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On group deompositions of bounded osine sequenesbyWojieh Chojnaki (Adelaide and Warszawa)Abstrat. A two-sided sequene (cn)n∈Z with values in a omplex unital Banah alge-bra is a osine sequene if it satis�es cn+m +cn−m = 2cncm for any n,m ∈ Z with c0 equalto the unity of the algebra. A osine sequene (cn)n∈Z is bounded if supn∈Z
‖cn‖ < ∞.A (bounded) group deomposition for a osine sequene c = (cn)n∈Z is a representa-tion of c as cn = (bn + b−n)/2 for every n ∈ Z, where b is an invertible element ofthe algebra (satisfying supn∈Z

‖bn‖ < ∞, respetively). It is known that every boundedosine sequene possesses a universally de�ned group deomposition, here referred to asa standard group deomposition. The present paper reveals various lasses of boundedoperator-valued osine sequenes for whih the standard group deomposition is bounded.One suh lass onsists of all bounded L (X)-valued osine sequenes (cn)n∈Z, with X aomplex Banah spae and L (X) the algebra of all bounded linear operators on X, forwhih c1 is salar-type prespetral. Every bounded L (H)-valued osine sequene, where
H is a omplex Hilbert spae, falls into this lass. A di�erent lass of bounded osine se-quenes with bounded standard group deomposition is formed by ertain L (X)-valuedosine sequenes (cn)n∈Z, with X a re�exive Banah spae, for whih c1 is not salar-typespetral�in fat, not even spetral. The isolation of this lass unovers a novel familyof non-prespetral operators. Examples are also given of bounded L (H)-valued osinesequenes, with H a omplex Hilbert spae, that admit an unbounded group deompo-sition, this being di�erent from the standard group deomposition whih in this ase isneessarily bounded.1. Introdution. Let A be a omplex Banah algebra with a unity eand a norm ‖·‖. A two-sided sequene c = (cn)n∈Z with values in A is alleda osine sequene, or a disrete osine funtion, if(i) cn+m + cn−m = 2cncm for any n,m ∈ Z,(ii) c0 = e.As is easily veri�ed, every osine sequene c is even: the equality c−n = cnholds for all n ∈ Z. Furthermore, every osine sequene is uniquely deter-2000 Mathematis Subjet Classi�ation: Primary 47D09, 47D03, 39B42; Seondary47B40, 42C05.Key words and phrases: osine sequene, osine funtion, Chebyshev polynomial,group deomposition, translation, unit shift, salar-type prespetral operator, generalisedsalar operator, prespetral operator, spetral operator, doubly power bounded operator.[61℄ © Instytut Matematyzny PAN, 2007



62 W. Chojnakimined by its element indexed by 1. More spei�ally, if c is a osine sequene,then
cn = T|n|(c1) (n ∈ Z),(1.1)where, for n ∈ N0 = N ∪ {0}, Tn(x) is the nth Chebyshev polynomial of the�rst kind

Tn(x) =

[n/2]∑

k=0

(
n

2k

)
xn−2k(x2 − 1)k.The representation (1.1) follows easily from the evenness property of osinesequenes mentioned above and the reursive formulae

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x)(f. [31, Setion 1.2.1℄). The element c1 is ommonly referred to as the gen-erator of c. Every element of A generates a unique osine sequene. Theosine sequene generated by a ∈ A is given by cn(a) = T|n|(a) for n ∈ Zand is denoted c(a).An A-valued osine sequene (cn)n∈Z satisfying supn∈Z ‖cn‖ < ∞ istermed bounded .Let InvA be the group of invertible elements of A. It is readily veri�edthat, for eah b ∈ InvA, the sequene c(b) de�ned by
cn(b) =

1

2
(bn + b−n) (n ∈ Z)is a osine sequene. A group deomposition for an A-valued osine sequene

c = (cn)n∈Z is a representation of c in the form
c = c(b)(1.2)for some b ∈ InvA. Note that, in view of the uniqueness property of osinesequenes, for (1.2) to hold it is neessary and su�ient that

c1 = c1(b) =
1

2
(b+ b−1).The element b in (1.2) will heneforth be referred to as the generator ofthe orresponding group deomposition. If b is doubly power bounded , i.e., if

supn∈Z ‖bn‖ <∞, then the group deomposition is termed bounded and b issaid to generate a bounded group deomposition.It is known that every bounded osine sequene with values in a omplexunital Banah algebra admits a speial group deomposition, here alled astandard group deomposition [7℄. A preise de�nition will be given later,but for now we informally haraterise the standard group deomposition ofa bounded osine sequene as being reminisent of the formula
cosnt =

1

2
[(cos t+ i

√
1 − cos2 t)n + (cos t+ i

√
1 − cos2 t)−n]

(n ∈ Z, t ∈ [0, 2π)).



Group deompositions of osine sequenes 63In general, the standard group deomposition of a bounded osine sequenemay fail to be bounded. For example, there exist bounded osine sequeneswith the property that all their group deompositions, inluding the standardone, are unbounded [7℄.The main purpose of this paper is to investigate under what onditionsthe standard group deomposition of a bounded osine sequene is itselfbounded. From a broader perspetive, the paper an be seen as an ad-dition to a growing number of studies exploring the relationship betweenosine funtions (inluding those more general than disrete) and grouprepresentations [4, 16, 25, 35℄; see also [1, Setion 3.16℄, [17, Setion 2.5℄,[18, Setions III.6 and III.8℄, [28, Setion III.1.1℄. While most of the interestin osine families omes from di�erential equations, where osine funtionsare parametrised by R rather than Z, the disrete osine funtions oupya speial position with regard to group deomposability. Unlike boundedosine sequenes, bounded osine funtions on R fail in general to admita group deomposition [24, 26℄ (although for some, a group deompositionalways exists; this is the ase, for example, with any bounded strongly on-tinuous osine funtion taking values in L (X), where X is a UMD spae [8℄).Ref. [7℄ sheds light on why there is a di�erene between Z and R in relationto osine families, by haraterising Abelian groups G with the property thatevery bounded osine funtion on G admits a (bounded) group deomposi-tion.The rest of the artile is laid out as follows. Following Setion 2 that on-tains operator-theoreti prerequisites, Setion 3 presents a simpli�ed on-strution of the standard group deomposition for a bounded osine se-quene. Setion 4 establishes that if a bounded osine sequene with valuesin L (X), where X is a omplex Banah spae, is generated by a salar-typeprespetral operator, then its standard group deomposition is bounded. Oneonsequene of this result is the fat that every bounded L (H)-valued o-sine sequene, where H is a omplex Hilbert spae, has a bounded standarddeomposition. The next three setions aim to show that a bounded osinesequene with bounded standard group deomposition an be generated byan operator that is not salar-type prespetral. Relevant examples hinge onidenti�ation of a novel family of non-prespetral operators. More spei�-ally, following Setion 5 whih is of tehnial harater, it is �rst shown inSetion 6 that, when 1 < p < ∞, the operator Ap de�ned as half the sumof the bakward and forward unit shifts in lp(Z) generates a bounded osinesequene with bounded standard group deomposition. Next in Setion 7 itis shown that Ap is not prespetral when 1 ≤ p ≤ ∞, p 6= 2. Given thatan operator whih is not prespetral is muh less salar-type prespetral,it is then onluded that Ap with 1 < p < ∞, p 6= 2 is not salar-typeprespetral and generates a osine sequene with bounded standard group



64 W. Chojnakideomposition. Interestingly, this result not only has impliations for osinesequenes, but also relies upon manipulations with osine sequenes. The�nal Setion 8 reveals that a bounded L (H)-valued osine sequene, with
H a omplex Hilbert spae, may admit an unbounded group deomposition,this being di�erent from the standard group deomposition whih, by theresult on deomposability of bounded osine sequenes in Hilbert spae men-tioned earlier, is neessarily bounded in this ase. Two examples are given,the simpler one involving a osine sequene generated by a spetral operator,and the more ompliated one involving a osine sequene generated by anon-spetral operator. In neither ase an the generator be salar-type pre-spetral, but in the seond example the generator turns out to be generalisedsalar.2. Preliminaries. In this setion, we establish all general operator-theoreti de�nitions and fats that will be needed later on.Suppose that X is a Banah spae. The dual spae of X is denoted by X ′.The value of a funtional x′ ∈ X ′ at x ∈ X is written 〈x, x′〉. L (X) is theBanah algebra of all bounded linear operators on X. The identity operatoron X is denoted IX .Reall that a subset Γ ⊂ X ′ is total if, for any x ∈ X, 〈x, x′〉 = 0 for all
x′ ∈ Γ implies x = 0.Let M be a σ-algebra of subsets of a set Ω and let Γ be a total subsetof X ′. A spetral measure of lass Γ is a map E: M → L (X) suh that(i) E(∅) = 0 and E(Ω) = IX ,(ii) E(ω ∩ ω′) = E(ω)E(ω′) for any ω, ω′ ∈ M ,(iii) ω 7→ 〈E(ω)x, x′〉 is σ-additive for any x ∈ X and x′ ∈ Γ ,(iv) supω∈Ω ‖E(ω)‖ <∞.It follows from the Orliz�Pettis theorem that any spetral measure of lass
X ′ is strongly σ-additive�that is, the funtion M ∋ ω 7→ E(ω)x ∈ E is
σ-additive for eah x ∈ X.The spetrum of an operator T ∈ L (X) is denoted by σ(T ). For T ∈
L (X) and Y ⊂ X suh that T (Y ) ⊂ Y , T |Y denotes the restrition of Tto Y .The Borel σ-algebra of a topologial spae Y is designated by B(Y ).Following Dunford [12℄ (f. also [11, 13, 14℄), an operator T ∈ L (X) isalled prespetral of lass Γ if there exists a spetral measure E: B(C) →
L (X) of lass Γ suh that(i) TE(ω) = E(ω)T for eah ω ∈ B(C),(ii) σ(T |E(ω)X) ⊂ ω for eah ω ∈ B(C), with the bar denoting the setlosure.



Group deompositions of osine sequenes 65The spetral measure E: M → L (X) of lass Γ satisfying (i) and (ii) isuniquely determined by T and is alled the resolution of the identity of lass
Γ for T [11, Theorem 5.13℄. Any resolution of the identity E for a prespetraloperator T ∈ L (X), of some lass, is supported on σ(T ) in the sense that
E(σ(T )) = IX . In general, a prespetral operator of some lass an also bea prespetral operator of another lass, with a possibly di�erent resolutionof the identity [19℄ (see also [11, Example 5.35℄).If T ∈ L (X) has the form

T =
\

σ(T )

λdE(λ),where E: B(C) → L (X) is a spetral measure of lass Γ , then T is aprespetral operator of lass Γ and E is its resolution of the identity oflass Γ . In this ase, T is termed a salar-type operator of lass Γ .An operator Q ∈ L (X) is alled quasinilpotent if limn→∞ ‖Qn‖1/n = 0,whih is equivalent to σ(Q) = {0}.If T ∈ L (X) is a prespetral operator with resolution of the identity Eof lass Γ and if
S =

\
σ(T )

λdE(λ), Q = T − S,(2.1)then S is a salar-type operator with resolution of the identity E of lass
Γ and Q is a quasinilpotent operator ommuting with {E(ω) | ω ∈ B(C)};moreover σ(T ) = σ(S). This haraterisation of prespetral operators has apartial onverse: If S ∈ L (X) is a salar-type operator with resolution ofthe identity E of lass Γ and Q is a quasinilpotent operator ommuting with
{E(ω) | ω ∈ B(C)}, then S+Q is prespetral with resolution of the identity
E of lass Γ ; moreover, σ(S +Q) = σ(S) [11, Theorem 5.15℄.The deomposition T = S + Q in (2.1) is alled the Jordan deompo-sition of T . It does not depend on the spetral measure E used to de�ne
S (and, e�etively, also Q)�all spetral measures for whih T is prespe-tral yield the same S and Q. This follows from the fat that if an operator
T ∈ L (X), prespetral or not, an be represented as T = S +Q = S0 +Q0,where S, S0 ∈ L (X) are salar-type prespetral, and Q,Q0 ∈ L (X) arequasinilpotent, satisfying SQ = QS and S0Q0 = Q0S0, then S = S0 and
Q = Q0 [11, Theorem 5.23℄. If T ∈ L (X) an be written as T = S+Q with
S ∈ L (X) of salar type and Q ∈ L (X) quasinilpotent with SQ = QS,then S is said to be the salar part of T and Q is its radial part .An operator T ∈ L (X) is a spetral operator if it is a prespetral op-erator of lass X ′. In this ase, T has a unique resolution of the identity[11, Theorem 6.7℄. An operator T ∈ L (X) is spetral if and only if it hasthe form T = S + Q, where S ∈ L (X) is a salar-type spetral operatorand Q ∈ L (X) is a quasinilpotent operator whih ommutes with S. Then



66 W. Chojnaki
T and S have the same spetrum and the same resolution of the identity[11, Theorem 6.8℄.Let C∞(C) be the algebra of all in�nitely di�erentiable omplex-valuedfuntions on the omplex plane, endowed with the topology of uniform on-vergene on ompat sets for the funtions and all their partial derivatives.Following Foia³ [21℄ (see also [9, 29, 36℄), an operator T ∈ L (X) is alled gen-eralised salar if it admits a funtional alulus on C∞(C); the latter meansthat there exists a ontinuous C-algebra homomorphism Φ: C∞(C) → L (X)for whih Φ(1) = IX and Φ(idC) = T , with idC the identity funtion on C.Any Φ with the above properties an be viewed as an L (X)-valued distri-bution with ompat support�a spetral distribution for T . A generalisedsalar operator, even as simple as the identity operator, may possess severaldi�erent spetral distributions (f. [9, p. 94℄, [21℄).Every salar-type prespetral operator is generalised salar: If T ∈ L (X)is of salar type with a resolution of the identity E, then the mapping
Φ: C∞(C) → L (X) given by

Φ(f) =
\

σ(T )

f(λ) dE(λ) (f ∈ C∞(C))

is a ontinuous algebra homomorphism suh that Φ(1) = IX and Φ(idC) = T ;see [11, Proposition 5.9℄ for a more general result.One an also de�ne a generalised spetral operator , but this rather in-volved notion will not intervene in this paper [9, 29, 36℄.3. Standard group deomposition. For eah x in the interval [−1, 1],de�ne
φ(x) =

√
1 − x2 = |sin(arccosx)|.By onsidering the Fourier osine series expansion of the funtion [−π, π) ∋

t 7→ |sin t| ∈ R, one an easily hek that
φ(x) =

2

π
− 4

π

∞∑

k=1

1

4k2 − 1
T2k(x) = − 2

π

∑

k∈Z

1

4k2 − 1
T2|k|(x).Here both series are absolutely onvergent, this being a onsequene of therepresentation

Tn(x) = cos(n arccosx) (n ∈ N0, x ∈ [−1, 1])(f. [31, Setion 1.2.1℄) guaranteeing that the polynomials Tn(x) assume val-ues from [−1, 1] whenever |x| ≤ 1. Set
ψ(x) = x+ iφ(x) = x+ i

√
1 − x2for |x| ≤ 1. It is lear that the funtion ψ maps [−1, 1] homeomorphiallyonto the losed upper unit semiirle T+ = {z ∈ C | |z| = 1, Im z ≥ 0}.



Group deompositions of osine sequenes 67Let A be a omplex Banah algebra with a unity e. Suppose thatan element a ∈ A generates a bounded osine sequene. Then the series∑
k∈Z

(4k2 − 1)−1c2k(a) is absolutely onvergent and, bearing in mind (1.1),one an de�ne ations of φ and ψ on a by setting
φ(a) = − 2

π

∑

k∈Z

1

4k2 − 1
c2k(a), ψ(a) = a+ iφ(a).The importane of both these ations lies in the following result.Theorem 3.1. Let A be a omplex unital Banah algebra. If a ∈ Agenerates a bounded osine sequene c, then ψ(a) is invertible and generatesa group deomposition for c.Given an A-valued bounded osine sequene c generated by a ∈ A, wede�ne the standard group deomposition of c as the group deompositiongenerated by ψ(a).Theorem 3.1 was �rst established in [7℄. A streamlined proof of the the-orem appeared in [4℄. Below we present an even simpler proof.Proof of Theorem 3.1. Suppose that a ∈ A generates a bounded osinesequene. We learly have

φ2(x) = 1 − x2(3.1)for |x| ≤ 1. We shall show that φ2(a) = e − a2, where e is the unity of A.The latter identity rewritten as ψ(a)(a − iφ(a)) = e makes it obvious that
a− iφ(a) is the inverse of ψ(a) and that

a =
1

2
(ψ(a) + ψ(a)−1),(3.2)this being all what is needed to aomplish the proof.We have

(3.3) φ2(a) =
4

π2

∑

k,l∈Z

1

(4k2 − 1)(4l2 − 1)
c2k(a)c2l(a)

=
4

π2
· 1

2

∑

k,l∈Z

1

(4k2 − 1)(4l2 − 1)
(c2(k+l)(a) + c2(k−l)(a))

=
4

π2

∑

k,n∈Z

1

(4k2 − 1)(4(n− k)2 − 1)
c2n(a)

=
4

π2

∑

k∈Z

1

(4k2 − 1)2
c0(a)

+
4

π2

∑

n∈N

[∑

k∈Z

1

4k2 − 1

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]]
c2n(a).



68 W. ChojnakiBy the same token,
(3.4) φ2(x) =

4

π2

∑

k∈Z

1

(4k2 − 1)2
T0(x)

+
4

π2

∑

n∈N

[ ∑

k∈Z

1

4k2 − 1

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]]
T2n(x)for |x| ≤ 1. As T0(x) = 1 and T2(x) = 2x2 − 1, (3.1) an be rewritten in theform

φ2(x) =
1

2
T0(x) −

1

2
T2(x).(3.5)In view of the orthogonality relations

1\
−1

Ti(x)Tj(x)(1 − x2)−1/2 dx = 0 (i 6= j)(see [31, Setion 4.2.2℄), the polynomial expansions in (3.4) and (3.5) oin-ide, so
4

π2

∑

k∈Z

1

(4k2 − 1)2
=

1

2
,

4

π2

∑

k∈Z

1

(4k2 − 1)

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]
=

{
−1

2 if n = 1,
0 if n > 1.With these identities, (3.3) an now be rewritten as

φ2(a) =
1

2
c0(a) −

1

2
c2(a) = e− a2,as was to be shown.4. A ondition for boundedness. This setion presents a su�ientondition for the standard group deomposition of a bounded L (X)-valuedosine sequene, where X is a omplex Banah spae, to be bounded. Itrequires that the generator of a osine sequene should be of salar type.As will be shown later, the ondition is not a neessary one. Amongst itsonsequenes, the most fundamental is that any bounded L (H)-valued o-sine sequene, where H is a omplex Hilbert spae, has a bounded standardgroup deomposition.We begin with two preliminary results.Let T denote the unit irle {z ∈ C | |z| = 1}. For an element a of aomplex Banah algebra, let σ(a) denote the spetrum of a.Proposition 4.1. Let A be a omplex unital Banah algebra. If b ∈

InvA is suh that c(b) is bounded , then σ(b) ⊂ T.



Group deompositions of osine sequenes 69Proof. Suppose that for b ∈ InvA the osine sequene c(b) is bounded.Let A0 be the smallest omplex Banah algebra ontaining b and the unityof A. Clearly, A0 is ommutative. Sine the spetrum of b relative to A isontained in the spetrum of b relative to A0, we may assume, replaing A by
A0 if neessary, that A is ommutative. Let ∆(A) be the set of all omplex-valued homomorphisms on A. Fix τ ∈ ∆(A) arbitrarily. The invertibility of
b implies that τ(b) 6= 0. Furthermore,

τ(cn(b)) =
1

2
(τ(b)n + τ(b)−n)(4.1)for eah n ∈ N. Sine all members of ∆(A) have unit norm, it follows that

|τ(cn(b))| ≤ sup
n∈N

‖cn(b)‖.(4.2)From this we dedue that |τ(b)| = 1; indeed, should |τ(b)| 6= 1 hold, theright-hand side of (4.1) would diverge in modulus to in�nity as n → ∞,ontraditing (4.2). To omplete the proof, it su�es to invoke the identity
σ(b) = {τ(b): τ ∈ ∆(A)} (see e.g. [5, Chapter 1, �16, Proposition 9℄).Proposition 4.2. Let A be a omplex unital Banah algebra. If a ∈ Agenerates a bounded osine sequene, then σ(a) ⊂ [−1, 1].Proof. By Theorem 3.1 and Proposition 4.1, ψ(a) has spetrum on-tained in T. As the funtion z 7→ (z+ z−1)/2 maps T onto [−1, 1], the resultfollows immediately from (3.2) and the spetral mapping theorem (see e.g.[5, Chapter 1, �7, Theorem 4℄).We an now pass to more substantial results.Theorem 4.3. Let X be a omplex Banah spae. If B ∈ InvL (X) issalar-type prespetral and c(B) is bounded , then B is doubly power bounded.Proof. By Proposition 4.1, the spetrum of B is ontained in T. Let Ebe a resolution of the identity for B, and let KE = supω∈B(σ(B)) ‖E(ω)‖.Then, for eah n ∈ Z, Bn =

T
σ(B) λ

n dE(λ). Sine
∥∥∥
\
ω

f(λ) dE(λ)
∥∥∥ ≤ 4KE sup

λ∈ω
‖f(λ)‖for any ω ∈ B(C) and any omplex-valued bounded Borel funtion f on ω[11, p. 120℄, it follows that

‖Bn‖ ≤ 4KE sup
λ∈σ(B)

|λn| ≤ 4KE sup
λ∈T

|λn| = 4KEfor eah n ∈ Z.Theorem 4.4. Let X be a omplex Banah spae. If A ∈ L (X) is asalar-type operator of lass Γ that generates a bounded osine sequene, then
ψ(A) is a salar-type operator of lass Γ that is doubly power bounded.



70 W. ChojnakiProof. By Proposition 4.2, we have σ(A) ⊂ [−1, 1]. Let E be the resolu-tion of the identity of lass Γ for A. Then, on aount of ψ([−1, 1]) = T+,
ψ(A) =

\
σ(A)

ψ(λ) dE(λ) =
\

T+

z dF (z),

where F : B(C) → L (E) is the spetral measure of lass Γ de�ned by
F (ω) = E(ψ−1(ω)) (ω ∈ B(C)).Thus ψ(A) is a salar-type operator of lass Γ . By Theorem 3.1, c(ψ(A))

= c(A) and c(A) is bounded by assumption. Now Theorem 4.3 guaranteesthat ψ(A) is doubly power bounded.Putting the last two theorems together yields the following fundamentalresult.Theorem 4.5. Let X be a omplex Banah spae. If a bounded L (X)-valued osine sequene is generated by a salar-type prespetral operator , thenthe standard group deomposition for this osine sequene is bounded.It is well known that the generator of a bounded L (H)-valued osinesequene, where H is a omplex Hilbert spae, is similar to a normal (in fat,hermitian) operator [6, Theorem 2.1℄. This fat ombined with Theorem 4.5and the elementary result that any operator similar to a normal operator issalar-type spetral leads to the following assertion.Theorem 4.6. The standard group deomposition of a bounded L (H)-valued osine sequene, where H is a omplex Hilbert spae, is bounded.5. A spetrality result. Here we reord a result that will be of rele-vane in what follows. It should be ompared with Theorem 4.4.Given a linear subspae Y of a Banah spae X, we denote by Y ⊥ theannihilator of Y in X ′ de�ned as
Y ⊥ = {x′ ∈ X ′ | 〈x, x′〉 = 0 for all x ∈ Y }.Theorem 5.1. Let X be a omplex Banah spae. If A ∈ L (X) isprespetral of lass Γ and generates a bounded osine sequene, then ψ(A)is prespetral of lass Γ .Proof. Let E be the spetral resolution of the identity for A of lass Γ .Then setting

F (ω) = E(ψ−1(ω)) (ω ∈ B(C))de�nes a spetral measure of lass Γ . As the range of ψ oinides with T+,
F is supported on T+. Sine {E(ω) | ω ∈ B(C)} ommutes with A, itfollows that {F (ω) | ω ∈ B(C)} ommutes with B = ψ(A). The proof will



Group deompositions of osine sequenes 71be omplete one we show that
σ(B|F (ω)X) ⊂ ω(5.1)for eah ω ∈ B(T+).Fix ω ∈ B(T+) arbitrarily. For eah n ∈ N, let

ω(−1)
n = ω ∩ ψ([−1,−1 + n−1)),

ω(0)
n = ω ∩ ψ([−1 + n−1, 1 − n−1]),

ω(1)
n = ω ∩ ψ((1 − n−1, 1]).We have

B|F (ω)X = B|
F (ω

(−1)
n )X

⊕B|
F (ω

(0)
n )X

⊕B|
F (ω

(1)
n )Xand further

σ(B|F (ω)X) = σ(B|
F (ω

(−1)
n )X

) ∪ σ(B|
F (ω

(0)
n )X

) ∪ σ(B|
F (ω

(1)
n )X

)(5.2)(f. [11, Proposition 1.37℄). As A is prespetral, we see that
σ(A|

F (ω
(0)
n )X

) ⊂ ψ−1(ω
(0)
n ) = ψ−1(ω

(0)
n ),(5.3)where the last equality results from ψ being a homeomorphism. Furthermore,

A|
F (ω

(0)
n )X

is prespetral with resolution of the identity {E(ω)|
F (ω

(0)
n )X

|
ω ∈ B(C)} of lass Γ/(F (ω

(0)
n )X)⊥; here the quotient spae Γ/(F (ω

(0)
n )X)⊥is a total subspae of X ′/(F (ω

(0)
n )X)⊥, the latter being identi�ed with

(F (ω
(0)
n )X)′ (f. [11, Theorem 14.2℄). Sine ψ−1(ω

(0)
n ) ⊂ [−1 + n−1,

1 − n−1] and sine ψ has a holomorphi extension to a neighbourhood of
[−1 + n−1, 1 − n−1], namely

ψ(z) = z +
√

1 − z2 (z ∈ C, |z| < 1),where √
1 − z2 employs the branh of the square root funtion w 7→ √

wde�ned for all w ∈ C with Rew > 0, we onlude that ψ(A|
F (ω

(0)
n )X

) isprespetral of lass Γ/(F (ω
(0)
n )X)⊥ (f. [11, Theorem 5.16℄). By (5.3) andthe spetral mapping theorem (see e.g. [5, Chapter 1, �7, Theorem 4℄),
ψ(A|

F (ω
(0)
n )X

) ⊂ ω
(0)
n .This together with the identity

B|
F (ω

(0)
n )X

= ψ(A|
F (ω

(0)
n )X

)implies
σ(B|

F (ω
(0)
n )X

) ⊂ ω
(0)
n ,whene, in partiular,

σ(B|
F (ω

(0)
n )X

) ⊂ ω.(5.4)



72 W. ChojnakiFor x ∈ C and r > 0, let D(x, r) = {z ∈ C | |z − x| ≤ r}. As we shall see,there exist two sequenes (δ−n )n∈N and (δ+n )n∈N of positive numbers suh that
σ(B|

F (ω
(−1)
n )X

) ⊂ D(−1, δ−n ) and lim
n→∞

δ−n = 0,(5.5)
σ(B|

F (ω
(1)
n )X

) ⊂ D(1, δ+n ) and lim
n→∞

δ+n = 0.(5.6)Assuming this for now, let Λ = {−1, 1} \ ω. Observe that if Λ is non-void,then, for eah λ ∈ Λ, there exists nλ ∈ N suh that ω(λ)
n = ∅ whenever

n ≥ nλ; indeed, otherwise, for some λ ∈ Λ, there would exist a sequene
(xnk

)k∈N with xnk
∈ ω

(λ)
nk

and limk→∞ nk = ∞, implying that λ ∈ ω, whihis a ontradition. Let
n′ =

{
max{nλ | λ ∈ Λ} if Λ 6= ∅,
1 otherwise.Clearly, if Λ is non-void and λ ∈ Λ, then ω(λ)

n = ∅ whenever n ≥ n′. Hene⋃
λ∈Λ σ(B|

F (ω
(λ)
n )X

) = ∅ for n ≥ n′ regardless of whether Λ is empty or not,and (5.2) redues to
σ(B|F (ω)X) = σ(B|

F (ω
(0)
n )X

) ∪
⋃

λ∈{−1,1}\Λ

σ(B|
F (ω

(λ)
n )X

)

for n ≥ n′. This in onjuntion with (5.4)�(5.6) implies that
σ(B|F (ω)X) ⊂ ω ∪ ({−1, 1} \ Λ).As {−1, 1} \ Λ = {−1, 1} ∩ ω ⊂ ω, we immediately obtain (5.1).We are left with establishing the existene of (δ−n )n∈N and (δ+n )n∈N. Weshall on�ne ourselves to indiating how to onstrut the �rst sequene, theonstrution of the other being ompletely analogous. For eah n ∈ N, let
Xn = F (ω(−1)

n )X, In = IXn
,

An = A|Xn
, Bn = B|Xn

.Given T ∈ L (X), denote by r(T ) the spetral radius of T . We shall showthat
lim
n→∞

r(In +Bn) = 0.(5.7)With this formula, the desired sequene is immediately obtained by set-ting δ−n = r(In + Bn). Sine Xn = E(ψ−1(ω
(−1)
n ))X and ψ−1(ω

(−1)
n ) ⊂

[−1,−1 + n−1), it follows that σ(An) ⊂ [−1,−1 + n−1]. Hene
r(In +An) ≤

1

n
.(5.8)Given that Bn = An + iφ(An) and that An and φ(An) ommute, we have

r(In +Bn) ≤ r(In +An) + r(φ(An))(5.9)



Group deompositions of osine sequenes 73(f. [5, p. 19℄). Now φ(An)
2 = In −A2

n and so
r(φ(An))

2 = r(φ(An)
2) = r((In −An)(In +An))

≤ r(In −An)r(In +An) ≤ (1 + ‖An‖)r(In +An)

≤ (1 + ‖A‖)r(In +An),where the �rst equality follows from the spetral radius formula and the�rst inequality follows from the fat that In − An and In + An ommute(f. [5, p. 19℄). Putting this together with (5.8) and (5.9) yields (5.7) imme-diately.6. Cosine sequenes generated by translations. This setion is on-erned with ertain osine sequenes that are naturally de�ned in terms oftranslation operators on the lp spaes over the additive group of integers.We isolate from among these osine sequenes those that have a boundedstandard group deomposition.For 1 ≤ p ≤ ∞, let lp(Z) be the spae of all omplex-valued two-sidedsequenes, p-summable when p < ∞ and bounded when p = ∞, with thestandard ‖ · ‖p norm. Given a two-sided sequene ξ and k ∈ Z, the translateof ξ by k, denoted Tkξ, is the sequene
(Tkξ)n = ξn+k (n ∈ Z).For 1 ≤ p ≤ ∞ and k ∈ Z, let T

(p)
k be the operator lp(Z) ∋ ξ 7→ Tkξ ∈ lp(Z).If p is understood, T

(p)
k will be abbreviated to Tk. T

(p)
k is a surjetive linearisometry and its inverse is T

(p)
−k. T

(p)
1 and T

(p)
−1 are known as the bakwardunit shift and forward unit shift in lp(Z), respetively. Let

Ap =
1

2
(T

(p)
1 + T

(p)
−1).Consider the osine sequene generated by Ap. Obviously,

cn(Ap) =
1

2
(T(p)

n + T
(p)
−n)for eah n ∈ Z. By onstrution, T

(p)
1 generates a group deomposition for

c(Ap) and, sine ‖T(p)
1 ‖ = 1, this group deomposition is bounded. We shallshow that the standard group deomposition of c(Ap) is bounded only if

1 < p <∞. We start with the following result.Theorem 6.1. If 1 < p <∞, then the standard group deomposition of
c(Ap) is bounded.Proof. For simpliity, we relabel ψ(Ap) as Bp. To prove that Bp is doublypower bounded, observe �rst that, for eah ξ ∈ l2(Z) ∩ lp(Z),

Âpξ(t) = (cos t)ξ̂(t)



74 W. Chojnakifor almost every (a.e.) t ∈ [0, 2π). Here ξ̂ denotes the Fourier transformof ξ�the element of L2([0, 2π)) de�ned by
ξ̂(t) =

∑

k∈Z

ξ(k)e−ikt for a.e. t ∈ [0, 2π),with the right-hand side understood as the limit in the L2-norm of the se-quene (dn(ξ))n∈N in L2([0, 2π)) given by
dn(ξ)(t) =

n∑

k=−n

ξ(k)e−ikt (t ∈ [0, 2π)).It is easily veri�ed that
B̂pξ(t) = (cos t+ i|sin t|)ξ̂(t) for a.e. t ∈ [0, 2π).(6.1)Let f : [0, 2π) → R be given by

f(t) =

{
1 if 0 ≤ t < π,
−1 if π ≤ t < 2π.Sine f is bounded, Planherel's theorem ensures the existene of a boundedlinear operator Mf : l

2(Z) → l2(Z) satisfying
M̂fξ = f ξ̂ (ξ ∈ l2(Z)).Sine, in addition, f is of bounded variation, it follows from a result ofStehkin [34℄ (f. also [15, Theorem 6.4.4℄) that f is a p-multiplier�thereexists a positive number mp suh that

‖Mfξ‖p ≤ mp‖ξ‖p (ξ ∈ l2(Z) ∩ lp(Z)).(6.2)Here the assumption 1 < p <∞ is ritial. The estimate (6.2) together with
l2(Z) ∩ lp(Z) being dense in lp(Z) allows Mf to be uniquely extended to abounded linear operator from lp(Z) into itself, also denoted Mf , of norm
≤ mp.De�ne two (projetion) operators P± in L (lp(Z)) by

P± =
1

2
(Ilp(Z) ±Mf ).Clearly, we have P+ + P− = Ilp(Z), and P̂+ξ = 1[0,π)ξ̂ and P̂−ξ = 1[π,2π)ξ̂for ξ ∈ l2(Z) ∩ lp(Z). In view of (6.1), if n ∈ Z and ξ ∈ l2(Z) ∩ lp(Z), then

B̂npP
+ξ(t) = (cos t+ i sin t)n1[0,π)(t)ξ̂(t) = eintP̂+ξ(t) = T̂nP+ξ(t),

B̂npP
−ξ(t) = (cos t− i sin t)n1[π,2π)(t)ξ̂(t) = e−intP̂−ξ(t) = ̂T−nP+ξ(t)for a.e. t ∈ [0, 2π). Hene B

n
pP

+ = TnP
+ and B

n
pP

− = T−nP
−, and further

‖Bnp‖ ≤ ‖BnpP+‖ + ‖BnpP−‖ = ‖TnP+‖ + ‖T−nP
−‖ = ‖P+‖ + ‖P−‖.Thus Bp is doubly power bounded.



Group deompositions of osine sequenes 75To treat the ases p = 1 and p = ∞, we need an auxiliary result. For
1 ≤ p ≤ ∞, denote by lpe(Z) the spae of all even sequenes in lp(Z).Theorem 6.2. Assume that either p = 1 or p = ∞. If B ∈ L (lp(Z))generates a group deomposition for c(Ap) and if lpe(Z) is invariant for both
B and B−1, then B is not doubly power bounded.Proof. If B were doubly power bounded, then so too would be Be =
B|lpe (Z). Consequently, Be would generate a bounded group deompositionfor the osine sequene engendered by Ap,e = Ap|lpe (Z). But this is impossible,sine, in view of [7, Theorems 2.2 and 2.4℄, no group deomposition of c(Ap,e)is bounded when either p = 1 or p = ∞.We an now state the �nal result of this setion.Theorem 6.3. The standard group deompositions of c(A1) and c(A∞)fail to be bounded.Proof. Suppose that either p = 1 or p = ∞. Observe that while lpe(Z) isnot an invariant subspae for Tk whenever k ∈ Z \ {0}, it is an invariantsubspae for Tk + T−k for eah k ∈ Z. Hene lpe(Z) is invariant for Ap and
φ(Ap). Set Bp = ψ(Ap) = Ap + iφ(Ap). Then B

−1
p = Ap − iφ(Ap) and lpe(Z)is invariant for both Bp and B

−1
p . Now Theorem 6.2 ensures that Bp is notdoubly power bounded.7. Lak of prespetrality. The main goal of this setion is to establishthe following result.Theorem 7.1. If 1 ≤ p ≤ ∞ and p 6= 2, then Ap is not prespetral.While Theorem 7.1 is of interest in its own right, its primary signi�anehere is that it permits showing that a bounded osine sequene may have abounded standard group deomposition without the generator of the osinesequene being salar-type prespetral. Indeed, Theorems 6.1 and 7.1, there�exivity of lp(Z) for 1 < p <∞, and the fat that a prespetral operator ona re�exive Banah spae is spetral [11, Theorem 6.11℄ imply the followingresult.Theorem 7.2. If 1 < p < ∞ and p 6= 2, then Ap is not spetral andgenerates a bounded osine sequene with bounded standard group deompo-sition.One onsequene of the above theorem is that, barring the ase p = 2,Theorem 6.1 annot be dedued diretly from Theorem 4.5. That Theo-rem 6.1 in the ase p = 2 redues indeed to Theorem 4.5 results from A2being of salar type (see omments before Theorem 4.6).



76 W. ChojnakiTheorem 7.1 has a predeessor in the result of Fixman [19℄ andKrabbe [27℄ stating that, for eah 1 ≤ p ≤ ∞ with p 6= 2, the (bak-ward) unit shift in lp(Z) fails to be spetral. It is worth noting that as far asspetrality is onerned, the unit shift is typial of translation operators ingeneral loally ompat Abelian groups�if G is suh a group, then exept intrivial ases, translations in Lp(G), 1 ≤ p ≤ ∞, p 6= 2, are not spetral [22℄,[11, Theorem 20.30℄.Theorem 7.1 makes no diret appeal to osine sequenes, but its proof willmake a ritial use of the standard group deompositions of ertain boundedosine sequenes. Before giving this proof, we present a few results that weshall need.For eah λ ∈ [−1, 1], let Xλ be the eigenspae of A∞ orresponding tothe eigenvalue λ. If a = (an)n∈Z ∈ Xλ, then
[
an+1

an

]
=

[
2λ −1
1 0

][
an
an−1

]
= · · · =

[
2λ −1
1 0

]n[
a1

a0

]

for eah n ∈ Z, showing that a depends linearly on a0 and a1, and henethat dimXλ ≤ 2. For eah t ∈ T, let χt = (tn)n∈Z. It is immediately ver-i�ed that χ1 ∈ X1, χ−1 ∈ X−1, and that if |λ| < 1, then χψ(λ) and χ
ψ(λ)both belong to Xλ and are linearly independent. In partiular, if |λ| < 1,then dimXλ = 2, and Xλ is spanned by χψ(λ) and χψ(λ)

. As we shall provenext, X1 and X−1 are one-dimensional, spanned by χ1 and χ−1, respe-tively.If a ∈ X1, then, for eah n ∈ Z, an+1 − an = an − an−1, implying that
an+1 − an = b, where b = a1 − a0. Hene an = a0 + nb, and, sine a isbounded, we have b = 0. Consequently, a = a0χ1.If a ∈ X−1, then, for eah n ∈ Z, an+1+an = −(an+an−1), so an+1+an =
(−1)nc, where c = a0 + a1. Hene, for eah k ∈ Z, a2k+1 − a2k−1 = a2k+1 +
a2k − (a2k + a2k−1) = 2c and further a2k+1 = 2kc + a1. The boundednessof a now implies that c = 0. Thus an+1 = −an for eah n ∈ Z and further
a = a0χ−1.Reall that a omplex-valued two-sided sequene (ξn)n∈Z is almost pe-riodi if, for eah ε > 0, there exists K ∈ N suh that every set of theform {k, k + 1, . . . , k + K}, k ∈ Z, ontains N ∈ Z with the property that
|ξn − ξn+N | < ε for all n ∈ Z. Equivalently, (ξn)n∈Z should belong to thelosed linear span of {χt | t ∈ T} in l∞(Z). In partiular, every almost pe-riodi sequene is bounded. Let ap(Z) denote the spae of omplex-valuedalmost periodi two-sided sequenes. Obviously, ap(Z) is translation invari-ant, and hene is also an invariant subspae for A∞.Lemma 7.3. If A∞ is prespetral , then A∞|ap(Z) is salar-type prespe-tral.



Group deompositions of osine sequenes 77Proof. First note that if R is a linear operator on l∞(Z) ommuting with
A∞, then, for eah |λ| ≤ 1, Xλ is invariant for R. Suppose now that A∞ isprespetral of lass Γ . Let S and Q be the salar and radial parts of A∞,and let E be the resolution of the identity for A∞ of lass Γ . Sine S, Q,and {E(ω) | ω ∈ B(C)} ommute with A∞, it follows that, for eah |λ| ≤ 1,
Xλ is invariant for S, Q, and all of the E(ω). We also have

A∞|Xλ
= S|Xλ

+Q|Xλ
,with S|Xλ

and Q|Xλ
ommuting. Setting E|Xλ

(ω) = E(ω)|Xλ
for eah

ω ∈ B(C) de�nes a spetral measure E|Xλ
in Xλ of lass Γ/X⊥

λ , the quotientspae Γ/X⊥
λ being a total subspae of X ′/X⊥

λ identi�ed with X ′
λ. Beause

Xλ is �nite-dimensional, all vetor topologies on Xλ oinide and, as a re-sult, E|Xλ
is of lass X ′

λ. Clearly, S|Xλ
=
T
C
λdE|Xλ

(λ), so S|Xλ
is of salartype. Also, we have limn→∞ ‖(Q|Xλ

)n‖ ≤ limn→∞ ‖Qn‖ = 0, implying that
Q|Xλ

is quasinilpotent. Thus A∞|Xλ
is spetral, and S|Xλ

and Q|Xλ
are itssalar and radial parts. But A∞|Xλ

= λIXλ
, so A∞|Xλ

is in fat of salartype. Sine the Jordan deomposition is unique, it follows that Q|Xλ
= 0.As every χt (t ∈ T) an be represented as either χψ(λ) or χψ(λ)

for some
|λ| ≤ 1, the losed linear spae spanned by the Xλ in l∞(Z) oinides with
ap(Z). Consequently, Q|ap(Z) = 0 and further A∞|ap(Z) = S|ap(Z). Sine
S|ap(Z) =

T
C
λdE|ap(Z)(λ), where E|ap(Z) is the spetral measure of lass

Γ/ap(Z)⊥ de�ned by E|ap(Z)(ω) = E(ω)|ap(Z) for ω ∈ B(C), it follows that
A∞|ap(Z) is a salar-type operator of lass Γ/ap(Z)⊥.Proof of Theorem 7.1. Arguing ontrapositively, assume that Ap is pre-spetral of lass Γ . Introdue the notation

A =

{
Ap if 1 ≤ p <∞ and p 6= 2,
A∞|ap(Z) if p = ∞.We �rst show that A is of salar type. We shall onsider three ases.Assume �rst that p = ∞. Then A = A∞|ap(Z) and that A is of salar typein this ase is ensured by Lemma 7.3.Suppose next that p = 1. Then A = A1. Let A = S + Q be the Jordandeomposition of A, with S and Q the respetive salar and radial parts.Then the dual operator A

′ is prespetral of lass l1(Z), and S′ and Q′ are thesalar and radial parts of A
′ [11, Theorem 5.22℄. Upon identifying the dualof l1(Z) with l∞(Z), A

′ beomes idential with A∞. Thus A∞ is prespetraland, in view of Lemma 7.3, Q′|ap(Z) = 0. Sine ap(Z) is dense in l∞(Z) underthe weak∗ topology [3℄, it follows that Q = 0. Consequently, A1 is of salartype.Finally, suppose that 1 < p < ∞ and p 6= 2. Then A = Ap. By Theo-rem 5.1, the assumption that A is prespetral leads to the onlusion that also
B = ψ(A) is prespetral. Sine lp(Z) is re�exive for the adopted value of p,
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B is in fat spetral. Moreover, by Theorem 6.1, B is doubly power bounded.Aording to a theorem proved independently by Fixman [19℄ and Foguel [20℄and further extended by Dowson [10℄ (see also [11, Theorem 10.17℄), everydoubly power bounded spetral operator is of salar type. In view of thisresult, B is salar-type spetral, and hene also A = B + B

−1 is salar-typespetral.Having established that A is of salar type, we now produe a �nal on-tradition. Our approah will be patterned after [22℄; see also [11, Theo-rem 20.30℄. For eah n ∈ N, let pn be the nth Rudin�Shapiro polynomial.There is then a sequene (εn)n∈N of numbers, eah with εn = −1 or εn = 1,suh that
pn(z) =

n∑

k=1

εkz
k

and
sup
z∈T

|pn(z)| ≤ 5n1/2(7.1)for eah n ∈ N. The existene of suh a sequene of polynomials is provedin [33℄. For eah n ∈ N, set
qn(z) =

n∑

k=1

εkTk(z),where�let us reall�Tk(z) stands for the kth �rst-kind Chebyshev polyno-mial. By Theorem 4.4, B = ψ(A) is of salar type of lass Γ . Let E be theresolution of the identity for B of lass Γ , and letKE = supω∈B(σ(B)) ‖E(ω)‖.Sine σ(B) ⊂ T, it follows that, for eah n ∈ N, pn(B) =
T
T
pn(z) dE(z) and

pn(B
−1) =

T
T
pn(z) dE(z), and further that

‖pn(B)‖ ≤ 4KE sup
z∈T

|pn(z)|, ‖pn(B−1)‖ ≤ 4KE sup
z∈T

|pn(z)|.But, as a moment's re�etion reveals,
qn(A) =

1

2
(pn(B) + pn(B

−1))so, in view of (7.1),
‖qn(A)‖ ≤ 1

2
(‖pn(B)‖ + ‖pn(B−1)‖) ≤ 20KEn

1/2.(7.2)We shall now look at three ases. Suppose �rst that 1 ≤ p < 2. For eah
k ∈ N, denote by ek the two-sided sequene with all entries equal to 0 exeptthe kth entry whih is equal to 1. Clearly,

qn(Ap)e0 =
1

2

n∑

k=1

εk(e−k + ek),



Group deompositions of osine sequenes 79implying that
21/p−1n1/p = ‖qn(Ap)e0‖p ≤ ‖qn(Ap)‖.(7.3)Bearing in mind that A = Ap when 1 ≤ p < 2, we see that this estimate isinompatible with (7.2) for large n. This establishes the theorem in the ase

1 ≤ p < 2.Assume now that 2 < p < ∞. First observe that with the dual of lp(Z)identi�ed with lq(Z), where q is the onjugate index q = p/(p− 1), A
′
p oin-ides with Aq. Given that 1 < q < 2, we an now invoke (7.3) with p replaedby q to onlude that

21/q−1n1/q ≤ ‖qn(Aq)‖ = ‖qn(Ap)‖.But, remembering that A = Ap when 2 < p <∞, we obtain a ontraditionwith (7.2) for large n. This establishes the theorem in the ase 2 < p <∞.Finally, assume that p = ∞. Reall that a subspae Y of the dual X ′ toa normed spae X is alled norming (1-norming) if the pseudonorm de�nedby
|||x||| = sup{|〈x, x′〉| | x′ ∈ Y, ‖x′‖ ≤ 1} (x ∈ X)is equivalent (equal, respetively) to the original norm onX. Using the equal-ity A

′
1 = A∞ and the fat that ap(Z) is a 1-norming subspae of l∞(Z) [3℄,we obtain

‖qn(A1)e0‖1 = sup
ξ∈ap(Z),
‖ξ‖∞=1

|〈qn(A1)e0, ξ〉|

= sup
ξ∈ap(Z),
‖ξ‖∞=1

|〈e0, qn(A∞)ξ〉| ≤ ‖qn(A∞|ap(Z))‖

for eah n ∈ N. On the other hand, the equality in (7.3) speialised to p = 1yields n = ‖qn(A1)e0‖1 for eah n ∈ N. Therefore, n ≤ ‖qn(A∞|ap(Z))‖ foreah n ∈ N. But, as A = A∞|ap(Z) when p = ∞, this is inompatible with(7.2) for large n, establishing the theorem in the ase p = ∞ and �nishingthe proof.8. Unbounded group deompositions. Aording to Theorem 4.6,any bounded L (H)-valued osine sequene, where H is a omplex Hilbertspae, has a bounded standard group deomposition. Here we show that abounded L (H)-valued osine sequene may also admit an unbounded groupdeomposition. We present two examples, of whih the simpler, given �rst,involves a �nite-dimensional Hilbert spae.Example 8.1. Let H = C2 and let c be the L (H)-valued osine se-quene generated by A = IH . Clearly, c is bounded, as all of its elementsoinide with IH . Identify L (H) with the algebra of all 2×2 omplex-valued



80 W. Chojnakimatries and let B =
[

1
0

1
1

]. It is immediately veri�ed that [
1
0

−1
1

] is theinverse of B and that A = (B +B−1)/2. Thus B generates a group deom-position for c. This group deomposition is unbounded beause Bn =
[1

0
n
1

]for eah n ∈ Z.The generator of the group deomposition in the above example is spe-tral, as is indeed the ase with any operator in a �nite-dimensional Hilbertspae. The next example will exhibit a bounded L (H)-valued osine se-quene, with H an in�nite-dimensional omplex Hilbert spae, admittingan unbounded group deomposition generated by a non-spetral operator.While, in view of Theorem 4.3, the generator of an unbounded group deom-position for an operator-valued bounded osine sequene annot be salar-type prespetral, the non-spetral generator in the upoming example willbe generalised salar.Example 8.2. Let H be an in�nite-dimensional omplex Hilbert spae.Let (Pk)k∈N and (Qk)k∈N be two sequenes of projetions in H suh that(a) PkPl = QkQl = 0 for all k, l ∈ N with k 6= l,(b) PkQl = QlPk = 0 for all k, l ∈ N,() ∑∞
k=1(Pk+Qk) = IH , where the sum onverges in the strong operatortopology,(d) supk∈N ‖Pk‖ = ∞,(e) KPQ = supω∈F (N) ‖

∑
k∈ω(Pk +Qk)‖ <∞, where F (N) denotes theset of all �nite subsets of N.Suh sequenes an be onstruted as follows. Exploiting the assumptionthat H is in�nite-dimensional, we �rst represent H as the Hilbert spae ten-sor produt H ⊗ H , where H is a opy of H. Let (Uk)k∈N be a sequeneof projetions in H with UkUl = 0 for k 6= l and suh that ∑∞

k=1 Uk is un-onditionally onvergent to IH in the strong operator topology. Let (Vk)k∈Nbe a sequene of projetions with VkVl = 0 for k 6= l and suh that ∑∞
k=1 Vkis onditionally , but not unonditionally, onvergent to IH in the strongoperator topology. The existene of the latter sequene follows from theexistene of onditional Shauder bases in a separable, in�nite-dimensionalHilbert spae, whih was �rst established by K. I. Babenko [2℄. Anotheronstrution of onditional bases in a separable Hilbert spae, due to C. A.MCarthy and J. Shwartz [32℄, is presented in detail in [30, p. 74℄. Given

ω ∈ F (N), let Vω =
∑

k∈ω Vk. For eah k ∈ N, hoose ωk ∈ F (N) so that
‖Vωk

‖ ≥ k‖Uk‖−1, this being possible beause ∑∞
k=1 Vk is not unondition-ally onvergent. Set

Pk = Uk ⊗ Vωk
, Qk = Uk ⊗ (IH − Vωk

)for eah k ∈ N. It is easily seen that the sequenes (Pk)k∈N and (Qk)k∈Nsatisfy onditions (a)�(e).



Group deompositions of osine sequenes 81Selet a sequene (tk)k∈N in T \ {1} suh that {tk, tk} ∩ {tl, tl} = ∅ for
k 6= l and

∞∑

k=1

|tk − tk| ‖Qk‖ <∞.(8.1)For example, a sequene (tk)k∈N of distint points in the open upper semi-irle {z ∈ C | |z| = 1, Im z > 0} satisfying |tk − 1| ≤ (1 + ‖Qk‖)−1k−2 foreah k ∈ N will do. Let
B =

∞∑

k=1

(tkPk + tkQk).The series on the right-hand side onverges in the strong operator topology,given that it an be represented as
∞∑

k=1

tk(Pk +Qk) +
∞∑

k=1

(tk − tk)Qk,where, by (e), the �rst series onverges unonditionally in the strong opera-tor topology, and, by (8.1), the seond series onverges in the norm operatortopology. By (a)�(), for eah n ∈ Z,
Bn =

∞∑

k=1

tnk(Pk +Qk) +
∞∑

k=1

(t
n
k − tnk)Qkand further

Bn +B−n =
∞∑

k=1

(tnk + t
n
k)(Pk +Qk).(8.2)Condition (e) implies that

∥∥∥
∞∑

k=1

ck(Pk +Qk)
∥∥∥ ≤ 4KPQ sup

k∈N

|ck|(8.3)for every bounded sequene (ck)k∈N. In partiular, for eah n ∈ Z,
∥∥∥

∞∑

k=1

tnk(Pk +Qk)
∥∥∥ ≤ 4KPQ.As |tnk − tnk | ≤ |n| |tk − tk|, we have

∥∥∥
∞∑

k=1

(t
n
k − tnk)Qk

∥∥∥ ≤ |n|
∞∑

k=1

|tk − tk| ‖Qk‖.Consequently, bearing in mind (8.1), we �nd that
‖Bn‖ = O(|n|).



82 W. ChojnakiThis estimate immediately implies that B is a generalised salar operatorwith σ(B) ⊂ T (f. [23℄, [29, Theorem 1.5.12℄).Let A = (B + B−1)/2. The osine sequene generated by A oinideswith c(B) and is bounded, sine, by (8.2) and (8.3),
‖Bn +B−n‖ =

∥∥∥
∞∑

k=1

(tnk + t
n
k)(Pk +Qk)

∥∥∥ ≤ 8KPQfor eah n ∈ Z. Our work will be omplete one we show that B is neitherpower bounded nor spetral.We �rst show that B is not power bounded. Assume, on the ontrary,that KB = supn∈N ‖Bn‖ <∞. Note that
lim
N→∞

1

N

N∑

n=1

(st)n = δst(8.4)for s, t ∈ T, where δst denotes the Kroneker delta. For eah m ∈ N, de�nea projetion Rm by
Rm =

m∑

k=1

(Pk +Qk).Clearly, by (e),
sup
m∈N

‖Rm‖ ≤ KPQ.(8.5)Also
BnRm =

m∑

k=1

(tnkPk + t
n
kQk)for any n,m ∈ N. Now, in view of (8.4),

lim
N→∞

1

N

N∑

n=1

snBnRm =
m∑

k=1

(δstkPk + δstkQk)for eah m ∈ N and eah s ∈ T. Putting s = tm in the above equalityand taking into aount that t1, . . . , tm, t1, . . . , tm are all di�erent, we �ndthat
lim
N→∞

1

N

N∑

n=1

t
n
mB

nRm = Pm.Hene, bearing in mind (8.5),
sup
m∈N

‖Pm‖ ≤ sup
n∈N

‖Bn‖ sup
m∈N

‖Rm‖ ≤ KBKPQ,ontrary to (d). Thus B is not power bounded.We �nally show that B is not spetral. Assume, on the ontrary, that Bis spetral and let E be its resolution of the identity. Fix m ∈ N arbitrarily.



Group deompositions of osine sequenes 83Sine
BRm = RmB =

m∑

k=1

(tkPk + tkQk),it follows that the range spae of Rm, denoted Xm, is invariant for B. More-over, as
PlRm = RmPl = Pl (1 ≤ l ≤ m),we see that Xm is invariant for Pl when 1 ≤ l ≤ m. Therefore
B|Xm

=
m∑

k=1

(tkPk|Xm
+ tkQk|Xm

).(8.6)Remembering that t1, . . . , tm, t1, . . . , tm are all di�erent, we dedue immedi-ately that the set funtion Fm: B(C) → L (H) de�ned by
Fm(ω) =

m∑

k=1

(δtk(ω)Pk|Xm
+ δtk(ω)Qk|Xm

) (ω ∈ B(C))is a spetral measure. Here, for any given a ∈ C, δa denotes the Dira measureon C onentrated at a. Sine the right-hand side of (8.6) an be interpretedas T
C
λdFm(λ), we see that B|Xm

is a salar-type spetral operator and Fmis its resolution of the identity. It now follows from a theorem of Fixman [19℄(see also [11, Theorem 12.2℄) that, for eah ω ⊂ B(C), Xm is invariant for
E(ω) and E(ω)|Xm

= Fm(ω). Hene
E(ω)Rm = Fm(ω)Rm =

[ m∑

k=1

(δtk(ω)Pk + δtk(ω)Qk)
]
Rm

=
m∑

k=1

(δtk(ω)Pk + δtk(ω)Qk).In partiular, E({tk})Rm = Pk for any k,m ∈ N with k ≤ m. Letting
KE = supω∈B(C) ‖E(ω)‖ and using (8.5), we onlude that

sup
k∈N

‖Pk‖ ≤ KEKPQ.But this is inompatible with (d). Thus B is not spetral.
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