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Orbits in symmetric spaces, II

by

N. J. Kalton (Columbia, MO), F. A. Sukochev (Sydney) and
D. Zanin (Adelaide)

Abstract. Suppose E is fully symmetric Banach function space on (0, 1) or (0,∞) or
a fully symmetric Banach sequence space. We give necessary and sufficient conditions on
f ∈ E so that its orbit Ω(f) is the closed convex hull of its extreme points. We also give
an application to symmetrically normed ideals of compact operators on a Hilbert space.

1. Introduction. Let I be either the interval (0, 1) or the semi-axis
(0,∞) and suppose f ∈ L1(I) + L∞(I). We define the orbit Ω(f) of f
to be the set of Tf where T : L1 + L∞ → L1 + L∞ is an operator with
‖T‖L1→L1 , ‖T‖L∞→L∞ ≤ 1 (see [9,12]). Then it follows from the Calderón–
Mityagin theorem [1, 3, 9, 11] that Ω(f) can be characterized as the set of
g ∈ L1 + L∞ such that

(1)
t�

0

g∗(s) ds ≤
t�

0

f∗(s) ds, 0 < t <∞,

where as usual f∗ is the decreasing rearrangement of |f | (see §2 for defini-
tions). This may be written g � f where � is the Hardy–Littlewood–Pólya
ordering. Thus E is an exact interpolation space if and only if it is fully
symmetric (see §2).

The extreme points of Ω(f), which we denote ∂eΩ(f), were obtained in
[13] (for the case of spaces on (0, 1)) and [4] (for the general case). Except in
the special case when I = (0,∞) and E ⊃ L∞ these are given by ∂eΩ(f) =
{g : g∗ = f∗} (see §2 for full details; in the exceptional cases the extreme
points form a subset of this set). Let Q(f) be the convex hull of the set
{g : g∗ ≤ f∗}. Then it is clear that if E is fully symmetric and f ∈ E, the
closure QE(f) of Q(f) in E coincides with the closed convex hull of ∂eΩ(f).

In [12] it was shown for the case of I = (0, 1) that the orbit Ω(f) is always
weakly compact in L1(0, 1). It follows from results in [6] that if E is an
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order-continuous (equivalently, separable) symmetric function space (which
is necessarily fully symmetric) and f ∈ E then Ω(f) is weakly compact
in E. Thus it is an immediate consequence of the Krĕın–Milman theorem
that QE(f) coincides with Ω(f).

For the case of nonseparable fully symmetric spaces the situation is less
clear. The example E = L∞ and f = 1 shows that QE(f) may still coincide
with Ω(f). This problem was first investigated by Braverman and Mekler
[2] for the unit interval i.e. I = (0, 1). They gave a sufficient condition for
Ω(f) = QE(f) in terms of the behavior of the dilation operators στ (see §2
for the appropriate definitions). Precisely, they showed that if E is a fully
symmetric Banach function space on (0, 1) such that

lim
τ→∞

‖στ‖E→E
τ

= 0

then Ω(f) = QE(f) for every f ∈ E. This condition is, however, not neces-
sary since it may fail in separable symmetric spaces (e.g. E = L1).

Recently two of the current authors [14] found a necessary and sufficient
condition for the similar problem concerning the positive part of the orbit.
If f ≥ 0 we denote by Ω+(f) the set {g : g ∈ Ω(f), g ≥ 0}. In [14] it
was shown, for a fully symmetric Banach function space E with a Fatou
norm (sometimes called a weak Fatou property), that if f ∈ E+ then Ω+(f)
coincides with the closed convex hull of its extreme points if and only if a
local Braverman–Mekler type condition holds. If I = (0, 1), or if I = (0,∞)
and E is not contained in L1(0,∞), this condition takes the form

(2) lim
τ→∞

‖στ (f∗)‖E
τ

= 0.

If I = (0,∞) and E ⊂ L1, we must replace (2) by

(3) lim
τ→∞

‖χ(0,1)στ (f∗)‖E
τ

= 0.

The results of [14] imply, under the same hypotheses on E (full symmetry
and a Fatou norm), that (2) and (3) are sufficient for QE(f) = Ω(f).

Our main result in this paper is to show that, indeed, if E is a fully
symmetric Banach space with a Fatou norm on (0, 1) or (0,∞), then (2)
and (3) are necessary and sufficient for Ω(f) = QE(f). These results are
Theorems 4.1, 4.2 and 4.3 below. We also establish the corresponding result
for sequence spaces in Theorem 4.5; sequence spaces were not covered in [14]
so we are also able to complete the picture for the positive part of the orbit.

We conclude the paper with an application to orbits in symmetrically
normed ideals of compact operators on a Hilbert space.
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2. Preliminaries. In this section we present some definitions from the
theory of symmetric spaces. For more details on the latter theory we refer
to [1, 9, 10].

Let I denote either (0, 1) or on (0,∞) with Lebesgue measure µ. If f ∈
L1(I) + L∞(I) we denote by f∗ the decreasing rearrangement of f , i.e.

f∗(t) = inf
µA=t

sup
s∈I\A

|f(s)|.

If f, g are functions in L1 + L∞ we write g � f if
t�

0

g∗(s) ds ≤
t�

0

f∗(s) ds, t ∈ I.

This defines the Hardy–Littlewood–Pólya ordering.
A symmetric Banach function space E on I is a linear space with L1 ∩ L∞

⊂ E ⊂ L1 + L∞, with an associated norm ‖ · ‖E such that (E, ‖ · ‖E) is
complete and if f ∈ E, g ∈ L1 + L∞ with g∗ ≤ f∗ then g ∈ E and ‖g‖E ≤
‖f‖E . We will use E+ to denote the positive cone of E, i.e. {f : f ∈ E,
f ≥ 0 a.e.}. We will also assume the normalization ‖χ(0,1)‖ = 1. Let ϕE(t) =
‖χ(0,t)‖E be the fundamental function of E.

E is said to have a Fatou norm if for every sequence (fn)∞n=1 of nonneg-
ative functions such that fn ↑ f a.e. with f ∈ E we have limn→∞ ‖fn‖E =
‖f‖E .

A symmetric Banach function space E is said to be fully symmetric if
and only if, whenever f ∈ E, g ∈ L1 + L∞ with g � f , then g ∈ E and
‖f‖E ≤ ‖g‖E . The space E is fully symmetric precisely when E is an exact
interpolation space for the couple (L∞(I), L1(I)) by the Calderón–Mityagin
theorem [3,11]. In this paper we will only consider fully symmetric Banach
function spaces.

We will need the following inequality which can be found in [9, Theorem
II.3.1]. If f, g ∈ L1 + L∞, then

(4) (f∗ − g∗) � (f − g)∗.

As a consequence, if E is fully symmetric and f, g ∈ E we have

(5) ‖f∗ − g∗‖E ≤ ‖f − g‖E .
If E is a fully symmetric Banach function space and f ∈ E, we define

the orbit of f by Ω(f) = {g : g∗ � f∗} ⊂ E. The set of the extreme points
of Ω(f) is well-known (see [4, 13]), and if I = (0, 1) or I = (0,∞), and E
does not contain L∞, it is given by

∂e(Ω(f)) = {g ∈ L1 + L∞ : f∗ = g∗}.
If I = (0,∞) and E contains L∞ we must make a small correction:

∂e(Ω(f)) = {g ∈ L1 + L∞ : f∗ = g∗, |g(t)| ≥ lim
s→∞

f∗(s) a.e.}.
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We define Q(f) to be the convex hull of the set {g ∈ L1 + L∞ : g∗ ≤ f∗}.
We will denote by QE(f) the closure in E of Q(f). This is easily seen to
coincide with the closed convex hull of ∂eΩ(f). Thus QE(f) ⊂ Ω(f).

We next define the dilation operators on E. If τ > 0 and I = (0,∞) the
dilation operator στ is defined by setting

(στ (f))(s) = f(s/τ), s > 0.

In the case of the interval (0, 1) the operator στ is defined by

(στf)(s) =
{
f(s/τ), s ≤ min{1, τ},
0, τ < s ≤ 1.

The operators στ (τ ≥ 1) have the semigroup property στ1στ2 = στ1τ2 . If
E is a symmetric space and if τ > 0, then the dilation operator στ is a
bounded operator on E and

‖στ‖E→E ≤ max{1, τ}.
If E is a fully symmetric function space on (0,∞) then E + L∞ is also

a fully symmetric function space under the norm

‖f‖E+L∞ = ‖f∗χ(0,1)‖E .
The next lemma will be used later.

Lemma 2.1. Let E be a symmetric function space on (0,∞) such that
E \ L1 6= ∅, and suppose f ∈ L1 ∩ E. Then

lim
τ→∞

τ−1‖στ (f)‖E = lim
τ→∞

τ−1‖στ (f)‖E+L∞ .

Proof. We may suppose f is nonnegative and decreasing. Let ϕ = ϕE
be the fundamental function of E and let ψ be the least concave majorant
of ϕ. Since E \ L1 6= ∅ we have limt→∞ ψ

′(t) = 0. For any τ > 1 we have,
using Theorem II.5.5 of [9],

‖(στf)χ(1,∞)‖E ≤ ‖f(τ−1)χ(0,1) + (στf)χ(1,∞)‖E

≤ f(τ−1)
1�

0

ψ′(s) ds+
∞�

1

ψ′(s)f(τ−1s) ds

≤ ψ(1)f(τ−1) + τ

∞�

τ−1

ψ′(τs)f(s) ds.

Now, since f ∈ L1, we have

lim
τ→∞

τ−1f(τ−1) = 0,

and by the Dominated Convergence Theorem,

lim
τ→∞

∞�

τ−1

ψ′(τs)f(s) ds = lim
τ→∞

∞�

0

χ(τ−1,∞)(s)ψ
′(τs)f(s) ds = 0.
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Hence
lim
τ→∞

τ−1‖(στf)χ(1,∞)‖E = 0,

and the lemma follows.

We next discuss the corresponding notions for sequence spaces. If ξ =
(ξn)∞n=1 is a sequence then ξ∗ denotes its decreasing rearrangement:

ξ∗n = inf
|A|=n−1

sup
k∈N\A

|ξk|.

A Banach sequence space E is called symmetric if ξ ∈ E and η∗ ≤ ξ∗ implies
that η ∈ E and ‖η‖E ≤ ‖ξ‖E . We write η � ξ if

n∑
k=1

η∗k ≤
n∑
k=1

ξ∗k, n ∈ N.

E is called fully symmetric if ξ ∈ E and η � ξ implies that η ∈ E and
‖η‖E ≤ ‖ξ‖E . If ξ is any bounded sequence we define its orbit Ω(ξ) = {η :
η � ξ}.

In this context, we define the dilation operators σm only for m ∈ N.
Then

σm(ξ) = (ξ1, . . . , ξ1, ξ2, . . . , ξ2, . . .)

where each ξj is repeated m times.

3. Approximation of the orbit. Our first proposition gives a simple
criterion which will enable us to check when QE(f) = Ω(f).

Proposition 3.1. Let E be a fully symmetric Banach space on (0,∞).
Suppose f, g are nonnegative decreasing functions in E. Then g ∈ QE(f)
if and only if, given ε > 0, there exists a nonnegative decreasing function
h ∈ E and an integer p such that 0 ≤ h ≤ g and

(6) ‖g − h‖E < ε

and

(7)
b�

pa

h(t) dt ≤
b�

a

f(t) dt, 0 < pa < b <∞.

Proof. Suppose first g ∈ QE(f). Then given ε > 0 there exist f1, . . . , fp
in E such that f∗j ≤ f for 1 ≤ j ≤ p and∥∥∥∥g − 1

p
(f1 + · · ·+ fp)

∥∥∥∥
E

< ε.

Let
u =

1
p

(f1 + · · ·+ fp), v =
1
p

(|f1|+ · · ·+ |fp|).
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Then if h = g ∧ v∗, using (5) we get

‖g − h‖E ≤ ‖g − g ∧ u∗‖E ≤ ‖g − u∗‖E ≤ ‖g − u‖E < ε.

It remains to observe that (7) holds by Lemma 4.1 of [8].
The converse is easy. If h satisfies (6) and (7) then h ∈ αQ(f) for every

α > 1 by Theorem 6.3 of [8]. Hence h ∈ QE(f) and so d(g,QE(f)) < ε.

The next lemma is surely well-known but we use it in the main result
and include a proof for completeness.

Lemma 3.2. Let F be a continuous nonnegative increasing concave func-
tion on [0,∞) with F (0) = 0. Suppose that (αn)n∈Z is an increasing doubly
infinite sequence of distinct positive reals with

lim
n→−∞

αn = 0, lim
n→∞

αn =∞.

Suppose that (βn)n∈Z is any sequence with

0 ≤ βn ≤ F (αn), n ∈ Z.
(i) There is a least concave function G on [0,∞) such that G(0) ≥ 0, and

G(αn) ≥ βn for n ∈ Z. The function G is continuous nonnegative
and increasing and G(0) = 0.

(ii) Furthermore, if n ∈ Z then either

G(t) = G(αn)t/αn, 0 ≤ t ≤ αn,
or there exists m < n so that

G(t) = βm +
G(αn)− βm
αn − αm

(t− αm), αm ≤ t ≤ αn.

Proof. (i) is almost immediate. G is defined as the infimum of the collec-
tion C of all increasing concave functions H on [0,∞) such that H(αn) ≥ βn
for all n ∈ Z and H(0) ≥ 0. This collection is non-empty since F ∈ C. Next,
G is affine on each interval [αn, βn+1] and since G ≤ F , G is continuous at 0.

For (ii), assume G is not affine on [0, αn]. Then there exists a least p < n
so that g is affine on [αp, αn]. Let G0 be the function equal to G on [0, αp−1]
and [αn,∞), and affine on [αp−1, αn]. Then for any 0 < λ < 1 we have
(1− λ)G+ λG0 /∈ C. Hence there exists k(λ) ∈ {p, p+ 1, . . . , n− 1} so that

(1− λ)G(αk(λ)) + λG0(αk(λ)) < βk(λ).

Letting λ→ 0 through a suitable sequence where k(λ) = m < n is constant
we obtain G(αm) = βm and the second alternative holds.

We now prove one of our main results.

Theorem 3.3. Let E be a fully symmetric Banach function space on
(0,∞) with a Fatou norm. Suppose f ∈ E+ \L1 is such that Ω(f) = QE(f).
Then

lim
τ→∞

τ−1‖στ (f∗)‖E = 0.
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Proof. We may suppose that f is decreasing. We let

F (t) =
t�

0

f(s) ds.

Let us define a doubly infinite sequence (an)n∈Z by F (an) = (5/4)n.
We next introduce the family K of doubly infinite sequences κ = (κn)n∈Z

such that either κn ∈ N with 1 ≤ κn < an+1/an or κn = ∞. Then K is a
complete lattice under the order κ ≤ κ′ if κn ≤ κ′n for all n. We may define
the lattice operations (κ ∨ κ′)n = max(κn, κ′n) and (κ ∧ κ′)n = min(κn, κ′n).

For each κ ∈ K we define ψκ ∈ E as follows. Let Ψ(t) = Ψκ(t) be the
least increasing concave function such that Ψ(0) ≥ 0,

Ψ(κnan) ≥ F (an) if κn <∞,
Ψ(an) ≥ 0 if κn =∞.

The existence and properties of Ψ are guaranteed by applying Lemma 3.2
when αn = κnan if κn < ∞ and αn = an if κn = ∞ and βn = F (an) if
κn < ∞ and βn = 0 if κn = ∞. Since F (an) ≤ F (κnan) it is clear from
Lemma 3.2 that Ψ exists and Ψ ≤ F. Furthermore, Ψ is piecewise affine
on (0,∞) and we may define ψκ = Ψ ′, which is a nonnegative piecewise
constant decreasing function on (0,∞). Clearly, ψκ ∈ Ω(f) ⊂ E.

We note some elementary properties of the map κ 7→ ψκ.

Lemma 3.4.

ψκ � ψκ′ if κ′ ≤ κ,(8)
ψκ∧κ′ � ψκ ∨ ψκ′ for κ, κ′ ∈ K.(9)

Proof. (8) is quite trivial.
To see (9) note that

t�

0

max(ψκ(s), ψκ′(s)) ds ≥ max(Ψκ(t), Ψκ′(t)).

Now if κn ∧ κ′n <∞ and κn ≤ κ′n we have
κnan�

0

max(ψκ(s), ψκ′(s)) ds ≥ Ψκ(κnan) ≥ F (an),

and with a similar inequality when κ′n < κn we obtain, from the definition
of Ψκ∧κ′ ,

t�

0

max(ψκ(s), ψκ′(s)) ds ≥ Ψκ∧κ′(t), 0 ≤ t <∞.

This proves (9).
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Lemma 3.5. Suppose κ ∈ K satisfies

(10) max(κn, κn+1) =∞, n ∈ Z.

Then for any n ∈ Z such that κn <∞ we have

(11) ψκ(t) ≥ 9F (an)
25κnan

, an ≤ t ≤ κnan.

Proof. If f is not identically zero then ψκ is only identically zero when
κ is identically∞; we exclude this case, so that Ψκ(t) > 0 for t > 0. Observe
first that ψκ is constant on (an, κnan). If for every m < n such that κm <∞
we have Ψκ(κmam) > F (am) then

ψκ(t) ≥ F (an)
κnan

, 0 < t ≤ κnan.

Otherwise, since Ψκ(t) > 0 for all t > 0, we see that, by Lemma 3.2, there
exists m < n so that κm <∞ and

ψκ(t) =
Ψκ(κnan)− F (am)
κnan − κmam

, κmam < t < κnan.

Then

ψκ(t) ≥ F (an)− F (am)
κnan − κmam

, an ≤ t ≤ κnan.

Noting that m ≤ n− 2 by (10), so that F (am) ≤ (4/5)2F (an), this implies
that (11) holds for either alternative.

For κ ∈ K and r ∈ N we will define a κ[r] ≥ κ by suppressing the values
of κ which are less than r. Precisely,

κ[r]
n =

{
κn if κn ≥ r,
∞ if κn < r.

We next prove the following lemma, which is the heart of the argument
for Theorem 3.3:

Lemma 3.6. Under the hypotheses of the theorem, for any κ ∈ K we
have

lim
r→∞

‖ψκ[r]‖E = 0.

Proof. We will first prove the lemma under the additional assumption
that (10) holds. Since ‖ψκ[r]‖E is decreasing in r (by (8)) it suffices to show
that for given ε > 0 we can find r so that ‖ψκ[r]‖E < ε. By Proposition 3.1
for any ε > 0 we can find a nonnegative decreasing function h ≤ ψκ and an
integer p so that

(12)
b�

pa

h(t) dt ≤
b�

a

f(t) dt, 0 < pa < b <∞,
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and

(13) ‖ψκ − h‖E < ε/10.

We shall take r = 36p. Let v = 10(ψκ − h). We will show that ψκ[r] � v.
In order to do this we must show that if κ[r]

n <∞ we have

(14) F (an) ≤
κnan�

0

v∗(t) dt.

If κ[r]
n <∞ then
κnan�

0

v∗(t) dt ≥
κnan�

pan

v(t) dt = 10
( κnan�

pan

ψκ(t) dt−
κnan�

pan

h(t) dt
)

≥ 10
( κnan�

pan

ψκ(t) dt−
κnan�

an

f(t) dt
)
,

by (13). Hence by (11) of Lemma 3.5,
κnan�

0

v∗(t) dt ≥ 10
(

9(κnan − pan)F (an)
25κnan

−
an+1�

an

f(t) dt
)

≥ 10
(

35
36

9
25
F (an)− 1

4
F (an)

)
= F (an).

This shows that (14) holds and so ψκ[r] � v and ‖ψκ[r]‖E < ε. This completes
the proof when (10) holds.

For the general case let us define κ(0)n = κn if n is even and κ(0)n =∞
if n is odd. Similarly, κ(1)n = κn if n is odd and κ(1)n = ∞ if n is even.
Both κ(0) and κ(1) satisfy (10). Then for an arbitrary κ we have κ[r] =
κ(0)[r] ∧ κ(1)[r] and so by (9),

lim sup
r→∞

‖ψκ[r]‖E ≤ lim sup
r→∞

‖ψκ(0)[r]‖E + lim sup
r→∞

‖ψκ(1)[r]‖E = 0.

Next, for any integer p we define γpn = p if pan < an+1, and γpn = ∞
otherwise. For each q > p we define γp,qn = p if pan < an+1 and |n| ≤ q, and
γp,qn =∞ otherwise. Let ψp = ψγp and ψp,q = ψγp,q .

Lemma 3.7. Under the hypotheses of the theorem,

lim
p→∞

‖ψp‖E = 0.

Proof. Clearly, ‖ψp‖E is decreasing in p. Assume ‖ψp‖E > ε > 0 for all
p ∈ N. Since E has a Fatou norm, for each p there exists q(p) > p so that
‖ψp,q(p)‖E > ε. Let

κ =
∧
pγ
p,q(p).
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Thus κ is given by the formula

κn = inf{p : p < an+1/an, |n| ≤ q(p)}
and κ has the properties that κ ≤ γp,q(p) for all p and lim|n|→∞ κn =∞.

By Lemma 3.6 there exists r ∈ N so that ‖ψκ[r]‖E < ε. But then the set
{n : κn < r} is finite and so there is a choice of p such that p > an+1/an
whenever κn < r. Thus γpn =∞ if κn < r. Therefore

κ[r] ≤ γp,q(p)
and so by (8),

‖ψp,q(p)‖E < ε,

which gives a contradiction.

We can now complete the proof of Theorem 3.3. We will show that if
p ∈ N, then

(15) F (t) ≤ 4
5
F (p2t) +

5
4

p2t�

0

ψp(s) ds, 0 < t <∞.

Indeed, if (15) fails for some t, we can assume an ≤ t < an+1 for some n ∈ Z.
We first argue that an+1 ≤ pan. Suppose, on the contrary, that an+1 > pan.
Then we have

5
4

p2t�

0

ψp(s) ds ≥
5
4

pan�

0

ψp(s) ds ≥
5
4
F (an) = F (an+1) ≥ F (t),

which contradicts our hypothesis. Next we show that an+2 ≤ pan+1. Indeed,
if an+2 > pan+1, then p2t ≥ pan+1 and

5
4

p2t�

0

ψp(s) ds ≥
5
4

pan+1�

0

ψp(s) ds ≥
5
4
F (an+1) > F (t).

But then an+2 ≤ p2an and so
4
5
F (p2t) ≥ 4

5
F (an+2) = F (an+1) > F (t)

and we have a contradiction. This establishes (15).
Now if τ ≥ 1 we replace t in (15) by t/τ and interpret the inequality in

the form 1
τ
στf �

1
p−2τ

σp−2τ

(
4
5
f +

5
4
ψp

)
.

Hence

lim
τ→∞

τ−1‖στf‖E ≤
4
5

lim
τ→∞

τ−1‖στf‖E +
5
4

lim
τ→∞

τ−1‖στψp‖E
so that

lim
τ→∞

τ−1‖στf‖E ≤
52

4
‖ψp‖E .

Combining with Lemma 3.7 we obtain the theorem.
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The case when f ∈ L1 is handled by reduction to the previous case:

Theorem 3.8. Let E be a fully symmetric Banach function space on
(0,∞) with a Fatou norm. Suppose f is a decreasing nonnegative function
such that f ∈ E+ ∩ L1 and Ω(f) = QE(f). Then

lim
τ→∞

τ−1‖στ (f∗)‖E+L∞ = 0.

Proof. An easy computation shows that Q(f + 1) = Q(f) +Q(1). Hence
QE+L∞(f + 1) ⊃ QE(f) +QL∞(1) = Ω(f) +Ω(1). If 0 ≤ g ∈ Ω(f + 1) then
g − g ∧ 1 ∈ Ω(f) and g ∧ 1 ∈ Ω(1) so that Ω(f) +Ω(1) = Ω(f + 1). Hence
QE+L∞(f + 1) = Ω(f + 1) and we can apply Theorem 3.3.

4. The main results. We can next state our main results:

Theorem 4.1. Let E be a fully symmetric Banach function space on
(0,∞) with a Fatou norm, and such that E \ L1 6= ∅. Suppose f ∈ E. Then
Ω(f) = QE(f) if and only if limτ→∞ τ

−1‖στ (f∗)‖E = 0.

Proof. If limτ→∞ τ
−1‖στ (f∗)‖E = 0 then Ω+(f) ⊂ QE(f) by Theorem

25 of [14]; thus Ω(f) = QE(f). Conversely, if Ω(f) = QE(f) we have either

lim
τ→∞

τ−1‖στ (f)‖E = 0

(when f /∈ L1 by Theorem 3.3), or

lim
τ→∞

τ−1‖στ (f)‖E+L∞ = 0

(when f ∈ L1 by Theorem 3.8). Then Lemma 2.1 shows that in both cases
we have limτ→∞ τ

−1‖στ (f)‖E = 0.

Theorem 4.2. LetE be a fully symmetric Banach function space on (0,∞)
with a Fatou norm, and such that E ⊂L1. If f ∈E then Ω(f) = QE(f) if
and only if limτ→∞ τ

−1‖στ (f∗)‖E+L∞ = limτ→∞ τ
−1‖στ (f∗)χ(0,1)‖E = 0.

Proof. The proof is very similar to that of Theorem 4.1 using instead
Theorem 24 of [14].

We first give the extension to function spaces on (0, 1).

Theorem 4.3. Let E be a fully symmetric Banach function space on
(0, 1) with a Fatou norm. Suppose f ∈ E. Then Ω(f) = QE(f) if and only
if limτ→∞ τ

−1‖στ (f∗)‖E = 0.

Proof. We define a function space F on (0,∞) by f ∈ F if and only if
f∗χ(0,1) ∈ E and f ∈ L1, with the norm

‖f‖F = max(‖f∗χ(0,1)‖E , ‖f∗‖L1).

Suppose f ∈ E is nonnegative and decreasing. We will show that, regarding
f as a member of F, we have Ω(f) = QF (f). Note that the hypothesis
Ω(f) = QE(f) on (0, 1) implies only that if g ∈ F and g ∈ Ω(f) then g ∈
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QF (f) provided µ(supp g) ≤ 1. We will show, however, that Ω(f) = QF (f),
and then the theorem follows.

We will need the following lemma:

Lemma 4.4. Let h ∈ F be nonnegative and decreasing. Suppose g ∈ F is
nonnegative and decreasing, and g � h and g(x) = 0 for some 0 < x < ∞.
If there exists c > 0 such that g(t) ≤ h(t) for 0 < t ≤ c then g ∈ QF (h).

Proof. For any θ > 1 we may pick p > x/c so that
c�

0

h(s) ds ≤ θ
c�

x/p

h(s) ds.

Then if 0 < pa < b <∞ with c ≤ b ≤ x we have
b�

pa

g(s) ds ≤
b�

0

h(s) ds ≤ θ
b�

x/p

h(s) ds ≤ θ
b�

pa

h(s) ds.

The same inequality holds trivially if b > x or b < c. Thus by Theorem 6.3
of [8] we have g ∈ λQ(h) for any λ > 1, and the lemma follows.

We continue the proof of the theorem. We will assume without loss of
generality that

	1
0 f(t) dt = 1. First suppose g ∈ Ω(f) is nonnegative, not

identically zero, and decreasing and satisfies g(x) = 0 for some 0 < x <∞.
Given ε > 0 we may find c0 > 0 so that

c0�

0

f(s) ds <
ε

2
.

Let

α = sup
0<t≤c0

	t
0 g(s) ds	t
0 f(s) ds

.

We have α > 0 and we may pick 0 < β < α with α − β < ε/2 and then
0 < c < c0 with

g(c) > βf(c).

Let c′ ≥ c be the least solution of

α

c′�

0

f(s) ds =
c�

0

g(s) ds+ (c′ − c)g(c).

We now define

h(t) =


g(t) + (1− α)f(t), 0 < t ≤ c,
g(c) + (1− α)f(t), c < t ≤ min(c′, 1),
f(t), min(c′, 1) < t ≤ 1,
0, t ≥ 1.
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From the construction we have h ∈ Ω(f). Thus h ∈ QF (f). For any
t ≤ min(c′, 1) we have

t�

0

g(s) ds ≤
t�

0

h(s) ds.

If c′ < 1 then
t�

0

h(s) ds =
t�

0

f(s) ds ≥
t�

0

g(s) ds, t > c′.

If c′ ≥ 1 then
1�

0

h(s) ds ≥ (1− α)
1�

0

f(s) ds+
c�

0

g(s) ds+ g(c)(1− c)

≥ (1− α)
1�

0

f(s) ds+ β

c�

0

f(s) ds− ε

2
+ βf(c)(1− c)

≥ (1− α)
1�

0

f(s) ds+ β

1�

0

f(s) ds− ε

2
≥ 1− ε.

Hence (1− ε)g � h and by Lemma 4.4 we have (1− ε)g ∈ QF (h). Since
ε > 0 is arbitrary we have g ∈ QF (h) ⊂ QF (f).

Finally, let us note that for general nonnegative decreasing g ∈ F we
have limm→∞ ‖g − gχ(0,m)‖F = 0 so that ΩF (f) = QF (f).

Now the result reduces to Theorems 4.1 and 4.2.

The extension to sequence spaces requires a similar type of argument:

Theorem 4.5. Let E be a fully symmetric Banach sequence space with
a Fatou norm and such that E \ `1 6= ∅. Suppose ξ ∈ E. Then Ω(ξ) = QE(ξ)
if and only if limm→∞m

−1‖σm(ξ∗)‖E = 0.

Proof. We consider the Banach function space F of all bounded functions
such that (f∗(0), f∗(1), . . .) ∈ E with the norm

‖f‖F = f∗(0) + ‖(an)∞n=1‖E ,
where f∗(0) = ‖f‖L∞ and an :=

	n
n−1 f

∗(s) ds, n ≥ 1. Then let F (N) be
the subspace of F of all functions f which are constant on each interval
(n − 1, n]. Clearly, the Banach spaces (F (N), ‖ · ‖F ) and (E, ‖ · ‖E) are
linearly isomorphic, in particular

‖ξ‖E ≤ ‖ξ‖F ≤ 2‖ξ‖E ∀ξ ∈ E = F (N).

Let E denote the conditional expectation operator

Ef =
∑
n∈N

χ(n−1,n]

n�

n−1

f(t) dt.
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Suppose ξ is a nonnegative decreasing sequence and let

f =
∞∑
j=1

ξjχ(j−1,j] ∈ F.

The result will follow from:

Theorem 4.6. Ω(ξ) = QE(ξ) if and only if Ω(f) = QF (f).

Proof. Suppose that Ω(ξ) = QE(ξ). We may assume ξ has infinite sup-
port. Suppose g ∈ Ω(f) is nonnegative and decreasing. We will show that
g ∈ QF (f) and then it follows that QF (f) = Ω(f).

Suppose ε > 0. Then we may pick an integer m ∈ N so that

g∗(m)− lim
n→∞

g∗(n) < ε/4.

Now Eg ∈ QF (f) since Ω(ξ) = QE(ξ). Hence, by Proposition 3.1 there is a
nonnegative decreasing function h with 0 ≤ h ≤ Eg such that ‖Eg − h‖E <
ε/4 and, for some p ∈ N,

b�

pa

h(s) ds ≤
b�

a

f(s) ds, 0 < pa < b <∞.

Next we define

ϕ(s) =
{
g(s), 0 < s ≤ m,
h(s), m < s <∞.

Note that 0 ≤ ϕ � g � f. We show that ϕ ∈ QF (f). Suppose r > p and
0 < ra < b. Then if m ≤ ra we clearly have

b�

ra

ϕ(s) ds ≤
b�

a

f(s) ds.

On the other hand, if 0 < ra < m, let c = min(b,m). Then
b�

ra

ϕ(s) ds ≤
b�

0

f(s) ds ≤
b�

a

f(s) ds+ cξ1/r

≤
b�

a

f(s) ds+
ξ1

(r − 1)ξm

c�

c/r

f(s) ds

≤
(

1 +
ξ1

(r − 1)ξm

) b�

a

f(s) ds.

Since r is arbitrary these estimates show that ϕ ∈ λQ(f) for every λ > 1
(Theorem 6.4 of [8]) and hence ϕ ∈ QF (f).

Now

‖g − ϕ‖F = ‖(g − ϕ)χ(m,∞)‖F ≤ ‖(g − Eg)χ(m,∞)‖F + ‖Eg − h‖F .
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However,

‖(g − Eg)χ(m,∞)‖F ≤
∞∑
j=m

2(g(j)− g(j + 1)) < ε/2.

Hence
d(g,QE(f)) ≤ ‖g − ϕ‖F < ε.

Since ε > 0 is arbitrary we have g ∈ QF (f). This shows that Ω(f) = QF (f).
We next turn to the converse. Assume QE(f) = Ω(f) and that η ∈ Ω(ξ)

is a decreasing sequence. Let g =
∑

n∈N ηnχ(n−1,n]. Then g ∈ Ω(f) and so,
by Proposition 3.1, given ε > 0, there exists a decreasing 0 ≤ h ≤ g with
‖g − h‖F < ε and such that for some p ∈ N we have

b�

pa

h(s) ds ≤
b�

a

f(s) ds, 0 < pa < b <∞.

Let ζ ∈ E be defined by ζn =
	n
n−1 h(s) ds. Then for 0 ≤ pm ≤ n we have

n∑
k=pm+1

ζk =
n�

pm

h(s) ds ≤
n�

m

f(s) ds =
n∑

k=m+1

ξk.

Hence ζ ∈ λQ(ξ) for every λ > 1, by Theorem 5.5 of [8], so that ζ ∈ QE(ξ).
Furthermore,

‖η − ζ‖E ≤ ‖g − Eh‖F ≤ ‖g − h‖F < ε.

It now follows that η ∈ QE(ξ) and the proof of the lemma is complete.

Theorem 4.5 now follows directly from Theorem 4.6.

Let us observe that the argument of Theorem 4.6 allows us to complete
the picture for positive orbits in [14]:

Theorem 4.7. Let E be a fully symmetric sequence space with a Fatou
norm. Then for any ξ ∈ E+ the set Ω+(ξ) = Ω(ξ) ∩ E+ coincides with the
closed convex hull of its extreme points if and only if

lim
m→∞

m−1‖σm(ξ)‖E = 0.

In fact, we can prove by the same argument as in Theorem 4.6 that
Ω+(ξ) = QE(ξ) ∩ E+ if and only if Ω+(f) = QF (f) ∩ F+.

We remark that in [14] some examples of Marcinkiewicz spaces and Orlicz
spaces are discussed in the context of Theorems 4.1, 4.2, 4.3 and 4.5. We
refer the reader to that paper for details. We take the opportunity to improve
Proposition 33 of [14]:

Proposition 4.8. Let M be an Orlicz function. Then for any f ∈
LM (0,∞) we have Ω(f) = QLM

(f). Similarly, for any ξ ∈ `M we have
Ω(ξ) = Q`M (ξ).
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Proof. We give the proof only for LM (0,∞). Suppose first that M(t) =
o(t) when t → 0. We show that ‖limτ→∞ τ

−1στf‖LM
= 0 whenever f ∈

(LM )+. Suppose α > 0. Then
∞�

0

M

(
αf(s/τ)

τ

)
ds =

∞�

0

τM

(
αf(s)
τ

)
ds

for any τ > 1. Since f ∈ LM there exists τ0 such that
∞�

0

τ0M

(
αf(s)
τ0

)
ds <∞.

Now letting τ → ∞ we deduce from the Dominated Convergence Theorem
that

lim
τ→∞

∞�

0

τM

(
αf(s)
τ

)
ds = 0,

so that limτ→∞ τ
−1‖στf‖LM

= 0 and we can apply Theorem 4.1.
Now if M(t) ≥ ct for all t > 0 where c > 0, then LM ⊂ L1. For any

α > 0 and τ > 1,
1�

0

M

(
αf∗(s/τ)

τ

)
ds =

1�

0

τχ(0,τ−1)(s)M
(
αf∗(s)
τ

)
ds.

As before, the right-hand side is integrable for some τ = τ0 and we can apply
the Dominated Convergence Theorem to deduce that τ−1‖(στf∗)χ(0,1)‖LM

tends to 0 as τ approaches infinity. Now one can apply Theorem 4.2.

5. A noncommutative analog. Let H be a separable complex Hilbert
space. We denote by B(H) the space of bounded operators on H and by
K(H) the ideal of compact operators on H. For any T ∈ B(H) we define the
singular values

sn(T ) = inf ‖T (I − P )‖,

where the infimum is taken over all orthogonal projections P such that
rank(P ) < n.

If E is a symmetric sequence space then we can define a Banach ideal of
compact operators on H by T ∈ SE if and only if (sk(T ))∞k=1 ∈ E, and then
the norm is given by ‖T‖E = ‖(sk(T ))∞k=1‖E . For fully symmetric spaces
this is well-known (e.g. see [7]) but for symmetric spaces it follows from [8].

Let H be a separable Hilbert space and suppose T ∈ K(H). Let Q(T ) be
the convex hull of the set {ATB : ‖A‖, ‖B‖ ≤ 1}. We define its orbit Ω(T )
to be the closure of Q(T ) in K(H). It is easy to check from the definition
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that R ∈ Ω(T ) if and only if
n∑
k=1

sk(R) ≤
n∑
k=1

sk(T ), n = 1, 2, . . . .

For any symmetric Banach sequence space E we may define QE(T ) to be
the closure of Q(T ) in SE .

Theorem 5.1. Let E be a fully symmetric sequence space with a Fatou
norm. Suppose SE is the corresponding ideal of compact operators. Then for
T ∈ SE we have Ω(T ) = QE(T ) if and only if

lim
m→∞

m−1‖σm(sk(T ))∞k=1‖E = 0.

Proof. Let ξ = (sk(T ))∞k=1. Let R ∈ K(H) and let η = (sk(R))∞k=1. If
R ∈ Q(T ) then it follows from Proposition 8.6 and Theorem 5.5 of [8] that
η ∈ λQ(ξ) for every λ > 1.

First suppose that Ω(T ) = QE(T ). If S ∈ Ω(T ) then given ε > 0 there
exists R ∈ Q(T ) with ‖R − S‖E < ε. Let ζ = (sk(S))∞k=1. Then by the
submajorization inequality of [5],

η − ζ � (sk(R− S))∞k=1,

so that ‖η − ζ‖E < ε. Since η ∈ QE(ξ) and ε > 0 is arbitrary, this implies
that ζ ∈ QE(ξ) and so QE(ξ) = Ω(ξ). Theorem 4.5 can then be applied.

The converse direction is immediate.
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[7] I. C. Gohberg and M. G. Krĕın, Introduction to the Theory of Linear Nonselfadjoint
Operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence, RI, 1969.

[8] N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine
Angew. Math. 621 (2008), 81–121.
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