independent of t and g.

After some preliminaries contained in Section 2, in Section 3 we prove
L∞-estimates for the spatial derivatives of Ptf involving the Hölder norm
of f . In Section 4 we show that (1.2) has a unique distributional solution
and prove elliptic Schauder estimates using the results of Section 3. We also
establish existence and uniqueness of space-distributional solutions to the
parabolic Cauchy problem (1.3) and prove the parabolic Schauder estimates.
In the final part of the paper we consider more general operators Ã with vari-
able coefficients qij(x). We require that the matrix Q(x) has the form (1.4)
where the p̃× p̃ matrix Q0(x) is uniformly positive; furthermore, we assume
that the qij are θ-Hölder continuous and that the limit limx→∞Q0(x) = Q∞0
exists. We obtain elliptic and parabolic Schauder estimates for Ã, using a
well-known method based on the maximum principle, a priori estimates and
the continuity method (cf. [21]). Further extensions of our results are given
in Remark 5.4.

We will use the letter c or C with subscripts for finite positive constants
whose precise value is unimportant; the constants may change from propo-
sition to proposition.
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2. Preliminaries and notation. We denote by | · | and 〈·, ·〉 the Eu-
clidean norm and the standard inner product in Rn and by ‖·‖L the operator
norm in the Banach space L(Rn) of real n×n matrices. If X and Y are real
Banach spaces, L(X,Y ) denotes the Banach space of all bounded and linear
operators from X into Y endowed with the operator norm.

Let G : Rn → Rm be a mapping. We denote by DG(x), D2G(x) and
D3G(x) respectively the first, second and third Fréchet derivative ofG at x ∈
Rn when they exist (if G also depends on t, we write DxG(t, x), D2

xxG(t, x)
and D3

xxxG(t, x)).
We have DG(x)[u], D2G(x)[u][v] and D3G(x)[u][v][w] ∈ Rm for u, v, w

∈ Rn. If G is bounded, we set ‖G‖0 = supx∈Rn |G(x)|Rm .
Recall that hypothesis (1.5) is known as the Kalman condition in control

theory (see [35]). It is also equivalent to requiring that the symmetric matrix

(2.1) Qt =
t�

0

esA
∗
QesA ds

is positive definite for any t > 0 (here esA denotes the exponential matrix
of A, and A∗ the adjoint matrix of A).

As in [21] we define an orthogonal decomposition of Rn related to the
Kalman condition (1.5). We consider the first p̃ elements {e1, . . . , ep̃} of
the canonical basis in Rn, 1 ≤ p̃ ≤ n, and introduce the subspace V0 =
Span{e1, . . . , ep̃}.

Then set Vm = Im(Q1/2)+· · ·+Im(AmQ1/2) = Span{e1, . . . , ep̃, Ae1, . . . ,
Aep̃, . . . , A

me1, . . . , A
mep̃} for 1 ≤ m ≤ k. One has Vm ⊂ Vm+1 and Vk = Rn.

Let W0 = V0, W1 be the orthogonal complement of V0 in V1, and Wm

be the orthogonal complement of Vm−1 in Vm for 1 ≤ m ≤ k. Defining
the orthogonal projections Em from Rn onto Wm, one has Em(Rn) = Wm

and

(2.2) Rn =
k⊕

m=0

Em(Rn).

We complete {e1, . . . , ep̃} to an orthonormal reference basis {ei}ni=1 in Rn

related to (2.2). It consists of generators of the subspaces and will be used
throughout the paper (one can assume that {ei} is the canonical basis if
k ≤ 1, cf. [20, 31]). In the following, Di, D2

ij , and D3
ijr will denote respec-

tively first, second and third partial derivatives with respect to {ei}. Note
that if we write the operator A in the coordinates associated to the new
basis, the second order term Tr(QD2) does not change. Define Im as the set
of indices i such that ei spans Em(Rn), 0 ≤ m ≤ k. We have

I0 = {1, . . . , p̃}.
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The metric d associated to the operator A is defined using the decomposition
(2.2). One first introduces the quasi-norm ‖ · ‖, ‖x‖ :=

∑k
h=0 |Ehx|1/(2h+1),

x ∈ Rn. Then we set

(2.3) d(x, y) := ‖x− y‖ =
k∑

h=0

|Eh(x− y)|1/(2h+1), x, y ∈ Rn.

Let us introduce function spaces used to establish Schauder estimates.
First we consider Euclidean function spaces and then function spaces related
to the metric d.

We denote by Bb(Rn) the Banach space of all Borel and bounded func-
tions f : Rn → R, endowed with the supremum norm ‖ · ‖0; Cb(Rn) is
the closed subspace of Bb(Rn) consisting of all uniformly continuous and
bounded functions.

Cjb (R
n), j ∈ Z+, j ≥ 1, is the Banach space of all j-times differentiable

functions f : Rn → R, whose partial derivatives, Dαf , α ∈ Zn+, are uni-
formly continuous and bounded on Rn up to order j. This is a Banach space
endowed with the norm ‖ · ‖j , ‖f‖j = ‖f‖0 +

∑
|α|≤j ‖Dαf‖0, f ∈ Cjb (R

n).

We set C∞b (Rn) =
⋂
j≥1C

j
b (R

n). Furthermore, C∞0 (Rn) is the space of all
functions f ∈ C∞b (Rn) having compact support.

Fix θ ∈ (0, 1). The space Cθb (Rn) stands for the Banach space of all
θ-Hölder continuous and bounded functions on Rn endowed with the norm
‖f‖θ = ‖f‖0 + [f ]θ, f ∈ Cθb (Rn), where

[f ]θ = sup
z,w∈Rn, z 6=w

|f(z)− f(w)|
|z − w|θ

<∞.

Furthermore, C2+θ
b (Rn) = {f ∈ C2

b (Rn) : D2
ijf ∈ Cθb (Rn), i, j = 1, . . . , n}; it

is a Banach space endowed with the norm ‖f‖2+θ = ‖f‖2 +
∑n

i,j=1 ‖D2
ijf‖θ,

f ∈ C2+θ
b (Rn). In a similar way, one defines the Banach space C1+θ

b (Rn).
Next, we define function spaces related to the metric d. Let γ ∈ (0, 3) be

non-integer. We define Cγd (Rn) as the space of all functions f ∈ Cb(Rn) such
that, for any z ∈ Rn and for any integer m, 0 ≤ m ≤ k, the map

x 7→ f(z + x) belongs to Cγ/(2m+1)
b (Em(Rn)),

with ‖f(z+ ·)‖γ/(2m+1) bounded by a constant independent of z (identifying
each subspace Em(Rn) with Rn(m), where n(m) = dim[Em(Rn)], the Eu-
clidean function spaces Cγ/(2m+1)

b (Em(Rn)) are well-defined); Cγd (Rn) is a
Banach space with the norm

‖f‖γ,d :=
k∑

m=0

sup
z∈Rn

‖f(z + ·)‖
C
γ/(2m+1)
b (Em(Rn))

, f ∈ Cγd (Rn).
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It is easy to see that if γ ∈ (0, 1) and f ∈ Cb(Rn), then f ∈ Cγd (Rn) if and
only if f is γ-Hölder continuous with respect to the metric d, i.e.

(2.4) [f ]γ,d = sup
x,y∈Rn, x 6=y

|f(x)− f(y)| ‖x− y‖−γ <∞.

Furthermore, an equivalent norm in Cγd (Rn), γ ∈ (0, 1), is ‖ · ‖0 + [·]γ,d. One
can also define spaces Cαd (Rn) for general α ∈ (0,∞) (see [21]).

In [21, Lemma 2.1] it is proved that if f ∈ C2+θ
d (Rn), θ ∈ (0, 1), then for

any i, j ∈ I0, we have bothDif ∈ Cθ+1
d (Rn) andD2

ijf ∈ Cθd(Rn); furthermore,
there exists a constant C, independent of f , such that

(2.5) ‖Dif‖1+θ,d + ‖D2
ijf‖θ,d ≤ C‖f‖2+θ,d, i, j ∈ I0.

Let f ∈ Cγd (Rn), γ ∈ (2, 3). For any x ∈ Rn, we will consider DE0f(x) ∈ Rn,
the gradient of f at x ∈ Rn in the directions of E0(Rn), i.e.,

(2.6) DE0f(x) = (D1f(x), . . . , Dp̃f(x), 0, . . . , 0)

and, similarly, the n×n Hessian matrix D2
E0
f(x) in the directions of E0(Rn),

i.e., (D2
E0
f(x))ij = D2

ijf(x) if i, j ∈ I0, and (D2
E0
f(x))ij = 0 otherwise.

We finish the section with an equivalent definition of Cγd (Rn) involving
the quasi-norm ‖ · ‖. Let f ∈ Cb(Rn). We introduce, for any x, v ∈ Rn,

(2.7) 43
vf(x) = f(x)− 3f(x+ v) + 3f(x+ 2v)− f(x+ 3v).

Lemma 2.1. Let γ ∈ (0, 3) be non-integer. Let f ∈ Cb(Rn). Then f ∈
Cγd (Rn) if and only if

[f ]γ,d,3 = sup
x,v∈Rn, v 6=0, ‖v‖≤1

|43
vf(x)| ‖v‖−γ <∞.

Furthermore, ‖ · ‖0 + [·]γ,d,3 is equivalent to ‖ · ‖γ,d.

Proof. We use the following result of Triebel (see [34, Section 2.7.2]). Let
g ∈ Cb(Rn). Then g belongs to Cγb (Rn), γ ∈ (0, 3) non-integer, if and only if

(2.8) [g]γ,3 = sup
x∈Rn, |v|≤1, v 6=0

|v|−γ |43
vg(x)| <∞.

Furthermore, in Cγb (Rn) the norm ‖ · ‖γ is equivalent to ‖ · ‖0 + [·]γ,3.
⇒ Let f ∈ Cγd (Rn) and fix v ∈ Rn. We set v = v0 + v1, where v0 = E0v

and v1 =
∑k

h=1Ehv = v − E0v (see (2.2)). We get, for any x ∈ Rn,

|43
vf(x)| ≤ |f(x)− f(x+ v1)|

+ |f(x+ v1)− 3f(x+ v1 + v0) + 3f(x+ v1 + 2v0)− f(x+ v1 + 3v0)|

+ 3|f(x+ 2v1 + 2v0)− f(x+ v1 + 2v0)|
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+ |f(x+ v1 + 3v0)− f(x+ 3v1 + 3v0)|

≤ ‖f‖γ,d
(

4
k∑

h=1

|Ehv|γ/(2h+1) +
k∑

h=1

|Eh(2v)|γ/(2h+1) + |v0|γ
)

≤ C‖f‖γ,d‖v‖γ .

⇐ Let f ∈ Cb(Rn) and take vh ∈ Eh(Rn) with 0 ≤ h ≤ k. By assump-
tion, we know that |43

vh
f(x)| ≤ [f ]γ,d,3|vh|γ/(2h+1) for any x ∈ Rn. It follows

that f(x+ ·) ∈ Cγ/(2h+1)
b (Eh(Rn)) and there exists C > 0 independent of f

and x such that ‖f(x+ ·)‖
C
γ/(2h+1)
b (Eh(Rn))

≤ C(‖f‖0 + [f ]γ,d,3), 0 ≤ h ≤ k.

Thus f ∈ Cγd (Rn).

3. Estimates on the diffusion semigroup associated to A. In this
section we consider the diffusion semigroup Pt associated to the operator A
(i.e., v(t, x) = (Ptg)(x) = Ptg(x) provides the classical solution to (1.3) when
H = 0 and g is smooth enough). We obtain L∞-estimates on the first, second
and third spatial partial derivatives of Ptf in terms of the Hölder norm of f .
These estimates will lead in the next section to Schauder estimates for (1.2)
and (1.3).

Let (Ω, (Ft)t≥0,F ,P) be a complete stochastic basis (satisfying the usual
assumptions; see, for instance, [24]). Let Wt, t ≥ 0, be a standard n-
dimensional Wiener process defined and adapted on the stochastic basis.
Let Xx

t be the unique (strong) solution to the SDE

(3.1) Xx
t = x+

t�

0

AXx
s ds+

t�

0

F (Xx
s ) ds+Q1/2Wt, t ≥ 0, x ∈ Rn,

P-a.s., where the matrix A is the same as in (1.1) and Q1/2 is the unique n×n
symmetric non-negative definite square root of Q. The diffusion semigroup
Pt associated to A is the family of linear contractions Pt : Bb(Rn)→ Bb(Rn),
t ≥ 0, defined by

(3.2) Ptg(x) := E[g(Xx
t )], t ≥ 0, g ∈ Bb(Rn), x ∈ Rn,

where the expectation is taken with respect to P. Introducing the Ornstein–
Uhlenbeck process Zxt which solves (3.1) when F = 0, i.e.,

(3.3) Zxt = etAx+ Z0
t , where Z0

t =
t�

0

e(t−s)AQ1/2 dWs,

we have Xx
t = Zxt +

	t
0 e

(t−s)AF (Xx
s ) ds.

Let us recall an application of the Girsanov theorem which will be used
in the proof of Theorem 3.3 (see also [29]). Fix t > 0 and x ∈ Rn, and define
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Q−1/2 =
(
Q
−1/2
0 0
0 0

)
; then consider the stochastic process

(3.4) Lxs := Ws −
s�

0

(Q−1/2F )(Zxr ) dr = Ws −
s�

0

G(Zxr ) dr, s ∈ [0, t],

where we have set G := Q−1/2F . By the Girsanov theorem, the process Lxs
is a Wiener process on (Ω, (Fs)s≤t,Ft,Q), where Q is a probability measure
on (Ω,Ft) having density Φ(t, x) with respect to P, i.e.,

Q(A) := E[1AΦ(t, x)]

for any A ∈ Ft, where

Φ(t, x) = exp
( t�

0

〈G(Zxs ), dWs〉 −
1
2

t�

0

|G(Zxs )|2 ds
)
.

The processes Zx = (Zxs ) and Xx = (Xx
s ), s ∈ [0, t], satisfy the same equa-

tion (3.1) in (Ω,Ft,Q, (Lxs )) and (Ω,Ft,P, (Ws)) respectively. Therefore, by
uniqueness, their laws on C([0, t]; Rn) are the same (under the probability
measures Q and P respectively). This implies that

(3.5) Ptf(x) = E[f(Xx
t )] = E[f(Zxt )Φ(t, x)], f ∈ Bb(Rn).

The next theorem is proved in [29]. It provides probabilistic formulae
and preliminary uniform estimates for the spatial partial derivatives of Ptf
up to the third order (the formula for the first derivatives was obtained
in [14]). The proof uses Malliavin calculus. Related formulae for the spatial
derivatives of degenerate diffusion semigroups are given in [4, 17].

Theorem 3.1. Under Hypothesis 1.1, the following statements hold :

(i) For any t > 0 and f ∈ Bb(Rn), the function Ptf(·) is three times
differentiable on Rn with all derivatives bounded up to the third order.

(ii) There exist random variables J1
i (t, x), J2

ij(t, x) and J3
ijr(t, x), t > 0,

x ∈ Rn, i, j, r ∈ {1, . . . , n}, which belong to Lq(Ω), for any q ≥ 1, and such
that

(3.6)

Di(Ptg)(x) = DiPtg(x) = E[g(Xx
t )J1

i (t, x)],

D2
ijPtg(x) = E[g(Xx

t )J2
ij(t, x)],

D3
ijrPtg(x) = E[g(Xx

t )J3
ijr(t, x)], g ∈ Cb(Rn).

(iii) For any t > 0, q ≥ 1, x ∈ Rn, we have the following estimates:

(3.7)

(a) E|J1
i (t, x)|q ≤ cq(t)|Q−1/2

t etAei|q;

(b) E|J2
ij(t, x)|q ≤ cq(t)|Q−1/2

t etAei|q|Q−1/2
t etAej |q;

(c) E|J3
ijr(t, x)|q ≤ cq(t)|Q−1/2

t etAei|q|Q−1/2
t etAej |q|Q−1/2

t etAer|q,
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where cq(t) is a continuous and increasing function on [0,∞), and cq(t) =
c(q, t, ‖DF‖0, ‖D2F‖0, ‖D3F‖0, p̃, ν1, A, n), where the integer p̃ is introduced
in (1.4).

It is worth noticing that the quantity |Q−1/2
t etAei|2, corresponding to

q = 2, has a well-known control-theoretic interpretation; see, for instance,
[35].

Furthermore, the following estimates are known (see [32] and [21, (3.4)]):

(3.8) |Q−1/2
t etAei| ≤

c

th+1/2
, ei ∈ Eh(Rn), 0 ≤ h ≤ k, t ∈ (0, 1].

where c=c(p̃, ν1, ν2, A, n) > 0 and the integer k is defined in (1.5). Estimates
(3.8) can also be deduced by purely control-theoretic arguments, using [35,
Proposition I.1.3] together with [2].

Corollary 3.2. There exists c = c(p̃, ν1, ν2, A, n, ‖DF‖0, ‖D2F‖0,
‖D3F‖0) > 0 such that the following estimates hold , for any t > 0, g ∈
Bb(Rn), and indices i ∈ Ih, j ∈ Ih′ and r ∈ Ih′′ , where h, h′, h′′ ∈ {0, . . . , k}:

(3.9)

‖DiPtg‖0 ≤ c
(

1
th+1/2

+ 1
)
‖g‖0,

‖D2
ijPtg‖0 ≤ c

(
1

th+h′+1
+ 1
)
‖g‖0,

‖D3
ijrPtg‖0 ≤ c

(
1

th+h′+h′′+3/2
+ 1
)
‖g‖0.

Proof. It is enough to prove the estimates when g ∈ Cb(Rn) (see, for
instance, [29, Remark 3.5]). Using Theorem 3.1 and (3.8), we first establish
the estimates assuming in addition that 0 < t < 1. We have, for any x ∈
Rn, t ∈ (0, 1),

|DiPtg(x)| ≤ ‖g‖0E|J1
i (t, x)| ≤ c1|Q−1/2

t etAei| ‖g‖0 ≤
c

th+1/2
‖g‖0.

In a similar way, we get the second and third estimates for t < 1.
When t ≥ 1, by the semigroup and contraction properties of Pt, we have

‖DiPtg‖0 = ‖DiP1/2(Pt−1/2g)‖0 ≤ c 2h+1/2‖P(2t−1)/2g‖0 ≤ c 2h+1/2‖g‖0
for any i ∈ Ih. Thus the required estimate of DiPtg is proved for any t > 0.
Similarly, we get the other estimates for any t > 0.

The main result of the section is the following theorem. Its proof also
allows one to complete the final part of the proof of [21, Theorem 3.4]. We
set a ∧ b = min(a, b).

Theorem 3.3. Fix any non-integer γ ∈ (0, 3). There exists c=c(γ, p̃, ν1,
ν2, A, n, ‖DF‖0, ‖D2F‖0, ‖D3F‖0) > 0 such that , for any f ∈ Cγd (Rn), t > 0,



128 E. Priola

and any indices i ∈ Ih, j ∈ Ih′ and r ∈ Ih′′ , where h, h′, h′′ ∈ {0, . . . , k},

(3.10)

(i) ‖DiPtf‖0 ≤ c
(

1
(t ∧ 1)(1−γ)/2+h

+1
)
‖f‖γ,d,

(ii) ‖D2
ijPtf‖0≤ c

(
1

(t ∧ 1)h+h′+(2−γ)/2 + 1
)
‖f‖γ,d,

(iii) ‖D3
ijrPtf‖0 ≤ c

(
1

th+h′+h′′+(3−γ)/2 + 1
)
‖f‖γ,d,

(iv) ‖Ptf‖γ,d ≤ c‖f‖γ,d.

Remark 3.4. Estimates (i)–(iv) will be used to get elliptic and parabolic
Schauder estimates for A. However, we stress that to prove elliptic Schauder
estimates we only need a special case of (3.10). More precisely, we need the
following estimates, for any θ ∈ (0, 1), f ∈ Cθd(Rn), t > 0 and any indices
i, j ∈ I0, r ∈ Ih, with h ∈ {0, . . . , k}:

(3.11)

(a) ‖DrPtf‖0 ≤ c
(

1
t(1−θ)/2+h

+ 1
)
‖f‖θ,d,

(b) ‖D2
ijPtf‖0 ≤ c

(
1

t(2−θ)/2
+ 1
)
‖f‖θ,d,

(c) ‖D3
ijrPtf‖0 ≤ c

(
1

t(3−θ)/2+h
+ 1
)
‖f‖θ,d,

(d) ‖Ptf‖θ,d ≤ c‖f‖θ,d.
These estimates are simpler to obtain than the general ones in which γ ∈
(0, 3). On the other hand, note that the estimates (3.10)(iv) with γ ∈ (2, 3)
are a particular case of the parabolic Schauder estimates corresponding to
H = 0 in (1.3) (see Theorem 4.3). Estimates (iv) with γ ∈ (2, 3) will be
deduced from (iii).

In order to prove the main result we need three preliminary lemmas. To
state the first one, we introduce the deterministic process

(3.12) Y x
t = etAx+

t�

0

e(t−s)AF (Y x
s ) ds, t ≥ 0, x ∈ Rn,

which solves {
Ẏt = AYt + F (Yt),
Y0 = x.

Lemma 3.5. For any q > 0, there exists C = C(q, p̃, ν1, ν2, n,A, ‖DF‖0)
> 0 such that

(3.13) sup
x∈Rn

E[(d(Xx
t , Y

x
t ))q] = sup

x∈Rn
E‖Xx

t − Y x
t ‖q ≤ Ctq/2, 0 ≤ t ≤ 1.
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Proof. Note that (3.13) is equivalent to the following assertion: for any
q > 0 and 0 ≤ h ≤ k, there exists C1 > 0 such that

(3.14) sup
x∈Rn

E|Eh(Xx
t − Y x

t )|q ≤ C1t
q(2h+1)/2, 0 ≤ t ≤ 1

(see (2.3)). Let us prove (3.14). Since there exists c > 0 such that |x| ≤
c
∑k

h=0 |Ehx| for any x ∈ Rn, we get

|Eh(Xx
t − Y x

t )| ≤
∣∣∣ t�

0

(Ehe(t−r)AE0)[F (Xx
r )− F (Y x

r )] dr
∣∣∣+ |EhZ0

t |

≤ c‖DF‖0
k∑
j=0

t�

0

‖Ehe(t−r)AE0‖L|Ej(Xx
r − Y x

r )|dr + |EhZ0
t |

P-a.s. Using the estimate (see [21, Lemma 3.1])

(3.15) ‖EhesAE0‖L ≤ c′′sh, s ∈ [0, 1], 0 ≤ h ≤ k, c′′ = c′′(A) > 0,

we arrive at

|Eh(Xx
t − Y x

t )| ≤ |EhZ0
t |+ C

t�

0

(t− r)h|Eh(Xx
r − Y x

r )| dr(3.16)

+ C

k∑
j=0, j 6=h

t�

0

(t− r)h|Ej(Xx
r − Y x

r )| dr

P-a.s. Now we use the fact that |Ej(Xx
r −Y x

r )| ≤ |Xx
r −Y x

r | for any 0 ≤ j ≤ k.
In order to estimate |Xx

r − Y x
r |, note that

|Xx
t − Y x

t | ≤ C ′
t�

0

|Xx
s − Y x

s | ds+ |Z0
t |.

An application of the Gronwall lemma gives, P-a.s.,

(3.17) |Xx
t − Y x

t | ≤ |Z0
t |+ C ′

t�

0

|Z0
s |e(t−s)C

′
ds ≤ |Z0

t |+ C1

t�

0

|Z0
s | ds

for 0 ≤ t ≤ 1. Using estimate (3.17) in (3.16) we get

|Eh(Xx
t − Y x

t )| ≤ |EhZ0
t |+ C

t�

0

(t− r)h|Eh(Xx
r − Y x

r )| dr

+ Ck

t�

0

(t− r)h
[
|Z0
r |+ C1

r�

0

|Z0
s | ds

]
dr

P-a.s. Let now q ∈ Z+ and recall that 0 ≤ t ≤ 1. We have
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|Eh(Xx
t − Y x

t )|q ≤ C3

(
|EhZ0

t |q +
t�

0

|Eh(Xx
r − Y x

r )|q dr

+
t�

0

(t− r)hq
[
|Z0
r |q +

r�

0

|Z0
s |q ds

]
dr
)

P-a.s. Before applying the expectation in the last formula, we check that

(3.18) E|EhZ0
t |q = E

∣∣∣ t�
0

Ehe
(t−s)AQ1/2 dWs

∣∣∣q ≤ cq,htq(2h+1)/2

for 0 ≤ t ≤ 1, q > 0, and 0 ≤ h ≤ k, where Eh are the orthogonal projections
introduced in (2.2). Denoting by N(0, Qt) the Gaussian measure on Rn with
mean 0 and covariance matrix Qt given in (2.1), we have

E|EhZ0
t |q =

�

Rn
|Ehy|qN(0, Qt) dy =

�

Rn
|EhQ

1/2
t z|qN(0, I) dz(3.19)

≤ ‖EhQ
1/2
t ‖

q
L

�

Rn
|z|qN(0, I) dz ≤ ctq(2h+1)/2

for t ≤ 1, where I is the n×n identity matrix. In the last inequality we have
used the fact that ‖EhQ

1/2
t ‖L ≤ c′t(2h+1)/2 for 0 ≤ t ≤ 1 and 0 ≤ h ≤ k,

where c′ = c′(p̃, n, A, ν1, ν2) (see [21, (3.2)]).
By (3.18), we infer

E|Eh(Xx
t − Y x

t )|q ≤ C3

(
E|EhZ0

t |q +
t�

0

E|Eh(Xx
r − Y x

r )|q dr

+
t�

0

(t− r)hq
[
E|Z0

r |q +
r�

0

E|Z0
s |q ds

]
dr
)

≤ C4

(
tq(2h+1)/2 +

t�

0

E|Eh(Xx
r − Y x

r )|q dr +
t�

0

(t− r)hq
[
rq/2 +

r1+q/2

1 + q/2

]
dr

)
.

Since
t�

0

(t− s)psr ds =
p!

(r + p+ 1)(r + p) . . . (r + 1)
tr+p+1, p ∈ Z+, r > 0,

we find

E|Eh(Xx
t − Y x

t )|q

≤ C5

(
tq(2h+1)/2 +

t�

0

E|Eh(Xx
r − Y x

r )|q dr + 2
t�

0

(t− r)hqrq/2 dr
)
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≤ C6

(
tq(2h+1)/2 +

t�

0

E|Eh(Xx
r − Y x

r )|q dr + thq+1+q/2
)

≤ 2C6

(
tq(2h+1)/2 +

t�

0

E|Eh(Xx
r − Y x

r )|q dr
)
, t ≤ 1.

Applying the Gronwall lemma, we get

E|Eh(Xx
t − Y x

t )|q ≤ C7t
q(2h+1)/2, 0 ≤ t ≤ 1.

Now if q > 0, we consider an integer m ≥ q. By the Jensen inequality,

(E|Eh(Xx
t − Y x

t )|q)m/q ≤ E|Eh(Xx
t − Y x

t )|m ≤ Ctm(2h+1)/2, t ≤ 1.

This implies that E|Eh(Xx
t − Y x

t )|q ≤ Cq/mtq(2h+1)/2. The assertion is
proved.

Lemma 3.6. There exists Ω0 ∈ F with P(Ω0) = 1 such that for any
ω ∈ Ω0 and t ∈ [0, 1], the mapping x 7→ Xx

t (ω) ∈ Rn is differentiable up to
the third order on Rn. Furthermore, for any i, j, r ∈ {0, . . . , n} and x ∈ Rn,
there exist continuous adapted stochastic processes (ηi(t, x)), (ηij(t, x)) and
(ηijr(t, x)) with values in Rn and C = C(‖DF‖0, ‖D2F‖0, ‖D3F‖0, ‖A‖L) >
0 such that

ηi(t, x) = DiX
x
t = lim

h→0
(Xx+hei

t −Xx
t )h−1,

ηij(t, x) = D2
ijX

x
t , ηijr(t, x) = D3

ijrX
x
t ,

|ηi(t, x)|+ |ηij(t, x)|+ |ηijr(t, x)| ≤ C,

P-a.s. for any t ∈ [0, 1] and x ∈ Rn.

Proof. The proof is straightforward. We include it for the sake of com-
pleteness. For ω ∈ Ω, P-a.s., introduce the Banach space E = C([0, 1]; Rn).
Define the map F : Rn × E → E by

F(x, u)(t) := u(t)− x−
t�

0

(Au(r) + F (u(r))) dr −
√
QWt(ω)

for t ∈ [0, 1], u ∈ E, and x ∈ Rn. Applying the implicit function theo-
rem, we find that the mapping x 7→ Xx

(·)(ω) from Rn into E is three times
Fréchet differentiable. Denote by ηi(t, x), ηij(t, x) and ηijr(t, x) t ∈ [0, 1],
respectively the first (directional) derivative at x ∈ Rn in the direction
ei, the second derivative at x in the directions ei and ej , and the third
derivative at x in the directions ei, ej and er, where i, j, r = 1, . . . , n.
Note that ηi(t, x), ηij(t, x) and ηijr(t, x) solve, P-a.s., the variation equa-
tions
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ηi(t, x) = ei +
t�

0

(Aηi(s, x) +DF (Xx
s )[ηi(s, x)]) ds,

ηij(t, x) =
t�

0

(
Aηij(s, x)

+D2F (Xx
s )[ηi(s, x)][ηj(s, x)] +DF (Xx

s )[ηij(s, x)]
)
ds,

ηijr(t, x) =
t�

0

(
Aηijr(s, x) +D3F (Xx

s )[ηi(s, x)][ηj(s, x)][ηr(s, x)]
)
ds

+
t�

0

(
D2F (Xx

s )[ηir(s, x)][ηj(s, x)]

+D2F (Xx
s )[ηi(s, x)][ηjr(s, x)] +DF (Xx

s )[ηijr(s, x)]
)
ds,

for t ∈ [0, 1]. It follows easily that (ηi(·, x)), (ηij(·, x)) and (ηijr(·, x)) are
continuous adapted stochastic processes. An application of the Gronwall
lemma gives the final assertion.

Lemma 3.7. Let f ∈ Cγd (Rn), γ ∈ (2, 3), and i, j, r ∈ {1, . . . , n}. Con-
sider the following random variables depending on t ∈ (0, 1) and x ∈ Rn (see
(2.6) and (3.6)):

Λ(t, x) = 〈DE0f(Y x
t ), E0(Xx

t − Y x
t )〉

+ 1
2〈D

2
E0
f(Y x

t )[E0(Xx
t − Y x

t )], E0(Xx
t − Y x

t )〉.
The functions φi(x, t) = E[Λ(t, x)J1

i (t, x)], φij(x, t) = E[Λ(t, x)J2
ij(t, x)],

φijr(x, t) = E[Λ(t, x)J3
ijr(t, x)], x ∈ Rn, t ∈ (0, 1), are continuous and

bounded on Rn × (0, 1).

Proof. Let us deal with φi. We define the deterministic function K :
Rn × Rn × [0, 1]→ R by

K(x, z, t) = 〈DE0f(Y z
t ), E0(x−Y z

t )〉+ 1
2〈D

2
E0
f(Y z

t )[E0(x−Y z
t )], E0(x−Y z

t )〉
and gi : Rn × Rn × (0, 1]→ R by

gi(x, z, t) = E[K(Xx
t , z, t)J

1
i (t, x)], x, z ∈ Rn, t ∈ (0, 1].

Note that φi(x, t) = gi(x, x, t) for x ∈ Rn and t ∈ (0, 1). We first prove that

(3.20) gi(x, z, t) = Di(E[K(X(·)
t , z, t)])(x) = E[〈DxK(Xx

t , z, t), ηi(t, x)〉]
for x, z ∈ Rn and t ∈ (0, 1) (here Dxi = Di denotes the partial deriva-
tive with respect to ei and Dx denotes the gradient in the x-variable; ηi is
introduced in Lemma 3.6). To this end, observe that

(3.21) |K(x, z, t)|+ |DxiK(x, z, t)|+ |D2
xixjK(x, z, t)|+ |D3

xixjxrK(x, z, t)|

≤ 8‖f‖γ,d(1 + |E0(x− Y z
t )|2)
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for t ∈ [0, 1], x, z ∈ Rn, and i, j, r ∈ {1, . . . , n}. Furthermore, an application
of the Gronwall lemma shows that

(3.22) |Xx
t | ≤ e(‖A‖L+‖DF‖0)(|x|+ |F (0)|+ ‖

√
Q‖L sup

s≤1
|Ws|)

for t ∈ [0, 1] and x ∈ Rn, P-a.s. By (3.21) and (3.22), using Lemma 3.6, we
get the existence of the partial derivatives

Dxi(E[K(X(·)
t , z, t)])(x) = E[〈DxK(Xx

t , z, t), ηi(t, x)〉]
for x, z ∈ Rn, t ∈ (0, 1), and 1 ≤ i ≤ n. To obtain (3.20), we consider test
functions ϕm ∈ C∞0 (Rn) such that 0 ≤ ϕm ≤ 1 for m ∈ N, ϕm(x) = 1 when
|x| ≤ n, ϕm(x) = 0 when |x| > m + 1, and |Dϕm(x)| ≤ 1 for x ∈ Rn and
m ∈ N. By Theorem 3.1 and Lemma 3.6, we know that, for x, z ∈ Rn, t ∈
(0, 1) and m ∈ N,

Dxi(E[K(X(·)
t , z, t)ϕm(X(·)

t )])(x) = E[K(Xx
t , z, t)ϕm(Xx

t )J1
i (t, x)]

= E[〈DxK(Xx
t , z, t), ηi(t, x)〉ϕm(Xx

t ) +K(Xx
t , z, t) 〈Dϕm(Xx

t ), ηi(t, x)〉].
Passing to the limit as m→∞, we get (3.20) by the dominated convergence
theorem. By (3.20), (3.21) and Lemma 3.6, we have (setting z = x)

|φi(x, t)| = |gi(x, x, t)| ≤ E[|DxiK(Xx
t , x, t)| |ηi(t, x)|]

≤ 8‖ηi‖L∞‖f‖γ,d(1 + E[|E0(Xx
t − Y x

t )|2])

for any x ∈ Rn and t ∈ (0, 1). Applying Lemma 3.5, we get

sup
x∈Rn, t∈(0,1)

|φi(x, t)| ≤ 8c‖ηi‖L∞‖f‖γ,d sup
t∈(0,1)

|1 + t| ≤ 16c‖ηi‖L∞‖f‖γ,d.

To deal with φij and φijr we proceed similarly. For φij we introduce

gij(x, z, t) = E[K(Xx
t , z, t)J

2
ij(t, x)] = D2

ij(E[K(X(·)
t , z, t)])(x)

= E[〈D2
xK(Xx

t , z, t)[ηj(t, x)], ηi(t, x)〉+ 〈DxK(Xx
t , z, t), ηij(t, x)〉].

Since φij(x, t) = gij(x, x, t), we obtain the assertion for φij using (3.21) and
Lemmas 3.6 and 3.5, as before. To deal with φijr we introduce gijr(x, z, t) =
E[K(Xx

t , z, t)J
3
ijr(t, x)]. Note that

gijr(x, z, t) = E[〈D3
xK(Xx

t , z, t)[ηr(t, x)][ηj(t, x)], ηi(t, x)〉
+ 〈D2

xK(Xx
t , z, t)[ηjr(t, x)], ηi(t, x)〉+ 〈D2

xK(Xx
t , z, t)[ηj(t, x)], ηir(t, x)〉

+ 〈D2
xK(Xx

t , z, t)[ηr(t, x)], ηij(t, x)〉+ 〈DxK(Xx
t , z, t), ηijr(t, x)〉].

Since φijr(x, t) = gijr(x, x, t), we get the assertion for φijr proceeding as for
φi and φij . The proof is complete.

Proof of Theorem 3.3. Thanks to Corollary 3.2, it is enough to prove all
the estimates for 0 < t < 1. Indeed, concerning (iv) in (3.10), we have, for



134 E. Priola

t ≥ 1 and f ∈ Cγd (Rn),

‖Ptf‖γ,d =
k∑

m=0

sup
z∈Rn

‖(Ptf)(z + ·)‖
C
γ/(2m+1)
b (Em(Rn))

≤ c′
k∑

m=0

(‖f‖0 + sup
z∈Rn

‖(Ptf)(z + ·)‖C3
b (Em(Rn))) ≤ c2‖f‖0.

We will show the estimates for γ ∈ (2, 3). Indeed, the cases of γ ∈ (0, 1)
and γ ∈ (1, 2) can be handled similarly and are even simpler. Alternatively,
once we have proved the estimates for γ ∈ (2, 3), the remaining estimates
can be obtained by an interpolation argument. Let us briefly explain this
method, which has also been used in the proof of [21, Theorem 3.4]. We
assume that (i)–(iv) hold for γ = 5/2 and show that they also hold for
any fixed γ′ ∈ (0, 2), γ′ 6= 1. By [21, Theorem 2.2], we know in particular
that

(3.23) (Cb(Rn), C5/2
d (Rn))2γ′/5,∞ = Cγ

′

d (Rn).

To be precise, (3.23) is proved in [21] with Cb(Rn) denoting the Banach space
of all real continuous bounded functions on Rn. However, the same proof
works when we consider Cb(Rn) as the space of all real uniformly continuous
and bounded functions. Concerning estimate (iv) in (3.10), by (3.23) and
[23, Proposition 1.2.6] we get

‖Pt‖L(Cγ
′
d (Rn),Cγ

′
d (Rn))

≤ (‖Pt‖L(Cb(Rn),Cb(Rn)))
1−2γ′/5(‖Pt‖L(C5/2d (Rn),C5/2d (Rn))

)2γ
′/5 ≤ C

for t ≥ 0. As for (iii), we fix x ∈ Rn and t ∈ (0, 1], and define the linear
operator Tx,t : Cγ

′

d (Rn) → R by Tx,tf := D3
ijrPtf(x) for any f ∈ Cγ

′

d (Rn).
We have

‖Tx,t‖L(Cγ
′
d (Rn),R)

≤ (‖Tx,t‖L(Cb(Rn),R))
1−2γ′/5(‖Tx,t‖L(C

5/2
d (Rn),R)

)2γ
′/5

≤ ct−(3/2+h+h′+h′′)+γ′/2

for t ∈ (0, 1] (uniformly in x ∈ Rn). In a similar way, one can prove (i) and
(ii) for γ′.

Proof of (3.10)(i) for t ∈ (0, 1), γ ∈ (2, 3) and i ∈ Ih. We start from
(3.6) and write DiPtf(x) = Λ1(t, x) + Λ2(t, x) where

Λ1(t, x) = E
[{
f(Xx

t )− f
(
E0X

x
t +

k∑
h=1

EhY
x
t

)}
J1
i (t, x)

]
,
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Λ2(t, x) = E
[
f
(
E0X

x
t +

k∑
h=1

EhY
x
t

)
J1
i (t, x)

]
,

where (Y x
t ) is defined in (3.12). Let us deal with Λ1 and Λ2 separately.

Using (3.7), (3.8) and Lemma 3.5, we have (since 0 < γ/(2m + 1) < 1 if
m = 1, . . . , k)

|Λ1(t, x)| ≤ c‖f‖γ,dE
[{ k∑

m=1

|Em(Xx
t − Y x

t )|γ/(2m+1)
}
|J1
i (t, x)|

]
≤ c′‖f‖γ,d(E‖Xx

t − Y x
t ‖2γ)1/2(E|J1

i (t, x)|2)1/2

≤ c2‖f‖γ,dtγ/2t−(h+1/2) = c2‖f‖γ,dt(γ−1)/2−h

for t ∈ (0, 1), uniformly in x ∈ Rn. Let us turn to the more difficult term Λ2.
We write Λ2(t, x) = Λ21(t, x) + Λ22(t, x), where

Λ21(t, x) = E
[(
f
(
E0X

x
t +

k∑
m=1

EmY
x
t

)
− f(Y x

t )

− 〈DE0f(Y x
t ), E0(Xx

t − Y x
t )〉

− 1
2〈D

2
E0
f(Y x

t )[E0(Xx
t − Y x

t )], E0(Xx
t − Y x

t )〉
)
J1
i (t, x)

]
,

Λ22(t, x) = E
[(
〈DE0f(Y x

t ), E0(Xx
t − Y x

t )〉
+ 1

2〈D
2
E0
f(Y x

t )[E0(Xx
t − Y x

t )], E0(Xx
t − Y x

t )〉
)
J1
i (t, x)

]
(see (2.6)). Note that, since (Y x

t ) is deterministic,

E[f(Y x
t )J1

i (t, x)] = f(Y x
t )E[J1

i (t, x)] = f(Y x
t )Di(Pt1)(x) = 0

for x ∈ Rn and t > 0. To estimate Λ21, note that f(x + ·) ∈ Cγb (E0(Rn)),
γ ∈ (2, 3), uniformly in x. By the mean value theorem, we have

sup
x∈Rn

|Λ21(t, x)| ≤ ‖f‖γ,d sup
x∈Rn

E[|E0(Xx
t − Y x

t )|γ |J1
i (t, x)|]

≤ ‖f‖γ,d sup
x∈Rn

(E[|E0(Xx
t − Y x

t )|2γ ])1/2 · sup
x∈Rn

(E|J1
i (t, x)|2)1/2

≤ c3‖f‖γ,dt(γ−1)/2−h

(see also (3.14)). Finally, using Lemma 3.7, we infer

sup
x∈Rn, t∈(0,1)

|Λ22(t, x)| = c4 <∞.

Proof of (3.10)(ii) and (iii) for t ∈ (0, 1) and γ ∈ (2, 3). These estimates
can be obtained proceeding as in the proof of (3.10)(i). We only prove (ii).
Let i ∈ Ih and j ∈ Ih′ . We write

D2
ijPtf(x) = Λ̃1(t, x) + Λ̃21(t, x) + Λ̃22(t, x),
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where

Λ̃1(t, x) = E
[{
f(Xx

t )− f
(
E0X

x
t +

k∑
h=1

EhY
x
t

)}
J2
ij(t, x)

]
,

Λ̃21(t, x) = E
[(
f
(
E0X

x
t +

k∑
h=1

EhY
x
t

)
− f(Y x

t )

− 〈DE0f(Y x
t ), E0(Xx

t − Y x
t )〉

− 1
2〈D

2
E0
f(Y x

t )[E0(Xx
t − Y x

t )], E0(Xx
t − Y x

t )〉
)
J2
ij(t, x)

]
,

Λ̃22(t, x) = E
[(
〈DE0f(Y x

t ), E0(Xx
t − Y x

t )〉
+ 1

2〈D
2
E0
f(Y x

t )[E0(Xx
t − Y x

t )], E0(Xx
t − Y x

t )〉
)
J2
ij(t, x)

]
,

for t ∈ (0, 1), and x ∈ Rn. We have (using (3.7), (3.8), and Lemmas 3.5 and
3.7)

sup
x∈Rn

|Λ̃1(t, x)| ≤ c‖f‖γ,d sup
x∈Rn

E
[{ k∑

m=1

|Em(Xx
t − Y x

t )|γ/(2m+1)
}
|J2
ij(t, x)|

]
≤ c2‖f‖γ,dt(γ−2)/2−h−h′ .

By the mean value theorem, we find

sup
x∈Rn

|Λ̃21(t, x)| ≤ ‖f‖γ,d sup
x∈Rn

E[|E0(Xx
t − Y x

t )|γ |J2
ij(t, x)|]

≤ c‖f‖γ,dt(2γ−2)/2−h−h′ .

Using Lemma 3.7, we infer

sup
x∈Rn, t∈(0,1)

|Λ̃22(t, x)| = c5 <∞.

Proof of (3.10)(iv) for t ∈ (0, 1) and γ ∈ (2, 3). We have to show that,
for any 0 ≤ h ≤ k, f ∈ Cγd (Rn), t ∈ (0, 1),

(3.24) sup
x∈Rn

‖Ptf(x+ ·)‖
C
γ/2h+1
b (Eh(Rn))

≤ c‖f‖γ,d.

Fix h and f ∈ Cγd (Rn) and consider

43
vh

(Ptf)(x) = Ptf(x)− 3Ptf(x+ vh) + 3Ptf(x+ 2vh)− Ptf(x+ 3vh)

for x ∈ Rn and vh ∈ Eh(Rn) with |vh| ≤ 1 and vh 6= 0. By (2.8) the assertion
(3.24) is equivalent to the estimate

(3.25) sup
x∈Rn

|43
vh

(Ptf)(x)| ≤ c1‖f‖γ,d|vh|γ/(2h+1),

where c1 is independent of f , t and vh. We prove (3.25) considering first the
case of |vh| ≤ t(2h+1)/2 < 1 and then 1 ≥ |vh| > t(2h+1)/2 (cf. [21, p. 148]).
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(a) Let |vh|≤ t(2h+1)/2<1. Using the mean value theorem and (3.10)(iii),
we get, for any t ∈ (0, 1),

sup
x∈Rn

|43
vh

(Ptf)(x)| ≤ sup
x∈Rn, i,j,r∈Ih

‖D3
ijrPtf‖0|vh|3

≤ c 1
t3h+(3−γ)/2 ‖f‖γ,d|vh|

3

≤ c 1

|vh|
2

2h+1
6h+3−γ

2

‖f‖γ,d|vh|3 = c‖f‖γ,d|vh|γ/(2h+1).

(b) Let 1 ≥ |vh| > t(2h+1)/2. We first estimate ‖etAvh‖. We use the
estimates

(3.26) ‖EietAEh‖L ≤
{
cti−h, 0 ≤ h ≤ i ≤ k,
ct, 0 ≤ i < h ≤ k,

for t ∈ [0, 1] (see [21, Lemma 3.1]) where c = c(A) > 0. Since t ≤ |vh|2/(2h+1)

≤ 1, we get

‖etAvh‖ =
h−1∑
i=0

|EietAEhvh|
1

2i+1 +
k∑
i=h

|EietAEhvh|
1

2i+1(3.27)

≤ c1
h−1∑
i=0

|tvh|
1

2i+1 + c1

k∑
i=h

t
i−h
2i+1 |vh|

1
2i+1

≤ c1h|vh|
1

2h+1 + c1

k∑
i=h

|vh|
1

2i+1
+ i−h

2i+1
2

2h+1

≤ c1(k + 1)|vh|
1

2h+1 .

To finish the proof we will use the Girsanov theorem (see (3.4)). First note
that

43
vh

(Ptf)(x) = E[f(Zxt )Φ(t, x)− 3f(Zx+vht )Φ(t, x+ vh)

+ 3f(Zx+2vh
t )Φ(t, x+ 2vh)− f(Zx+3vh

t )Φ(t, x+ 3vh)]
= A1(t, x) +A2(t, x),

where

A1(t, x) = E[(f(Zxt )− 3f(Zx+vht ) + 3f(Zx+2vh
t )− f(Zx+3vh

t ))Φ(t, x)],

A2(t, x) = 3E[f(Zx+vht )(Φ(t, x)− Φ(t, x+ vh))]

+ 3E[f(Zx+2vh
t )(Φ(t, x+ 2vh)− Φ(t, x))]

+ E[f(Zx+3vh
t )(Φ(t, x)− Φ(t, x+ 3vh))].

Let us deal with A1. We find, for any x ∈ Rn, t ∈ (0, 1), thanks to Lemma 2.1,
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|A1(t, x)| ≤ E[|43
etAvh

f(etAx+ Z0
t )|Φ(t, x)] ≤ ‖f‖γ,d‖etAvh‖γ

≤ c‖f‖γ,d|vh|γ/(2h+1)

(in the last inequality we have used (3.27)). It remains to consider A2. We
have A2(t, x) = A21(t, x) +A22(t, x), where

A21(t, x) = E[f(Zxt )(Φ(t, x)− 3Φ(t, x+ vh)
+ 3Φ(t, x+ 2vh)− Φ(t, x+ 3vh))],

A22(t, x) = 3E[(f(Zx+vht )− f(Zxt ))(Φ(t, x)− Φ(t, x+ vh))]

+ 3E[(f(Zx+2vh
t )− f(Zxt ))(Φ(t, x+ 2vh)− Φ(t, x))]

+ E[(f(Zx+3vh
t )− f(Zxt ))(Φ(t, x)− Φ(t, x+ 3vh))].

In order to deal with A21, note that the map x 7→ Φ(t, x) is three times
Fréchet differentiable from Rn to L1(Ω). We need to estimate the norm of
the first, second and third Fréchet derivatives of Φ(t, ·) (the derivatives will
be denoted DxΦ(t, x), D2

xxΦ(t, x) and D3
xxxΦ(t, x) respectively).

For any x, h ∈ Rn, we find (setting G = Q−1/2F )

DxΦ(t, x)[h] = Φ(t, x)
t�

0

〈DG(Zxs )esAh, dLxs 〉

= Φ(t, x)
( t�

0

〈DG(Zxs )esAh, dWs〉−
t�

0

〈DG(Zxs )esAh,G(Zxs )〉 ds
)
,

since Lxs := Ws −
	s
0G(Zxr ) dr for s ∈ [0, t] (see (3.4)). By the Girsanov

theorem, we have

E|DxΦ(t, x)[h]| = E
∣∣∣ t�
0

〈DG(Xx
s )esAh, dWs〉

∣∣∣ ≤ e‖A‖L |h|t1/2‖DG‖0(3.28)

≤ e‖A‖L |h| ‖DG‖0, t ∈ [0, 1], h ∈ Rn.

It follows that ‖DxΦ(t, x)‖L(Rn,L1(Ω)) ≤ e‖A‖‖Q−1/2
0 ‖L(Rp̃)‖DF‖0 for t ∈

[0, 1]. Similarly, for the second Fréchet derivative we have

D2
xxΦ(t, x)[h][k] = Φ(t, x)

( t�
0

〈DG(Zxs )esAh, dLxs 〉
)( t�

0

〈DG(Zxs )esAk, dLxs 〉
)

+ Φ(t, x)
( t�

0

〈D2G(Zxs )[esAk][esAh], dLxs 〉

−
t�

0

〈DG(Zxs )[esAh], DG(Zxs )[esAk]〉 ds
)
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for h, k ∈ Rn. It follows, by the Girsanov theorem, that

E|D2
xxΦ(t, x)[h][k]| ≤ c2|h| |k|(‖DG‖20 + ‖D2G‖0), t ∈ [0, 1], h, k ∈ Rn.

In a similar way, we get

E|D3
xxxΦ(t, x)[h][k][u]| ≤ c|h| |k| |u|(‖DG‖30 + ‖DG‖20 + ‖D2G‖20 + ‖D3G‖0)

≤ C1|h| |k| |u|, t ∈ [0, 1], h, k, u ∈ Rn,

where C1 = C1(‖A‖L, ν1, p̃, ‖DF‖0, ‖D2F‖0, ‖D3F‖0) > 0. Using the last
estimate, we find

|A21(t, x)| ≤ ‖f‖0‖Φ(t, x)−3Φ(t, x+vh)+3Φ(t, x+2vh)−Φ(t, x+3vh)‖L1(Ω)

≤ ‖f‖0 sup
|u|,|h|,|k|≤1, x∈Rn

‖D3
xxxΦ(t, x)[h][k][u]‖L1(Ω)|vh|3 ≤ C1‖f‖0|vh|3

for x ∈ Rn and t ∈ [0, 1]. It remains to consider A22. This is the sum of three
terms which can be treated in the same way. Let us estimate the first term
(without the factor 3). By (3.27), we find (recall that γ ∈ (2, 3))

E|(f(Zx+vht )− f(Zxt ))(Φ(t, x)− Φ(t, x+ vh))|
≤ ‖f‖γ,d‖etAvh‖E|Φ(t, x)− Φ(t, x+ vh)|
≤ c‖f‖γ,d|vh|1/(2h+1)‖Φ(t, x)− Φ(t, x+ vh)‖L1(Ω).

By (3.28), since |vh| > t(2h+1)/2,

E|(f(Zx+vht )− f(Zxt ))(Φ(t, x)− Φ(t, x+ vh))|
≤ e‖A‖L‖f‖γ,d|vh|1/(2h+1)|vh|t1/2‖DG‖0 ≤ c′|vh|2/(2h+1)+1‖f‖γ,d.

We obtain supx∈Rn |A22(t, x)| ≤ c3|vh|(3+2h)/(2h+1)‖f‖γ,d for t ∈ (0, 1). The
estimates obtained for A1(t, x) and A2(t, x) yield (3.25).

4. Elliptic and parabolic Schauder estimates. Here we prove el-
liptic and parabolic Schauder estimates for A using the L∞-estimates of
the previous section. Our method is different from [21, 5, 20, 31] (see The-
orems 4.2 and 4.3). Before proving Schauder estimates, we show existence
and uniqueness of distributional solutions for (1.2) and (1.3).

Let λ > 0 and f ∈ Cb(Rn) (i.e., f is uniformly continuous and bounded
on Rn). We say that a function u ∈ Cb(Rn) is a distributional solution to
the elliptic equation

(4.1) λu(x)−Au(x) = f(x), x ∈ Rn,

if λ
	
Rn u(x)φ(x) dx =

	
Rn u(x)A∗φ(x) dx +

	
Rn f(x)φ(x) dx for any φ ∈

C∞0 (Rn), where A∗ is the formal adjoint of A, i.e.,

A∗φ(x) = 1
2 Tr(QD2φ(x))− 〈Ax+ F (x), Dφ(x)〉 − φ(x)[divF (x) + Tr(A)].



140 E. Priola

Let g ∈ Cb(Rn), T > 0 and H : [0, T ] × Rn → R be a continuous bounded
function. We say that a continuous bounded function v : [0, T ] × Rn → R
such that v(0, x) = g(x) for x ∈ Rn is a space-distributional solution to the
parabolic Cauchy problem

(4.2)

{
∂tv(t, x) = Av(t, x) +H(t, x), t ∈ (0, T ], x ∈ Rn,

v(0, x) = g(x), x ∈ Rn,

if the following conditions hold:

(i) v(t, ·) ∈ Cb(Rn) uniformly in t ∈ [0, T ] (i.e., for any ε > 0 there exists
δ > 0 such that if y ∈ Rn and |y| < δ, we have supt∈[0,T ], x∈Rn |v(t, x+ y)−
v(t, x)| < ε);

(ii) for any φ ∈ C∞0 (Rn), the real function t 7→
	
Rn v(t, x)φ(x) dx is

continuously differentiable on [0, T ] and furthermore for t ∈ [0, T ],

(4.3)
d

dt

( �

Rn
v(t, x)φ(x) dx

)
=

�

Rn
v(t, x)A∗φ(x) dx+

�

Rn
H(t, x)φ(x) dx.

Theorem 4.1. Let λ > 0 and f ∈ Cb(Rn). Then there exists a unique
distributional solution u ∈ Cb(Rn) to the equation (4.1). Furthermore, u is
given by

(4.4) u(x) =
∞�

0

e−λt(Ptf)(x) dt =
∞�

0

e−λtPtf(x) dt, x ∈ Rn,

where Pt is the diffusion semigroup introduced in (3.2).
Let g ∈ Cb(Rn), T > 0 and H : [0, T ] × Rn → R be continuous and

bounded. Then there exists a unique space-distributional solution v to the
Cauchy problem (4.2). Furthermore, setting

t�

0

Pt−sH(s, x) ds :=
t�

0

Pt−s(H(s, ·))(x) ds,

we have

(4.5) v(t, x) = Ptg(x) +
t�

0

Pt−sH(s, x) ds, x ∈ Rn, t ∈ [0, T ].

Proof. Uniqueness. We first consider the elliptic case. Fix λ > 0 and let
u ∈ Cb(Rn) be any distributional solution to (4.1) with f = 0.

Take a ρ ∈ C∞0 (Rn) such that ‖ρ‖L1(Rn) = 1, 0 ≤ ρ ≤ 1 and ρ(x) = 0
if |x| ≥ 1. Define a sequence of mollifiers (ρm) ⊂ C∞0 (Rn) by ρm(x) :=
mnρ(mx) for x ∈ Rn and m ∈ N. Consider the functions um ∈ C∞b (Rn)
obtained by convolution of u with ρm, i.e., um = u ∗ ρm. Setting B(x) :=
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Ax+ F (x), x ∈ Rn, we use the identity

A∗[ρm(x− ·)](y) + 〈B(x)−B(y), Dρm(x− y)〉+ ρm(x− y) divB(y)
= A[ρm(· − y)](x), x, y ∈ Rn,

to get

Aum(x) =
�

Rn
u(y)A[ρm(· − y)](x) dy(4.6)

=
�

Rn
u(y)A∗[ρm(x− ·)](y) dy +Rm,1(x) +Rm,2(x)

=
�

Rn
λu(y)ρm(x− y) dy +Rm,1(x) +Rm,2(x),

where

Rm,1(x) =
�

Rn
u(y) divB(y) ρm(x− y) dy,

Rm,2(x) =
�

Rn
u(y)〈B(x)−B(y), Dρm(x− y)〉 dy.

Changing variable as in [20, p. 559], we obtain

Rm,2(x) = m
�

Rn
u(x− z/m)〈B(x)−B(x− z/m), Dρ(z)〉 dz.

It follows that Rm,2 converges as m→∞, uniformly on Rn, to the function

x 7→ u(x)
n∑

i,k=1

�

Rn
DkBi(x)zkDiρ(z) dz = −u(x) divB(x).

On the other hand, it is easy to see that Rm,1 converges as m → ∞, uni-
formly on Rn, to udivB. It follows that limm→∞(Rm,1 + Rm,2) = 0 in
Cb(Rn). Hence we have obtained

lim
m→∞

(‖Aum − λu‖0 + ‖um − u‖0) = 0.

By the classical maximum principle (see [3]) we deduce that ‖um‖0 ≤
(1/λ)‖λum − Aum‖0. Letting m → ∞, we find that ‖u‖0 = 0, and this
gives the assertion.

We now prove uniqueness in the parabolic case. To this end, we take
H = 0 and g = 0 in (4.2) and consider any space-distributional solution v.
We introduce as before a sequence of mollifiers (ρm) ⊂ C∞0 (Rn) and define

vm(t, x) =
�

Rn
v(t, y)ρm(x− y) dy, t ∈ [0, T ], x ∈ Rn, m ∈ N.

It is clear that vm is continuous and bounded on [0, T ]× Rn. Furthermore,
it has continuous and bounded spatial partial derivatives of any order on
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[0, T ]×Rn. Thanks to assumption (i), vm converges to v asm→∞ uniformly
on [0, T ]× Rn.

By (4.3), for t ∈ [0, T ] and x ∈ Rn, we have

∂tvm(t, x) =
�

Rn
v(t, y)A∗[ρm(x− ·)](y) dy(4.7)

=
�

Rn
v(t, y)A[ρm(· − y)](x) dy + Sm,1(t, x) + Sm,2(t, x)

= Avm(t, x) + Sm,1(t, x) + Sm,2(t, x),

where

Sm,1(t, x) = −
�

Rn
v(t, y) divB(y) ρm(x− y) dy,

Sm,2(t, x) = −
�

Rn
v(t, y)〈B(x)−B(y), Dρm(x− y)〉 dy.

Note that limm→∞ supt∈[0,T ], x∈Rn |Sm,1(t, x) + Sm,2(t, x)| = 0. Further-
more, since vm is a classical solution to{

∂tvm(t, x) = Avm(t, x) + Sm,1(t, x) + Sm,2(t, x), t ∈ (0, T ], x ∈ Rn,

vm(0, x) = 0, x ∈ Rn,

by the classical parabolic maximum principle (see [15, Chapter 8]) we have

sup
t∈[0,T ], x∈Rn

|vm(t, x)| ≤ T sup
t∈[0,T ], x∈Rn

|Sm,1(t, x) + Sm,2(t, x)|.

Letting m→∞ we conclude that v = 0 and this proves the assertion.

Existence. We first consider the elliptic case and prove that u given in
(4.4) is the distributional solution. It is clear that u ∈ Cb(Rn). In the fol-
lowing computations we will use the fact that the classical partial derivative
∂t(Ptf)(x) exists for t > 0 and x ∈ Rn, and ∂t(Ptf)(x) = A(Ptf)(x) (see
[29, Section 4]).

By Corollary 3.2 we deduce that, for any M > 0, there exists CM > 0
such that

(4.8) sup
|x|≤M

|A(Ptf)(x)| ≤ CM (t−(1+k) + 1)‖f‖0, t > 0, f ∈ Cb(Rn).

For any φ ∈ C∞0 (Rn), applying the Fubini theorem, we obtain
�

Rn
u(x)A∗φ(x) dx =

∞�

0

e−λt dt
�

Rn
APtf(x)φ(x) dx

= lim
ε→0+

∞�

ε

e−λt dt
�

Rn
APtf(x)φ(x) dx
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= lim
ε→0+

∞�

ε

e−λt dt
�

Rn
∂tPtf(x)φ(x) dx

= lim
ε→0+

�

Rn
φ(x) dx

∞�

ε

e−λt∂tPtf(x) dt

= lim
ε→0+

�

Rn

(
−e−λεPεf(x) + λ

∞�

ε

e−λtPtf(x) dt
)
φ(x)

=
�

Rn
(−f(x) + λu(x))φ(x) dx.

We now deal with the parabolic case and show that v given in (4.5) is
the space-distributional solution. We write v = v1 + v2, where

(4.9)

v1(t, x) = Ptg(x),

v2(t, x) =
t�

0

Pt−sH(s, x) ds, v2(0, ·) = 0

(v1 and v2 are associated to (4.5) when H = 0 and g = 0 respectively). First
we deal with v1. In [29, Section 4] it is verified that v1 is a continuous and
bounded function on [0,∞)×Rn. Furthermore, denoting by ωg the modulus
of continuity of g, we have, for any t ∈ [0, T ], x, y ∈ Rn,

|Ptg(x)− Ptg(y)| ≤ E[ωg(|Xx
t −X

y
t |)] ≤ ωg(|x− y|eTL),

where L = ‖A‖L + ‖DF‖0. This shows that v1(t, ·) ∈ Cb(Rn) uniformly in
t ∈ [0, T ].

Since (in the classical sense) ∂t(Ptf)(x) = A(Ptf)(x) for t > 0 and
x ∈ Rn, we see that t 7→

	
Rn v1(t, x)φ(x) dx belongs to C1([0, T ]) and satisfies

(4.3) (with H = 0).
Let us deal with v2. By the first estimate in (3.9) we deduce, for any

f : Rn → R continuous and bounded, and any h ∈ {0, . . . , k},

‖Ptf(x+ ·)‖
C

1/(2k+1)
b (Eh(Rn))

≤ ‖f‖1−1/(2k+1)
0 ‖Ptf(x+ ·)‖1/(2k+1)

C1
b (Eh(Rn))

≤ C1t
−1/2‖f‖0

for t ∈ (0, T ] and x ∈ Rn, where C1 is independent of t, x and f . It follows
that, for any x, y ∈ Rn and t ∈ [0, T ],

|v2(t, x)− v2(t, y)| ≤
t�

0

C1‖H‖0
(t− s)1/2

ds
k∑

h=0

|Eh(x− y)|1/(2k+1)

≤ c′‖H‖0
√
T |x− y|1/(2k+1),

where ‖H‖0 = supt∈[0,T ], x∈Rn |H(t, x)|. This shows that v2(t, ·) ∈ Cb(Rn)
uniformly in t. By this property, in order to verify that v2 is continuous
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on [0, T ] × Rn, it is enough to check that for any fixed x ∈ Rn, v2(·, x)
is continuous on [0, T ]. Since the continuity of v2(·, x) at t = 0 is clear,
we consider continuity at a fixed t ∈ (0, T ]. We write, for h sufficiently
small,

(4.10) v2(t+ h, x)− v2(t, x) =
T�

0

[Pt+h−sH(s, x)− Pt−sH(s, x)] ds

(we have extended Pt to negative values, setting Pη = 0 for η < 0). By
the dominated convergence theorem one deduces that limh→0 v2(t+ h, x) =
v2(t, x). Thus v2 is continuous on [0, T ] × Rn and v2(0, ·) = 0. The bound-
edness of v2 is clear.

It remains to verify that v2 satisfies (4.3). To see this, we fix t ∈ (0, T ]
and x ∈ Rn, and consider for h > 0 (see also [28, pp. 58–59])

v2(t+ h, x)− v2(t, x)
h

= Γ1(t, h, x) + Γ2(t, h, x),

where

Γ1(t, h, x) =
1
h

t+h�

t

Pt+h−sH(s, x) ds,

Γ2(t, h, x) =
t�

0

(
Pt+h−s − Pt−s

h

)
H(s, x) ds.

We have

|Γ1(t, h, x)−H(t, x)| ≤
1�

0

E|H(t+ h− sh,Xx
sh)−H(t, x)| ds→ 0

as h tends to 0+, by the dominated convergence theorem. It follows that,
for any φ ∈ C∞0 (Rn),

lim
h→0+

�

Rn
Γ1(t, h, x)φ(x) dx =

�

Rn
H(t, x)φ(x) dx.

Concerning Γ2, we first note that, thanks to (4.8), for any t > s ≥ 0,

lim
h→0+

�

Rn

(
Pt+h−sH(s, x)− Pt−sH(s, x)

h

)
φ(x) dx

=
�

Rn
A[Pt−sH(s, ·)](x)φ(x) dx.

By the Fubini theorem we get
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lim
h→0+

�

Rn
Γ2(t, h, x)φ(x) dx =

t�

0

ds
�

Rn
Pt−sH(s, x)A∗φ(x) dx

=
�

Rn
A∗φ(x) dx

t�

0

Pt−sH(s, x) ds

for t ∈ (0, T ]. It follows easily that the map t 7→
	
Rn v2(t, x)φ(x) dx belongs

to C1([0, T ]) and satisfies (4.3) (with g = 0) for t ∈ [0, T ].

The next theorems provide elliptic and parabolic Schauder estimates.

Theorem 4.2. Let θ ∈ (0, 1) and λ > 0. For any f ∈ Cθd(Rn) there exists
a unique distributional solution to the elliptic equation (4.1). Furthermore,
u ∈ C2+θ

d (Rn) and there exists c = c(λ, θ, ν1, ν2, A, p̃, n, ‖DF‖0, ‖D2F‖0,
‖D3F‖0) such that

(4.11) ‖u‖2+θ,d ≤ c‖f‖θ,d.

Proof. Uniqueness follows from Theorem 4.1. To prove the assertion we
need to investigate the regularity properties of the function u ∈ Cb(Rn)
given in (4.4).

We first prove that u(z + ·) ∈ C2+θ
b (E0(Rn)) for any z ∈ Rn, and

(4.12) sup
z∈Rn

‖u(z + ·)‖C2+θ
b (E0(Rn)) ≤ C‖f‖θ,d.

It is clear by the estimates (3.11) that the partial derivatives Diu and D2
iju

exist on Rn for any i, j ∈ I0 = {1, . . . , p̃}. Furthermore, Diu and D2
iju are

continuous and bounded on Rn and ‖Diu‖0 + ‖D2
iju‖0 ≤ c‖f‖θ,d.

We now prove that D2
iju ∈ Cθd(Rn) when i, j ∈ I0. This will imply (4.12).

To this end, we fix any vh ∈ Eh(Rn) for 0 ≤ h ≤ k with |vh| ≤ 1, and
write

(4.13) |D2
iju(x+ vh)−D2

iju(x)| ≤ u1(x) + u2(x),

where

u1(x) =
|vh|2/(2h+1)�

0

e−λt|D2
ijPtf(x+ vh)−D2

ijPtf(x)| dt,

u2(x) =
∞�

|vh|2/(2h+1)

e−λt|D2
ijPtf(x+ vh)−D2

ijPtf(x)| dt,

for x ∈ Rn. In order to estimate u1 we use (3.11)(b). We find

sup
x∈Rn

u1(x) ≤ c‖f‖θ,d
|vh|2/(2h+1)�

0

tθ/2−1 dt ≤ C‖f‖θ,d|vh|θ/(2h+1).
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For u2 we use estimate (3.11)(c). This gives, for any x ∈ Rn,

|D2
ijPtf(x+ vh)−D2

ijPtf(x)| ≤ |vh| sup
r∈Ih
‖D3

ijrPtf‖0

≤ c‖f‖θ,d
(

1
t(3−θ)/2+h

+ 1
)
|vh|

for t > 0. We get

sup
x∈Rn

u2(x) ≤ c‖f‖θ,d|vh|
∞�

|vh|2/(2h+1)

e−λt(tθ/2−3/2−h + 1) dt

≤ c′(|vh|/λ+ |vh|θ/(2h+1))‖f‖θ,d ≤ C1‖f‖θ,d|vh|θ/(2h+1).

It follows that supx∈Rn |D2
iju(x + vh) −D2

iju(x)| ≤ C‖f‖θ,d|vh|θ/(2h+1) and
so (4.12) is proved.

We verify that u(z + ·) ∈ C(2+θ)/(2h+1)
b (Eh(Rn)) for any 1 ≤ h ≤ k, and

furthermore

(4.14) sup
z∈Rn

‖u(z + ·)‖
C

(2+θ)/(2h+1)
b (Eh(Rn))

≤ C‖f‖θ,d.

We fix vh ∈ Eh(Rn) for 1 ≤ h ≤ k, with |vh| ≤ 1, and compute

(4.15) |u(x+vh)−u(x)| ≤
∞�

0

e−λt|Ptf(x+vh)−Ptf(x)| dt = u1(x)+u2(x),

where

u1(x) =
|vh|2/(2h+1)�

0

e−λt|Ptf(x+ vh)− Ptf(x)| dt,

u2(x) =
∞�

|vh|2/(2h+1)

e−λt|Ptf(x+ vh)− Ptf(x)| dt,

for x ∈ Rn. In order to estimate u1 we use (3.11)(d). We find

sup
x∈Rn

u1(x) ≤ c‖f‖θ,d|vh|θ/(2h+1)

|vh|2/(2h+1)�

0

dt ≤ C‖f‖θ,d|vh|(2+θ)/(2h+1).

For u2 we use (3.11)(a) to get (recall that h ≥ 1)

sup
x∈Rn

u2(x) ≤ c‖f‖θ,d|vh|
∞�

|vh|2/(2h+1)

e−λt(tθ/2−1/2−h + 1) dt

≤ C1‖f‖θ,d|vh|(2+θ)/(2h+1),

and (4.14) follows. The proof is complete.
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Theorem 4.3. Let θ ∈ (0, 1), T > 0, g ∈ C2+θ
d (Rn) and let H : [0, T ]×

Rn → R be a continuous function such that supt∈[0,T ] ‖H(t, ·)‖θ,d <∞.
Then the Cauchy problem (4.2) has a unique space-distributional solution
v such that v(t, ·) ∈ C2+θ

d (Rn) for all t ∈ [0, T ]. Furthermore, Div and
D2
ijv are continuous on [0, T ] × Rn for i, j ∈ I0, and there exists c =

c(T, θ, ν1, ν2, A, p̃, n, ‖DF‖0, ‖D2F‖0‖D3F‖0) such that

(4.16) sup
t∈[0,T ]

‖v(t, ·)‖2+θ,d ≤ c(‖g‖2+θ,d + sup
t∈[0,T ]

‖H(t, ·)‖θ,d).

Proof. Uniqueness follows from Theorem 4.1. To prove the result, we
need to investigate the space-regularity of the function v given in (4.5); we
write v = v1 + v2 as in (4.9).

For v1 = Ptg the estimate (3.10)(iv) with γ = 2 + θ gives immediately
(4.16) with v replaced by v1 and H = 0. In order to deal with

v2(t, x) =
t�

0

E[H(s,Xx
t−s)] ds =

t�

0

E[H(t− s,Xx
s )] ds, t ∈ [0, T ], x ∈ Rn,

we proceed as in the proof of Theorem 4.2. Set

‖H‖T,θ = sup
t∈[0,T ]

‖H(t, ·)‖θ,d.

We first prove that v2(t, z + ·) ∈ C2+θ
b (E0(Rn)) for t ∈ [0, T ] and z ∈ Rn,

and that

(4.17) sup
t∈[0,T ], z∈Rn

‖v2(t, z + ·)‖C2+θ
b (E0(Rn)) ≤ C‖H‖T,θ.

It is clear from (3.11) that the spatial partial derivativesDiv2 andD2
ijv2 exist

on [0, T ] × Rn for any i, j ∈ I0. Furthermore, Div2(t, ·) and D2
ijv2(t, ·) are

continuous and bounded on Rn, and ‖Div2(t, ·)‖0 +‖D2
ijv2(t, ·)‖0 ≤ c‖H‖T,θ

for any t ∈ [0, T ].
To prove (4.17), we fix vh ∈ Eh(Rn) for 0 ≤ h ≤ k, with |vh| ≤ 1, and

compute as in (4.13), for any x ∈ Rn,

|D2
ijv2(t, x+ vh)−D2

ijv2(t, x)|

≤
t�

0

|D2
ijPsH(t− s, x+ vh)−D2

ijPsH(t− s, x)| ds

≤ c‖H‖T,θ
t∧|vh|2/(2h+1)�

0

sθ/2−1 ds+ c1‖H‖T,θ|vh|
t�

t∧|vh|2/(2h+1)

sθ/2−3/2−h ds

≤ c′‖H‖T,θ|vh|θ/(2h+1),
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proving (4.17). In order to verify that v2(t, z + ·) ∈ C(2+θ)/(2h+1)
b (Eh(Rn))

for any 1 ≤ h ≤ k and t ∈ [0, T ], and

sup
z∈Rn, t∈[0,T ]

‖v2(t, z + ·)‖
C

(2+θ)/(2h+1)
b (Eh(Rn))

≤ C‖H‖T,θ,

we proceed as in (4.15).
To prove the continuity of Div and D2

ijv on [0, T ] × Rn for i, j ∈ I0, it
is enough to show that, for any fixed x ∈ Rn, Div(·, x) and D2

ijv(·, x) are
continuous on [0, T ]. To see this, we write x = x0 + x1, where x0 = E0x
and x1 = x−E0x, and consider the closed Euclidean ball K in E0(Rn) cen-
tered at x0 with radius 1. We already know that ‖v(t, x1 + ·)‖C2+θ(K) ≤ CT
for any t ∈ [0, T ]. Using the continuity of v on [0, T ] × Rn and a stan-
dard compactness argument we obtain the assertion. Note that in partic-
ular limt→0+ Div(t, x) = Dig(x) and limt→0+ D2

ijv(t, x) = D2
ijg(x) for all

x ∈ Rn.

5. Schauder estimates with variable (qij). Here we study a gener-
alization of the operator A. Namely, we deal with the operator Ã in which
the diffusion matrix Q depends continuously on x, i.e.,

(5.1) Ãu(x) = 1
2 Tr(Q(x)D2u(x)) + 〈Ax,Du(x)〉+ 〈F (x), Du(x)〉

for x ∈ Rn. Thanks to the results of Section 4, we will obtain elliptic and
parabolic Schauder estimates for the operator Ã, using a standard approach.
This is based on the maximum principle, a priori estimates and the conti-
nuity method (cf. [21, Section 6]).

Hypothesis 5.1. (i) There exist ν > 0 and an integer p̃, 1 ≤ p̃ ≤ n,
such that the symmetric matrix Q(x) = (qij(x))ni,j=1 has the form

(5.2) Q(x) =

(
Q0(x) 0

0 0

)
, x ∈ Rn,

where Q0(x) is a uniformly positive definite p̃× p̃ matrix such that

(5.3) ν

p̃∑
i=1

ξ2i ≤
p̃∑

i,j=1

qij(x)ξiξj ≤
1
ν

p̃∑
i=1

ξ2i , ξ = (ξi) ∈ Rp̃, x ∈ Rn.

(ii) The vector field F : Rn → Rn satisfies (ii) and (iii) of Hypothesis
1.1.

(iii) Assumption (iv) of Hypothesis 1.1 holds.
(iv) There exists θ ∈ (0, 1) such that qij ∈ Cθd(Rn) for i, j ∈ {1, . . . , p̃},

and furthermore, the following limit exists:

(5.4) lim
|x|→∞

Q0(x) = Q∞0 in L(Rp̃).
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Let us comment on these assumptions. Note that, for every x0 ∈ Rn, the
operator with frozen second order coefficients

(5.5) A(x0) = 1
2 Tr(Q(x0)D2 ·) + 〈F (x) +Ax,D ·〉

satisfies Hypothesis 1.1, and therefore the conclusions of Theorems 4.2 and
4.3 hold forA(x0). The same happens for the operatorA∞ defined as in (5.5)
but with Q(x0) replaced by Q∞ (Q∞ is the n× n matrix having Q∞0 in the
first p̃× p̃ block, and zero entries in the other blocks; clearly its coefficients
q∞ij satisfy (5.3)).

To prove the next theorems it is crucial to note that the constants in the
elliptic and parabolic Schauder estimates involving A(x0) do not depend on
x0 ∈ Rn.

Theorem 5.2. Consider the operator Ã as in (5.1) under Hypothesis
5.1. Then, for every λ > 0 and f ∈ Cθd(Rn), the elliptic problem

(5.6) λu− Ãu = f

has a unique solution u ∈ C2+θ
d (Rn) (the first order term 〈Ax,Du(x)〉 in

(5.1) is understood in the distributional sense). Furthermore, there exists
c > 0, independent of f and u, such that the Schauder estimates (4.11) hold
for (5.6).

Proof. We will only sketch the proof, which is not difficult. One needs
first a maximum principle for (5.6). We explain how this can be obtained
arguing as in the proof of Theorem 4.1. We write Ã = A1 +A2, where

(5.7) A1 = 1
2 Tr(Q(x)D2 ·) and A2 = 〈F (x) +Ax,D ·〉.

Take any u ∈ C2+θ
d (Rn) which solves (5.6). Consider a sequence (ρm) of

mollifiers and set um = u ∗ ρm; we get, similarly to (4.6),

Ãum(x) =
�

Rn
A1u(x− y)ρm(y) dy +

�

Rn
u(y)A∗2[ρm(x− ·)](y) dy

+Rm,1(x) +Rm,2(x)

for x ∈ Rn and m ∈ N, where A∗2 is the formal adjoint of A2. One finds
that Ãum converges in Cb(Rn) to Ãu as m→∞. By the classical maximum
principle (see [3]) we deduce that ‖um‖0 ≤ (1/λ)‖λum − Ãum‖0. Letting
m→∞, we find ‖u‖0 ≤ (1/λ)‖λu− Ãu‖0.

A priori estimates for (5.6) can be proved exactly as in the proof of [21,
Theorem 8.1]. One assumes that u ∈ C2+θ

d (Rn) is a solution to (5.6) and
then by using a localization argument and the maximum principle one finds
that there exists C > 0 (independent of f and u) such that

‖u‖2+θ,d ≤ C‖f‖θ,d.
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The continuity method allows one to conclude the proof. For any ε ∈ [0, 1]
one considers the problem

(5.8) λu− (1− ε)A∞u− εÃu = f,

where (1−ε)A∞u(x)+εÃu(x) = 1
2 Tr([(1−ε)Q∞+εQ(x)]D2u(x))+〈F (x)+

Ax,Du(x)〉. Using the previous a priori estimates, it is straightforward to
verify that the set of all ε’s such that (5.8) is uniquely solvable in C2+θ

d (Rn)
is non-empty, closed and open in [0, 1]. Taking ε = 1 in (5.8) one finishes
the proof.

In order to state and prove Schauder estimates for the parabolic Cauchy
problem involving Ã, we define the space CγT,d, γ ∈ (0, 3) non-integer. It
consists of all continuous functions v : [0, T ] × Rn → R such that v(t, ·) ∈
Cγd (Rn) for all t ∈ [0, T ], and furthermore supt∈[0,T ] ‖v(t, ·)‖Cγd (Rn) <∞. It is
a Banach space endowed with the norm

‖v‖γ,T,d = sup
t∈[0,T ]

‖v(t, ·)‖Cγd (Rn), v ∈ CγT,d.

A function v ∈ C2+θ
T,d , θ ∈ (0, 1), solves the Cauchy problem (4.2) involving Ã

if v(0, x) = g(x) for all x ∈ Rn, and, for any φ ∈ C∞0 (Rn), the real function
t 7→

	
Rn v(t, x)φ(x)dx is continuously differentiable on [0, T ] and satisfies,

for any t ∈ [0, T ] (see (5.7)),
d

dt

( �

Rn
v(t, x)φ(x) dx

)
=

�

Rn
A1v(t, x)φ(x) dx+

�

Rn
v(t, x)A∗2φ(x) dx(5.9)

+
�

Rn
H(t, x)φ(x) dx.

Theorem 5.3. Consider the operator Ã in (5.1) under Hypothesis 5.1.
Let T > 0, g ∈ C2+θ

d (Rn) and H ∈ CθT,d. Then there exists a unique solution
v ∈ C2+θ

T,d to the Cauchy problem (4.2) involving Ã. Furthermore, the partial
derivatives Div and D2

ijv are continuous on [0, T ] × Rn for i, j ∈ I0, and
there exists c > 0, independent of g, H and v, such that

(5.10) ‖v‖2+θ,T,d ≤ c(‖g‖2+θ,d + ‖H‖θ,T,d).

Proof. The proof is similar to the one of Theorem 5.2. Let v ∈ C2+θ
T,d be

a solution. One first proves the following maximum principle:

sup
t∈[0,T ], x∈Rn

|v(t, x)| ≤ T sup
t∈[0,T ], x∈Rn

|H(t, x)|+ ‖g‖0,

arguing as in (4.7) (using the fact that Ã = A1 + A2 as in the proof of
Theorem 5.2).

Concerning the localization procedure which gives the required a priori
estimates, we only note that, for any η ∈ C∞0 (Rn), according to (5.9), the
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function vη solves
∂t(vη)(t, x)= Ã(ηv)(t, x)− v(t, x)Ãη(x)

− 〈Q(x)Dη(x), Dv(t, x)〉+H(t, x)η(x), t ∈ (0, T ],
(ηv)(0, x) = η(x)g(x), x ∈ Rn.

Finally, the continuity method of Theorem 5.2 works also in this case, upon
replacing the space C2+θ

d (Rn) with C2+θ
T,d , and gives the assertion.

Remark 5.4. One can weaken the assumption (ii) in Hypothesis 5.1
about F in order to prove elliptic and parabolic Schauder estimates for Ã.
Indeed, we can consider F : Rn → Rn such that F (x) = (F1(x), . . . , Fp̃(x),
0, . . . , 0) for x ∈ Rn, and furthermore, there exist θ ∈ (0, 1) and M > 0 such
that, for any x, y ∈ Rn, if |y| ≤ 1 then

(5.11) |F (x)− F (x+ y)| ≤M‖y‖θ.

We briefly explain how to prove elliptic Schauder estimates for Ã when
F satisfies these assumptions (parabolic estimates are obtained similarly).
First we deal with the maximum principle. Let u ∈ C2+θ

d (Rn) be a solu-
tion. We consider um = u ∗ ρm, where (ρm) are mollifiers. Under the new
assumptions on F one can only show that Ãum converges to Ãu uniformly
on compact sets of Rn (cf. the proof of Theorem 5.2). This allows us to
prove that if x0 is a local maximum for u then Ãu(x0) ≤ 0 (see the proof of
[23, Proposition 3.1.10]). Thus the maximum principle holds for Ã. Then,
in order to get Schauder estimates, one writes

λu(x)− 1
2 Tr(Q(x)D2u(x))− 〈Ax+ (F ∗ ρ)(x), Du(x)〉

= f + 〈F (x)− (F ∗ ρ)(x), Du(x)〉,

where ρ ∈ C∞0 (Rn), ‖ρ‖L1(Rn) = 1, 0 ≤ ρ ≤ 1 and ρ(x) = ρ(−x) for x ∈ Rn,
and ρ(x) = 0 if |x| ≥ 1. Using the formula Di(F ∗ ρ)(x) =

	
Rn(F (x − y) −

F (x))Diρ(y) dy and similar formulae for higher partial derivatives, we see
that F ∗ρ satisfies (iii) of Hypothesis 1.1. Furthermore, by (5.11) one checks
that F−(F ∗ρ) belongs to Cθd(Rn). Finally, easy computations yield Schauder
estimates for Ã.
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