STUDIA MATHEMATICA 169 (3) (2005)

Extension and lifting of
weakly continuous polynomials

by

RAFFAELLA CiLIA (Catania) and JOAQUIN M. GUTIERREZ (Madrid)

Abstract. We show that a Banach space X is an L;-space (respectively, an L -
space) if and only if it has the lifting (respectively, the extension) property for polynomials
which are weakly continuous on bounded sets. We also prove that X is an L-space if and
only if the space Pyp ("X ) of m-homogeneous scalar-valued polynomials on X which are
weakly continuous on bounded sets is an L -space.

The problem of lifting holomorphic mappings has attracted attention of
various authors (see, for instance, [K, A, AMP, GG4]). The extension of
holomorphic mappings from a space to a superspace has been treated in
many papers (see, for instance, [AB, A, Z, LRy, GG4]). Here we study the
extension and lifting of polynomials which are weakly continuous on bounded
sets.

This class of polynomials (the definitions will be recalled below) was
introduced in [AP] and has been studied by many authors. In [AHV] it was
shown that, if a polynomial is weakly continuous on bounded sets, then it
is weakly uniformly continuous on bounded sets. If a dual Banach space X*
has the approximation property, then these polynomials on X coincide with
the approximable ones [AP, Proposition 2.7]. It was proved in [GG1] that a
polynomial P is weakly continuous on bounded sets if and only if it may be
factored in the form P = Q o T, where T is a compact (linear) operator and
Q@ is a polynomial.

We recall the following well known linear results:

THEOREM 1 ([LR, Theorem 4.1]; see also [L]). Let X be a Banach space.
Then the following facts are equivalent:
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(a) X is an Loo-space;

(b) for all Banach spaces Z O Y, every compact operator T : Y — X
has an extension to a compact operator T:7Z—X ;

(c) same as in (b) without the requirement of compactness of T;

(d) for all Banach spaces Z and Y with Z 2 X, every compact operator
T :X —Y has an extension to a compact operator T:7 — Y;

() same as in (d) without the requirement of compactness of T.

Let X, Y, and Z be Banach spaces and let ¢ : Z — Y be a surjective
operator. A (linear bounded) operator T': X — Y is said to admit a lifting
to Z (with respect to ¢) if there is an operator T : X — Z such that
¢o T =T. Such a T is called a lifting of T to Z.

THEOREM 2 (|[LR, Theorem 4.2]). Let X be a Banach space. Then the
following facts are equivalent:

(a) X is an L1-space;

(b) for all Banach spaces Z and Y and any surjective operator ¢ :
Z — 'Y, every compact operator T' : X — Y has a compact lifting
T : X — Z with respect to ¢;

(c) same as in (b) without the requirement of compactness of T

(d) for all Banach spaces Z and Y and any surjective operator ¢ :
Z — X, every compact operator T : Y — X has a compact lift-
ing T:Y — Z with respect to ¢;

() same as in (d) without the requirement of compactness of T.

Throughout, X, Y, and Z denote Banach spaces, X* is the dual of X, and
Byx stands for its closed unit ball. The closed unit ball By~ is a compact
space when it is endowed with the weak-star topology, which we denote
by w*. By N we represent the set of all natural numbers while K denotes the
scalar field. By X 2 Y (respectively, X = Y'), we mean that X and Y are
isomorphic (respectively, isometrically isomorphic).

Given m € N, we denote by P("X,Y") the space of all m-homogeneous
(continuous) polynomials from X into Y endowed with the supremum norm.
Recall that to each P € P(™X,Y) we can associate a unique symmetric

m-linear (continuous) mapping P:X x (™ x X Y so that
P(z) = P(z,™,2) (z € X).

For simplicity, we write P("X) := P("X, K).

For the general theory of multilinear mappings and polynomials on Ba-
nach spaces, we refer to [Di2] and [Mul].

We use the notation @™ X := X ® ™ ® X for the m-fold tensor product
of X, and @ X (respectively, @." X) for the m-fold tensor product of X
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endowed with the projective (respectively, injective) norm. Their completions
are denoted by @.'X and @_"X, respectively (see [DF| or [DU] for the

theory of tensor products). By @.' X := X ®; (M) ®, X we denote the m-fold
symmetric tensor product of X, that is, the set of all elements u € @™ X
of the form

n
u:Z)\jxj(@(.m.)@:nj meN,N\jeK, z; € X, 1<j5<n).
j=1

The notation ®Wm7sX stands for the closure of @." X in @;”X . Given
T1,...,Tm € X, we define

1
1 Qs+ Qs Ty 1= m! Z To(1) @ @ Ty(m),
c€Py,
where P, is the group of all permutations of m elements. For symmetric
tensor products, we refer to [F1]. For simplicity, we shall use the notation

Rz =2 Mo

It is well known that P(™X) = (@Wm,s X)* [F1, Proposition 2.2].
On ®." X we define the injective symmetric tensor norm e, by

eo(2) = sup{|(z, @™z*)| : z* € Bx-} = sup {\ zn:)\k(xk,x*>m (: ot e BX*}
k=1

for z = 370 M@z We denote by Q" (X the space @' X endowed
with the e5-norm, and by @’ X its completion.
If P € P("X,Y), we define its linearization P : &, X =Y by

P( i Nz @ ™ @ xz) = i NiP(x;)
i=1 i=1

forall \; e K, 2, € X (1 <i<n).
If P e P("X,Y), the adjoint of P is the operator P* : Y* — P(™X)

given by
P (y")(z) = (y*, P(x)).

A polynomial P € P(™X,Y) is of finite type if it is a finite sum of terms
of the form 4" ® y, with v € X* and y € Y, where (7" ® y)(z) := v(z)™y
for all x € X. A polynomial is approzimable if it lies in the norm closure of
the space of polynomials of finite type. By Pa(™X,Y) we denote the space
of all m-homogeneous approximable polynomials from X into Y, endowed
with the supremum norm.

It is shown in [Fl, Proposition 3.2(6)| that

PA("X) = QI X"
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We are indebted to the referee for pointing out that
Pa("X,Y) = Q" , X" &. Y.
Indeed, define the operator

J:PA(™X) ®. Y — P("X,Y)
by

J(YPoy)=Q where Q@)=Y R(x)y (z€X).
=1 i

Then
Q[ = sup{[|Q(z)| : € Bx} = sup{|[(y", Q(2))| : z € Bx, y" € By}

= s {| 3 R )

We can embed "™ X into Pa(™X)* by the duality

{ zn: N iy P) = f: AP ().
=1 =1

It follows that the set {®™x : x € Bx} is norming in the unit ball of
Pa("X)*, so

QI = sup {| S o(P)y(w)
=1

n
= Hzpi(@yi
i—1

(see the argument in [Ry, p. 46]) and J is an into isometry. Clearly, the space
Pa(™X,Y) is the range of the extension of J to P ("X) ®. Y.

A polynomial P € P(™X,Y) is compact if P(Bx) is relatively compact
in Y. A polynomial P € P(™X,Y) is compact if and only if its adjoint
P*:Y* — P(™X) is a compact operator [AS, Proposition 3.2]. A polynomial
P e P("MX,Y) is weakly continuous on bounded subsets if for each bounded
net (z,) C X weakly converging to z, (P(z,)) converges to P(x) in norm.
We denote by Pup("X,Y) the space of all polynomials in P("™X,Y) which
are weakly continuous on bounded sets. Every polynomial in Py, ("X, Y) is
compact ([AP, Lemma 2.2] and [AHV, Theorem 2.9]). An operator is weakly
continuous on bounded sets if and only if it is compact [AP, Proposition 2.5].
With each polynomial P € P(™X,Y) we associate an operator Tp : X —
P(m~X,Y) given by

Tp(x)(y) = Pz,y, " Dy)  (2,y € X).
Then P € Pyn("X,Y) if and only if Tp is compact [AHV, Theorem 2.9].

:x € Bx,y* € By*}.

(@ € PA("X)", |9 < 1,y € By- |

£
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The Banach-Mazur distance d(X,Y) between two isomorphic Banach
spaces X and Y is defined by inf(||T'|| ||7~!||) where the infimum is taken over
all isomorphisms 7" from X onto Y. Recall that a Banach space X is an £,,-
space (1 < p < oo) [LP] if there is A > 1 such that every finite-dimensional
subspace of X is contained in another subspace N with d(N, /) < A for
some integer n.

A Banach space X is an Ly-space (1 < p < oo) if and only if X* is
an L,-space (p~! + ¢~ = 1) [LR, Theorem III(a)]. An infinite-dimensional
complemented subspace of an L;-space (respectively, of an L.-space) is an
L1-space (respectively, an L.-space) [LR, Theorem III(b)].

If X is an L;-space, then, for each m, @' X is an L;-space [DF, The-
orem 34.9] (an easy proof may be found in [GG3, Proposition 2.2]). Since
&', X is isomorphic to a complemented subspace of @.'X [Fl, Propo-
sition 2.3], it follows that @', X is an Li-space. Therefore, P("X) =
(&) X)* is an Lc-space.

If X is an infinite-dimensional £1-space, then X contains a complemented
copy of ¢; [LP, Proposition 7.3]. Therefore, Py (™X) is not complemented
in P("X) [GG2, Lemma 5]. So it is in principle unknown if Pyp(™X) is an
L o-space. We now prove that the answer to this question is affirmative. This
will be useful later on.

THEOREM 3. Let X be a Banach space. The following facts are equiva-
lent:

(a) X is an L1-space;

(b) for each m € N, Pup("X) is an Loo-space;

(c) there exists m € N such that Py (™X) is an Loo-space.

Proof. (a)=-(b). Since X* has the approximation property [DF, p. 306],
we have

Pun("X) = PA("X) = @~ X*

(see [AP, Proposition 2.7] and our introduction). Now, X* is an L -space, so

X" X* is also an Lo-space (a proof may be found in [GG3, Proposition 2.2]).
Then its complemented subspace ®z s X* [F1, Proposition 3.1] is again an
L o-space.

(b)=(c) is obvious.

(c)=-(a). Since X* is complemented in Pyp("X) [AS, Proposition 5.3],
X* is an L-space as well. Thus X is an L;-space. =

We now give two preparatory results.
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PROPOSITION 4. Let P € P("X,Y). Then its adjoint P* : Y* —
P(MX) is w*-Tp-continuous, where T, is the topology of pointwise conver-
gence on P(™X). Conversely, let S : Y* — P(™X) be a w*-1,-continuous
operator. Then there is a polynomial P € P("X,Y) such that S = P*.

Proof. Given P € P("X,Y), let (y}) be a weak-star null net in Y*. Then,
for every z € X, we have
P (yo)(x) = (Yo, P(x)) =0,
so P*(y}) — 0 in the 7,-topology on P(™X).
Conversely, let S : Y* — P("X) be a w*-7,-continuous operator. Let
kgm x t @rs X = (@, X)" = P("X)"

be the natural embedding and let ky be the natural embedding of Y into Y **.
For z € X fixed, consider the functional kg (®"z)o S : Y* - K.

QX
Clearly,
(kg x (@) 0 S)(y") = S(y")(@).
By our hypothesis on S, kg (®™x) o S is weak-star continuous on Y*

Q7 X
and so it belongs to ky(Y). Let P € P("X,Y) be defined by P(x) =
kl_/l(k@:f’sX(@m x) o S). We have

P(y")(z) = (y*, P(x)) = (y", k;l(k@,tsx(@mx) °5))
— kg < (@"2)(S() = S (@)
Therefore, S = P*. u
If P € Pup("X,Y), then clearly P*(Y™*) C Pyp(™X).

PROPOSITION 5. Let P € Pyup("X,Y). Then its adjoint P* : Y* —
Pub("X) is compact and w*-1,-continuous. Conversely, let S : Y* —

Puwb("X) be a compact and w*-1,-continuous operator. Then there is P €
Pub(™X,Y) such that S = P*.

Proof. If P € Pyp(™X,Y), then P* is compact and, by Proposition 4, it
is also w*-7,-continuous.

Conversely, if S : Y* — Pyp(™X) is a compact and w*-7,-continuous
operator, then by Proposition 4, there is P € P("™X,Y) such that S = P*.
Since S is compact, P is compact. Since y* o P € Py, ("X) for each y* € Y*
it follows from [AP, Proposition 2.8] that P € Pyp("X,Y). »

We now extend the equivalences (a)<(d)<(e) of Theorem 2 to the class
of polynomials which are weakly continuous on bounded sets.

THEOREM 6. Let X be a Banach space. Then the following facts are
equivalent:
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(a) X is an L1-space;

(b) for all m € N, for every surjective operator ¢ : Z — X, every
P € Pup(™Y, X) has a lifting Pe Pub (™Y, Z) with respect to ¢;

(c) there is m € N for which (b) holds;

(d) there is m € N for which (b) holds without the requirement that the
lifting be weakly continuous on bounded sets.

Proof. (a)=-(b). Let X be an L;-space and P € Py, (™Y, X). Then there
exist a Banach space GG, a compact operator 7' : Y — G and a polynomial
Q € P("™G, X) such that P = @ o T. Since every compact operator factors
through two compact operators [F, Corollary 3.3], we can assume that @ is
compact. By [GG4, Theorem 2], there exists a lifting Q € P(™G, Z) with
respect to ¢. Then P .= Q oT € Pyb(™Y, Z) is a lifting of P.

(b)=-(c) and (c)=-(d) are obvious.

(d)=(a). Let m € N (m > 2). We show that the statement is true
for the index m — 1. Let Q € Pyb(™'Y, X). By Proposition 5, its adjoint
Q* 1 X* — Pyn(™ 1Y) is compact and w*-7,-continuous. Choose e € Y and
v € Y* with 7(e) = 1. Adapting the proof of [AS, Proposition 5.3], we define
the operators

jY : wa(mfly) - Wb(mY)

by
Jy(R)(y) :=~(y)R(y) for R € Pu,("'Y),y €Y,
and
Ty : Pub("Y) = Pup("7'Y)
given by -
(=3 (7)1 Sy,

=1

where

S(ef,y™ ) = S8(e, D e,y, 70 y).
We show that 7y o jy is the identity map on Py (™ 1Y) (and, therefore,
jy o Ty is a projection). Indeed, given R € Py,(™ 1Y) and y € Y, since

o —

. 1 — ~
Jy(BR) (Y1, ym) = EZ’Y(yz‘)R(iyh---7yz'—17yz'+1,---7ym)7

we have

Gy (R)) = 23 ()
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For each ¢, we have

(7)) 0im =i+ D) e

o)
Ty (Jy (R))(y) = R(y).
The operator jy o Q" : X* — Pu,(™Y) is still compact and w*-7,-
continuous. Indeed, if (z},) is a net converging to 0 in the weak-star topology
of X* and y € Y, we have

Iy (@ (x5))(y) = (y)Q™ () (y) — 0.
By Proposition 5, there exists a polynomial P € Py, (™Y, X) such that P* =
Jy oQ*. By the hypothesis, there is a lifting Pe P(™Y, Z) with respect to ¢.
Using Proposition 4 and considering 7y as an operator P("Y) — P(™ 1Y),
we see that my o (P)* : Z* — P(" 1Y) is w*-1p-continuous. So there is
Qe P(™1Y, Z) such that (Q) =myo(P ) We now prove that ¢oQ = Q,
equivalently, (¢ o Q) = Q*. Indeed,

(p0Q) =(Q)* 0¢™ =7y o (P)* 0 ¢* =y o P* = 7y 0 jy 0 Q* = Q"

So é is a lifting of Q. Iterating the argument, we deduce that every compact
operator from Y into X has a lifting to Z. By Theorem 2, X is an L;-space. =

We now give the equivalences (a)<(b)<(c) of Theorem 2 for polynomials
which are weakly continuous on bounded sets.

THEOREM 7. Let X be a Banach space. Then the following facts are
equivalent:

(a) X is an L1-space;

(b) for all m € N, for every surjective operator ¢ : Z — Y, every P €
Pub(™X,Y) admits a lifting P € Pup ("X, Z) with respect to ¢;

(c) there exists m € N for which (b) holds;

(d) there exists m € N for which (b) holds without the requirement that
the lifting be weakly continuous on bounded sets.

Proof. (a)=-(b). Let X be an L;-space. Since X* has the approximation
property [DF, p. 306], we have

Pab("X,Y) = PA("X) @. Y

(see [AP, Proposition 2.7]). By Theorem 3, Pa ("X ) = Pwb("X) is an Loo-
space. Then the operators

IR¢:PaA("X)®:Z — Pa("X)®: Y
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and
I®@¢:PA("X) @ Z — Pa(™X) @Y

are surjective [DF, 23.5, Corollaries 5 and 6], where I is the identity map
on Pa(™X). A standard argument allows us to conclude that every P €
Pub(™X,Y) = Pa(™X)®.Y admits a lifting P : Pyp (X, Z) = PA("X)®. Z
with respect to ¢.

(b)=(c) and (c)=-(d) are obvious.

(d)=-(a). It is enough to show that the statement is true for the index
m — 1. Define the operators

ix : Pap("TX) = Pap("X),  mx : Pun("X) — Pan(™TX)

as in the proof of Theorem 6. The proof is analogous to that of (d)=(a) in
Theorem 6. m

Now we give the equivalences (a)<(d)<(e) of Theorem 1 in the setting
of polynomials which are weakly continuous on bounded sets.

THEOREM 8. Let X be a Banach space. Then the following facts are
equivalent:

(a) X is an Loo-space;

(b) for all m € N, for every into zsomorphzsm v X — Z, every P e
Pub(™X,Y) has an extension P € Pyp(™Z,Y) such that P o = P;

(c) there exists m € N for which (b) holds;

(d) there exists m € N for which (b) holds without the requirement that
the extension be weakly continuous on bounded sets.

Proof. (a)=-(b). Let X be an L,-space. Let ¢ : X — Z be an into
isomorphism, and let P € Py, ("X,Y). Then there exist a Banach space G,
a compact operator 7' : X — G and a polynomial @ € P("™G,Y) such that
P = @QoT. By Theorem 1, there is a compact operator T : Z — G such that
fow = T. Define P := Qof € P("Z,Y). Then P is an extension of P, and
ﬁ S wa<mZ, Y)

(b)=-(c) and (c)=(d) are obvious.

(d)=-(a). We can assume m > 2. We prove that, for every into iso-
morphism ¢ : X — Z, every Q € wa(m_lX Y) has an extension Q €
P(™~1Z,Y) such that Qov) = Q. Let Q : ®m !X — Y be the linearization
of Q. Choose =y € X and let zp := 9(zp). Select 2* € Z* with 2 *(z0) = 1
and let x* = ¢*(2*). Then z*(z¢) = 1. Let

IIx : ®7rsX_>®m 1X Jx ® X_)®7rsX
be the operators defined in [Bl, p. 168] by
Ix(Q"z) = 2*(x)Q@™ 'x
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Tx (@™ ) =) <7Z) (=) (2) g @, B @5 20 @5 2 Q5 MTF @4 2.
k=1

It is shown in [Bl, p. 168| that ITx o Jx is the identity map on ®m 'X.

Similarly we can define

Jz:@p' 7 — Q7

T2 @™ ) = (7:) (=) 2% (2)F 120 @5 ) @, 29 ®5 2 @5 TR @, 2.
k=1

Consider S := Qo Il : ®?S X — Y and let P € P("™X,Y) be the polyno-
mial whose linearization is S. Then, for each x € X,

P(z) = S(®@™"z) = Qo Ix(®™z) = 2*(2)Q(Q" ') = «*(2)Q(x).
Since @ € Pyb("'X,Y), it follows that P € Py,("X,Y). By our hypoth-
esis, there is P € P(™Z,Y) such that P ot = P. Let P be the lineariza-
tion of ]3, and consider the composition ]§ oJyz: @Wm,;lZ — Y. Let C~2 €
P(™~1Z,Y) be the polynomial whose linearization coincides with PolJ z. We
show that @ extends @, that is, @ o1 = @, equivalently, @ o1 = Q. Indeed,

Qo (@' 2) = Q" () = (Po J)(@" "u(x)
P[> (7 )

k=1
x P(x0) ®s K @5 ¢(w0) @5 () @5 MTH @4 ()

> 1L (9(2) P o (w0 @5 B @ 20 @5 2 @, TR @, 1)

- EMS

(v
¢

) D2 (@ (@) P (20 @5 B @4 10 @5 7 @, TR @, 1)

e
Il

1

{Z ( > D* e () g @s B @, 20 ©5 2 @ MTH @,
k=1

I
v

=PoJx(@" 'e) = Qollx o Jx(Q" 'z) = Q@™ ).
Iterating the argument, we conclude that every compact operator X — Y
has an extension, and so X is an L-space by Theorem 1. m
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REMARK 9. The implications (a)=-(b) and (a)=(c) of Theorem 1 do not
extend to the polynomials which are weakly continuous on bounded sets.
We shall see that, for every Banach space X # {0}, there are a polynomial
P € Pyp(*(y, X) (p > 2) and a Banach space Z containing ¢, such that
P does not admit an extension P : Z — X. Indeed, choose g € X and
x* € X* with z*(z9) = 1; define

(o]
1
P(y) = (Zl - yﬁ) zo  for y = (yn)pZy € bp.
n=
Then P is approximable, so P € Py, (24,, X).
The polynomial Q € Pyp(%(,) (p > 2) given by

Q)= % va
n=1

is not extendible [C, Example 2.6]. Hence there exists a Banach space Z
containing ¢, such that ) does not admit an extension to Z. Denote by v
the embedding of ¢, into Z. Suppose there is a polynomial P e P2, X)
with P o 1 = P. Let N be the subspace generated by xg, let 7: X — N be
the projection given by 7 (z) = z*(x)xo (z € X), and denote by i : N — K
the natural isomorphism. Then

fomo Pow(y) = i(x(P(y)) = <W((§%y)°>> - i%y — Q).

so i oo P is an extension of (), which is impossible.

We shall now prove that there is no “dual” version of Theorem 3. We
recall some preliminary definitions.

A Banach space X is finitely representable in a Banach space Y if, for
each ¢ > 0 and each finite-dimensional subspace M of X, there is a finite-
dimensional subspace N of Y and a bijective operator T : M — N such that
ITI T4 < 1+ 2.

If P is a property defined for Banach spaces, that is, P is a subclass of the
class of all Banach spaces, then a Banach space X has property “super P” if
every Banach space finitely representable in X also has P. A property P is
called a superproperty if P = super P (see [Be, Chapter 4.1]).

THEOREM 10. If X is an infinite-dimensional Banach space, then
Pub("X) and P("X) are not L,-spaces, for1 < p < oo and m € N (m > 2).

Proof. 1t is shown in [Dil, Corollary 3] that ¢ is finitely representable
in P(™X). In fact, the proof is also valid for Py, ("X ). Suppose that Py, ("X)
(respectively, P("X)) is an Lp-space for some 1 < p < co. Then Py ("X)
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(respectively, P("X)) has finite cotype [DJT, Corollary 11.7(a)], which im-
plies that ¢, also has finite cotype [DJT, Theorem 11.6], and this contradicts
a well known result [DJT, Corollary 11.7(b)]. =

The above proof shows that Py, ("X) and P(™X) do not have finite
cotype. Since (o, does not have type > 1 [DJT, Corollary 11.7(b)], neither
do Pyb("™X) and P(™X). These results are mentioned in [Fl, 3.3].

More generally, from the fact that every Banach space is finitely rep-
resentable in /o, [FHH, Theorem 9.14], it follows that, if X is an infinite-
dimensional Banach space, then Py, ("X ) and P(™X) do not have any non-
trivial superproperty, for m € N (m > 2). This result is mentioned in the
introduction to [Dil].

Clearly, all these results (from Theorem 10 on) are also true for the space
L(™MX) of m-linear forms (m > 2).

We are grateful to the referee for many suggestions that have improved
the paper.
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