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Local spectrum and local spectral radius
of an operator at a fixed vector

by

Janko Bračič (Ljubljana) and Vladiḿır Müller (Praha)

Abstract. Let X be a complex Banach space and e ∈ X a nonzero vector. Then the
set of all operators T ∈ L(X) with σT (e) = σδ(T ), respectively rT (e) = r(T ), is residual.
This is an analogy to the well known result for a fixed operator and variable vector. The
results are then used to characterize linear mappings preserving the local spectrum (or
local spectral radius) at a fixed vector e.

1. Introduction. Let X be a complex Banach space and let L(X) be the
Banach algebra of all bounded linear operators on X. For T ∈ L(X), let σ(T ),
σδ(T ), and σT (x) be the spectrum, the surjectivity spectrum, and the local
spectrum of T at x ∈ X, respectively. We denote by r(T ) = limk→∞ ‖T k‖1/k
the spectral radius of T and by rT (x) = lim supk→∞ ‖T kx‖1/k the local
spectral radius of T at x. It is well known that r(T ) = max{|λ| : λ ∈ σ(T )}.
On the other hand, rT (x) ≥ max{|λ| : λ ∈ σT (x)}, and equality holds, for a
given T and every nonzero x, if T has SVEP (see [6, Proposition 3.3.13]).

For T ∈ L(X) and x ∈ X, it is easily seen that σT (x) ⊆ σδ(T ) ⊆ σ(T ).
Moreover, the set of x ∈ X that satisfy σδ(T ) = σT (x) and rT (e) = r(T ) is
residual (i.e., its complement is of the first category; see [8], and also [4], [6,
Proposition 1.3.2]). In this paper, we are concerned with the “dual” question
of how large the set D(e) = {T ∈ L(X) : σδ(T ) = σT (e)} is. It turns out (see
Theorem 2.5) that D(e) is also residual whenever e 6= 0. Consequently, the
set {T ∈ L(X) : rT (e) = r(T )}, which contains D(e), is residual as well.

These results are later used to characterize linear mappings which pre-
serve the local spectrum (local spectral radius) at a given vector e 6= 0. We
show (Theorem 3.3) that a continuous linear surjection φ : L(X) → L(X)
satisfies σφ(T )(e) = σT (e), for every T ∈ L(X), if and only if there exists an
invertible operator A ∈ L(X) such that Ae = e and φ(T ) = ATA−1. This
gives a solution to [5, Problem, p. 177].
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Similarly, we show (Theorem 3.4) that a continuous linear surjection
φ : L(X)→ L(X) satisfies rφ(T )(e) = rT (e), for every T ∈ L(X), if and only
if there exist a complex number c of modulus 1 and an invertible operator
A ∈ L(X) such that Ae = e and φ(T ) = cATA−1. This result is an extension
of [1, Theorem 1.1] to infinite-dimensional Banach spaces.

Throughout the paper we use standard notions and known facts from
spectral and local spectral theory. The reader who is not familiar with these
theories is referred to [6, 7].

2. Local/global spectrum and spectral radius. Let X be a complex
Banach space. It is well known that the mapping T 7→ σ(T ) (T ∈ L(X)) is
upper semicontinuous. The same holds for the surjectivity spectrum σδ(T ) =
{z ∈ C : (T − z)X 6= X} as well. Namely, denote by BX the unit ball in X

and let k(T ) = sup{r ≥ 0 : TBX ⊇ rBX} be the surjectivity modulus of
T ∈ L(X). By the Banach open mapping theorem, T is surjective if and
only if k(T ) > 0, which means that σδ(T ) = {z ∈ C : k(T − z) = 0}.
Since k : L(X) → [0,∞) is a continuous function ([7, Proposition 9.9]) the
set S = {T ∈ L(X) : k(T ) > 0} of all surjective operators is open. It
follows, by [7, Proposition 6.9], that the surjectivity spectrum is an upper
semicontinuous map.

Throughout this section, let F ⊆ C be a nonempty closed set and let
e ∈ X be a nonzero vector. We denote by A(F,X) the set of all bounded
continuous functions f : F → X which are analytic on the interior of F .
It is straightforward to see that A(F,X), endowed with the norm ‖f‖∞ =
sup{‖f(z)‖ : z ∈ F}, is a Banach space. We shall consider X as the subset
of all constant functions in A(F,X); a vector x ∈ X is identified with the
function z 7→ x (z ∈ F ).

The open unit ball of A(F,X) is denoted by BA(F,X).
Let

S(F ) = {T ∈ L(X) : σδ(T ) ∩ F = ∅}
and let, for every n ∈ N,

Nn(F, e) = {T ∈ L(X) : e /∈ n(T − z)BA(F,X)},
Mn(F, e) = S(F ) ∪Nn(F, e).

We are going to show that Mn(F, e) is an open dense subset of L(X) for
every n ∈ N. In the proof we need the following observation.

Lemma 2.1. Let S ∈ L(X). If λ ∈ σδ(S), then, for every ε > 0, there
exists T ∈ L(X) such that ‖S − T‖ < ε and (T − λ)X 6= X.

Proof. There is no loss of generality to assume that λ = 0. So, 0 ∈ σδ(S)
and consequently 0 is in the approximate point spectrum of S∗. Thus, there
exists η ∈ X∗ such that ‖η‖ = 1 and ‖S∗η‖ < ε. If S∗η = 0, then SX 6= X
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and we can take T = S. Let u ∈ X be such that ‖u‖ < ε/‖S∗η‖ and
〈η, u〉 = 1. We denote by u ⊗ η the rank-one operator x 7→ 〈η, x〉u on X.
Note that its adjoint on X∗ is η ⊗ u : ξ 7→ 〈ξ, u〉η. Let T = (I − u ⊗ η)S.
Then ‖S − T‖ = ‖u⊗ (S∗η)‖ < ε and 〈η, Tx〉 = 〈S∗(I − η ⊗ u)η, x〉 = 0 for
every x ∈ X, which means TX ⊆ ker(η) 6= X.

Lemma 2.2. Let S ∈ L(X), e ∈ X, e 6= 0. If λ ∈ σδ(S), then for every
ε > 0 there exists T ∈ L(X) such that ‖T − S‖ < ε and e /∈ (T − λ)X.

Proof. By Lemma 2.1, there exists T ′ ∈ L(X) such that ‖S − T ′‖ < ε/2
and (T ′ − λ)X 6= X.

Let ε′ = min{ε, 2‖T ′‖}. We shall show that there exists T ∈ L(X) satis-
fying ‖T ′−T‖ < ε/2 and e /∈ (T − λ)X. This is obvious if e /∈ (T ′ − λ)X. As-
sume therefore that e ∈ (T ′ − λ)X. Let Y be a closed subspace of (T ′ − λ)X
such that (T ′ − λ)X = Y⊕Ce. Fix x ∈ X, ‖x‖ = 1, which is not in (T ′ − λ)X.
Let ξ ∈ Y⊥ ⊆ X∗ be such that ‖ξ‖ = 1, 〈ξ, x〉 6= 0, and 〈ξ, e〉 6= 0. Let A =
I+ δ(x⊗ ξ), where 0 < δ < ε′/(8‖T ′‖). Then ‖A− I‖ = δ < 1, which means
that A is invertible. The inverse is A−1 =

∑∞
k=0(−δ(y⊗ ξ))k with the norm

‖A−1‖ ≤
∑∞

k=0 δ
k = 1/(1− δ). Thus ‖A−1−I‖ = ‖A−1(I−A)‖ ≤ δ/(1− δ).

Let T = AT ′A−1. Then

‖T − T ′‖ ≤ ‖(A− I)T ′A−1‖+ ‖T ′(A−1 − I)‖ < 2δ‖T ′‖
1− δ

<
ε′

2
≤ ε

2
.

Moreover,

(T − λ)X = A(T ′ − λ)A−1X = A(T ′ − λ)X = AY ∨ {Ae}
= Y ∨ {e+ δ〈ξ, e〉x},

where ∨ denotes the closed linear span of two sets. If e were in (T − λ)X,
then we would have e = y + α(e + δ〈ξ, e〉x) for some y ∈ Y and α ∈ C. It
would follow that αδ〈ξ, e〉x = (1 − α)e − y ∈ (T ′ − λ)X and consequently
α = 0 because x /∈ (T ′ − λ)X. However, we would then have a contradiction
since e cannot be equal to any y ∈ Y. Thus, e /∈ (T − λ)X.

Lemma 2.3. For every n ∈ N, the set Mn(F, e) is an open and dense
subset of L(X).

Proof. Since the surjectivity spectrum is an upper semicontinuous map it
is obvious that S(F ) is an open subset of L(X). Furthermore, if T ∈ Nn(F, e),
then there exists ε > 0 such that dist(e, n(T − z)BA(F,X)) > ε. Let T ′ ∈ L(X)
be such that ‖T − T ′‖ < ε/(2n). Then, for every f ∈ BA(F,X),

‖e− n(T ′ − z)f‖∞ ≥ ‖e− n(T − z)f‖∞ − ‖n(T ′ − T )‖ > ε− ε/2 = ε/2,

which means T ′ ∈ Nn(F, e). Thus, Nn(F, e) is an open set and consequently
Mn(F, e) is open as well.
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Now we shall show that Mn(F, e) is a dense subset of L(X). Let S ∈
L(X) and ε > 0 be arbitrary. We are looking for T ∈ Mn(F, e) satisfying
‖T − S‖ < ε. Of course, if S ∈ Mn(F, e), then there is nothing to prove.
So, assume that S /∈ Mn(F, e). It follows, in particular, that there exists
λ ∈ σδ(S)∩F . By Lemma 2.2, there exists T ∈ L(X) such that ‖T −S‖ < ε
and e /∈ (T − λ)X 6= X.

It follows that e /∈ n(T − z)BA(F,X). Indeed, otherwise there would exist
a sequence of functions (fk)k∈N ⊂ A(F,X) such that

lim
k→∞

(sup{‖e− (T − z)fk(z)‖ : z ∈ F}) = 0.

In particular, we would have

lim
k→∞

‖e− (T − λ)fk(λ)‖ = 0,

which is impossible since e /∈ (T − λ)X. We conclude that T ∈Mn(F, e). It
is obvious that ‖S − T‖ < ε.

Let

N(F, e) = {T ∈ L(X) : e /∈ (T − z)A(F,X)}, M(F, e) = S(F ) ∪N(F, e).

Lemma 2.4. For every nonempty closed set F ⊆ C and every nonzero
vector e ∈ X, the set M(F, e) is a residual subset of L(X).

Proof. By the Baire category theorem, the set
⋂∞
n=1 Mn(F, e) is a dense

Gδ-set and hence residual.
Assume that T ∈ L(X) is not in N(F, e), which means that there exists

f ∈ A(F,X) such that e = (T − z)f(z) for all z ∈ F . Let n ∈ N be such that
‖f‖∞ < n. Then e ∈ n(T − z)BA(F,X) and therefore T /∈ Nn(F, e). Thus,⋂∞
n=1 Nn(F, e) ⊆ N(F, e) and consequently

⋂∞
n=1 Mn(F, e) ⊆M(F, e).

Theorem 2.5. If e ∈ X is a nonzero vector , then the set D(e) = {T ∈
L(X) : σδ(T ) = σT (e)} is residual.

Proof. Let {Uk : k ∈ N} be a countable base of open subsets of C. For
each k ∈ N, the set M(Uk, e) is a residual subset of L(X), by Lemma 2.4.
Thus,

⋂
k∈N M(Uk, e) is residual as well. Let T ∈

⋂
k∈N M(Uk, e). Towards a

contradiction assume that λ ∈ σδ(T )\σT (e). Hence λ ∈ ρT (e) and therefore
there exists an open neighbourhood V of λ and an analytic function f :
V → X such that e = (T − z)f(z) for every z ∈ V . Let k ∈ N be such that
λ ∈ Uk ⊂ Uk ⊂ V . Denote by g the restriction of f to Uk. Then g ∈ A(Uk,X)
and e = (T − z)g(z) for all z ∈ Uk. It follows that T /∈ N(Uk, e). On the
other hand, T /∈ S(Uk) since λ ∈ σδ(T ) ∩ Uk. Thus, T /∈ M(Uk, e), which
contradicts the assumption.

Corollary 2.6. Let e ∈ X be a nonzero vector. Then the set {T ∈
L(X) : rT (e) = r(T )} is residual.



Local spectrum and local spectral radius 159

3. Mappings preserving local spectrum and local spectral ra-
dius. Let X be a Banach space. Linear mappings φ : L(X)→ L(X) preserv-
ing various properties have been extensively studied by a number of authors
(see e.g. [1, 2, 3, 5] and references cited therein).

A linear mapping φ : L(X) → L(X) is called a spectral isometry if
r(φ(T )) = r(T ) for all T ∈ L(X). In [3, Theorem 1] the following result
is proved.

Theorem 3.1. Let φ : L(X) → L(X) be a surjective spectral isometry.
Then φ has one of the following two forms: either

(i) there are a complex number c of modulus 1 and an invertible A ∈
L(X) such that φ(T ) = cATA−1, for every T ∈ L(X), or

(ii) there are c ∈ C, |c| = 1 and a bijection A ∈ B(X∗,X) such that
φ(T ) = cAT ∗A−1 for every T ∈ L(X) (in this case X has to be
reflexive).

If dim X < ∞ and e ∈ X is a fixed nonzero vector, then surjective
linear mappings φ : L(X)→ L(X) satisfying σφ(T )(e) = σT (e) (respectively,
rφ(T )(e) = rT (e)), for all T ∈ L(X), were characterized in [5] (respectively,
in [1]). We use the results from the previous section to generalize these
results to the infinite-dimensional case.

Theorem 3.2. Let X be a complex Banach space and φ : L(X)→ L(X)
a continuous linear surjection. Let e ∈ X be a nonzero vector. Suppose that
φ satisfies one of the following two conditions:

(i) rφ(T )(e) = rT (e) for all T ∈ L(X),
(ii) σφ(T )(e) = σT (e) for all T ∈ L(X).

Then φ is a spectral isometry.

Proof. First we prove that r(φ(T )) ≥ r(T ) for each T ∈ L(X), in both
cases. Indeed, let T ∈ L(X) be arbitrary and choose λ ∈ σ(T ) such that
|λ| = r(T ). Then λ ∈ σδ(T ). By Lemma 2.2, for each n ∈ N there exists
Tn ∈ L(X) such that ‖Tn − T‖ < n−1 and λ ∈ σTn(e). By continuity of φ
we have φ(Tn)→ φ(T ). In case (i), the upper semicontinuity of the spectral
radius yields

r(φ(T )) ≥ lim sup
n→∞

r(φ(Tn)) ≥ lim sup
n→∞

max{|µ| : µ ∈ σφ(Tn)(e)}

= lim sup
n→∞

max{|µ| : µ ∈ σTn(e)} ≥ |λ| = r(T ).

In case (ii), we have, similarly,

r(φ(T )) ≥ lim sup
n→∞

r(φ(Tn)) ≥ lim sup
n→∞

rφ(Tn)(e) = lim sup
n→∞

rTn(e)

≥ |λ| = r(T ).
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Now we prove that r(φ(T )) = r(T ) for each T ∈ L(X). Let T ∈ L(X)
and let λ ∈ σ(φ(T )) satisfy |λ| = r(φ(T )), which means λ ∈ σδ(φ(T )). By
Lemma 2.2, for each n ∈ N there exists Vn ∈ L(X) such that ‖Vn−φ(Tn)‖ <
n−1 and λ ∈ σVn(e). Since φ is continuous and surjective, by the Banach
open mapping theorem there exists k > 0 such that φ(BL(X)) ⊃ k · BL(X)

(here BL(X) denotes the open unit ball in L(X)). Therefore, for each n there
exists Tn ∈ L(X) such that ‖Tn − T‖ ≤ k−1‖Vn − φ(T )‖ ≤ k−1n−1 and
φ(Tn − T ) = Vn − φ(T ). Thus ‖Tn − T‖ → 0. In case (i), we have

r(T ) ≥ lim sup
n→∞

r(Tn) ≥ lim sup
n→∞

max{|µ| : µ ∈ σTn(e)}

= lim sup
n→∞

max{|µ| : µ ∈ σφ(Tn)(e)} ≥ |λ| = r(φ(T )),

and in case (ii),

r(T ) ≥ lim sup
n→∞

r(Tn) ≥ lim sup
n→∞

rTn(e)} = lim sup
n→∞

rφ(Tn)(e)}

≥ |λ| = r(φ(T )).

Hence r(φ(T )) = r(T ) for each T ∈ L(X).

Theorem 3.3. Let e ∈ X be a nonzero vector. Let φ : L(X) → L(X)
be a surjective continuous linear mapping. Then σφ(T )(e) = σT (e) for all
T ∈ L(X) if and only if there exists an invertible operator A ∈ L(X) such
that Ae = e and φ(T ) = ATA−1 for all T ∈ L(X).

Proof. If φ(T ) = ATA−1 for every T ∈ L(X), where A ∈ L(X) is an
invertible operator such that Ae = e, then σT (e) = σφ(T )(e) for every T ∈
L(X). Indeed, let U ⊆ ρT (e) be an open set for which there exists an analytic
function f : U → X that satisfies (z−T )f(z) = e for all z ∈ U . Then f̃(z) =
Af(z) is an analytic function on U as well and it satisfies (z−ATA−1)f̃(z) =
e (z ∈ U). Thus, U ⊆ ρφ(T )(e). This proves the inclusion ρT (e) ⊆ ρφ(T )(e).
The inclusion ρT (e) ⊇ ρφ(T )(e) is proved similarly.

Now we shall prove the opposite implication. Let φ : L(X) → L(X) be
a continuous linear surjection preserving the local spectrum at e. By the
previous theorem, φ is a spectral isometry and, by Theorem 3.1, φ has one
of the two forms mentioned there. Moreover, since φ(I) = cI, where I is
the identity operator on X, one has {1} = σI(e) = σφ(I)(e) = σcI(e) = {c}
and consequently c = 1. By [5, Lemma 5], case (ii) from Theorem 3.1 is not
possible. Thus, φ(T ) = ATA−1, where A ∈ L(X) is an invertible operator.
Note that A is not uniquely determined, we can replace it by λA, where
λ is an arbitrary nonzero number. Thus, we have to see that λAe = e for
some nonzero λ. Let ξ ∈ X∗ be such that 〈ξ, e〉 = 1 and let T = e⊗ ξ. Then
σφ(T )(e) = σT (e) = {1}. Since T has SVEP there exists an analytic function
f : C \ {1} → X that satisfies (z − φ(T ))f(z) = e (z ∈ C \ {1}). It is easy to
see that λAe = e, for some λ 6= 0, if z = 0 in the last equality.
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Theorem 3.4. Let e ∈ X be a nonzero vector. Let φ : L(X) → L(X)
be a surjective continuous linear mapping. Then rφ(T )(e) = rT (e) for all
T ∈ L(X) if and only if there exist an invertible operator A ∈ L(X) and
c ∈ C of modulus 1 such that Ae = e and φ(T ) = cATA−1 for all T ∈ L(X).

Proof. Let φ(T ) = cATA−1 for all T . Then

rφ(T )(e) = lim sup
n→∞

‖(φ(T ))ne‖1/n = lim sup
n→∞

‖ATnA−1e‖1/n

= lim sup
n→∞

‖ATne‖1/n = lim sup
n→∞

‖Tne‖1/n = rT (e).

Conversely, let rφ(T )(e) = rT (e) for all T . By Theorem 3.2, φ is a spectral
isometry and by Theorem 3.1, φ has one of the two forms mentioned there.

We will show that in the first case we can choose A such that Ae = e
and that the second case cannot occur.

(i) Let Φ(T ) = cATA−1 for all T ∈ L(X). Suppose first that the vectors
e and A−1e are linearly independent. Choose an operator T ∈ L(X) such
that Te = e and TA−1e = 0. Then rT (e) = 1 and

rφ(T )(e) = lim sup
n→∞

‖φ(T )ne‖1/n = lim sup
n→∞

‖ATnA−1e‖1/n = 0,

a contradiction. Thus A−1e = αe for some nonzero complex number α. Set
A′ = αA. Then φ(T ) = cA′TA′−1 where A′e = αAe = e.

(ii) Let φ(T ) = cAT ∗A−1 for each T ∈ L(X), where |c| = 1 and A ∈
L(X∗, X) is invertible. Suppose that 〈A−1e, e〉 = 0. Choose T ∈ L(X) such
that Te = e and im(T ) = Ce. Then A−1e ∈ im(T )⊥ = ker(T ∗), and so
T ∗A−1e = 0. We have rT (e) = 1 and rφ(T )(e) = lim supn→∞ ‖AT ∗nA−1e‖1/n
= 0, a contradiction. Thus, 〈A−1e, e〉 6= 0.

Choose a nonzero vector x in ker(A−1e) (such an x exists if dim X ≥ 2;
if dim X = 1, then the statement of the theorem is trivial). The vectors e
and x are linearly independent. Let T ∈ L(X) be such that Te = x, Tx = x,
and im(T ) = Cx. Then A−1e ∈ im(T )⊥ = ker(T ∗), and so T ∗A−1e = 0. As
in the previous case we have rT (e) = 1 and rφ(T )(e) = 0, a contradiction.
So, the second case cannot occur.

Problem 3.5. Is it possible to omit the assumption of continuity of φ
in Theorems 3.3 and 3.4?

It is well known that every spectral isometry is automatically continuous.
However, we used the continuity to prove that a surjection preserving the
local spectrum (local spectral radius) is a spectral isometry.
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