Extension and lifting of weakly continuous polynomials

by

RAFFAELLA CILIA (Catania) and JOAQUÍN M. GUTIÉRREZ (Madrid)

Abstract. We show that a Banach space X is an \mathcal{L}_1 -space (respectively, an \mathcal{L}_{∞} -space) if and only if it has the lifting (respectively, the extension) property for polynomials which are weakly continuous on bounded sets. We also prove that X is an \mathcal{L}_1 -space if and only if the space $\mathcal{P}_{\mathbf{wb}}(^mX)$ of m-homogeneous scalar-valued polynomials on X which are weakly continuous on bounded sets is an \mathcal{L}_{∞} -space.

The problem of lifting holomorphic mappings has attracted attention of various authors (see, for instance, [K, A, AMP, GG4]). The extension of holomorphic mappings from a space to a superspace has been treated in many papers (see, for instance, [AB, A, Z, LRy, GG4]). Here we study the extension and lifting of polynomials which are weakly continuous on bounded sets.

This class of polynomials (the definitions will be recalled below) was introduced in [AP] and has been studied by many authors. In [AHV] it was shown that, if a polynomial is weakly continuous on bounded sets, then it is weakly uniformly continuous on bounded sets. If a dual Banach space X^* has the approximation property, then these polynomials on X coincide with the approximable ones [AP, Proposition 2.7]. It was proved in [GG1] that a polynomial P is weakly continuous on bounded sets if and only if it may be factored in the form $P = Q \circ T$, where T is a compact (linear) operator and Q is a polynomial.

We recall the following well known linear results:

THEOREM 1 ([LR, Theorem 4.1]; see also [L]). Let X be a Banach space. Then the following facts are equivalent:

²⁰⁰⁰ Mathematics Subject Classification: Primary 46G25; Secondary 46B20, 47H60. Key words and phrases: extension of weakly continuous polynomials, \mathcal{L}_1 -space, \mathcal{L}_{∞} -space.

The first named author was supported by G.N.A.M.P.A. (Italy).

The second named author was supported in part by Dirección General de Investigación, BFM 2003-06420 (Spain).

- (a) X is an \mathcal{L}_{∞} -space;
- (b) for all Banach spaces $Z\supseteq Y$, every compact operator $T:Y\to X$ has an extension to a compact operator $\widetilde{T}:Z\to X$;
- (c) same as in (b) without the requirement of compactness of \widetilde{T} ;
- (d) for all Banach spaces Z and Y with $Z \supseteq X$, every compact operator $T: X \to Y$ has an extension to a compact operator $\widetilde{T}: Z \to Y$;
- (e) same as in (d) without the requirement of compactness of \widetilde{T} .

Let X, Y, and Z be Banach spaces and let $\phi: Z \to Y$ be a surjective operator. A (linear bounded) operator $T: X \to Y$ is said to admit a lifting to Z (with respect to ϕ) if there is an operator $\widetilde{T}: X \to Z$ such that $\phi \circ \widetilde{T} = T$. Such a \widetilde{T} is called a lifting of T to Z.

THEOREM 2 ([LR, Theorem 4.2]). Let X be a Banach space. Then the following facts are equivalent:

- (a) X is an \mathcal{L}_1 -space;
- (b) for all Banach spaces Z and Y and any surjective operator $\phi: Z \to Y$, every compact operator $T: X \to Y$ has a compact lifting $\widetilde{T}: X \to Z$ with respect to ϕ ;
- (c) same as in (b) without the requirement of compactness of \widetilde{T} ;
- (d) for all Banach spaces Z and Y and any surjective operator $\phi: Z \to X$, every compact operator $T: Y \to X$ has a compact lifting $\widetilde{T}: Y \to Z$ with respect to ϕ ;
- (e) same as in (d) without the requirement of compactness of T.

Throughout, X, Y, and Z denote Banach spaces, X^* is the dual of X, and B_X stands for its closed unit ball. The closed unit ball B_{X^*} is a compact space when it is endowed with the weak-star topology, which we denote by w^* . By \mathbb{N} we represent the set of all natural numbers while \mathbb{K} denotes the scalar field. By $X \cong Y$ (respectively, $X \equiv Y$), we mean that X and Y are isomorphic (respectively, isometrically isomorphic).

Given $m \in \mathbb{N}$, we denote by $\mathcal{P}({}^mX,Y)$ the space of all m-homogeneous (continuous) polynomials from X into Y endowed with the supremum norm. Recall that to each $P \in \mathcal{P}({}^mX,Y)$ we can associate a unique symmetric m-linear (continuous) mapping $\widehat{P}: X \times \stackrel{(m)}{\dots} \times X \to Y$ so that

$$P(x) = \widehat{P}(x, \stackrel{(m)}{\dots}, x) \quad (x \in X).$$

For simplicity, we write $\mathcal{P}(^{m}X) := \mathcal{P}(^{m}X, \mathbb{K})$.

For the general theory of multilinear mappings and polynomials on Banach spaces, we refer to [Di2] and [Mu].

We use the notation $\bigotimes^m X := X \otimes \stackrel{(m)}{\dots} \otimes X$ for the *m*-fold tensor product of X, and $\bigotimes_{\pi}^m X$ (respectively, $\bigotimes_{\varepsilon}^m X$) for the *m*-fold tensor product of X

endowed with the projective (respectively, injective) norm. Their completions are denoted by $\widetilde{\bigotimes}_{\pi}^{m}X$ and $\widetilde{\bigotimes}_{\varepsilon}^{m}X$, respectively (see [DF] or [DU] for the theory of tensor products). By $\bigotimes_{s}^{m}X := X \otimes_{s} \overset{(m)}{\ldots} \otimes_{s} X$ we denote the *m*-fold symmetric tensor product of X, that is, the set of all elements $u \in \bigotimes^{m}X$ of the form

$$u = \sum_{j=1}^{n} \lambda_j x_j \otimes \stackrel{(m)}{\dots} \otimes x_j \quad (n \in \mathbb{N}, \, \lambda_j \in \mathbb{K}, \, x_j \in X, \, 1 \le j \le n).$$

The notation $\widetilde{\bigotimes}_{\pi,s}^m X$ stands for the closure of $\bigotimes_s^m X$ in $\widetilde{\bigotimes}_{\pi}^m X$. Given $x_1, \ldots, x_m \in X$, we define

$$x_1 \otimes_s \cdots \otimes_s x_m := \frac{1}{m!} \sum_{\sigma \in \mathbb{P}_m} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(m)},$$

where \mathbb{P}_m is the group of all permutations of m elements. For symmetric tensor products, we refer to [F1]. For simplicity, we shall use the notation

$$\bigotimes^m x := x \otimes \stackrel{(m)}{\dots} \otimes x.$$

It is well known that $\mathcal{P}(^{m}X) \cong (\widetilde{\bigotimes}_{\pi,s}^{m}X)^{*}$ [Fl, Proposition 2.2].

On $\bigotimes_{s}^{m} X$ we define the *injective symmetric tensor norm* ε_{s} by

$$\varepsilon_s(z) = \sup\{|\langle z, \bigotimes^m x^* \rangle| : x^* \in B_{X^*}\} = \sup\{\left|\sum_{k=1}^n \lambda_k \langle x_k, x^* \rangle^m \mid : x^* \in B_{X^*}\}\right|$$

for $z = \sum_{k=1}^{n} \lambda_k \bigotimes^m x_k$. We denote by $\bigotimes_{\varepsilon_s,s}^m X$ the space $\bigotimes_s^m X$ endowed with the ε_s -norm, and by $\bigotimes_{\varepsilon_s,s}^m X$ its completion.

If $P \in \mathcal{P}(^mX, Y)$, we define its linearization $\overline{P} : \widetilde{\bigotimes}_{\pi,s}^m X \to Y$ by

$$\overline{P}\Big(\sum_{i=1}^n \lambda_i x_i \otimes \stackrel{(m)}{\dots} \otimes x_i\Big) = \sum_{i=1}^n \lambda_i P(x_i)$$

for all $\lambda_i \in \mathbb{K}$, $x_i \in X$ $(1 \le i \le n)$.

If $P \in \mathcal{P}(^m\!X,Y)$, the adjoint of P is the operator $P^*: Y^* \to \mathcal{P}(^m\!X)$ given by

$$P^*(y^*)(x) = \langle y^*, P(x) \rangle.$$

A polynomial $P \in \mathcal{P}(^mX,Y)$ is of *finite type* if it is a finite sum of terms of the form $\gamma^m \otimes y$, with $\gamma \in X^*$ and $y \in Y$, where $(\gamma^m \otimes y)(x) := \gamma(x)^m y$ for all $x \in X$. A polynomial is approximable if it lies in the norm closure of the space of polynomials of finite type. By $\mathcal{P}_A(^mX,Y)$ we denote the space of all m-homogeneous approximable polynomials from X into Y, endowed with the supremum norm.

It is shown in [Fl, Proposition 3.2(6)] that

$$\mathcal{P}_{\mathbf{A}}(^{m}X) \equiv \widetilde{\bigotimes}_{\varepsilon_{s},s}^{m} X^{*}.$$

We are indebted to the referee for pointing out that

$$\mathcal{P}_{\mathbf{A}}(^{m}X,Y) \equiv \widetilde{\bigotimes}_{\varepsilon,s}^{m} X^{*} \widetilde{\otimes}_{\varepsilon} Y.$$

Indeed, define the operator

$$J: \mathcal{P}_{\Delta}(^{m}X) \otimes_{\varepsilon} Y \to \mathcal{P}(^{m}X, Y)$$

by

$$J\left(\sum_{i=1}^{n} P_i \otimes y_i\right) = Q$$
 where $Q(x) := \sum_{i=1}^{n} P_i(x)y_i$ $(x \in X)$.

Then

$$||Q|| = \sup\{||Q(x)|| : x \in B_X\} = \sup\{|\langle y^*, Q(x)\rangle| : x \in B_X, y^* \in B_{Y^*}\}$$
$$= \sup\{\left|\sum_{i=1}^n P_i(x)y^*(y_i)\right| : x \in B_X, y^* \in B_{Y^*}\}.$$

We can embed $\bigotimes^m X$ into $\mathcal{P}_A(^mX)^*$ by the duality

$$\left\langle \sum_{i=1}^{n} \lambda_i \bigotimes^m x_i, P \right\rangle = \sum_{i=1}^{n} \lambda_i P(x_i).$$

It follows that the set $\{\bigotimes^m x : x \in B_X\}$ is norming in the unit ball of $\mathcal{P}_A(^mX)^*$, so

$$||Q|| = \sup \left\{ \left| \sum_{i=1}^{n} \Phi(P_i) y^*(y_i) \right| : \Phi \in \mathcal{P}_{\mathcal{A}}(^m X)^*, ||\Phi|| \le 1, y^* \in B_{Y^*} \right\}$$
$$= \left\| \sum_{i=1}^{n} P_i \otimes y_i \right\|_{\varepsilon}$$

(see the argument in [Ry, p. 46]) and J is an into isometry. Clearly, the space $\mathcal{P}_{A}(^{m}X, Y)$ is the range of the extension of J to $\mathcal{P}_{A}(^{m}X) \otimes_{\varepsilon} Y$.

A polynomial $P \in \mathcal{P}(^mX,Y)$ is compact if $P(B_X)$ is relatively compact in Y. A polynomial $P \in \mathcal{P}(^mX,Y)$ is compact if and only if its adjoint $P^*: Y^* \to \mathcal{P}(^mX)$ is a compact operator [AS, Proposition 3.2]. A polynomial $P \in \mathcal{P}(^mX,Y)$ is weakly continuous on bounded subsets if for each bounded net $(x_\alpha) \subset X$ weakly converging to x, $(P(x_\alpha))$ converges to P(x) in norm. We denote by $\mathcal{P}_{wb}(^mX,Y)$ the space of all polynomials in $\mathcal{P}(^mX,Y)$ which are weakly continuous on bounded sets. Every polynomial in $\mathcal{P}_{wb}(^mX,Y)$ is compact ([AP, Lemma 2.2] and [AHV, Theorem 2.9]). An operator is weakly continuous on bounded sets if and only if it is compact [AP, Proposition 2.5]. With each polynomial $P \in \mathcal{P}(^mX,Y)$ we associate an operator $T_P: X \to \mathcal{P}(^{m-1}X,Y)$ given by

$$T_P(x)(y) := \widehat{P}(x, y, \overset{(m-1)}{\dots}, y) \quad (x, y \in X).$$

Then $P \in \mathcal{P}_{wb}(^{m}X, Y)$ if and only if T_P is compact [AHV, Theorem 2.9].

The Banach–Mazur distance d(X,Y) between two isomorphic Banach spaces X and Y is defined by $\inf(\|T\| \|T^{-1}\|)$ where the infimum is taken over all isomorphisms T from X onto Y. Recall that a Banach space X is an \mathcal{L}_p -space $(1 \leq p \leq \infty)$ [LP] if there is $\lambda \geq 1$ such that every finite-dimensional subspace of X is contained in another subspace N with $d(N, \ell_p^n) \leq \lambda$ for some integer n.

A Banach space X is an \mathcal{L}_p -space $(1 \leq p \leq \infty)$ if and only if X^* is an \mathcal{L}_q -space $(p^{-1} + q^{-1} = 1)$ [LR, Theorem III(a)]. An infinite-dimensional complemented subspace of an \mathcal{L}_1 -space (respectively, of an \mathcal{L}_{∞} -space) is an \mathcal{L}_1 -space (respectively, an \mathcal{L}_{∞} -space) [LR, Theorem III(b)].

If X is an \mathcal{L}_1 -space, then, for each m, $\widetilde{\bigotimes}_{\pi}^m X$ is an \mathcal{L}_1 -space [DF, Theorem 34.9] (an easy proof may be found in [GG3, Proposition 2.2]). Since $\widetilde{\bigotimes}_{\pi,s}^m X$ is isomorphic to a complemented subspace of $\widetilde{\bigotimes}_{\pi}^m X$ [Fl, Proposition 2.3], it follows that $\widetilde{\bigotimes}_{\pi,s}^m X$ is an \mathcal{L}_1 -space. Therefore, $\mathcal{P}(^m X) \cong (\widetilde{\bigotimes}_{\pi,s}^m X)^*$ is an \mathcal{L}_{∞} -space.

If X is an infinite-dimensional \mathcal{L}_1 -space, then X contains a complemented copy of ℓ_1 [LP, Proposition 7.3]. Therefore, $\mathcal{P}_{wb}(^mX)$ is not complemented in $\mathcal{P}(^mX)$ [GG2, Lemma 5]. So it is in principle unknown if $\mathcal{P}_{wb}(^mX)$ is an \mathcal{L}_{∞} -space. We now prove that the answer to this question is affirmative. This will be useful later on.

Theorem 3. Let X be a Banach space. The following facts are equivalent:

- (a) X is an \mathcal{L}_1 -space;
- (b) for each $m \in \mathbb{N}$, $\mathcal{P}_{wb}(^{m}X)$ is an \mathcal{L}_{∞} -space;
- (c) there exists $m \in \mathbb{N}$ such that $\mathcal{P}_{wb}(^mX)$ is an \mathcal{L}_{∞} -space.

Proof. (a) \Rightarrow (b). Since X^* has the approximation property [DF, p. 306], we have

$$\mathcal{P}_{wb}(^{m}X) = \mathcal{P}_{A}(^{m}X) \equiv \widetilde{\bigotimes}_{\varepsilon_{s},s}^{m} X^{*}$$

(see [AP, Proposition 2.7] and our introduction). Now, X^* is an \mathcal{L}_{∞} -space, so $\bigotimes_{\varepsilon}^m X^*$ is also an \mathcal{L}_{∞} -space (a proof may be found in [GG3, Proposition 2.2]). Then its complemented subspace $\bigotimes_{\varepsilon_s,s}^m X^*$ [Fl, Proposition 3.1] is again an \mathcal{L}_{∞} -space.

- $(b)\Rightarrow(c)$ is obvious.
- (c) \Rightarrow (a). Since X^* is complemented in $\mathcal{P}_{wb}(^mX)$ [AS, Proposition 5.3], X^* is an \mathcal{L}_{∞} -space as well. Thus X is an \mathcal{L}_1 -space.

We now give two preparatory results.

PROPOSITION 4. Let $P \in \mathcal{P}(^mX,Y)$. Then its adjoint $P^*: Y^* \to \mathcal{P}(^mX)$ is w^* - τ_p -continuous, where τ_p is the topology of pointwise convergence on $\mathcal{P}(^mX)$. Conversely, let $S: Y^* \to \mathcal{P}(^mX)$ be a w^* - τ_p -continuous operator. Then there is a polynomial $P \in \mathcal{P}(^mX,Y)$ such that $S = P^*$.

Proof. Given $P \in \mathcal{P}(^mX, Y)$, let (y^*_{α}) be a weak-star null net in Y^* . Then, for every $x \in X$, we have

$$P^*(y_\alpha^*)(x) = \langle y_\alpha^*, P(x) \rangle \to 0,$$

so $P^*(y^*_{\alpha}) \to 0$ in the τ_p -topology on $\mathcal{P}({}^mX)$.

Conversely, let $S: Y^* \to \mathcal{P}(^mX)$ be a w^* - τ_p -continuous operator. Let

$$k_{\widetilde{\bigotimes}_{\pi,s}^m X}: \widetilde{\bigotimes}_{\pi,s}^m X \to (\widetilde{\bigotimes}_{\pi,s}^m X)^{**} \cong \mathcal{P}(^m X)^*$$

be the natural embedding and let k_Y be the natural embedding of Y into Y^{**} . For $x \in X$ fixed, consider the functional $k_{\widetilde{\bigotimes}_{\pi,s}^m X}(\bigotimes^m x) \circ S : Y^* \to \mathbb{K}$. Clearly,

$$(k_{\bigotimes_{-}^{m}X}(\bigotimes^{m}x)\circ S)(y^{*})=S(y^{*})(x).$$

By our hypothesis on S, $k_{\widetilde{\bigotimes}_{\pi,s}^m X}(\bigotimes^m x) \circ S$ is weak-star continuous on Y^* and so it belongs to $k_Y(Y)$. Let $P \in \mathcal{P}(^mX,Y)$ be defined by $P(x) = k_Y^{-1}(k_{\widetilde{\bigotimes}_{\pi,s}^m X}(\bigotimes^m x) \circ S)$. We have

$$P^*(y^*)(x) = \langle y^*, P(x) \rangle = \langle y^*, k_Y^{-1}(k_{\widetilde{\bigotimes}_{\pi,s}^m X}(\bigotimes^m x) \circ S) \rangle$$
$$= k_{\widetilde{\bigotimes}_{\pi,s}^m X}(\bigotimes^m x)(S(y^*)) = S(y^*)(x).$$

Therefore, $S = P^*$.

If
$$P \in \mathcal{P}_{wb}(^mX, Y)$$
, then clearly $P^*(Y^*) \subseteq \mathcal{P}_{wb}(^mX)$.

PROPOSITION 5. Let $P \in \mathcal{P}_{wb}(^mX,Y)$. Then its adjoint $P^*: Y^* \to \mathcal{P}_{wb}(^mX)$ is compact and w^* - τ_p -continuous. Conversely, let $S: Y^* \to \mathcal{P}_{wb}(^mX)$ be a compact and w^* - τ_p -continuous operator. Then there is $P \in \mathcal{P}_{wb}(^mX,Y)$ such that $S = P^*$.

Proof. If $P \in \mathcal{P}_{wb}(^mX, Y)$, then P^* is compact and, by Proposition 4, it is also w^* - τ_p -continuous.

Conversely, if $S: Y^* \to \mathcal{P}_{wb}(^mX)$ is a compact and $w^* - \tau_p$ -continuous operator, then by Proposition 4, there is $P \in \mathcal{P}(^mX,Y)$ such that $S = P^*$. Since S is compact, P is compact. Since $y^* \circ P \in \mathcal{P}_{wb}(^mX)$ for each $y^* \in Y^*$ it follows from [AP, Proposition 2.8] that $P \in \mathcal{P}_{wb}(^mX,Y)$.

We now extend the equivalences $(a)\Leftrightarrow (d)\Leftrightarrow (e)$ of Theorem 2 to the class of polynomials which are weakly continuous on bounded sets.

Theorem 6. Let X be a Banach space. Then the following facts are equivalent:

- (a) X is an \mathcal{L}_1 -space;
- (b) for all $m \in \mathbb{N}$, for every surjective operator $\phi : Z \to X$, every $P \in \mathcal{P}_{wb}(^mY, X)$ has a lifting $\widetilde{P} \in \mathcal{P}_{wb}(^mY, Z)$ with respect to ϕ ;
- (c) there is $m \in \mathbb{N}$ for which (b) holds;
- (d) there is $m \in \mathbb{N}$ for which (b) holds without the requirement that the lifting be weakly continuous on bounded sets.

Proof. (a) \Rightarrow (b). Let X be an \mathcal{L}_1 -space and $P \in \mathcal{P}_{\mathbf{wb}}(^mY, X)$. Then there exist a Banach space G, a compact operator $T: Y \to G$ and a polynomial $Q \in \mathcal{P}(^mG, X)$ such that $P = Q \circ T$. Since every compact operator factors through two compact operators [F, Corollary 3.3], we can assume that Q is compact. By [GG4, Theorem 2], there exists a lifting $\widetilde{Q} \in \mathcal{P}(^mG, Z)$ with respect to ϕ . Then $\widetilde{P} := \widetilde{Q} \circ T \in \mathcal{P}_{\mathbf{wb}}(^mY, Z)$ is a lifting of P.

 $(b)\Rightarrow(c)$ and $(c)\Rightarrow(d)$ are obvious.

(d) \Rightarrow (a). Let $m \in \mathbb{N}$ ($m \geq 2$). We show that the statement is true for the index m-1. Let $Q \in \mathcal{P}_{wb}(^{m-1}Y,X)$. By Proposition 5, its adjoint $Q^*: X^* \to \mathcal{P}_{wb}(^{m-1}Y)$ is compact and w^* - τ_p -continuous. Choose $e \in Y$ and $\gamma \in Y^*$ with $\gamma(e) = 1$. Adapting the proof of [AS, Proposition 5.3], we define the operators

$$j_Y: \mathcal{P}_{\mathbf{wb}}(^{m-1}Y) \to \mathcal{P}_{\mathbf{wb}}(^mY)$$

by

$$j_Y(R)(y) := \gamma(y)R(y)$$
 for $R \in \mathcal{P}_{wb}(^{m-1}Y), y \in Y$,

and

$$\pi_Y: \mathcal{P}_{\mathbf{wb}}(^mY) \to \mathcal{P}_{\mathbf{wb}}(^{m-1}Y)$$

given by

$$\pi_Y(S)(y) := \sum_{i=1}^m \binom{m}{i} (-1)^{i+1} \gamma(y)^{i-1} \widehat{S}(e^i, y^{m-i}),$$

where

$$\widehat{S}(e^i, y^{m-i}) := \widehat{S}(e, \stackrel{(i)}{\dots}, e, y, \stackrel{(m-i)}{\dots}, y).$$

We show that $\pi_Y \circ j_Y$ is the identity map on $\mathcal{P}_{wb}(^{m-1}Y)$ (and, therefore, $j_Y \circ \pi_Y$ is a projection). Indeed, given $R \in \mathcal{P}_{wb}(^{m-1}Y)$ and $y \in Y$, since

$$\widehat{j_Y(R)}(y_1,\ldots,y_m) = \frac{1}{m} \sum_{i=1}^m \gamma(y_i) \widehat{R}(y_1,\ldots,y_{i-1},y_{i+1},\ldots,y_m),$$

we have

$$\pi_Y(j_Y(R))(y) = \frac{1}{m} \sum_{i=1}^m {m \choose i} (-1)^{i+1} \gamma(y)^{i-1} \times [i\gamma(e)\widehat{R}(e^{i-1}, y^{m-i}) + (m-i)\gamma(y)\widehat{R}(e^i, y^{m-i-1})].$$

For each i, we have

$$\binom{m}{i-1} (-1)^i (m-i+1)\gamma(y)^{i-1} \widehat{R}(e^{i-1}, y^{m-i})$$

$$+ \binom{m}{i} (-1)^{i+1} i \gamma(y)^{i-1} \widehat{R}(e^{i-1}, y^{m-i}) = 0,$$

so

$$\pi_Y(j_Y(R))(y) = R(y).$$

The operator $j_Y \circ Q^*: X^* \to \mathcal{P}_{wb}(^mY)$ is still compact and w^* - τ_p -continuous. Indeed, if (x^*_{α}) is a net converging to 0 in the weak-star topology of X^* and $y \in Y$, we have

$$j_Y(Q^*(x_\alpha^*))(y) = \gamma(y)Q^*(x_\alpha^*)(y) \to 0.$$

By Proposition 5, there exists a polynomial $P \in \mathcal{P}_{wb}(^mY,X)$ such that $P^* = j_Y \circ Q^*$. By the hypothesis, there is a lifting $\widetilde{P} \in \mathcal{P}(^mY,Z)$ with respect to ϕ . Using Proposition 4 and considering π_Y as an operator $\mathcal{P}(^mY) \to \mathcal{P}(^{m-1}Y)$, we see that $\pi_Y \circ (\widetilde{P})^* : Z^* \to \mathcal{P}(^{m-1}Y)$ is w^* - τ_p -continuous. So there is $\widetilde{Q} \in \mathcal{P}(^{m-1}Y,Z)$ such that $(\widetilde{Q})^* = \pi_Y \circ (\widetilde{P})^*$. We now prove that $\phi \circ \widetilde{Q} = Q$, equivalently, $(\phi \circ \widetilde{Q})^* = Q^*$. Indeed,

$$(\phi \circ \widetilde{Q})^* = (\widetilde{Q})^* \circ \phi^* = \pi_Y \circ (\widetilde{P})^* \circ \phi^* = \pi_Y \circ P^* = \pi_Y \circ j_Y \circ Q^* = Q^*.$$

So \widetilde{Q} is a lifting of Q. Iterating the argument, we deduce that every compact operator from Y into X has a lifting to Z. By Theorem 2, X is an \mathcal{L}_1 -space.

We now give the equivalences $(a)\Leftrightarrow(b)\Leftrightarrow(c)$ of Theorem 2 for polynomials which are weakly continuous on bounded sets.

Theorem 7. Let X be a Banach space. Then the following facts are equivalent:

- (a) X is an \mathcal{L}_1 -space;
- (b) for all $m \in \mathbb{N}$, for every surjective operator $\phi : Z \to Y$, every $P \in \mathcal{P}_{\mathbf{wb}}(^mX, Y)$ admits a lifting $\widetilde{P} \in \mathcal{P}_{\mathbf{wb}}(^mX, Z)$ with respect to ϕ ;
- (c) there exists $m \in \mathbb{N}$ for which (b) holds;
- (d) there exists $m \in \mathbb{N}$ for which (b) holds without the requirement that the lifting be weakly continuous on bounded sets.

Proof. (a) \Rightarrow (b). Let X be an \mathcal{L}_1 -space. Since X^* has the approximation property [DF, p. 306], we have

$$\mathcal{P}_{\mathrm{wb}}(^{\mathit{m}}\!X,Y) \equiv \mathcal{P}_{\mathrm{A}}(^{\mathit{m}}\!X) \ \widetilde{\otimes}_{\varepsilon} \ Y$$

(see [AP, Proposition 2.7]). By Theorem 3, $\mathcal{P}_A(^mX) = \mathcal{P}_{wb}(^mX)$ is an \mathcal{L}_{∞} -space. Then the operators

$$I\otimes\phi:\mathcal{P}_{A}(^{m}X)\otimes_{\varepsilon}Z\to\mathcal{P}_{A}(^{m}X)\otimes_{\varepsilon}Y$$

and

$$I \otimes \phi : \mathcal{P}_{\mathsf{A}}({}^{m}X) \overset{\sim}{\otimes}_{\varepsilon} Z \to \mathcal{P}_{\mathsf{A}}({}^{m}X) \overset{\sim}{\otimes}_{\varepsilon} Y$$

are surjective [DF, 23.5, Corollaries 5 and 6], where I is the identity map on $\mathcal{P}_{A}(^{m}X)$. A standard argument allows us to conclude that every $P \in \mathcal{P}_{wb}(^{m}X,Y) \equiv \mathcal{P}_{A}(^{m}X)\widetilde{\otimes}_{\varepsilon}Y$ admits a lifting $\widetilde{P}: \mathcal{P}_{wb}(^{m}X,Z) \equiv \mathcal{P}_{A}(^{m}X)\widetilde{\otimes}_{\varepsilon}Z$ with respect to ϕ .

- $(b)\Rightarrow(c)$ and $(c)\Rightarrow(d)$ are obvious.
- (d) \Rightarrow (a). It is enough to show that the statement is true for the index m-1. Define the operators

$$j_X: \mathcal{P}_{\mathbf{wb}}(^{m-1}X) \to \mathcal{P}_{\mathbf{wb}}(^mX), \quad \pi_X: \mathcal{P}_{\mathbf{wb}}(^mX) \to \mathcal{P}_{\mathbf{wb}}(^{m-1}X)$$

as in the proof of Theorem 6. The proof is analogous to that of (d) \Rightarrow (a) in Theorem 6. \blacksquare

Now we give the equivalences $(a)\Leftrightarrow (d)\Leftrightarrow (e)$ of Theorem 1 in the setting of polynomials which are weakly continuous on bounded sets.

Theorem 8. Let X be a Banach space. Then the following facts are equivalent:

- (a) X is an \mathcal{L}_{∞} -space;
- (b) for all $m \in \mathbb{N}$, for every into isomorphism $\psi : X \to Z$, every $P \in \mathcal{P}_{\mathbf{wb}}(^{m}X, Y)$ has an extension $\widetilde{P} \in \mathcal{P}_{\mathbf{wb}}(^{m}Z, Y)$ such that $\widetilde{P} \circ \psi = P$;
- (c) there exists $m \in \mathbb{N}$ for which (b) holds;
- (d) there exists $m \in \mathbb{N}$ for which (b) holds without the requirement that the extension be weakly continuous on bounded sets.

Proof. (a) \Rightarrow (b). Let X be an \mathcal{L}_{∞} -space. Let $\psi: X \to Z$ be an into isomorphism, and let $P \in \mathcal{P}_{wb}(^mX,Y)$. Then there exist a Banach space G, a compact operator $T: X \to G$ and a polynomial $Q \in \mathcal{P}(^mG,Y)$ such that $P = Q \circ T$. By Theorem 1, there is a compact operator $\widetilde{T}: Z \to G$ such that $\widetilde{T} \circ \psi = T$. Define $\widetilde{P}:=Q \circ \widetilde{T} \in \mathcal{P}(^mZ,Y)$. Then \widetilde{P} is an extension of P, and $\widetilde{P} \in \mathcal{P}_{wb}(^mZ,Y)$.

- $(b)\Rightarrow(c)$ and $(c)\Rightarrow(d)$ are obvious.
- (d) \Rightarrow (a). We can assume $m \geq 2$. We prove that, for every into isomorphism $\psi: X \to Z$, every $Q \in \mathcal{P}_{\mathbf{wb}}(^{m-1}X,Y)$ has an extension $\widetilde{Q} \in \mathcal{P}(^{m-1}Z,Y)$ such that $\widetilde{Q} \circ \psi = Q$. Let $\overline{Q}: \widetilde{\bigotimes}_{\pi,s}^{m-1}X \to Y$ be the linearization of Q. Choose $x_0 \in X$ and let $z_0 := \psi(x_0)$. Select $z^* \in Z^*$ with $z^*(z_0) = 1$ and let $x^* = \psi^*(z^*)$. Then $x^*(x_0) = 1$. Let

$$\Pi_X: \widetilde{\bigotimes}_{\pi,s}^m X \to \widetilde{\bigotimes}_{\pi,s}^{m-1} X, \quad J_X: \widetilde{\bigotimes}_{\pi,s}^{m-1} X \to \widetilde{\bigotimes}_{\pi,s}^m X$$

be the operators defined in [Bl, p. 168] by

$$\Pi_X(\bigotimes^m x) = x^*(x)\bigotimes^{m-1} x$$

and

$$J_X(\bigotimes^{m-1} x) = \sum_{k=1}^m \binom{m}{k} (-1)^{k+1} x^*(x)^{k-1} x_0 \otimes_s \stackrel{(k)}{\dots} \otimes_s x_0 \otimes_s x \otimes_s \stackrel{(m-k)}{\dots} \otimes_s x.$$

It is shown in [Bl, p. 168] that $\Pi_X \circ J_X$ is the identity map on $\widetilde{\bigotimes}_{\pi,s}^{m-1} X$. Similarly we can define

$$J_Z: \widetilde{\bigotimes}_{\pi,s}^{m-1} Z \to \widetilde{\bigotimes}_{\pi,s}^m Z$$

by

$$J_Z(\bigotimes^{m-1} z) = \sum_{k=1}^m \binom{m}{k} (-1)^{k+1} z^*(z)^{k-1} z_0 \otimes_s \stackrel{(k)}{\dots} \otimes_s z_0 \otimes_s z \otimes_s \stackrel{(m-k)}{\dots} \otimes_s z.$$

Consider $S := \overline{Q} \circ \Pi_X : \widetilde{\bigotimes}_{\pi,s}^m X \to Y$ and let $P \in \mathcal{P}(^m X, Y)$ be the polynomial whose linearization is S. Then, for each $x \in X$,

$$P(x) = S(\bigotimes^m x) = \overline{Q} \circ \Pi_X(\bigotimes^m x) = x^*(x)\overline{Q}(\bigotimes^{m-1} x) = x^*(x)Q(x).$$

Since $Q \in \mathcal{P}_{wb}(^{m-1}X, Y)$, it follows that $P \in \mathcal{P}_{wb}(^mX, Y)$. By our hypothesis, there is $\widetilde{P} \in \mathcal{P}(^mZ, Y)$ such that $\widetilde{P} \circ \psi = P$. Let $\overline{\widetilde{P}}$ be the linearization of \widetilde{P} , and consider the composition $\overline{\widetilde{P}} \circ J_Z : \widetilde{\bigotimes}_{\pi,s}^{m-1}Z \to Y$. Let $\widetilde{Q} \in \mathcal{P}(^{m-1}Z,Y)$ be the polynomial whose linearization coincides with $\overline{\widetilde{P}} \circ J_Z$. We show that \widetilde{Q} extends Q, that is, $\widetilde{Q} \circ \psi = Q$, equivalently, $\overline{\widetilde{Q}} \circ \psi = \overline{Q}$. Indeed,

$$\overline{\widetilde{Q}} \circ \overline{\psi}(\bigotimes^{m-1} x) = \overline{\widetilde{Q}}(\bigotimes^{m-1} \psi(x)) = (\overline{\widetilde{P}} \circ J_Z)(\bigotimes^{m-1} \psi(x))$$

$$= \overline{\widetilde{P}} \bigg[\sum_{k=1}^{m} \binom{m}{k} (-1)^{k+1} z^* (\psi(x))^{k-1}$$

$$\times \psi(x_0) \otimes_s \overset{(k)}{\dots} \otimes_s \psi(x_0) \otimes_s \psi(x) \otimes_s \overset{(m-k)}{\dots} \otimes_s \psi(x) \bigg]$$

$$= \sum_{k=1}^{m} \binom{m}{k} (-1)^{k+1} z^* (\psi(x))^{k-1} \overline{\widetilde{P} \circ \psi}(x_0 \otimes_s \overset{(k)}{\dots} \otimes_s x_0 \otimes_s x \otimes_s \overset{(m-k)}{\dots} \otimes_s x)$$

$$= \sum_{m=0}^{m} {m \choose k} (-1)^{k+1} z^* (\psi(x))^{k-1} \overline{P}(x_0 \otimes_s \overset{(k)}{\dots} \otimes_s x_0 \otimes_s x \otimes_s \overset{(m-k)}{\dots} \otimes_s x)$$

$$= \overline{P} \left[\sum_{k=1}^{m} {m \choose k} (-1)^{k+1} x^*(x)^{k-1} x_0 \otimes_s \overset{(k)}{\dots} \otimes_s x_0 \otimes_s x \otimes_s \overset{(m-k)}{\dots} \otimes_s x \right]$$

$$= \overline{P} \circ J_X(\bigotimes^{m-1} x) = \overline{Q} \circ \Pi_X \circ J_X(\bigotimes^{m-1} x) = \overline{Q}(\bigotimes^{m-1} x).$$

Iterating the argument, we conclude that every compact operator $X \to Y$ has an extension, and so X is an \mathcal{L}_{∞} -space by Theorem 1.

REMARK 9. The implications (a) \Rightarrow (b) and (a) \Rightarrow (c) of Theorem 1 do not extend to the polynomials which are weakly continuous on bounded sets. We shall see that, for every Banach space $X \neq \{0\}$, there are a polynomial $P \in \mathcal{P}_{wb}(^2\ell_p, X)$ $(p \geq 2)$ and a Banach space Z containing ℓ_p such that P does not admit an extension $\widetilde{P}: Z \to X$. Indeed, choose $x_0 \in X$ and $x^* \in X^*$ with $x^*(x_0) = 1$; define

$$P(y) = \left(\sum_{n=1}^{\infty} \frac{1}{n} y_n^2\right) x_0 \quad \text{ for } y = (y_n)_{n=1}^{\infty} \in \ell_p.$$

Then P is approximable, so $P \in \mathcal{P}_{wb}(^2\ell_p, X)$.

The polynomial $Q \in \mathcal{P}_{wb}(^2\ell_p)$ $(p \ge 2)$ given by

$$Q(y) = \sum_{n=1}^{\infty} \frac{1}{n} y_n^2$$

is not extendible [C, Example 2.6]. Hence there exists a Banach space Z containing ℓ_p such that Q does not admit an extension to Z. Denote by ψ the embedding of ℓ_p into Z. Suppose there is a polynomial $\widetilde{P} \in \mathcal{P}(^2Z,X)$ with $\widetilde{P} \circ \psi = P$. Let N be the subspace generated by x_0 , let $\pi: X \to N$ be the projection given by $\pi(x) = x^*(x)x_0$ $(x \in X)$, and denote by $i: N \to \mathbb{K}$ the natural isomorphism. Then

$$i \circ \pi \circ \widetilde{P} \circ \psi(y) = i(\pi(P(y))) = i\left(\pi\left(\left(\sum_{n=1}^{\infty} \frac{1}{n} y_n^2\right) x_0\right)\right) = \sum_{n=1}^{\infty} \frac{1}{n} y_n^2 = Q(y),$$

so $i \circ \pi \circ \widetilde{P}$ is an extension of Q, which is impossible.

We shall now prove that there is no "dual" version of Theorem 3. We recall some preliminary definitions.

A Banach space X is *finitely representable* in a Banach space Y if, for each $\varepsilon>0$ and each finite-dimensional subspace M of X, there is a finite-dimensional subspace N of Y and a bijective operator $T:M\to N$ such that $\|T\|\,\|T^{-1}\|\le 1+\varepsilon.$

If \mathcal{P} is a property defined for Banach spaces, that is, \mathcal{P} is a subclass of the class of all Banach spaces, then a Banach space X has property "super \mathcal{P} " if every Banach space finitely representable in X also has \mathcal{P} . A property \mathcal{P} is called a *superproperty* if $\mathcal{P} = \text{super } \mathcal{P}$ (see [Be, Chapter 4.I]).

THEOREM 10. If X is an infinite-dimensional Banach space, then $\mathcal{P}_{wb}(^mX)$ and $\mathcal{P}(^mX)$ are not \mathcal{L}_p -spaces, for $1 \leq p < \infty$ and $m \in \mathbb{N}$ $(m \geq 2)$.

Proof. It is shown in [Di1, Corollary 3] that ℓ_{∞} is finitely representable in $\mathcal{P}(^{m}X)$. In fact, the proof is also valid for $\mathcal{P}_{wb}(^{m}X)$. Suppose that $\mathcal{P}_{wb}(^{m}X)$ (respectively, $\mathcal{P}(^{m}X)$) is an \mathcal{L}_{p} -space for some $1 \leq p < \infty$. Then $\mathcal{P}_{wb}(^{m}X)$

(respectively, $\mathcal{P}(^mX)$) has finite cotype [DJT, Corollary 11.7(a)], which implies that ℓ_{∞} also has finite cotype [DJT, Theorem 11.6], and this contradicts a well known result [DJT, Corollary 11.7(b)].

The above proof shows that $\mathcal{P}_{wb}(^mX)$ and $\mathcal{P}(^mX)$ do not have finite cotype. Since ℓ_{∞} does not have type > 1 [DJT, Corollary 11.7(b)], neither do $\mathcal{P}_{wb}(^mX)$ and $\mathcal{P}(^mX)$. These results are mentioned in [Fl, 3.3].

More generally, from the fact that every Banach space is finitely representable in ℓ_{∞} [FHH, Theorem 9.14], it follows that, if X is an infinite-dimensional Banach space, then $\mathcal{P}_{\mathbf{wb}}(^{m}X)$ and $\mathcal{P}(^{m}X)$ do not have any non-trivial superproperty, for $m \in \mathbb{N}$ $(m \geq 2)$. This result is mentioned in the introduction to [Di1].

Clearly, all these results (from Theorem 10 on) are also true for the space $\mathcal{L}(^{m}X)$ of m-linear forms $(m \geq 2)$.

We are grateful to the referee for many suggestions that have improved the paper.

References

- [A] R. M. Aron, Extension and lifting theorems for analytic mappings, in: K.-D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results II, North-Holland Math. Stud. 38, North-Holland, Amsterdam, 1980, 257–267.
- [AB] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3-24.
- [AHV] R. M. Aron, C. Hervés, and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189–204.
- [AMP] R. M. Aron, L. A. Moraes, and O. W. Paques, Lifting of holomorphic mappings, Proc. Roy. Irish Acad. Sect. A 94 (1994), 119–126.
- [AP] R. M. Aron and J. B. Prolla, Polynomial approximation of differentiable functions on Banach spaces, J. Reine Angew. Math. 313 (1980), 195–216.
- [AS] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30.
- [Be] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland Math. Stud. 68, North-Holland, Amsterdam, 1982.
- [Bl] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997), 165–173.
- [C] D. Carando, Extendibility of polynomials and analytic functions on ℓ_p , ibid. 145 (2001), 63–73.
- [DF] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, Amsterdam, 1993.
- [DJT] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
- [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys Monogr. 15, Amer. Math. Soc., Providence, RI, 1977.

- [Di1] S. Dineen, A Dvoretzky theorem for polynomials, Proc. Amer. Math. Soc. 123 (1995), 2817–2821.
- [Di2] —, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr. Math., Springer, Berlin, 1999.
- [FHH] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books in Math. 8, Springer, New York, 2001.
- [F] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210.
- [FI] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153-188.
- [GG1] M. González and J. M. Gutiérrez, Factorization of weakly continuous holomorphic mappings, Studia Math. 118 (1996), 117–133.
- [GG2] —, —, The polynomial property (V), Arch. Math. (Basel) 75 (2000), 299–306.
- [GG3] —, —, Tensor products and dual spaces with the Dunford-Pettis property, Rend. Circ. Mat. Palermo (2) Suppl. 68 (2002), 479–490.
- [GG4] —, —, Extension and lifting of polynomials, Arch. Math. (Basel) 81 (2003), 431–438.
- [K] W. Kaballo, Lifting theorems for vector valued functions and the ε-tensor product, in: K.-D. Bierstedt and B. Fuchssteiner (eds.), Functional Analysis: Surveys and Recent Results, North-Holland Math. Stud. 27, North-Holland, Amsterdam, 1977, 149–166.
- [L] J. Lindenstrauss, Extensions of compact operators, Mem. Amer. Math. Soc. 48 (1964).
- [LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_p -spaces and their applications, Studia Math. 29 (1968), 275–326.
- [LR] J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p -spaces, Israel J. Math. 7 (1969), 325-349.
- [LRy] M. Lindström and R. A. Ryan, Applications of ultraproducts to infinite dimensional holomorphy, Math. Scand. 71 (1992), 229–242.
- [Mu] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Math. Stud. 120, North-Holland, Amsterdam, 1986.
- [Ry] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer, Berlin, 2002.
- [Z] I. Zalduendo, A canonical extension for analytic functions on Banach spaces, Trans. Amer. Math. Soc. 320 (1990), 747-763.

Dipartimento di Matematica Facoltà di Scienze Università di Catania Viale Andrea Doria 6 95125 Catania, Italy E-mail: cilia@dmi.unict.it Departamento de Matemática Aplicada
ETS de Ingenieros Industriales
Universidad Politécnica de Madrid
C. José Gutiérrez Abascal 2
28006 Madrid, Spain
E-mail: jgutierrez@etsii.upm.es

Received April 16, 2004 Revised version December 7, 2004 (5393)