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Inner-outer factorization of operator-valued
functions on ordered groups

by

Mihály Bakonyi (Atlanta, GA) and Dan Timotin (Bucureşti)

Abstract. Inner-outer factorization for matrix-valued functions defined on totally
ordered groups has been considered by Helson and Lowdenslager in connection with mul-
tivariate prediction theory. We discuss their result in an operator-theoretic framework and
prove that there are obstructions to its extension to operator-valued functions.

1. Introduction. Extensions in different directions of the standard in-
ner-outer factorization of analytic functions have been the object of exten-
sive study (see, for instance, [7] and the references therein). We are mainly
interested in the setting of totally ordered discrete groups and their du-
als. This line of generalization already appears in the fundamental paper of
Helson and Lowdenslager ([5]), where matrix-valued analytic functions are
considered.

We intend to give a more geometric insight into those results. In the
classical case, there is an operator-theoretic framework based on dilation
theory in Hilbert space, in which the main role is played by the Wold de-
composition of an isometry. This line of argument has to be refined in the
case of ordered groups, mainly due to the fact that Wold decomposition has
to be replaced with other tools. In the scalar-valued case, these ideas have
been pursued at length mostly by Helson; a good reference is [4].

For the vector-valued case, an analogue of the theory for semigroups of
isometries has been developed; see, for instance, [10, Ch. 9], and the refer-
ences therein. By using this general theory we are able, firstly, to recapture
in this operator framework the results for matrix-valued functions in [5]; sec-
ondly, to show how the extension to operator-valued functions faces some
basic obstructions.

2. Preliminaries. A basic reference for ordered groups is [8]. Let G be
a compact connected abelian group, whose Haar measure will be denoted
by dx. Its dual Γ is a discrete abelian group, and the connectedness of G
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implies that Γ can be totally ordered, not necessarily in a unique manner.
We will fix henceforth a total order on Γ , and will denote by Γ+ the set
of nonnegative elements of Γ . The group operation on Γ will be denoted
as addition, and, consequently, its unit will also be denoted by 0. As usual,
C(G) will denote the C∗-algebra of continuous complex-valued functions
on G.

The Fourier transform f̂ of a function f ∈ L1(G) is defined by the
formula

(1) f̂(γ) =
�
G

γ(x)f(x) dx.

One can define equivalents, for G, of the Hardy spaces on the unit circle

T. We have, for 1 ≤ p ≤ ∞, Hp(G) = {f ∈ Lp(G) | f̂(γ) = 0 if γ 6∈ Γ+}.
To pursue further the analogy, one defines inner and outer functions. An
inner function f ∈ H2(G) is characterized, as in the classical case, by the
condition |f | = 1 almost everywhere on G. We will call f ∈ H2(G) an outer
function if the closed span of γf , γ ∈ Γ+, is equal to the whole of H2(G).

This is known to be equivalent to the condition that f̂(0) 6= 0 and
�
G

log |f(x)| dx = log
∣∣∣

�
G

f(x) dx
∣∣∣.

In contrast to the case G = T, for a function f ∈ H2(G) one may
have � G log |f(x)| dx = −∞. However, if this is not the case, one has a
factorization theorem ([8, 8.5.2]): for such an f we have f = fifo, with fi

inner and fo outer, and both factors are determined up to a constant of
modulus one. Also, an outer function is determined, up to a unitary constant,
by its modulus.

We may extend these notions to the case of vector- and operator-valued
functions. Namely, if E is a Hilbert space, then we may define L2(G, E) as
the space of measurable functions f : G→ E such that � G ‖f(x)‖2 dx <∞,

and H2(G, E) as the subspace of L2(G, E) characterized by the fact that
the scalar function 〈f(x)ξ, η〉 is in H2(G) for all ξ, η ∈ E . We also de-
fine L∞(G,L(E , E ′)) as the space of functions φ : G → L(E , E ′) such that
〈φ(x)ξ, ξ′〉 is measurable for all ξ ∈ E and ξ′ ∈ E ′, and ‖φ(x)‖ is essentially
bounded. Formula (1) defines also the Fourier coefficients of a vector-valued
or operator-valued function. Finally, H∞(G,L(E , E ′)) is the subspace of
L∞(G,L(E , E ′)) characterized by the fact that the scalar function 〈f(x)ξ, ξ ′〉
is in H∞(G) for all ξ ∈ E and ξ′ ∈ E ′.

Functions φ in L∞(G,L(E , E ′)) give rise to multiplication operators from
L2(G, E) to L2(G, E ′), which we will denote by Mφ. Mφ maps H2(G, E) into
H2(G, E ′) if and only if φ ∈ H∞(G,L(E , E ′)); in this case we will denote the
corresponding restriction by Tφ. In particular, scalar functions φ defined
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on G have associated multiplication operators Mφ and Tφ; it will always be
clear from the context on which space the corresponding operators act.

An operator-valued analytic function φ ∈ H∞(G,L(E , E ′)) is called outer
if the closed linear span of γφξ, for γ ∈ Γ+ and ξ ∈ E , is the whole H2(G, E ′).
It is called inner if Tφ is an isometry.

The following two lemmas sum up some basic properties that will be
used in what follows. Their proofs follow the classical arguments in the case
G = T.

Lemma 2.1. (i) An operator T : H2(G, E)→ H2(G, E ′) is of the form Tφ

for some function φ ∈ H∞(G,L(E , E ′)) if and only if TTγ = TγT
for all γ ∈ Γ+ (note that the two operators Tγ in the last formula
act on the different spaces H2(G, E) and H2(G, E ′)).

(ii) An operator T : H2(G, E) → L2(G, E ′) is of the form Mφ|H2(G, E)
for some function φ ∈ L∞(G,L(E , E ′)) if and only if TTγ = TγT
for all γ ∈ Γ+.

Lemma 2.2. Suppose φ ∈ L∞(G,L(E , E ′)); then the following are equiv-
alent :

(i) Mφ is isometric;
(ii) Mφ|H2(G, E) is isometric;
(iii) φ(x) is almost everywhere isometric.

As a corollary, φ ∈ H∞(G,L(E , E ′)) is inner iff φ(x) is an isometry a.e.

3. Semigroups of isometries. The well known Wold decomposition
for isometries on a Hilbert space (see, for instance, [11, Ch. I]) has some
analogues for semigroups of isometries indexed by Γ+. A few definitions are
necessary.

Suppose {V (γ)}γ∈Γ+ is a semigroup of isometries acting on the Hilbert
space H. We will call such a semigroup quasiunitary if

(2)
∨

γ>γ′
V (γ)∗V (γ′)H = H.

The semigroup is called totally nonunitary if {V (γ)|M} quasiunitary for a
doubly invariant subspace M impliesM = {0}.

Also, a semigroup is called residual if it is quasiunitary, but has no
unitary part (that is, {V (γ)|M} unitary for a doubly invariant subspaceM
impliesM = {0}).

The following analogue of the Wold decomposition is then valid (see [10,
9.2]).

Theorem 3.1. Let {V (γ)}γ∈Γ+ be a semigroup of isometries on H. The
space H admits a unique decomposition of the form
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(3) H = Hu ⊕Hr ⊕Ht,

where Hu,Hr, and Ht are reducing subspaces, {V (γ)|Hu}γ∈Γ+ is unitary ,
{V (γ)|Hr}γ∈Γ+ is residual , while {V (γ)|Ht}γ∈Γ+ is totally nonunitary.

Actually, the proof even identifies the subspaces in decomposition (3) as
follows. First,

Hu =
⋂

γ∈Γ+

V (γ)H.

Then, if we define the wandering subspace L by

(4) L = H	
∨

γ>0

V (γ)H,

then all subspaces V (γ)L, γ ∈ Γ+, are mutually orthogonal, as well as
orthogonal to Hu, and

(5) Ht =
⊕

γ∈Γ+

V (γ)L, Hr = H	 (Hu ⊕Ht).

We will set, for further use, Hq = Hu⊕Hr; then {V (γ)|Hq} is quasiunitary.
We will also note the following analogue, for ordered groups, of the

Fourier representation results of [11, V.3].

Lemma 3.2. (i) If {V (γ)}γ∈Γ+ is a totally nonunitary semigroup of con-
tractions in H, and L is given by (4), then there exists a unitary
map Φ : H → H2(L) such that ΦV (γ)Φ∗ is multiplication by γ on
H2(L).

(ii) Suppose {V ′(γ)}γ∈Γ+ is another totally nonunitary semigroup of

contractions in H′, with corresponding unitary Φ′ : H′ → H2(L′). If
Q : H → H′ is a contraction and QV (γ) = V ′(γ)Q for any γ ∈ Γ+,
then there exists a function Θ ∈ H∞(G,L(L,L′)), with ‖Θ‖ ≤ 1,
such that Φ′Q = ΘΦ.

For any group G the semigroup {Mγ}γ∈Γ+ is unitary, while {Tγ}γ∈Γ+

is totally nonunitary. Also, we may obtain a large class of examples by
restricting Mγ (or Tγ) to an invariant subspace. The next lemma follows
by arguments similar to the case G = T.

Lemma 3.3. Suppose H⊂H2(G, E) is invariant under all Tγ for γ∈Γ+,
and define the semigroup of isometries V (γ) = Tγ |H. Then:

(i) Hu = {0};
(ii) there exists an inner function φ∈H∞(L, E) such that Ht =φH2(L);
(iii) Hr = {0} if and only if there exists an inner function φ ∈ H∞(L, E)

such that H = φH2(L).
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Proof. Since
⋂

γ∈Γ+

V (γ)H ⊂
⋂

γ∈Γ+

V (γ)H2(E) = {0},

we have Hu = {0}, H = Hr ⊕ Ht. Applying Lemma 3.2(i) to V (γ)|Ht, we
obtain a unitary map Φ : Ht → H2(L). Consider its inverse Φ∗ as taking
values in the whole H2(E) instead of Ht; it is an isometry that intertwines
multiplications on H2(L) and H2(E). By Lemma 3.2(ii), it has to be mul-
tiplication by a function φ ∈ H∞(L, E). That φ is inner follows from the
remarks at the end of Section 1.

Conversely, if there exists an inner function φ ∈ H∞(L, E) such thatH =
φH2(L), then multiplication by φ produces a unitary equivalence between
the semigroups V (γ) and Tγ ; since the latter is totally nonunitary, so is the
former.

As noted above, multiplication semigroups on L2 and H2 provide the
standard examples for unitary and totally nonunitary semigroups respec-
tively. These cases are similar to the classical one; it is more interesting to
give an example for a residual semigroup. Take Γ = R with the discrete
topology; then G is the Bohr compactification of the real line. Consider the
invariant subspace H ⊂ H2(G) spanned by the characters γ ∈ Γ+ \ {0}.
Then (Tγ |H)γ∈Γ+ is residual.

Another example of a residual semigroup (that will play a role in Sec-
tion 5) is obtained by taking Γ = Z2 endowed with the lexicographic order;
that is, Γ+ = {(m,n) ∈ Z2 : m > 0 or m = 0 and n ≥ 0}. If H ⊂ H2(G) is
spanned by the characters (m,n), m > 0, then (Tγ |H)γ∈Γ+ is residual.

4. Inner-outer factorization. We have discussed in the preliminaries
the inner-outer factorization of a scalar-valued analytic function on G. We
are now interested in a similar factorization result in case the function is
operator-valued. Let us call Θ ∈ H∞(G,L(E ,F)) factorable if there exist Θi

inner and Θo outer such that Θ = ΘiΘo.
Define H = ΘH2(E) ⊂ H2(F). Then H is invariant with respect to the

action of Tγ for γ ∈ Γ+, and we can denote by V (γ) the restriction of Tγ to
H. According to Lemma 3.3, Hu = {0}, H = Hr ⊕ Ht, and Ht = φH2(L) for
some inner function φ (where, as in (4), L is defined by L = H	∨γ>0 V (γ)H).

The following simple lemma yields a geometric characterization of fac-
torization.

Lemma 4.1. With the above notations, Θ is factorable iff Hr = {0}.
Proof. If Hr = {0}, take Θi = φ. For any polynomial p ∈ H2(E),

Θp ∈ H, and therefore Θp = Θip̃ for some p̃ ∈ H2(L). Moreover, we
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have ‖p̃‖ = ‖Θp‖ ≤ ‖Θ‖ · ‖p‖, and the map p 7→ p̃ satisfies the hypoth-
esis of Lemma 3.2(ii). It is therefore multiplication by a bounded function
Θo ∈ H∞(E ,L). Since the span of ΘoH

2(E) is the whole of H2(L), it follows
that Θo is outer as required, and we have Θ = ΘiΘo.

Conversely, if Θ is factorable, then Lemma 3.3(iii) implies Hr = {0}.
We will now obtain a positive result for factorization in the finite-dimen-

sional case, giving a different proof of a result of Helson–Lowdenslager ([5]).
It involves neither the machinery of prediction theory, nor the use of the
determinant function, and the arguments are natural in the operator frame-
work.

Proposition 4.2. If E is finite-dimensional , and Θ̂(0) is invertible,
then Θ is factorable.

Proof. Since Θ̂(0) is invertible, we have dim E = dimF ; we may therefore
assume in the rest of the proof that actually E = F .

According to Lemma 4.1, we have to consider the space H = ΘH2(E) ⊂
H2(E), the restriction V (γ) to H of the action of Tγ for γ ∈ Γ+, and to
show that Hr = {0}.

For every ξ ∈ E denote by ξ̂ the orthogonal projection of the constant

function ξ ∈ H2(E) onto H. Since ξ ⊥ ∨γ>0 V (γ)H, it follows that ξ̂ ∈ L.

Moreover, if ξ̂ = 0, then ξ ⊥ H, which would imply ξ ⊥ Θ̂(0)E ; since Θ̂(0)
is invertible, we would have ξ = 0.

Thus the map ξ 7→ ξ̂ is one-to-one from E into L. We want to show that
actually L = PHE . Consider f ∈ L, f ⊥ E . We have f = limΘpn, where
the limit is in H2(E), and pn are finite sums of characters multiplied by
vectors in E . If pn = xn + p0

n with xn ∈ E and p0
n containing only strictly

positive characters, then since f ⊥ ΘγH2(E) for all γ > 0, it follows that
f = limΘxn. Take ξ ∈ E ; then f ⊥ E implies

0 = 〈ξ, f〉 = lim〈ξ,Θxn〉 = lim〈ξ, Θ̂(0)xn〉 = lim〈Θ̂(0)∗ξ, xn〉.
Since Θ̂(0)∗ is invertible, it follows that xn is weakly (and thus strongly, E
being finite-dimensional) convergent to 0. Therefore f = 0, and L = PHE ;
in particular, L and E have the same (finite) dimension.

Consider then g ∈ Hr = H 	 Ht, and fix ξ ∈ E . First, as g ⊥ γξ̂ for all
γ ∈ Γ+, we have

(6)
�
G

γ(x)〈ξ̂(x), g(x)〉 dx = 0, γ ∈ Γ+.

But, for γ > 0, γg ∈ γH and ξ̂ ∈ L imply γg ⊥ ξ̂, so that

(7)
�
G

γ(x)〈g(x), ξ̂(x)〉 dx = 0, γ > 0.
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Together, (6) and (7) imply that

g(x) ⊥ ξ̂(x) a.e.

Since L = PHE , it follows that g(x) ⊥ h(x) for any h ∈ L. Now, the
elements of L are φξ, with ξ ∈ E ; therefore

0 = 〈g(x), φ(x)ξ〉 = 〈φ(x)∗g(x), ξ〉.
Thus φ(x)∗g(x) = 0 a.e. But, since L and E have the same finite dimension,
it follows that φ(x) is almost everywhere a unitary. The same is true about
φ(x)∗; thus g = 0 and Hr = {0} as desired.

It can easily be seen that the condition on Θ̂(0) in the statement of
Proposition 4.2 can be replaced by the requirement that there exists a first
nonzero Fourier coefficient which is invertible. It is well known (see [5] or [8])
that this type of condition is essential to ensure factorability.

5. An example. We intend now to show by an example that Proposi-
tion 4.2 is not true if we drop the finite-dimensionality requirement on E .
Take Γ = Z2, endowed with the lexicographic order; accordingly, we will
have G = T2, with the two variables denoted (v, w). Also, for further use,
the lower index v or w attached to a function space in one variable indicates
the corresponding variable.

It should be noted that the lexicographic group has received some atten-
tion recently, in connection with dilation theory and C∗-algebras ([1], [6]).
It is a typical example of a nonarchimedean ordered group.

The construction will use the characteristic function of a contraction; we
include the basic facts and refer for details to [11]. The defect operator and
defect space of the contraction T ∈ L(H) are defined by

DT = (I − T ∗T )1/2, DT = DTH;

applying this to T ∗, we obtain DT ∗ and DT ∗ . The characteristic function θ
of the completely nonunitary contraction T ∈ L(H) is the analytic function
θ : D→ L(DT ,DT ∗) defined by

(8) θ(z) = −T ∗ + zDT ∗(I − zT )−1DT |DT .
It is defined as an analytic function on the disc D, and can be shown to have
radial limits almost everywhere on T.

We come now to the operator that we will consider. Take T ∈ L(`2) to
be T = 1

2S, where S is the unilateral shift. We have DT = DT ∗ = `2. Since
Tn → 0 and T ∗n → 0, the general theory of [11] says that its characteristic
function defined by (8) is inner and *-inner, whence its boundary values are
a.e. unitary operators (this can also be checked directly). Also, θ(0) = − 1

2S
∗

has the kernel Ce0 of dimension 1 (if (en) is the standard orthonormal basis).
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Consider now the function θ1(z) = θ(z)S. Its main properties are:

— θ1(z) is an isometry a.e. on T;
— the orthogonal complement of the range of θ1(z) has dimension 1,

being spanned by the analytic function θ(z)e0;
— θ1(0) is invertible.

Now, the analytic inner function θ̃1(z) = θ1(z̄)∗ has the dual properties:
its values are almost everywhere coisometries with kernels of dimension 1,
the kernels vary analytically in z, and again the value at 0 is invertible.

Finally, we define Ψ to be the infinite direct sum of θ1 and θ̃1. As a conse-
quence, we obtain the following objects:

(i) an analytic, partial-isometric-valued function Ψ , with values in a
separable Hilbert space E , with Ψ(0) invertible;

(ii) a sequence of analytic functions κn : T→ E , forming, for each z, an
orthonormal system in the kernel of Ψ(z);

(iii) an analytic function ψ : T→ E , with values vectors of norm 1, such
that ψ(z) ⊥ Ψ(z)E for each z.

Based on these objects, as well as on a sequence of positive numbers αn,
n ≥ 1, such that

∑
n≥1 αn <∞, we define the desired functionΘ : G→ L(E)

by

(9) Θ(v, w)(ξ) = Ψ(w)ξ + v
∑

n≥1

αnw
−n〈ξ, κn(w)〉ψ(w).

This is a well defined function in H2(G, E). Indeed, for the first term there is
no problem, while all the terms in the convergent series on the right belong
to vH2

v ⊗ L2
w ⊂ H2(G, E). Also, Θ(0, 0) = Ψ(0), and is thus invertible.

We are now interested in H = ΘH2(G, E) ⊂ H2(G, E). According to
Lemma 4.1, in order to show that Θ is not factorable, we must prove that
Hr 6= {0}.

First, note that, for l ≥ 0 and n ∈ Z,

Θ(v, w)vlκn = vl+1w−nαnψ(w),

and thus H0 = (vH2
v ⊗ L2

w)ψ(w) ⊂ H. On the other hand,

H ⊂ (Ψ(w)H2(G, E))⊕H0.

Now, a general Hilbert space argument says that ifH ⊂ K⊕H0, andH ⊃ H0,
then H = H′ ⊕ H0, where H′ = H 	 H0 ⊂ K. Moreover, if H,K,H0 are
invariant under an operator V , then H′ is also invariant under V , and thus
H′,H0 are actually reducing.

If we consider K = Ψ(w)H2(G, E), and instead of V the semigroup of
isometries {V (γ)}, it follows that

H = H′ ⊕ (vH2
v ⊗ L2

w)ψ(w)
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and thus H0 = (vH2
v ⊗ L2

w)ψ(w) is a reducing subspace for the semigroup
{V (γ)}γ∈Γ+ . Since, moreover,

(vH2
v ⊗ L2

w)ψ(w) = V ((0, 1))[(vH2
v ⊗ L2

w)ψ(w)],

it follows that
L = H0 	

∨

γ>0

V (γ)H = {0},

and thus, by (5), H0,t = {0}. Consequently, (vH2
v ⊗ L2

w)ψ(w) is in the
residual part of the semigroup {V (γ)}γ∈Γ+ , which is what we intended to
prove. Thus Hr 6= {0}, whence Θ is not factorable.
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