
STUDIA MATHEMATICA 197 (3) (2010)

Decomposing and twisting bisectorial operators

by

Wolfgang Arendt (Ulm) and Alessandro Zamboni (Parma)

Abstract. Bisectorial operators play an important role since exactly these operators
lead to a well-posed equation u′(t) = Au(t) on the entire line. The simplest example of a
bisectorial operator A is obtained by taking the direct sum of an invertible generator of
a bounded holomorphic semigroup and the negative of such an operator. Our main result
shows that each bisectorial operator A is of this form, if we allow a more general notion of
direct sum defined by an unbounded closed projection. As a consequence we can express
the solution of the evolution equation on the line by an integral operator involving two
semigroups associated with A.

1. Introduction. Let us first explain the motivation for investigating
bisectorial operators. An invertible operator A on a Banach space X is called
bisectorial if the imaginary line is in the resolvent set of A and λ(λI −A)−1

is bounded on that line. Such bisectorial operators were considered by McIn-
tosh and Yagi [9] in the framework of spectral calculus. Mielke [10] showed
in 1987 that, on Hilbert spaces, an operator A is bisectorial if and only if
there exists p ∈ (1,+∞) such that for all f ∈ Lp(R;X) there is a unique
solution u ∈W 1,p(R;X) of

(1.1) u′(t) = Au(t) + f(t), t ∈ R.
In that case, this property holds for all p ∈ (1,+∞). Thus, Mielke proved
a result on maximal regularity for the evolution equation on the line for
bisectorial operators on Hilbert space. He applied such results to non-linear
equations and, in particular, to prove the existence of central manifolds.
Mielke’s result on maximal regularity was generalized to Banach spaces by
Schweiker [11], and in [4] with the help of the operator-valued Fourier mul-
tiplier theorem due to Weis. Maximal regularity in Hölder spaces was con-
sidered in [1].

Most interesting is the spectral theory of bisectorial operators. An inter-
esting problem is whether it is possible to decompose the Banach space X
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with the help of a spectral projection commuting with A so that the oper-
ator is the direct sum of an invertible generator of a bounded holomorphic
semigroup and the negative of such an operator. There is always a natural
spectral projection P+ (see Section 3) defined by a contour integral, but this
projection is unbounded in general as was shown by McIntosh and Yagi [9]
(see also Dore and Venni [6]).

However, the spectral projection P+ is always closed. This means that
its kernel and its image are closed subspaces of X. Their sum is dense in X,
if A is densely defined, but this sum is possibly different from the entire
space. The part of A in these subspaces is the generator or the negative of
the generator of a bounded holomorphic semigroup. In our main result we
show that “twisting” A by its spectral projection, we obtain the generator of
a bounded holomorphic semigroup on the entire space X. This is surprising
since it shows that each bisectorial operator is, in fact, the “twisted version”
(see Definition 2.9) of a sectorial operator.

The spectral projection was investigated before by Sybille Schweiker [11].
In particular, she associated with a bisectorial operator two semigroups
which operate on the entire space X. These semigroups are holomorphic
but singular as time goes to 0. However, the singularity can never be worse
than logarithmic, as Schweiker showed. We now obtain these semigroups
very simply from the semigroup generated by the twisted version of A. They
allow one to give a representation formula for the solutions of (1.1) which
are exploited further in [13].

Our main result (see Theorem 3.4) also holds for non-densely defined
operators. For simplicity we do not consider more general operators which
are merely bisectorial outside a compact set as in [3], where a spectral theory
for these operators is developed.

2. Twisting bisectorial operators by unbounded projections.
Let X be a Banach space. We start by defining unbounded projections.

Definition 2.1. A projection P on X is a linear operator P : D(P ) ⊂
X → X such that P 2 = P , i.e. Px ∈ D(P ) and P 2x = Px for all x ∈ D(P ).

If P is a projection on X, then

im(P ) := {Px : x ∈ D(P )} = {x ∈ D(P ) : Px = x},
ker(P ) := {x ∈ D(P ) : Px = 0}

are subspaces of X such that im(P ) ∩ ker(P ) = {0}. Moreover, it is easy to
prove the following result.

Lemma 2.2. A projection P on X is closed if and only if ker(P ) and
im(P ) are closed subspaces of X.
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Conversely, if X1 and X2 are subspaces of X such that X1 ∩X2 = {0},
then letting

D(P ) := X1 ⊕X2, P (x1 + x2) := x1, x1 ∈ X1, x2 ∈ X2,

defines a projection on X with im(P ) = X1 and ker(P ) = X2. This projec-
tion is closed if and only if X1 and X2 are closed.

Remark 2.3 (Closability of projections).

(i) If P is closable, then P is a projection.
(ii) Let X1, X2 ⊂ X be subspaces such that X1 ∩X2 = {0}. Then the

projection onto X1 defined above is closable if and only if X1 ∩X2

= {0}.
(iii) Let X1 be a dense subspace of X which is different from X. Let

X2 be an algebraic complement. Then the projection onto X1 with
domain X is not closable.

(iv) Let A be a densely defined invertible operator which is not bounded.
Let x′ ∈ X ′ \ D(A′), and let u ∈ D(A) be such that 〈x′, Au〉 = 1.
Then Px = 〈Ax, x′〉u, with domain D(P ) = D(A), defines an un-
bounded non-closable projection.

Now, let A be an operator on X with non-empty resolvent set ρ(A).

Proposition 2.4. Let P be a projection on X such that D(A) ⊂ D(P ).
Then the following statements are equivalent.

(i) PR(µ,A)x = R(µ,A)Px for all x ∈ D(P ) and some µ ∈ ρ(A).
(ii) If y ∈ D(A) is such that Ay ∈ D(P ), then Py ∈ D(A) and PAy

= APy.
(iii) PR(µ,A)x = R(µ,A)Px, for all x ∈ D(P ) and µ ∈ ρ(A).

Proof. (i)⇒(ii). Let y ∈ D(A) be such that Ay ∈ D(P ). Then x =
µy − Ay ∈ D(P ) and, by (i), Py = PR(µ,A)x = R(µ,A)Px ∈ D(A).
Moreover, (µ−A)Py = Px = µPy − PAy. Thus APy = PAy.

(ii)⇒(iii). Let µ ∈ ρ(A), x ∈ D(P ) and y = R(µ,A)x. Then y ∈ D(A)
and µy − Ay = x. Hence Ay ∈ D(P ). By assumption it follows that Py ∈
D(A) and (µ − A)Py = P (µ − A)y = Px. Hence R(µ,A)Px = Py =
PR(µ,A)x.

Definition 2.5. Let P be a projection on X and let A : D(A) ⊂
X → X be an operator with ρ(A) 6= ∅. We say that P commutes with
A if D(A) ⊂ D(P ), and the equivalent conditions (i)–(iii) of Proposition 2.4
are satisfied.

Now let us give an example of a closed, unbounded and commuting
projection.



208 W. Arendt and A. Zamboni

Example 2.6. Let

X :=
{
x = (xn)n∈N :

+∞∑
n=1

{
1
n2

(|x2n|2 + |x2n−1|2)+ |x2n−x2n−1|2
}
< +∞

}
.

Then X is a Hilbert space with respect to the scalar product

(x | y) :=
+∞∑
n=1

{
1
n2

(x2ny2n + x2n−1y2n−1) + (x2n − x2n−1)(y2n − y2n−1)
}
.

Define the operator A on X by

(Ax)2n = −nx2n, (Ax)2n−1 = −nx2n−1,

with maximal domain in X, i.e.,

D(A) =
{
x = (xn)n∈N :

+∞∑
n=1

{|x2n|2 + |x2n−1|2 + n2|x2n − x2n−1|2} < +∞
}
.

Then A is invertible. Let X+ := {x ∈ X : x2n−1 = 0, n ∈ N} and X− :=
{x ∈ X : x2n = 0, n ∈ N}. Then X+ and X− are closed subspaces of X (both
isomorphic to `2) such that X+∩X− = {0}. The constant-1 sequence belongs
toX but not toX+⊕X−. Let P be the projection given byD(P ) = X+⊕X−,

(Px)2n = x2n, (Px)2n−1 = 0.

Then P is closed and it is immediate to check that it commutes with A.

Now we introduce the basic notion of this paper.

Definition 2.7. A closed, linear operator A : D(A) ⊂ X → X is called
bisectorial if

(i) iR \ {0} ⊂ ρ(A),
(ii) sups∈R ‖sR(is, A)‖L(X) < +∞.

For 0 < θ < π/2 we consider the open horizontal sector Σθ := {reiα :
r > 0, |α| < θ}, and the open vertical bisector Σ′θ := C \ {Σθ ∪ (−Σθ )}. If A
is a bisectorial operator on X then, by the usual geometric series expansion,
one obtains ω ∈ (0, π/2) such that

(2.1) Σ′ω ⊂ ρ(A),

and

(2.2) sup
λ∈Σ′ω

‖λR(λ,A)‖L(X) < +∞.

We say that an operator A generates a bounded holomorphic semigroup
if λ ∈ ρ(A) for Re(λ) > 0 and

sup
Re(λ)>0

‖λR(λ,A)‖L(X) < +∞.
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In fact, we can then construct a semigroup (etA)t>0 ⊂ L(X), which has a
bounded and holomorphic extension to a sector Σθ for some 0 < θ < π/2.
This semigroup is a C0-semigroup if and only if A is densely defined. More-
over, A is invertible if and only if the semigroup is exponentially stable,
i.e. if

‖etA‖L(X) ≤Me−εt, t > 0,

for some constants ε,M > 0. We refer to the monographs [2] and [8] for
these properties. Thus, if A generates a bounded holomorphic semigroup,
then A is, in particular, bisectorial.

Example 2.8. The operator A defined in Example 2.6 generates
a bounded holomorphic C0-semigroup on X. Indeed, for Re(λ) ≥ 0, the
resolvent of A is given by R(λ,A)y = x̃, with

x̃2n =
1

λ+ n
y2n, x̃2n−1 =

1
λ+ n

y2n−1.

Hence,

‖λx̃‖

≤ |λ|
( +∞∑
n=1

{
1

|λ+ n|2
1
n2

(|y2n|2 + |y2n−1|2) +
1

|λ+ n|2
|y2n − y2n−1|2

})1/2

≤ sup
Re(λ)≥0, n∈N

|λ|
|λ+ n|

‖y‖.

Moreover, since the operator A is invertible, it generates a semigroup which
is also exponentially stable.

In the following, let A be an invertible (i.e. 0 ∈ ρ(A)) bisectorial operator
on X, and let P be a closed projection on X commuting with A. Then
X+ := im(P ) and X− := ker(P ) are closed subspace on X. Consider the
parts A+ and A− of A on X+ and X−, respectively, i.e.

D(A±) = {x ∈ D(A) ∩X± : Ax ∈ X±}, A±x = Ax, x ∈ D(A±).

Then it follows from Proposition 2.4 that A+ and A− are both bisectorial
on X+ and X−, respectively.

Now, let Z := X+⊕X− with norm ‖x1 +x2‖Z := ‖x1‖X +‖x2‖X , where
x1 ∈ X+ and x2 ∈ X−. Then Z is a Banach space such that

(2.3) D(A) ↪→ Z ↪→ X,

if D(A) is considered as a Banach space with respect to the graph norm
‖x‖D(A) := ‖Ax‖X (recall that 0 ∈ ρ(A)). Moreover, the projections

P+ = P|Z and P− = (I − P+)|Z
are bounded as operators on Z.

Now we can define the twisted operator Ã.
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Definition 2.9. Let A : D(A) ⊂ X → X be an invertible bisectorial
operator and let P be a projection on X commuting with A. Define the
operator Ã on X by

D(Ã) := {x ∈ Z : −P+x+ P−x ∈ D(A)}, Ãx := A(−P+x+ P−x).

We say that Ã is the operator A twisted by P or that Ã is the P -twisted
version of A.

The part Ã|Z of Ã in Z is just the direct sum of −A+ and A−. Thus Ã|Z
is a bisectorial operator on Z. For Ã itself we can show the following.

Proposition 2.10. In the setting of Definition 2.9, let λ ∈ ρ̃ :=
ρ(A) ∩ ρ(−A). Then λ ∈ ρ(Ã) and

R(λ, Ã) = P+R(λ,−A) + P−R(λ,A).

In particular, iR ⊂ ρ(Ã). Moreover,

(2.4) sup
s∈R
‖R(is, Ã)‖L(X) < +∞.

Finally, σ(Ã) = −σ(A+) ∪ σ(A−).

Proof. Let λ ∈ ρ̃. Define

R̃(λ) := P+R(λ,−A) + P−R(λ,A).

Then

−P+R̃(λ) + P−R̃(λ) = −P+R(λ,−A) + P−R(λ,A)(2.5)
= −P+R(λ,−A)− P+R(λ,A) +R(λ,A)
= P+(R(−λ,A)−R(λ,A)) +R(λ,A)
= 2λP+R(−λ,A)R(λ,A) +R(λ,A)
= 2λR(−λ,A)P+R(λ,A) +R(λ,A),

and the operator in (2.6) maps X into D(A). Thus, R̃(λ) maps X into D(Ã)
and

(2.6) (λ− Ã)R̃(λ) = λR̃(λ)−A(−P+R̃(λ) + P−R̃(λ))

= λR̃(λ) +AP+(R(λ,−A) +R(λ,A))−AR(λ,A)
= λP+(R(λ,−A)−R(λ,A)) + λR(λ,A)

+AP+(R(λ,−A) +R(λ,A))−AR(λ,A)
= P+{λR(λ,−A)− λR(λ,A) +AR(λ,−A) +AR(λ,A)}+ I = I.

Now, let y ∈ D(Ã), i.e. y ∈ Z and −P+y + P−y ∈ D(A). Then

R̃(λ)Ãy = (P+R(λ,−A) + P−R(λ,A))A(−P+y + P−y)
= AR(λ,−A)(−P+y) +AR(λ,A)P−y
= A(−P+R(λ,−A)y + P−R(λ,A)y) = ÃR̃(λ)y.
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This shows, by (2.6), that

R̃(λ)(λ− Ã)y = (λ− Ã)R̃(λ)y = y, y ∈ D(Ã),

and the first claim is proved.
It follows from [2, Proposition 3.10.3] that σ(Ã) = σ(Ã|Z). But Ã|Z is

the direct sum of −A+ and A−. Hence σ(Ã|Z) = −σ(A+) ∪ σ(A−).
Finally, in order to prove (2.4), observe first that

isR(is, Ã|Z) = Ã|ZR(is, Ã|Z) + I|Z .

Thus, sups∈R ‖Ã|ZR(is, Ã|Z)‖L(Z) < +∞, since Ã|Z is bisectorial. Now con-
sider D(Ã) with the graph norm ‖x‖D(Ã) := ‖Ãx‖X . Then D(Ã) is a Banach
space and the embeddings

(2.7) D(Ã) ↪→ Z ↪→ X

are continuous. This follows immediately from the closed graph theorem.
Thus, with appropriate constants C1, C2, C3 > 0 we have, for any x ∈ X
and any s ∈ R,

‖R(is, Ã)x‖X ≤ C1‖R(is, Ã)x‖Z = C1‖ÃR(is, Ã)Ã−1x‖Z
≤ C1 sup

s∈R
‖ÃR(is, Ã)‖L(Z)‖Ã−1x‖Z ≤ C2‖Ã−1x‖Z

≤ C3‖Ã−1x‖D(Ã) = C3‖x‖X .

The results in Proposition 2.10 and, in particular, estimate (2.4), do
not allow us to conclude that Ã is bisectorial in general. In fact, this may
not true, and the following example shows that estimate (2.4) cannot be
essentially improved.

Example 2.11. Consider the operator A and the projection P defined
in Example 2.6. We have shown that P commutes with A, so that we can
define Ã, the P -twisted version of A. By the definition,

D(Ã) =
{
x = (xn)n∈N :

+∞∑
n=1

{|x2n|2 + |x2n−1|2 + n2|x2n + x2n−1|2} < +∞
}
,

and
(Ãx)2n = nx2n, (Ãx)2n−1 = −nx2n−1.

It is not difficult to see that σ(Ã) = N ∪ (−N), and that

(R(λ, Ã)y)2n =
1

λ− n
y2n, (R(λ, Ã)y)2n−1 =

1
λ+ n

y2n−1,

for λ /∈ N ∪ (−N). Now, let ek = (0, . . . , 0, 1, 0, . . . ) be the kth unit vector
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and vk = k√
2
(e2k + e2k−1). Then ‖vk‖ = 1. Let

uk := R(ik, Ã)vk =
k√
2

(
1

ik − k
e2k +

1
ik + k

e2k−1

)
=

1√
2

(
1

i− 1
e2k +

1
i+ 1

e2k−1

)
.

Then

‖uk‖2 ≥
1
2

∣∣∣∣ 1
i− 1

− 1
i+ 1

∣∣∣∣2 =
1
2
.

Hence ‖R(ik, Ã)‖L(X) ≥ 1/
√

2 for all k ∈ N, and

sup
s∈R
‖sR(is, Ã)‖L(X) = +∞.

Thus Ã is not bisectorial.

3. Twisting by the positive spectral projection. The simplest way
to obtain a bisectorial operator is the following. Assume that X = X+⊕X−
is the direct sum of two closed subspaces. Let −A+ and A− be invertible
generators of bounded and holomorphic semigroups on X+ and X−, respec-
tively, and let A := A+ ⊕A−. Then A is bisectorial and, moreover, A+ and
A− are the parts of A in X+ and X−, respectively. We want to give this
simple situation a name.

Definition 3.1. A bisectorial operator A on X is called decompos-
able if X is the direct sum X = X+ ⊕ X− of closed subspaces such that
R(is, A)X+ ⊂ X+ and R(is, A)X− ⊂ X− for all s ∈ R \ {0} and

σ(A+) ⊂ {λ ∈ C : Re(λ) ≥ 0}, σ(A−) ⊂ {λ ∈ C : Re(λ) ≥ 0},
where A+ is the part of A in X+ and A− is the part of A in X−.

It is not difficult to see the following (see e.g. the appendix of [8]).

Proposition 3.2. Let A be the generator of a holomorphic semigroup
such that iR ⊂ ρ(A). Then A is bisectorial and decomposable.

Even on Hilbert spaces there exist indecomposable invertible bisectorial
operators. This was shown by McIntosh and Yagi (see [9, Theorem 3]).

Theorem 3.3 (McIntosh, Yagi). Let X be a separable Hilbert space.
Then there exists an invertible bisectorial operator A which is not decom-
posable.

Our aim is to prove the following.

Theorem 3.4. Let A : D(A) ⊂ X → X be an invertible bisectorial
operator. Then there exists a (possibly unbounded) projection P+, commuting
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with A, such that the operator Ã obtained by twisting A by P+ generates a
bounded holomorphic semigroup.

Theorem 3.4, whose proof will be given at the end of this section, says
that if we allow a more general notion of direct sum, defined by a (possibly)
unbounded projection, any invertible bisectorial operator can be obtained by
an unbounded decomposition. In fact, we have A = ˜̃A and so A is the twisted
version of Ã, which is the generator of a bounded holomorphic semigroup.

In order to prove Theorem 3.4, we start by defining the projection P+

which will fulfill the requirement.
Let A be an invertible bisectorial operator and let 0 < ω < π/2 be such

that Σ′ω ⊂ ρ(A) and supλ∈Σ′ω ‖λR(λ,A)‖L(X) < +∞ (see (2.1) and (2.2)).
Let ε > 0 be such that {z ∈ C : |z| ≤ ε} ⊂ ρ(A). For ω < θ < π/2 we
consider the contour Γ+

θ,ε which consists of the line {re−iθ : r > ε}, the arc
{εeiα : −θ ≤ α ≤ θ}, and the line {reiθ : r > ε} oriented downwards. Let

Q+ :=
1

2πi

�

Γ+
θ,ε

R(λ,A)
λ

dλ.

Then Q+ ∈ L(X) and, by Cauchy’s Theorem, it does not depend on the
choice of θ and ε > 0 satisfying the requirement above.

Proposition 3.5. Let P+ := AQ+ with domain D(P+) := {x ∈ X :
Q+x ∈ D(A)}. Then P+ is a closed projection commuting with A.

Proof. Let ω < θ′< θ < π/2, and 0< ε< ε′ be such that {z ∈C : |z| ≤ ε′}
⊂ ρ(A). Then, using Cauchy’s Theorem and the resolvent identity, we get

(Q+)2 =
1

2πi

�

Γ+
θ,ε

R(λ,A)
λ

(
1

2πi

�

Γ+
θ′,ε′

1
λ′(λ′ − λ)

dλ′
)
dλ

− 1
2πi

�

Γ+
θ′,ε′

R(λ′, A)
λ′

(
1

2πi

�

Γ+
θ,ε

1
λ(λ′ − λ)

dλ

)
dλ′

=
1

2πi

�

Γ+
θ′,ε′

R(λ′, A)
(λ′)2

dλ′ =
1

2πi

�

Γ+
θ,ε

R(λ,A)
λ2

dλ.

Hence Q+ ∈ L(X;D(A)) and

A(Q+)2 =
1

2πi

�

Γ+
ε,θ

λR(λ,A)− I
λ2

dλ = Q+.

Now, let x ∈ D(P+), i.e. Q+x ∈ D(A). Then

Q+P+x = Q+AQ+x = A(Q+)2x = Q+x.
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Hence P+x ∈ D(P+) and

(P+)2x = AQ+P+x = AQ+x = P+x.

Now, let x ∈ D(A) be such that Ax ∈ D(P+), i.e. Q+Ax ∈ D(A). Then

Q+Ax =
1

2πi

�

Γ+
θ,ε

R(λ,A)
λ

Axdλ =
1

2πi
A

�

Γ+
θ,ε

R(λ,A)
λ

x dλ = AQ+x.

Therefore P+x = AQ+x = Q+Ax ∈ D(A) and, by direct computation,
it follows that AP+x = P+Ax and so, by Proposition 2.4, P+ commutes
with A.

Now, let X+ := im(P ). Then the following holds.

Proposition 3.6. Let A+ be the part of A in X+. Then σ(A+) ⊂
{µ ∈ C : Re(µ) > 0} and

(3.1) R(µ,A+) =
1

2πi

�

Γ+
θ,ε

R(λ,A)
µ− λ

dλ, Re(µ) < 0.

Moreover, there exists M+ > 0 such that

(3.2) ‖R(µ,A+)‖L(X+) ≤M+, Re(µ) < 0.

Proof. It follows from Proposition 2.4 that ρ(A)⊂ ρ(A+) and R(µ,A)|X+

= R(µ,A+) for all µ ∈ ρ(A). Now, let Re(µ) < 0 and, in order to show that
µ ∈ ρ(A+), define

R+ :=
1

2πi

�

Γ+
θ,ε

R(λ,A)
µ− λ

dλ.

Then R+ ∈ L(X) and, adapting the computations in the proof of Proposi-
tion 3.5, it follows that R+Q+ ∈ L(X;D(A)) and that

(µ−A)R+Q+ = Q+.

Observe that, if x ∈ D(A), then R+x ∈ D(A) and AR+x = R+Ax. It follows
that (µ − A)R+P+x = P+x for all x ∈ D(P+) and R+(µ − A)x = x for all
x ∈ D(A) ∩X+. This shows that µ ∈ ρ(A+) and R(µ,A+) = R+.

Finally, formula (3.1) and the bisectoriality of A yield the existence of a
constant C > 0 such that

‖R(µ,A+)‖ ≤
�

Γ+
θ,ε

‖λR(λ,A)‖
|λ| |µ− λ|

|dλ| ≤ C
�

Γ+
θ,ε

|dλ|
|λ|2

=: M+,

and conclude the proof.

Since the spectrum of A+ is included in the right half-plane, we call P+

the positive spectral projection associated with A.
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Similarly, we let Γ−θ,ε := −Γ+
θ,ε be oriented upwards,

Q− :=
1

2πi

�

Γ−θ,ε

R(λ,A)
λ

dλ,

and P− := AQ−. Observing that, for any integrable f : Γ+
θ,ε → X, we have

−
�

Γ−θ,ε

f(−λ) dλ =
�

Γ+
θ,ε

f(λ) dλ,

and taking into account that R(λ,−A) = −R(−λ,A) for any λ ∈ C, it
follows immediately that P− is the positive spectral projection associated
with −A.

Then it follows from the residue theorem that Q+ +Q− = A−1, and so
D(P+) = D(P−) and P+ = I − P− in the domain of the projections.

Defining X− := ker(P+), and letting A− be the part of A in X−, we
deduce from Proposition 3.6 that σ(A−) is in the left half-plane, and that
there exists M− > 0 such that

(3.3) ‖R(µ,A−)‖L(X−) ≤M−, Re(µ) > 0.

Next we take advantage of the following theorem.

Theorem 3.7 (Phragmén–Lindelöf, [5, Corollary 6.4.4]). Let C+ :=
{z ∈ C : Re(z) > 0}, and let h : C+ → X be continuous and holomor-
phic on C+. Assume that, for each δ > 0, there exists C > 0 such that

‖h(z)‖ ≤ Ceδ|z|, z ∈ C+.

Moreover, assume that
sup
s∈R
‖h(is)‖ < +∞.

Then there exists M > 0 such that ‖h(z)‖ ≤M for all z ∈ C+.

Define, for any µ ∈ C+,

h−(µ) := µR(µ,A−).

Then estimate (3.3), Theorem 3.7, and the bisectoriality of A− (see Sec-
tion 2) imply that there exists M− > 0 such that

(3.4) ‖µR(µ,A−)‖L(X−) ≤M−, Re(µ) > 0.

Moreover, Theorem 3.7 still holds, of course, if we replace everywhere C+

with C− := {z ∈ C : Re(z) < 0}. Then, defining for any µ ∈ C−,

h+(µ) := µR(µ,A+),

and using also estimate (3.2) and the bisectoriality of A+, we find that there
exists M+ > 0 such that

(3.5) ‖µR(µ,A+)‖L(X+) ≤M+, Re(µ) < 0.



216 W. Arendt and A. Zamboni

Now consider the operator Ã obtained by twisting A by P+. Then, by
Proposition 2.10, one has

σ(Ã) = −σ(A+) ∪ σ(A−) ⊂ {λ ∈ C : Re(λ) < 0}.

Furthermore, (3.4) and (3.5) imply that there exists M > 0 such that

‖µR(µ, Ã|Z)‖L(Z) ≤M

for any µ ∈ C+. This implies that

‖R(µ, Ã)‖L(X) ≤M1, µ ∈ C+,

for some M1 > 0. Indeed, taking embeddings (2.7) into account, and recall-
ing that 0 ∈ ρ(Ã), we have with appropriate constants C1, C2 > 0, for any
x ∈ X and any µ ∈ C+,

‖R(µ, Ã)x‖X ≤ C1‖R(µ, Ã)x‖Z = C1‖ÃR(µ, Ã)Ã−1x‖Z(3.6)
= C1‖µR(µ, Ã)Ã−1x− Ã−1x‖Z ≤C1(M +1)‖Ã−1x‖Z
≤ C1C2(M + 1)‖Ã−1x‖D(Ã) = C1C2(M + 1)‖x‖X .

In particular, ‖R(is, Ã)‖L(X) ≤ M1 for all s ∈ R (as we already proved in
Proposition 2.10). In the context here, where the positive spectral projection
is used, we can improve the estimate.

Proposition 3.8. Let Ã be the P+-twisted version of an invertible bi-
sectorial operator A, where P+ is the positive spectral projection defined in
Proposition 3.5. Then

(3.7) sup
s∈R
‖sR(is, Ã)‖L(X) < +∞.

Proof. For µ ∈ ρ(A) ∩ ρ(−A) we have

R(µ, Ã) = P+R(µ,−A) + P−R(µ,A) = P+(R(µ,−A)−R(µ,A)) +R(µ,A)
= S(µ) +R(µ,A),

where S(µ) := P+(R(µ,−A)−R(µ,A)). Since A is bisectorial we only have
to show the assertion for S(µ). For this purpose, let µ be to the left of Γ+

θ,ε.
Then, by Cauchy’s Theorem,

Q+R(µ,A) =
1

2πi

�

Γ+
θ,ε

R(λ,A)R(µ,A)
λ

dλ =
1

2πi

�

Γ+
θ,ε

R(λ,A)−R(µ,A)
λ(µ− λ)

dλ

=
1

2πi

�

Γ+
θ,ε

R(λ,A)
λ(µ− λ)

dλ.

Since P+R(µ,A) = AQ+R(µ,A) and AR(λ,A) = λR(λ,A) − I for any
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λ ∈ ρ(A), we have

P+R(µ,A) =
1

2πi

�

Γ+
θ,ε

AR(λ,A)
λ(µ− λ)

dλ

=
1

2πi

�

Γ+
θ,ε

R(λ,A)
µ− λ

dλ− 1
2πi

�

Γ+
θ,ε

dλ

λ(µ− λ)

=
1

2πi

�

Γ+
θ,ε

R(λ,A)
µ− λ

dλ.

Now let µ be to the left of the curve Γ ′ consisting of the lines {reiθ : r ≥ 0}
and {re−iθ : r ≥ 0} oriented downwards. Then, by Cauchy’s Theorem, we
have

P+R(µ,A) =
1

2πi

�

Γ ′

R(λ,A)
µ− λ

dλ,

and, if −µ is to the left of Γ ′, then

P+R(µ,−A) = −P+R(−µ,A) = − 1
2πi

�

Γ ′

R(λ,A)
−µ− λ

dλ

=
1

2πi

�

Γ ′

R(λ,A)
λ+ µ

dλ.

In particular, for µ = is (s 6= 0), we have

S(is) = P+(R(is,−A)−R(is, A))

=
1

2πi

�

Γ ′

(
1

is+ λ
− 1
is− λ

)
R(λ,A) dλ

= − 1
iπ

�

Γ ′

λ

s2 + λ2
R(λ,A) dλ.

Observe that

|a+ be2iθ| ≥
√

1 + cos(2θ)
2

(a+ b), a, b ≥ 0.

Therefore, taking (2.2) into account, there exist M,C > 0 such that

‖sS(is)‖ ≤
∥∥∥∥ 1
πi

�

Γ ′

λs

s2 + λ2
R(λ,A) dλ

∥∥∥∥ ≤ 2
π

+∞�

0

C|s|
|s2 + r2e2iθ|

dr

≤ 2C
π

√
2

1 + cos(2θ)

+∞�

0

|s|
s2 + r2

dr = M

√
2

1 + cos(2θ)
.



218 W. Arendt and A. Zamboni

Now, basing on the estimates (3.6) and (3.7) we can prove Theorem 3.4
with the help of the Phragmén–Lindelöf theorem.

Proof of Theorem 3.4. Let h(µ) := µR(µ, Ã). Then h is holomorphic
and continuous on C+. Moreover, h is bounded on iR by Proposition 3.8.
The estimate (3.6) shows that h is of subexponential growth on C+. Thus
Theorem 3.7 implies that h is bounded on C+. This implies that Ã generates
a bounded holomorphic C0-semigroup on X.

4. The semigroups associated with a bisectorial operator. Let
A be an invertible, bisectorial operator on X. We consider the operators Q±
defined in the previous section, and the spectral projections P± = AQ±.
Let Ã be the operator A twisted by P+, and let (T̃ (t)) be the holomorphic
semigroup generated by Ã.

Proposition 4.1. Define, for any t > 0,

T+(t) := P+T̃ (t), T−(t) := P−T̃ (t).

Then T±(t) ∈ L(X) for all t > 0, and

T±(t+ s) = T±(t)T±(s), t, s > 0.

Moreover, T+(t)T−(s) = T−(t)T+(s) = 0 for all t, s > 0.

Proof. Since T̃ (t)X ⊂ D(Ã) ⊂ Z, the operators T+(t) and T−(t) are
bounded. Since Q+ and Q− commute with the resolvent of A, they also
commute with R(µ, Ã) = P+R(µ,−A) + P+R(µ,A) (see Proposition 2.10).
Consequently, Q+ and Q− also commute with T̃ (t). Hence also P+ and P−
commute with T̃ . This implies the semigroup property. Since

P−x = x− P+x, x ∈ D(P+) = D(P−),

we have P+P−x = P−P+x = 0. This implies T+(t)T−(s) = T−(s)T+(t)
= 0.

It follows from the definition that

T̃ (t) = T+(t) + T−(t), t > 0.

Moreover, T± ∈ C∞((0,+∞), X) and
d

dt
T±(t) = ∓AT±(t), t > 0.

It follows that, for x ∈ Z,

(4.1) ∓A
t�

0

T±(s)x ds = T±(t)x− x.

It is possible to express the semigroups T± directly by a contour integral,
without using T̃ . Let ω < θ < π/2 as in Section 3.
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Proposition 4.2. One has, for t > 0,

T+(t) =
1

2πi

�

Γ+
θ,ε

e−λtR(λ,A) dλ,(4.2)

T−(t) =
1

2πi

�

Γ−θ,ε

eλtR(λ,A) dλ.(4.3)

Proof. For t > 0 let

S(t) :=
1

2πi

�

Γ+
θ,ε

e−λtR(λ,A) dλ ∈ L(X).

If x ∈ X−, then R(λ,A)x has a holomorphic extension to C+, as a conse-
quence of Proposition 3.6. Hence S(t)x = 0 by Cauchy’s Theorem.

Now let x ∈ X+. Then replacing λ by −λ we have

S(t)x = − 1
2πi

�

Γ−θ,ε

eλtR(−λ,A)x dλ =
1

2πi

�

Γ−θ,ε

eλtR(λ,−A)x dλ

=
1

2πi

�

Γ−θ,ε

eλtR(λ, Ã)x dλ = T̃ (t)x = T+(t)x

by the usual exponential formula for the holomorphic semigroup T̃ . Hence
S(t)x = T+(t)x for all x ∈ Z.

Now let λ ∈ ρ(A). Since R(λ,A) is injective from X into D(A), and
R(λ,A) commutes with T+(t) and S(t) for any t > 0, the statement follows
by taking embeddings (2.3) into account. Indeed, for any x ∈ X we have

S(t)x = (λI −A)S(t)R(λ,A)x = (λI −A)T+(t)R(λ,A)x = T+(t)x.

Even though T̃ (t) = T+(t) + T−(t) converges strongly to the identity as
t → 0 if A is densely defined, the norms of T+(t) and T−(t) blow up as t
approaches to 0 whenever P± is unbounded. More precisely, the following
holds.

Proposition 4.3. Let x ∈ X and let A be densely defined. Then the
limit limt→0 T

+(t)x exists if and only if x ∈ D(P+) and, in this case,
limt→0 T

+(t)x = P+x. If P+ is unbounded, then limt→0 ‖T+(t)‖L(X) = +∞.

Proof. If x ∈ D(P+), then limt→0 T
+(t)x = limt→0 T̃ (t)P+x = P+x.

Conversely, assume that limt→0 T
+(t)x = y. Since limt→0 T̃ (t)x = x and

P+ is closed, it follows that x ∈ D(P+) and P+x = limt→0 P+T̃ (t)x =
limt→0 T

+(t)x = y.
Now, assume that there exists tn → 0 such that ‖T+(tn)‖L(X) ≤ C.

Then for x ∈ D(P+) one has ‖P+x‖ = limn→+∞ ‖T+(tn)x‖ ≤ C‖x‖. Since
D(P+) is dense, it follows that P+ is bounded.
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However, the following result (see [11, Lemma 1.2.3]) shows that the
singularity of T± at 0 is mild.

Proposition 4.4 (Schweiker). There exists a constant C > 0 such that

‖T±(t)‖L(X) ≤ C|log t|, 0 < t ≤ 1/2.

Proof. Since 0 ∈ ρ(A), there exists a constant M1 > 0 such that

‖R(λ,A)‖L(X) ≤
M1

1 + |λ|
for all λ = re±iθ, r ≥ 0. Let Γ ′ consist of the two rays {re±iθ : r ≥ 0},
where θ is chosen as in Section 3, directed downwards. Then, by Cauchy’s
Theorem,

T+(t) =
1

2πi

�

Γ ′

e−λtR(λ,A) dλ.

Hence there exists a positive constant M2 such that, for 0 < t ≤ 1/2,

‖T+(t)‖L(X) ≤
1

2π
2M1

+∞�

0

e−rt cos(θ) 1
1 + r

dr =
M1

π

+∞�

1

e−(s−1)t cos(θ) ds

s

=
M1

π
et cos(θ)

∞�

1

e−st cos(θ) ds

s
≤ M1

π
ecos(θ)/2

+∞�

t

e−r cos(θ) dr

r

≤ M1

π
ecos(θ)/2

(+∞�

1

e−r cos(θ) dr

r
+

1�

t

dr

r

)
≤M1(M2 − log t).

It is possible to define the semigroups T+ and T− directly by the contour
integrals (4.2) and (4.3), without using Ã. This is what Schweiker has done
in [11], where also the semigroup properties of T+ and T− are proved directly
from these formulas and in particular the surprising estimate at the origin
(cf. Proposition 4.4). Moreover, Schweiker proved in [11, Lemma 1.2.3] that,
if 0 < ω < ω := inf{|Re(λ)| : λ ∈ σ(A)}, then there exist M±0 > 0 such that

(4.4) ‖T±(t)‖L(X) ≤M±0 e
−ωt, t ≥ 1.

5. Squares and roots. In this section we investigate the square of a
bisectorial operator. We use the following notion (cf. [7, Section 2.1]). An
operator B on X is called sectorial if (−∞, 0) ⊂ ρ(A) and

‖s(s+B)−1‖L(X) ≤M, s > 0,

for some M > 0. We denote by

ϕsec(B) := inf{θ ∈ (0, π] : σ(B) ⊂ Σθ, sup
λ/∈Σθ

‖λR(λ,B)‖L(X) < +∞}

the sectorial angle of B. Then 0 ≤ ϕsec(B) < π (by a geometric series
argument, see [7, Section 2.1] or [2, Corollary 3.7.12]).
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Thus, the operator −B generates a bounded holomorphic semigroup if
and only if B is sectorial and ϕsec(B) < π/2. We also recall that for each
sectorial operator B there exists a unique sectorial operator B1/2 such that
(B1/2)2 = B. Moreover, ϕsec(B1/2) = ϕsec(B)1/2 (see [7, Proposition 3.1.2]).

Proposition 5.1. Let A be an operator.

(i) If A is bisectorial, then A2 is sectorial.
(ii) If A2 is sectorial, then iR \ {0} ⊂ ρ(A) and, if A is also invertible,

then
‖R(is, A)‖L(X) ≤M

for all s ∈ R and some M > 0.

Proof. For s ∈ R \ {0} we have

(5.1) s2 +A2 = (A− is)(A+ is).

(i) Assume that the operator A is bisectorial. Then it follows from (5.1)
that (s2 +A2)−1 = R(is, A)R(−is, A) and

‖s2(s2 +A2)−1‖L(X) ≤ (sup
s 6=0
‖sR(is, A)‖L(X))

2 < +∞.

(ii) Assume that A2 is sectorial and let s 6= 0. Then it follows from
(5.1) that (A− is)−1 = (A+ is)(s2 +A2)−1. Assume, in addition, that A is
invertible and let M := sups∈R ‖s2(s2 +A2)−1‖L(X). Then

‖A2(s2 +A2)−1‖L(X) = ‖I − s2(s2 +A2)−1‖L(X) ≤M + 1.

Hence

‖A(s2 +A2)−1‖L(X) = ‖A−1A2(s2 +A2)−1‖L(X) ≤ ‖A−1‖L(X)(M + 1).

Thus (A+ is)−1 = A(s2 +A2)−1 + is(s2 +A2)−1 is bounded.

However, if A2 is sectorial, it does not follow that A is bisectorial. In
fact, it may happen that ‖R(is, A)‖L(X) ≥ C > 0 for some constant C and
all s ∈ R.

Example 5.2. Consider the operator B = Ã from Example 2.11. Then
iR ⊂ ρ(B), sups∈R ‖R(is, B)‖L(X) < +∞, but

‖R(ik,B)‖L(X) ≥ 1/
√

2

for all k ∈ N. Thus B is not bisectorial. An estimate similar to the one given
in Example 2.8 shows that B2 is sectorial.

In Proposition 5.1(i) we have shown that, if A is a bisectorial operator,
then A2 is sectorial so that is possible to define its square root. In the
following proposition we show that if A is also invertible, the square root
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of A2 is the negative of the operator A twisted by its positive spectral
projection.

Theorem 5.3. For any invertible bisectorial operator A, the square root
of A2 is the negative of the P+-twisted version of A:

−Ã = (A2)1/2.

Proof. Let Q± and P± be defined as in Section 3. A change of variable
and the resolvent identity show that

Q+ −Q− =
1

2πi

{ �

Γ+
θ,ε

R(λ,A)
λ

dλ−
�

Γ−θ,ε

R(λ,A)
λ

dλ

}

=
1

2πi

�

Γ+
θ,ε

R(λ,A)−R(−λ,A)
λ

dλ

= −2
(

1
2πi

�

Γ+
θ,ε

R(λ,A)R(−λ,A) dλ
)

= 2
(

1
2πi

�

Γ+
θ,ε

R(λ2, A2) dλ
)

=
1

2πi

�

(Γ+
θ,ε)

2

R(w,A2)w−1/2 dw

= (A2)−1/2,

where (Γ+
θ,ε)

2 = {z2 : z ∈ Γ+
θ,ε}, and the last identity is the well-known

formula for the square root [2, (3.51), p. 166]. It follows from Proposition 2.10
that Ã−1 = −P+A

−1 +P−A
−1. Since P+ and P− commute with A, we have

Ã−1 = −P+A
−1 + P−A

−1 = −(Q+ −Q−) = −(A2)−1/2.

Hence Ã = −(A2)1/2.

6. Mild solutions. Let A be a closed, linear operator on X. Given
f ∈ L1

loc(R;X), in this section we study uniqueness of the solution for the
problem

(6.1) u′(t) = Au(t) + f(t), t ∈ R,

and we give a representation formula for this solution in terms of the semi-
groups (T±(t)) associated with A.

We say that a continuous function u : R→ X is a mild solution of (6.1)
if
	t
0 u(s) ds ∈ D(A) and

u(t) = u(0) +A

t�

0

u(s) ds+
t�

0

f(s) ds, t ∈ R.
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In order to prove uniqueness of the solution of (6.1), we need a spectral
condition on A and a growth condition on u.

Definition 6.1. Let g ∈ L1
loc(R;X). We say that g is polynomially

bounded if

‖g(t)‖ ≤ α(1 + |t|)k, t ∈ R,

for some k ∈ N and some α > 0. The function g is called weakly polynomially
bounded if �

R
‖g(t)‖(1 + |t|)−k dt < +∞

for some k ∈ N.

The notion of weak polynomial boundedness is clearly weaker than that
of polynomial boundedness. Note that g is weakly polynomially bounded
whenever g ∈ Lp(R;X) for some 1 ≤ p ≤ ∞. Now we can prove the following.

Proposition 6.2. Let A be a densely defined, closed and linear operator
on X such that iR ⊂ ρ(A). Then there exists at most one weakly polynomi-
ally bounded mild solution u of (6.1).

Proof. Let u be a weakly polynomially bounded mild solution of (6.1)
for f = 0. Then the Carleman spectrum of u, as defined in [2, Section 4.6],
is empty. This is proved as the last six lines of the proof of [4, Theorem 2.7].
It follows from [2, Theorem 4.8.2] that u(t) = 0 for all t ∈ R.

Remark 6.3. Conversely, Schweiker [12, Theorem 1.1] showed the fol-
lowing. If, for each f ∈ BUC(R;X), there is a unique mild solution u ∈
BUC(R;X) of (6.1), then iR ⊂ ρ(A) and sups∈R ‖R(is, A)‖ < +∞. She also
showed that on Hilbert spaces this condition is sufficient for this type of
well-posedness.

Now we assume that A is densely defined, bisectorial and invertible, and
keep the notations of Sections 3 and 4. In particular, we consider the semi-
groups (T+(t)) and (T−(t)) associated with A. Recall (see Proposition 4.4
and estimate (4.4)) that there exist ω > 0 and C > 0 such that

‖T±(t)‖ ≤ C(1 + |log(t)|)e−ωt, t > 0.

Let f ∈ L1
loc(R;X) be weakly polynomially bounded. Then the function

u : R→ X given by

(6.2) u(t) :=
t�

−∞
T−(t− s)f(s) ds−

+∞�

t

T+(s− t)f(s) ds
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is continuous and weakly polynomially bounded. Indeed, we have

�

R
(1 + |t|)−k−2

∥∥∥+∞�

t

T−(t− s)f(s) ds
∥∥∥ dt

≤
�

R
(1 + |t|)−k−2

t−1�

−∞
‖T−(t− s)‖ ‖f(s)‖ ds dt

+
�

R
(1 + |t|)−k−2

t�

t−1

‖T−(t− s)‖ ‖f(s)‖ ds dt

= I1 + I2.

Now let

c(f) :=
+∞�

−∞
‖f(t)‖(1 + |t|)−k dt < +∞.

Then we have

I1 ≤ C
�

R
(1 + |t|)−k−2

t−1�

−∞
(1 + |log(t− s)|)e−ω(t−s)

×(1 + |s|)k‖f(s)‖(1 + |s|)−k ds dt.
Since

C2 := sup
t∈R

sup
s≤t−1

(1 + |log(t− s)|)e−ω(t−s) (1 + |s|)k

(1 + |t|)k

≤ sup
t∈R

sup
r≥1

(1 + log(r))e−ωr
(1 + |t|+ r)k

(1 + |t|)k

≤ sup
r≥1

(1 + log(r))e−ωr(1 + r)k < +∞,

it follows that

I1 ≤ Cc(f)C2

�

R
(1 + |t|)−2 dt = 2Cc(f)C2.

On the other hand, we can estimate I2 by changing the order of integra-
tion:

I2 ≤ C
�

R
‖f(s)‖

s+1�

s

(1 + |t|)−k−2(1 + |log(t− s)|)e−ω(t−s) dt ds ≤ Cc(f)C3,

where

C3 = sup
s∈R

(1 + |s|)k
1�

0

(1 + |r + s|)−k−2(1 + |log(r)|) dr

≤ sup
s∈R

sup
0≤r≤1

(1 + |s|)k(1 + |r + s|)−k−2
1�

0

(1 + |log(r)|) dr < +∞.
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Analogously, one can prove the same for the second term on the right-hand
side of (6.2).

Finally, we can prove the following.

Theorem 6.4. Assume that f ∈ L1
loc(R;X) is weakly polynomially

bounded. Then the function u defined by (6.2) is the unique weakly poly-
nomially bounded mild solution of problem (6.1).

Proof. Let u be defined by (6.2). To show that u is a mild solution we
consider the function v given by v(t) := A−1u(t). It suffices to show that

v(t) = v(0) +A

t�

0

v(s) ds+
t�

0

A−1f(s) ds.

Note that, by definition,

v(s) =
s�

−∞
T−(s− r)A−1f(r) dr −

+∞�

s

T+(r − s)A−1f(r) dr.

Hence, by Fubini’s Theorem,
t�

0

v(s) ds =
0�

−∞

t�

0

T−(s− r)A−1f(r) ds dr +
t�

0

t�

r

T−(s− r)A−1f(r) ds dr

−
t�

0

r�

0

T+(r − s)A−1f(r) ds dr −
+∞�

t

t�

0

T+(r − s)A−1f(r) ds dr.

Since A is closed we obtain, by (4.1), for t > 0,

A

t�

0

v(s) ds =
0�

−∞
(T−(t− r)A−1f(r)− T−(−r)A−1f(r)) dr

+
t�

0

(T−(t− r)A−1f(r)− P−A−1f(r)) dr

−
t�

0

(P+A
−1f(r)− T+(r)A−1f(r)) dr

−
+∞�

t

(T+(r − t)A−1f(r)− T+(r)A−1f(r)) dr

= v(t)−
0�

−∞
T−(−r)A−1f(r) dr −

t�

0

A−1f(r) dr +
+∞�

0

T+(r)A−1f(r) dr

= v(t)−
t�

0

A−1f(r) dr − v(0).
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Our point is the representation formula (6.2). In special cases it had been
proved before. Lunardi [8, (4.4.26), p. 164] gave a proof when A generates
a holomorphic semigroup, and Schweiker [11, Chapter 2] gave a different
proof if f ∈ BUC(R;X) and A is densely defined. Here we do not address the
question of maximal regularity. This was done in previous work with the help
of multiplier theorems. In fact, in [1] it is shown that for each f ∈ Cα(R;X)
there exists a unique classical solution u ∈ C1+α(R;X) of (6.1), where
α ∈ (0, 1). Since a classical solution is also a weak solution we now have
a representation formula for this solution. On the other hand, with the help
of the representation formula (6.2) one can prove that u ∈ C1+α(R;X) for
f ∈ Cα(R;X) more directly as in [8, Theorem 4.3.1] without making use of
Fourier multiplier theorems. This is done in [13].

In the Lp-context the following is known. Let p ∈ (1,+∞). If X is a
Hilbert space and f ∈ Lp(R;X), then there exists a unique strong solution
u ∈W 1,p(R;X)∩Lp(R;D(A)) of (6.2) (see [4] or [10]). Again we can deduce
that u is given by 6.1. If X is a UMD-space this result remains true if A is
R-bisectorial (instead of merely sectorial, see [4]).

Acknowledgments. We are grateful to Fulvio Ricci and Giovanni Dore
who inspired us to obtain the results on squares and roots as presented in
Section 5.
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