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Weak spectral synthesis
in Fourier algebras of coset spaces

by

Eberhard Kaniuth (Paderborn)

Abstract. Let G be a locally compact group, K a compact subgroup of G and
A(G/K) the Fourier algebra of the coset space G/K. Applying results from [E. Kaniuth,
Weak spectral synthesis in commutative Banach algebras, J. Funct. Anal. 254 (2008), 987–
1002], we establish injection and localization theorems relating weak spectral sets and
weak Ditkin sets for A(G/K) to such sets for A(H/H ∩K), where H is a closed subgroup
of G. We also prove some results towards the analogue of Malliavin’s theorem for weak
spectral synthesis in A(G/K) and give illustrating examples.

Introduction. Let A be a regular and semisimple commutative Banach
algebra with structure space ∆(A) and Gelfand transform a 7→ â. For any
subset M of A, the hull h(M) of M is defined by h(M) = {ϕ ∈ ∆(A) :
ϕ(M) = {0}}. Associated to each closed subset E of ∆(A) are two distin-
guished ideals with hull equal to E, namely

k(E) = {a ∈ A : â(ϕ) = 0 for all ϕ ∈ E},
the kernel of E, and

j(E) = {a ∈ A : â has compact support disjoint fromE}.
Then k(E) is the largest ideal with hull E, and j(E) is the smallest such
ideal. Recall that E is a spectral set (or set of synthesis) if k(E) = j(E)
(equivalently, k(E) is the only closed ideal with hull equal to E). One says
that spectral synthesis holds for A if every closed subset of ∆(A) is a spectral
set. Moreover, E is a Ditkin set if a ∈ aj(E) for every a ∈ k(E).

A weaker form of spectral sets and spectral synthesis was introduced
and studied in [26], motivation arising from the union problem for sets of
synthesis. A closed subset E of ∆(A) is called a weak spectral set if there
exists n ∈ N such that an ∈ j(E) for every a ∈ k(E). The smallest such
number n is denoted ξ(E). When this happens for each E, we say that weak
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spectral synthesis holds for A. The importance of these latter notions is due
to the fact that the class of weak spectral sets is usually considerably larger
than the class of spectral sets and that there are many commutative Banach
algebras for which weak synthesis holds, whereas synthesis fails. Notably,
for n ∈ N, the unit sphere Sn−1 in Rn = ∆(L1(Rn)) satisfies ξ(Sn−1) =
b(n+ 1)/2c ([24]). For further examples see [8, Section 1]. Generalizing the
notion of a Ditkin set, we call E a weak Ditkin set if there exists n ∈ N such
that an ∈ anj(E) for each a ∈ k(E), and η(E) will stand for the minimal
such n. Weak spectral synthesis was also studied in [18] and, more recently,
in [7], [8] and [16].

Let G be a locally compact group and K a compact subgroup of G. The
Fourier algebra A(G/K) of the coset space G/K was first systematically
studied by Forrest [3]. A(G/K) is a semisimple and regular commutative
Banach algebra whose spectrum can be canonically identified with G/K.
There is a substantial body of contributions, of which we only mention [1],
[3], [10], [11], [12], [15], [17] and [23], to spectral synthesis in Fourier algebras
A(G). Recently, the algebras A(G/K) have gained considerable attention
and have been investigated in several aspects, such as spectral synthesis
problems and various kinds of amenability (see [4], [5], [16], [17]).

In [8] we have established injection theorems for weak spectral sets and
weak Ditkin sets for general semisimple and regular commutative Banach
algebras A and quotient algebras A/I. These theorems are applied in Sec-
tion 2 to Fourier algebras A(G/K) and quotient algebras A(H/H∩K) where
H is a closed subgroup of G. Our results (Theorem 2.2) are partly even new
when K is trivial, that is, for ordinary Fourier algebras. In Section 3 we
apply Theorem 2.2 and further results from [8] to deduce a characterization
of weak spectral sets and weak Ditkin sets for A(G/K) in terms of such sets
for A(H/H ∩K), where H is an open subgroup of G.

It was shown in [8] that weak spectral synthesis holds for the Fourier
algebra A(G) of any locally compact group G if and only if G is discrete. It is
tempting to conjecture that weak spectral synthesis holds for A(G/K) if and
only if K is open in G. However, this appears to be a very difficult problem
and we obtain only partial results towards this conjecture (Theorem 4.3).
The preceding problem is closely related to the question of how large a
subalgebra of A(H/H ∩K) the restriction algebra A(G/K)|H is. In the last
section we address this question in the special case of a semidirect product
G = H oK.

1. Preliminaries. Let G be a locally compact group. Eymard [2] has in-
troduced and intensively studied the Fourier algebra A(G) and the Fourier–
Stieltjes algebra B(G) of G. The algebra B(G) is the collection of all co-
efficient functions of continuous unitary representations of G and can be
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identified with the dual space of the group C∗-algebra C∗(G). Equipped
with pointwise operations and the norm defined by this duality, B(G) is a
Banach algebra. The Fourier algebra A(G) is the closed ideal of B(G) gen-
erated by all functions in B(G) with compact support. If G is abelian with
dual group Ĝ, then B(G) is isometrically isomorphic to the measure alge-
bra M(Ĝ) via the Fourier–Stieltjes transform, and this isomorphism maps
A(G) onto the L1-algebra L1(Ĝ). As shown in [2], A(G) is a semisimple
and regular commutative Banach algebra whose spectrum ∆(A(G)) can be
identified with G through assigning to x ∈ G the homomorphism u 7→ u(x),
u ∈ A(G). Recall that A(G) has a bounded approximate identity if and only
if G is amenable (see [19, Theorem 10.4]).

Let K be a compact subgroup of the locally compact group G and let
G/K be the space of left cosets of K in G, equipped with the quotient topol-
ogy. The Fourier algebra A(G/K) of G/K was extensively studied in [3].
A(G/K) can be simultaneously viewed as an algebra of continuous func-
tions on G/K and as a closed subalgebra of A(G). We always take the latter
view. Then

A(G/K) = {u ∈ A(G) : u(xk) = u(x) for all x ∈ G, k ∈ K}.

In [22] it was shown that the spaces A(G/K) are precisely the norm closed
left translation invariant ∗-subalgebras of A(G). Suppose that Haar measure
| · | of K is normalized so that |K| = 1. Then there is a canonical projection
pK from A(G) onto A(G/K) defined by

pK(u)(xK) =
�

K

u(xk) dk, x ∈ G, u ∈ A(G).

Thus pK(u) is nothing but the Bochner integral
	
K Rk(u) dk ∈ A(G), where

Rk(u)(x) = u(xk)

Theorem 1.1 ([3, Theorems 4.1 and 4.2]). A(G/K) is a regular and
semisimple commutative Banach algebra with ∆(A(G/K)) = G/K. More
precisely, the map xK 7→ ϕxK , where ϕxK(u) = u(xK) for u ∈ A(G/K), is
a homeomorphism from G/K onto ∆(A(G/K)). Furthermore, A(G/K) has
a bounded approximate identity if and only if G is amenable.

In addition to Theorem 1.1, we shall need a series of lemmas. The first
of these is a simple consequence of [3, Proposition 3.10].

Lemma 1.2. Let H and K be closed subgroups of G with K compact. If
K ⊆ H, then A(H/K) is isometrically isomorphic to A(G/K)/k(HK).

Proof. The map r : A(G/K) → A(H), u 7→ u|H , has kernel k(HK),
is norm decreasing and r(A(G/K)) ⊆ A(H/H ∩ K) = A(H/K). Given
v ∈ A(H), by Proposition 3.10 of [3] there exists an extension u ∈ A(G/K)
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of v with ‖u‖A(G) = ‖v‖A(H). So r induces an isometric isomorphism from
A(G/K)/k(HK) onto A(H/K).

Of course, the question arises of when, more generally, for a closed sub-
group H of G and a compact subgroup K of G, the restriction map u 7→ u|H
from A(G/K) into A(H/H∩K) is surjective. We shall present two such cases
in Lemma 2.3. For the reader who is less familiar with spectral synthesis
questions, we mention [9], [20] and [21] as references.

Lemma 1.3 ([2, Proposition 4.3]). Let K be a compact subgroup of G,
q : G→ G/K the quotient map and E a closed subset of G/K. If q−1(E) is
a (weak) spectral set for A(G), then E is a (weak) spectral set for A(G/K).

Lemma 1.4. Let K and C be compact subgroups of G and assume that
C is normal in G. Let q : G/K → G/KC denote the quotient map. Then
ξ(E) ≤ ξ(q−1(E)) for every closed subset E of G/KC. In particular, if weak
spectral synthesis (respectively, spectral synthesis) holds for A(G/K), then
it also holds for A((G/C)/(KC/C)).

Proof. We can assume n = ξ(q−1(E)) <∞. Let u ∈ A((G/C)/(KC/C))
be such that u|E = 0. Then (u ◦ q)|q−1(E) = 0 and

u ◦ q(xk) = u(xkC) = u(xC) = u ◦ q(x)
for all x ∈ G and k ∈ K. Given ε > 0, by hypothesis there exists v ∈ A(G/K)
such that ‖(u ◦ q)n − v‖A(G/K) < ε and v vanishes on some open set U with
q−1(E) ⊆ U and (G/K) \ U compact. Since q−1(E) = q−1(E)C and C
is compact, a simple topological argument shows that we can assume that
U = UC ⊆ G/K. Define w ∈ A(G/C) by

w(xC) =
�

C

v(xc) dc, x ∈ G.

Then w vanishes on the open set q(U), E ⊆ q(U), and (G/KC) \ q(U) is
compact. Moreover, for x ∈ G, k ∈ K and c ∈ C,

w(xkcC) =
�

C

v(xkcc′) dc′ =
�
v(xkc′k−1k) dc′

=
�

C

v(xkc′k−1) dc′ =
�

C

v(xc′) dc′ = w(xC),

so that w ∈ A((G/C)/(KC/C)). Finally,
‖un − w‖A(G/C) = ‖un ◦ q − w ◦ q‖A(G) = ‖(u ◦ q)n − w ◦ q‖A(G)

=
∥∥∥ �
C

Rc(u ◦ q)n dc−
�

C

Rcv dc
∥∥∥
A(G)

≤
�

C

‖Rc((u ◦ q)n − v)‖A(G) dc = ‖(u ◦ q)n − v‖A(G).

So w ∈ j(E) and ‖un − w‖A(G/C) < ε.
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The following lemma is nothing but a slight extension of Proposition 4.3
of [3].

Lemma 1.5. Let K1 and K2 be compact subgroups of G such that K1⊆K2.
If weak spectral synthesis holds for A(G/K1), then it also holds for A(G/K2).

Proof. Let E be a closed subset of G/K2 and let q : G/K1 → G/K2

denote the quotient map. If u ∈ k(E) ⊆ A(G/K2), then u ◦ q ∈ k(E ◦ q) ⊆
A(G/K1), and hence there exist m ∈ N and a sequence (vn)n ⊆ j(q−1(E))
such that ‖(u ◦ q)m − vn‖A(G) → 0. Let wn =

	
K2
Rk(vn) dk ∈ A(G/K2),

n ∈ N. Then
‖(u ◦ q)m − wn‖A(G) ≤ ‖(u ◦ q)m − vn‖A(G) → 0,

where Haar measure of K2 is normalized. Moreover, wn ∈ j(q−1(E)) since
supp wn ⊆ q−1(q(supp vn)), which is a compact set, and since

q−1(q(supp vn)) ∩ q−1(E) 6= ∅
implies that supp vn ∩ q−1(E) 6= ∅, which is impossible.

2. Injection theorems. Let G be a locally compact abelian group
and H a closed subgroup of G. Then L1(G/H) is a quotient of L1(G) and
Ĝ/H = ∆(L1(G/H)) embeds canonically into Ĝ = ∆(L1(G)). Then a closed
subset of Ĝ/H is a spectral set (respectively, Ditkin set) for L1(G/H) if
and only if it is a spectral set (respectively, Ditkin set) for L1(G) (see [20,
Theorems 7.3.15 and 7.4.13]). For obvious reasons, such results are referred
to as injection theorems. The same problem naturally arises in the general
context of a regular and semisimple commutative Banach algebra A and a
closed ideal I of A, and it is worthwhile to consider weak spectral sets and
weak Ditkin sets rather than just spectral sets and Ditkin sets. However,
as the reader might expect, some additional hypotheses, which are auto-
matically satisfied in the group algebra situation, have to be placed on A
and I. Such injection theorems have been established recently in [8]. Below,
we apply these results of [8] to obtain injection theorems for the Fourier
algebras A(G/K) of coset spaces G/K and quotient algebras of the form
A(H/H ∩K), where H is a closed subgroup of G.

Lemma 2.1. Let G be an amenable locally compact group, H a closed
subgroup of G, and K a compact subgroup of G. Suppose that HK is a
subgroup of G. Given u ∈ A(G/K) and ε > 0, there exists v ∈ A(G/K)
such that v vanishes in a neighbourhood of HK and

‖u− vu‖A(G) < 3‖u|HK‖A(HK) + ε.

In particular, the ideal k(HK/K) = {u ∈ A(G/K) : u|H = 0} of A(G/K)
has an approximate identity with norm bound 2 consisting of functions which
vanish in a neighbourhood of HK.
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Proof. Suppose that we have found v ∈ A(G) with the specified proper-
ties. Then pK(v) ∈ A(G/K) also vanishes in a neighbourhood of HK and,
since u = pK(u),

‖u− pK(v)u‖A(G) =
∥∥∥ �
K

(Rk(u)−Rk(vu)) dk
∥∥∥
A(G)

≤ ‖u− vu‖A(G).

Since, by [3, Lemma 3.8],

‖u|HK‖A(HK) = inf{‖u+ w‖A(G) : w ∈ k(HK)},
we find w ∈ k(HK) such that

‖u− w‖A(G) < ‖u|HK‖A(HK) + ε/4.

Now, HK is a set of synthesis [23, Theorem 3] (see also [6]) and, since G is
amenable, the ideal k(HK) of A(G) has a bounded approximate identity of
norm bound 2 (see [4, Theorem 2.6]). Hence there exists v ∈ j(HK) with
‖v‖A(G) ≤ 2 and ‖w − vw‖A(G) < ε/4. It follows that

‖u− uv‖A(G) ≤ ‖u− w‖A(G) + ‖w − vw‖A(G) + ‖v(w − u)‖A(G)

< ‖u|HK‖A(HK) +
ε

4
+
ε

4
+ 2
(
‖u|HK‖A(HK) +

ε

4

)
= 3‖u|HK‖A(HK) + ε,

as was to be shown. The final statement of the lemma is now clear.

Most likely, the number 3 in the preceding lemma is not the best possible
bound. This is suggested by the fact that 3 can be replaced by 1 when G is
abelian [20, Lemma 7.4.14]. We can now state the injection theorem.

Theorem 2.2. Let G be a locally compact group, H be a closed subgroup
of G, and K be a compact subgroup of G. Suppose that the map u 7→u|H from
A(G/K) into A(H/H∩K) is surjective. Let E be a closed subset of H/H∩K
and let i : H/H ∩K → G/K denote the inclusion map h(H ∩K) 7→ hK,
h ∈ H.

(i) If i(E) is a weak spectral set (respectively, weak Ditkin set) for
A(G/K), then E is is a weak spectral set (respectively, weak Ditkin
set) for A(H/H ∩K). Moreover,

ξ(E) ≤ ξ(i(E)) (respectively , η(E) ≤ η(i(E))).

(ii) Suppose that HK/K is a set of synthesis for A(G/K). If E is a
weak spectral set for A(H/H ∩ K), then i(E) is a weak spectral
set for A(G/K) and ξ(i(E)) ≤ ξ(E). In particular, this conclusion
holds if HK is a subgroup of G.

(iii) Suppose that G is amenable and HK is a subgroup of G. If E is a
weak Ditkin set for A(H/H ∩K), then i(E) is a weak Ditkin set for
A(G/K) and η(i(E)) ≤ η(E)2.
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Proof. Since r : u 7→ u|H is a continuous homomorphism of A(G/K) onto
A(H/H ∩K) and the kernel of r equals J = A(G/K)∩k(HK), by the open
mapping theorem A(H/H ∩K) is topologically isomorphic to A(G/K)/J .

Therefore, the statements in (i) follow from Theorem 2.2(i) and Theorem
2.5(i) of [8], respectively.

(ii) The first statement is a consequence of [8, Theorem 2.2(ii)]. If HK
is a subgroup of G, then it is a set of synthesis for A(G) and hence HK/K
is a set of synthesis for A(G/K) by Lemma 1.3.

(iii) Since G is amenable and HK is a subgroup of G, Lemma 2.1 shows
that A = A(G/K) and the ideal I = k(HK/K) satisfy the hypotheses of
Theorem 2.5(ii) of [8] with m = 1 and C = 3. It follows that i(E) is a weak
Ditkin set for A(G/K) and that η(i(E)) ≤ η(E)2.

When K = {e}, assertions (i) and (ii) of Theorem 2.2 were known before
(compare [10, Theorem 3.5] and [11, Theorem 3.4]). Part (iii), however, is
entirely new, even in the case K = {e}.

In Theorem 2.2(ii), the hypothesis that HK/K be a set of synthesis
could be weakened to the effect that it be a weak spectral set, with the
conclusion that ξ(i(E)) ≤ ξ(E)ξ(HK/K) (see [8, Theorem 2.2]).

If K ⊆ H, then the map u 7→ u|H from A(G/K) into A(H/H ∩ K) is
surjective (Lemma 1.2). We now discuss two more cases in which this is true.

Lemma 2.3. Let H be a closed subgroup and K a compact subgroup of G.
The restriction map r : A(G/K)→ A(H/H ∩K), u 7→ u|H , is surjective if
either H is contained in the normalizer of K in G or H is open in G.

Proof. Suppose first that H is contained in the normalizer of K in G.
Then HK is a closed subgroup of G, K is normal in HK and the map

φ : H/H ∩K → HK/K, h(H ∩K) 7→ hK,

is a continuous bijective homomorphism. Since K is compact and A(H) ⊆
C0(H), given v ∈ A(H/H ∩K), there exists an open, σ-compact subgroup
L of H such that H ∩K ⊆ L and v = 0 on H \L. Then L∩K = H ∩K and
v|L ∈ A(L/L ∩K), and φ|L/L∩K is a topological isomorphism of L/L ∩K
onto LK/K. Let w denote the trivial extension of v ◦ φ−1 ∈ A(LK/K) to
all of HK. Then w ∈ A(HK/K) and

v = ṽ|L = ( ˜v|L ◦ φ−1) ◦ φ = w ◦ φ = w|H .
There exists w′ ∈ A(G) with w′|HK = w. Then u = pK(w′) belongs to
A(G/K) and u|HK = w since w ∈ A(HK/K) and r(u) = v.

Now assume that H is open in G and let v ∈ A(H/H ∩ K). Let Haar
measure of K be normalized and set

u =
1

[K : (K ∩H)]

�

K

Rk(ṽ) dk ∈ A(G),
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where ṽ denotes the trivial extension of v to all of G, and [K : (K ∩H)] is
the index of K ∩H in K. Then, since |K ∩H| = [K : (K ∩H)]−1, for h ∈ H
we have

u(h) =
1

[K : (K ∩H)]

�

K∩H
v(hk) dk = v(h),

so that u extends v. Moreover, for arbitrary x ∈ G and a ∈ K,

[K : (K ∩H)]u(xa) =
�

K

ṽ(xak) dk =
�

K∩a−1x−1H

v(xak) dk

=
�

K∩x−1H

v(xk) dk =
�

K

ṽ(xk) dk = [K : (K ∩H)]u(x).

This shows that u ∈ A(G/K), and we are done.

A further comment is in order concerning the hypothesis in Theorem
2.2(ii) that HK/K be a set of synthesis for A(G/K). This hypothesis is not
only satisfied if HK is a subgroup of G, but also if H is open in G and, in
addition, ∅ is a Ditkin set for A(G). This can be seen as follows. Recall that
if A is any regular and semisimple commutative Banach algebra, then the
union of two disjoint spectral sets in ∆(A) is again a spectral set provided
that ∅ is a Ditkin set. In the present situation, because H is open and K
is compact, HK is a finite union of right cosets of H and hence is a set of
synthesis for A(G). Now apply Lemma 1.3 again. We also remind the reader
that ∅ is a Ditkin set if A(G) has a (possibly unbounded) approximate
identity and so in particular if G is amenable.

We state the most important special case of Theorem 2.2 as a corollary.

Corollary 2.4. Let G be a locally compact group and let H be a closed
subgroup of G, and K a compact subgroup of H. Let E be a closed subset of
H/K and let i : H/K → G/K denote the inclusion map.

(i) E is a weak spectral set for A(H/K) if and only if i(E) is a weak
spectral set for A(G/K). More precisely, ξ(E) = ξ(i(E)).

(ii) Suppose that G is amenable. Then E is a weak Ditkin set for A(H/K)
if and only if i(E) is a weak Ditkin set for A(G/K), and in this case

η(E) ≤ η(i(E)) ≤ η(E)2.

In particular, E is a Ditkin set for A(H/K) if and only if i(E) is a
Ditkin set for A(G/K).

In [3, Corollary 4.5] it was shown that singletons in G/K are sets of
synthesis for A(G/K), and if G is amenable, then finite subsets of G/K are
sets of synthesis. These results of course follow from Theorem 2.2. Indeed,
taking H = K we find that {K} is a set of synthesis and so is each singleton
in G/K. Furthermore, if G is amenable then singletons in G/K are even
Ditkin sets and hence so are finite subsets of G/K. Theorem 2.2 in particular
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applies if H is contained in the centre of G and H ∩K = {e}. We present
one such example.

Example 2.5. Let H3 be the 3-dimensional Heisenberg group, realized
as C× R with multiplication

(z1, t1)(z2, t2) =
(
z1 + z2, t1 + t2 +

1
2

Im(z1z2)
)
,

z1, z2 ∈ C, t1, t2 ∈ R. Let the circle group T act on H3 by
w · (z, t) = (wz, t), w ∈ T, (z, t) ∈ H3,

and form the semidirect product G = H3 o T. This solvable group is often
referred to as the reduced oscillator group. Let K = T and H = R×T, where
R is identified with the subgroup {(0, t) : t ∈ R} of H3. Then a closed subset
E of R is a weak spectral (respectively, Ditkin) set for A(R) = A(H/T) if
and only if i(E) ⊆ G/T = H3 is a weak spectral (respectively, Ditkin) set for
A(G/T). Moreover, ξ(i(E)) = ξ(E) and η(i(E)) = η(E). Of course, instead
of H3 we can equally well consider the higher-dimensional Heisenberg groups
H2n+1, realized as Cn ×R, and the corresponding analogue of the oscillator
group, that is, the semidirect product H2n+1 o Tn, where Tn acts on Cn

componentwise.

3. A localization theorem. In this section we apply Theorem 2.2
and results from [8] to deduce some kind of localization theorem which
characterizes weak spectral sets and weak Ditkin sets for A(G/K) in terms
of such sets for A(H/H ∩K) when H is open in G.

Lemma 3.1. Let H be an open subgroup of G, and K a compact subgroup
of H. If E ⊆ G/K is a weak Ditkin set (respectively, weak spectral set) for
A(G/K), then E∩H/K is a weak Ditkin set (respectively, weak spectral set)
for A(H/K) and η(E ∩H/K) ≤ η(E) (respectively, ξ(E ∩H/K) ≤ ξ(E)).

Proof. Let E be a weak Ditkin set for A(G/K) and m = η(E), and let
u ∈ A(H/K) be such that u|E∩H/K = 0. Let ũ denote the trivial extension
of u to all of G/K. Then

ũ ∈ k((E ∩H/K) ∪ (G/K \H/K)) ⊆ k(E)

and hence, given ε > 0, there exists v∈j(E) such that ‖ũm−ũmv‖A(G/K)≤ε.
It follows that v|H/K ∈ j(E ∩H/K) and

‖um − um(v|H/K)‖A(H/K) ≤ ‖ũm − ũmv‖A(G/K) ≤ ε.
Since ε > 0 is arbitrary, this shows that E ∩H/K is a weak Ditkin set for
A(H/K) with η(E ∩H/K) ≤ η(E).

The argument for weak spectral sets is similar, in fact, even simpler.

Lemma 3.2. Let G be an amenable locally compact group and let H be
an open subgroup of G, and K a compact subgroup of H. Let E be a closed
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subset of G/K and suppose that for every a ∈ G, the set aE ∩ H/K is a
weak Ditkin set for A(H/K) and that η(aE ∩H/K) ≤ N for some N ∈ N
and all a ∈ G. Then E is a weak Ditkin set for A(G/K) and η(E) ≤ N2.

Proof. Let u ∈ k(E). Since u ∈ C0(G), u is concentrated on countably
many cosets of H. So we find a σ-compact open subgroup L of G such that
H ⊆ L and u|G\L = 0. Let A ⊆ G be a representative system for the left
cosets of H in L, and for a ∈ A, let Ea = aE∩H/K. By hypothesis, each Ea
is a weak Ditkin set for A(H/K) and η(Ea) ≤ N . Let i denote the inclusion
map of L/K into G/K. Since L is amenable, Theorem 2.2(ii) applies and
shows that i(Ea) is a weak Ditkin set for A(L/K) and η(i(Ea)) ≤ N2.

Now if F ⊆ L/K is a weak Ditkin set for A(L/K), then so is aF for every
a ∈ L and η(aF ) = η(F ) since k(aF ) = La(k(F )) and j(aF ) = La(j(F )).
Thus, for every a ∈ A, i(E ∩ aH/K) = i(aEa) is a weak Ditkin set for
A(L/K) and η(i(E ∩aH/K)) ≤ N2. As A is countable and ∅ is a Ditkin set
for A(L/K), Proposition 1.5 of [8] shows that E ∩ L/K =

⋃
a∈A i(aEa) is a

weak Ditkin set for A(L/K) and η(E ∩ L/K) ≤ N2. Thus

(u|L)N
2 ∈ (u|L)N2j(E ∩ L/K).

Since u = 0 on G/K \ L/K, it follows that uN
2 ∈ uN2j(E). Since u ∈ k(E)

was arbitrary, the proof is complete.

For the next proposition compare Proposition 1.6 of [8] and the remark
following it.

Proposition 3.3. Let A be a regular and semisimple commutative Ba-
nach algebra satisfying Ditkin’s condition at infinity, and let E be a closed
subset of ∆(A). Suppose that each ϕ ∈ ∆(A) has a closed relative neigh-
bourhood Eϕ in E which is a weak spectral set and that

sup {ξ(Eϕ) : ϕ ∈ E} <∞.
Then E is a weak spectral set and

ξ(E) = sup{ξ(Eϕ) : ϕ ∈ E}.
Theorem 3.4. Let G be a locally compact group and let H and K be

subgroups of G such that H is open, K is compact and HK is a subgroup
of G. Let E be a closed subset of G/K and for each a ∈ G, let

Ea = {x(H ∩K) : x ∈ H, axK ∈ E} ⊆ H/H ∩K.
(i) Suppose that u ∈ uA(G/K) for all u ∈ A(G/K). Then E is a weak

spectral set for A(G/K) if and only if every Ea is a weak spectral set
for A(H/H ∩K) and there is an upper bound for the values ξ(Ea),
a ∈ G. More precisely,

ξ(E) = sup{ξ(Ea) : a ∈ G}.



Weak spectral synthesis 239

(ii) Suppose that G is amenable. Then E is a weak Ditkin set for A(G/K)
if and only if every Ea is a weak Ditkin set for A(H/H ∩ K) and
there exists an upper bound for the values η(Ea), a ∈ G. In this case,

η(E) ≤ sup{η(Ea)2 : a ∈ G} ≤ η(E)2.

In particular, E is a Ditkin set for A(G/K) if and only if Ea is a
Ditkin set for A(H/H ∩K) for all a ∈ G.

Proof. Since HK is an open subgroup of G, we can apply Lemma 3.1
with HK in place of H. If E is a weak Ditkin set (respectively, weak spectral
set) for A(G/K) then, for every a ∈ G, aE ∩ HK/K is a weak Ditkin set
(respectively, weak spectral set) for A(HK/K) and

η(aE ∩HK/K) ≤ η(aE) = η(E) (respectively, ξ(aE ∩HK/K) ≤ ξ(E)).

Conversely, suppose that η(aE∩HK/K) ≤ N (respectively, ξ(aE∩HK/K)
≤ N) for all a ∈ G. It then follows from Lemma 3.2 (respectively, Proposi-
tion 3.3) and the hypotheses of the theorem that

E =
⋃
a∈G

(E ∩ a−1HK/K) =
⋃
a∈G

a−1(aE ∩HK/K)

is a weak Ditkin set with η(E) ≤ N (respectively, weak spectral set with
ξ(E) ≤ N).

To finish the proof, recall that since H is open and HK is a subgroup
of G, an application of Lemma 2.3 with G = HK and of the open mapping
theorem shows that the restriction map u 7→ u|H is a topological isomor-
phism from A(HK/K) onto A(H/H ∩K). The corresponding homeomor-
phism between the Gelfand spaces is simply given by x(H ∩ K) 7→ xK,
x ∈ H. So Ea is a weak Ditkin set for A(H/H∩K) if and only if aE∩HK/K
is a weak Ditkin set for A(HK/K) and η(Ea) = η(aE ∩HK/K), and simi-
larly for weak spectral sets.

Combining this with the first part of the proof establishes (i) and (ii).

Corollary 3.5. Let G, H and K be as in Theorem 3.4, and suppose that
H has infinite index in G. Then weak spectral synthesis holds for A(G/K)
if and only if

sup{ξ(F ) : F ⊆ H/H ∩K, F closed} <∞.
Moreover, in this case

sup{ξ(E) : E ⊆ G/K, E closed} = sup{ξ(F ) : F ⊆ H/H ∩K, F closed}.
Proof. The “if” part follows immediately from Theorem 3.4(i). For the

“only if” part suppose there exists a sequence (Fn)n of closed subsets of
H/H ∩ K such that ξ(Fn) ≥ n for all n. Since G/H is infinite, we can
choose an ∈ G, n ∈ N, such that a−1

m an 6∈ H for n 6= m. Let

En = {anxK : x ∈ H, x(H ∩K) ∈ Fn}.



240 E. Kaniuth

Then E =
⋃∞
n=1En is a closed subset of G/K and, with the notation of

Theorem 3.4, (En)an = Fn. Therefore,

ξ(E) = sup{ξ(Fn) : n ∈ N} =∞
by Theorem 3.4(i).

4. Towards Malliavin’s theorem for weak spectral synthesis in
A(G/K). Malliavin’s celebrated theorem [13] states that spectral synthesis
fails to hold for A(G) = L1(Ĝ) if G is a nondiscrete locally compact abelian
group. By modifying Varopoulos’ proof [25] of Malliavin’s theorem, it was
shown in [18] that the same is true of weak spectral synthesis. Employing this
result and a deep theorem due to Zelmanov [27], we proved in [8] that the
same conclusion holds for arbitrary nondiscrete locally compact groups G.
Subsequently, the author was informed by Parthasarathy that this result
was also obtained by Prakash and himself.

The problem of when (weak) spectral synthesis holds for A(G/K) ap-
pears to be very difficult. It is tempting to conjecture that weak spectral
synthesis fails for A(G/K) whenever K is not open in G. However, at present
we are only able to provide a major step towards confirming this conjecture
(Theorem 4.3). We start by pointing out that conversely openness of K is
sufficient for weak spectral synthesis to hold for A(G/K).

Lemma 4.1. Let K be a compact open subgroup of G. Then

(i) Weak spectral synthesis holds for A(G/K). More precisely, ξ(E) ≤ 2
for every subset E of G/K.

(ii) If u ∈ uA(G/K) for each u ∈ A(G/K), then spectral synthesis holds
for A(G/K).

Proof. Since A(G/K) is Tauberian, (i) follows from [8, Lemma 4.1]. For
(ii), note that by hypothesis

u ∈ u(A(G/K) ∩ Cc(G/K)) = uj(∅)
for every u ∈ A(G/K). On the other hand, for any subset E of G/K,
k(E)j(∅) ⊆ j(E) and hence

k(E) ⊆ k(E)j(∅) ⊆ j(E)

(compare the proof of Lemma 4.1 of [8]).

Thus, if K is open in G and A(G/K) has an approximate identity in the
weakest possible sense, then spectral synthesis holds for G. In particular, if
K is open in G andG is amenable, then A(G/K) has a bounded approximate
identity (Theorem 1.1) and hence spectral synthesis holds for A(G/K).

The following lemma will be needed to prove the main result of this
section.
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Lemma 4.2. Let G be a compact nilpotent group and K a closed subgroup
of G. If weak spectral synthesis holds for A(G/K), then K has finite index
in G.

Proof. Let Z0 = {e} ⊆ Z1 ⊆ · · · ⊆ Zn = G denote the ascending central
series of G. We show by induction on j that K ∩ Zj has finite index in Zj .
So let j ≥ 1, assume that [Zj−1 : (K ∩Zj−1)] <∞ and consider the chain of
subgroups Zj ⊇ Zj ∩ Zj−1K ⊇ Zj ∩K. Since Zj−1K/K = Zj−1/K ∩ Zj−1

is finite, we get

[(Zj−1K ∩ Zj) : (K ∩ Zj)] ≤ [Zj−1K : K] <∞.
Thus it remains to observe that Zj−1K ∩ Zj has finite index in Zj .

Since weak synthesis holds for A(G/K), it also holds for A(ZjK/K) and
hence for A(ZjK/Zj−1K). Now, since Zj/Zj−1 is contained in the centre
of G/Zj−1, we see that ZjK normalizes Zj−1K. Therefore weak synthesis
holds for A(Zj/Zj∩Zj−1K). As Zj/Zj−1 is abelian, this implies that Zj/Zj∩
Zj−1K is finite, as required.

In what follows, G0 always denotes the connected component of the
identity of a locally compact group G.

Theorem 4.3. Suppose that G contains a nilpotent open subgroup. If K
is a compact subgroup of G and weak synthesis holds for A(G/K), then K
is open in G.

Proof. Let H be a nilpotent open subgroup of G. Since G/G0, being
totally disconnected, has a neighbourhood basis of the identity consisting of
compact open subgroups, we can assume that H/G0 is compact. It suffices
to show that H ∩ K is open in H. Since H is open in G, weak synthesis
holds for A(H/H ∩ K) (Theorem 2.2). Thus we can replace G by H and
henceforth assume that G is nilpotent and G/G0 is compact.

Since G is almost connected, G is a projective limit of Lie groups [14], say
G=limαG/Kα. Then weak synthesis holds for each A((G/Kα)/(KαK/Kα))
(Lemma 1.4), and since (G/Kα)0 has finite index in G/Kα, weak synthe-
sis also holds for A((G/Kα)0/(KαK/Kα) ∩ (G/Kα)0). Suppose that we
have shown that this implies (G/Kα)0 ⊆ KαK/Kα. Since G0Kα/Kα ⊆
(G/Kα)0, a straightforward argument, using the facts that K is compact
and

⋂
αKα = {e}, shows that G0 ⊆ K. Then weak synthesis holds for

A((G/G0)/(K/G0)). Since G/G0 is a compact nilpotent group, K has finite
index in G by Lemma 4.2. This completes the proof.

It therefore remains to verify that if G is a connected nilpotent Lie
group and K is a compact subgroup of G such that A(G/K) satisfies weak
synthesis, then K = G. To that end, let again Z0 = {e} ⊆ Z1 ⊆ · · · ⊆
Zn = G denote the ascending central series of G. We show by induction
that Zj ⊆ K. Assume that Zj−1 ⊆ K for some j ≥ 1. Then K is normal
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in ZjK, since Zj/Zj−1 is contained in the centre of G/Zj−1 and Zj−1 ⊆ K.
Because weak synthesis holds for A(ZjK/K), we see that K must be open
in ZjK. However, Zj/Zj−1 is connected and hence Zj ⊆ K. This completes
the induction step and so G = Zn = K.

Corollary 4.4. Let G be a locally compact group such that G0 is nilpo-
tent and let K be a compact subgroup of G. If weak spectral synthesis holds
for A(G/K), then G0 is contained in K.

Proof. Since G/G0 is totally disconnected, we can choose an open sub-
group H of G such that H/G0 is compact. Then weak spectral synthe-
sis holds for A(H/H ∩ K). Thus, since G0 = H0, we can assume that
G = H. Then G, being almost connected, is a projective limit of Lie groups,
G/Cα say, and as in the proof of Theorem 4.3, it suffices to show that for
each α, (G0Cα)/Cα = (G/Cα)0 is contained in (KCα)/Cα. However, this
follows from Theorem 4.3 since (G/Cα)0 is nilpotent, connected and open
in G/Cα.

We close this section by adding that if G is compact, then a stronger
conclusion than the one of Corollary 4.4 can be drawn. Recall that if H is
a connected locally compact group, then H possesses a maximal connected
normal subgroup, the so-called radical rad(H) of H.

Proposition 4.5. Let G be a compact group and K a closed subgroup
of G. If weak spectral synthesis holds for A(G/K), then the radical of G0 is
contained in K.

Proof. The usual arguments, already employed in the proofs of Theo-
rem 4.3 and Corollary 4.4, show that we can assume that G is a Lie group.
Let N = rad(G0). Then N is abelian and hence isomorphic to Td for some
d ∈ N0. Then there exist d characters χ1, . . . , χd of N which together sepa-
rate the points of N . For each j = 1, . . . , d, the K-orbit K(χj) of χj in N̂ is
finite since K is compact and N̂ is discrete. Thus there exists a subgroup L
of K of finite index such that χj(k−1xk) = χj(x) for all x ∈ N , k ∈ L and
j = 1, . . . , d. This implies that L centralizes N .

Let H = NL, which is a subgroup of finite index in NK. Then, by
Theorem 2.2, weak spectral synthesis holds for A(NK/K) and hence also
for the algebra A(H/H ∩ K). As L centralizes N , it is easy to verify that
H ∩K is normal in H. Now H/H ∩K, being a homomorphic image of N ,
is a connected abelian group. Since weak spectral synthesis fails for any
nondiscrete locally compact abelian group [18], it follows that N ⊆ H
⊆ K.

5. A(G/K) for certain semidirect products. Since the most use-
ful description of functions u ∈ A(G) is in terms of L2-functions, namely
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u = f ∗ ǧ, where f, g ∈ L2(G), it is desirable to identify among those con-
volution products the functions belonging to A(G/K) and to determine the
restriction algebra A(G/K)|H . In concluding the paper we treat this prob-
lem in a special semidirect product situation, hoping that this might prove
useful in further investigation of groups such as motion groups.

Lemma 5.1. Let K be a compact subgroup of G and let u ∈ A(G). Then
u ∈ A(G/K) if and only if u is of the form u = f ∗ ǧ, where f, g ∈ L2(G)
and Lag = g for all a ∈ K. Moreover, in this case f and g can be chosen
such that ‖u‖ = ‖f‖2‖g‖2.

Proof. Normalize Haar measure of K so that |K| = 1. As pointed out
in [3], G/K has a G-invariant measure µ, and Weil’s formula

�

G

f(x)dx =
�

G/K

�

K

f(xk) dk dµ(xK)

holds. Now, suppose that u is of the indicated form. Then for x ∈ G and
a ∈ K we have

u(xa) =
�

G/K

�

K

f(yk)ǧ((yk)−1xa) dk dµ(yK)

=
�

G/K

�

K

f(yk)g(a−1x−1yk) dk dµ(yK)

=
�

G/K

�

K

f(yk)g(x−1yk) dk dµ(yK) = (f ∗ ǧ)(x) = u(x),

whence u ∈ A(G/K). Conversely, let u ∈ A(G/K) and let f, h ∈ L2(G)
be such that u = f ∗ ȟ and ‖u‖ = ‖f‖2‖h‖2. Define g ∈ L2(G) by g(t) =	
K h(kt) dk. Then Lkg = g for all k ∈ K and, for any x ∈ G and a ∈ K,

u(xa) =
�

K

u(xk) dk =
�

G/K

�

K

�

K

f(yk′)h(k−1x−1yk′) dk dk′ dµ(yK)

=
�

G/K

�

K

f(yk′)g(x−1yk′) dk′ dµ(yK)

=
�

G/K

�

K

f(yk′)g(a−1x−1yk′) dk′ dµ(yK) = (f ∗ ǧ)(xa).

So u has the required form.

Proposition 5.2. Let G be a semidirect product G = N o K, where
K is an abelian compact group with dual group Γ . Let u ∈ A(G/K). Then
there exist fγ , gγ ∈ L2(N), γ ∈ Γ , with the following properties:

(1)
∑

γ∈Γ ‖fγ‖22 <∞ and
∑

γ∈Γ ‖gγ‖22 <∞.
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(2) For each γ ∈ Γ , gγ(a−1xa) = γ(a)gγ(x) for almost all x ∈ N and
a ∈ K.

(3) u = f ∗ ǧ, where f, g ∈ L2(G) are defined by

f(xa) =
∑
γ∈Γ

fγ(x)γ(a) and g(xa) =
∑
γ∈Γ

gγ(x)γ(a),

for x ∈ N and a ∈ K. In this case, the series
∑

γ∈Γ (fγ∗ǧγ) converges
in A(N) and equals u|N .

Conversely, let v ∈ A(N) and suppose that fγ , gγ, γ ∈ Γ , are functions
in L2(N) satisfying (1) and (2) and v =

∑
γ∈Γ fγ ∗ ǧγ. If f, g ∈ L2(G) are

defined as in (3), then u = f ∗ ǧ ∈ A(G/K) and u|N = v.

Proof. Suppose first that u ∈ A(G/K). Then, by Lemma 5.1, there exist
f, g ∈ L2(G) such that u = f ∗ ǧ and Lag = g for all a ∈ K. Since Haar mea-
sure of G is the product of Haar measures of N and of K, we see that L2(G)
is isometrically isomorphic to the Hilbert space tensor product of L2(N) and
L2(K). We can assume that Haar measure of K is normalized. Then, since
K is compact and abelian, the characters of K form an orthonormal basis
of L2(K). Thus f and g admit unique representations

f =
∑
γ∈Γ

fγ ⊗ γ and g =
∑
γ∈Γ

gγ ⊗ γ,

where fγ , gγ ∈ L2(N) and
∑

γ∈Γ ‖fγ‖22 <∞ and
∑

γ∈Γ ‖gγ‖22 <∞. Explic-
itly,

f(xa) =
∑
γ∈Γ

fγ(x)γ(a) and g(xa) =
∑
γ∈Γ

gγ(x)γ(a)

for almost all x ∈ N and a ∈ K. Since Lbg = g for each b ∈ K, we also have

g(xa) = g(b−1xa) = g((b−1xb)b−1a) =
∑
γ∈Γ

gγ(b−1xb)γ(b−1a),

which by the uniqueness of the representation of g implies that

gγ(b−1xb) = gγ(x)γ(b)

for almost all x ∈ N . Using the orthogonality relations for characters, this
in turn yields

u(x) = (f ∗ ǧ)(x) =
�

N

�

K

f(xya)g(ya) da dy

=
∑
γ∈Γ

∑
δ∈Γ

�

N

�

K

fγ(xy)γ(a)gδ(y)δ(a) da dy

=
∑
γ∈Γ

�

N

fγ(xy)gγ(y) dy =
∑
γ∈Γ

(fγ ∗ ǧγ)(x)
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for almost all x ∈ N . Since∑
γ∈Γ
‖fγ ∗ ǧγ‖A(N) ≤

∑
γ∈Γ
‖fγ‖2‖gγ‖2 ≤

(∑
γ∈Γ
‖fγ‖22

)1/2(∑
γ∈Γ
‖gγ‖22

)1/2
<∞,

the series
∑

γ∈Γ (fγ ∗ ǧγ) converges in A(N) and the limit equals u|N .
Conversely, let fγ , gγ ∈ L2(N), γ ∈ Γ , be given satisfying (1), (2) and

v =
∑

γ∈Γ fγ ∗ ǧγ . Then, if f, g ∈ L2(G) are defined as in (3), we have as
above

u(bx) =
�

K

�

N

f(xyba)g(b−1yba) dy da

=
∑
γ∈Γ

∑
δ∈Γ

�

N

�

K

fγ(xy)γ(ba)gδ(b−1yb)δ(a) da dy

=
∑
γ∈Γ

�

N

fγ(xy)gγ(b−1yb)γ(b) dy

=
∑
γ∈Γ

(fγ ∗ ǧγ)(x)

for all x ∈ N and b ∈ K, whence u ∈ A(G/K) and u|N = v.

Acknowledgments. The author is grateful to the referee for carefully
reading the paper and detecting a number of typos and some inconsistent
notation. In addition, Lemma 5.1 was originally only formulated for semidi-
rect products G = N oK. That it holds more generally was pointed out by
the referee.
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