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On group de
ompositions of bounded 
osine sequen
esbyWoj
ie
h Chojna
ki (Adelaide and Warszawa)Abstra
t. A two-sided sequen
e (cn)n∈Z with values in a 
omplex unital Bana
h alge-bra is a 
osine sequen
e if it satis�es cn+m +cn−m = 2cncm for any n,m ∈ Z with c0 equalto the unity of the algebra. A 
osine sequen
e (cn)n∈Z is bounded if supn∈Z
‖cn‖ < ∞.A (bounded) group de
omposition for a 
osine sequen
e c = (cn)n∈Z is a representa-tion of c as cn = (bn + b−n)/2 for every n ∈ Z, where b is an invertible element ofthe algebra (satisfying supn∈Z

‖bn‖ < ∞, respe
tively). It is known that every bounded
osine sequen
e possesses a universally de�ned group de
omposition, here referred to asa standard group de
omposition. The present paper reveals various 
lasses of boundedoperator-valued 
osine sequen
es for whi
h the standard group de
omposition is bounded.One su
h 
lass 
onsists of all bounded L (X)-valued 
osine sequen
es (cn)n∈Z, with X a
omplex Bana
h spa
e and L (X) the algebra of all bounded linear operators on X, forwhi
h c1 is s
alar-type prespe
tral. Every bounded L (H)-valued 
osine sequen
e, where
H is a 
omplex Hilbert spa
e, falls into this 
lass. A di�erent 
lass of bounded 
osine se-quen
es with bounded standard group de
omposition is formed by 
ertain L (X)-valued
osine sequen
es (cn)n∈Z, with X a re�exive Bana
h spa
e, for whi
h c1 is not s
alar-typespe
tral�in fa
t, not even spe
tral. The isolation of this 
lass un
overs a novel familyof non-prespe
tral operators. Examples are also given of bounded L (H)-valued 
osinesequen
es, with H a 
omplex Hilbert spa
e, that admit an unbounded group de
ompo-sition, this being di�erent from the standard group de
omposition whi
h in this 
ase isne
essarily bounded.1. Introdu
tion. Let A be a 
omplex Bana
h algebra with a unity eand a norm ‖·‖. A two-sided sequen
e c = (cn)n∈Z with values in A is 
alleda 
osine sequen
e, or a dis
rete 
osine fun
tion, if(i) cn+m + cn−m = 2cncm for any n,m ∈ Z,(ii) c0 = e.As is easily veri�ed, every 
osine sequen
e c is even: the equality c−n = cnholds for all n ∈ Z. Furthermore, every 
osine sequen
e is uniquely deter-2000 Mathemati
s Subje
t Classi�
ation: Primary 47D09, 47D03, 39B42; Se
ondary47B40, 42C05.Key words and phrases: 
osine sequen
e, 
osine fun
tion, Chebyshev polynomial,group de
omposition, translation, unit shift, s
alar-type prespe
tral operator, generaliseds
alar operator, prespe
tral operator, spe
tral operator, doubly power bounded operator.[61℄ 
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kimined by its element indexed by 1. More spe
i�
ally, if c is a 
osine sequen
e,then
cn = T|n|(c1) (n ∈ Z),(1.1)where, for n ∈ N0 = N ∪ {0}, Tn(x) is the nth Chebyshev polynomial of the�rst kind

Tn(x) =

[n/2]∑

k=0

(
n

2k

)
xn−2k(x2 − 1)k.The representation (1.1) follows easily from the evenness property of 
osinesequen
es mentioned above and the re
ursive formulae

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x)(
f. [31, Se
tion 1.2.1℄). The element c1 is 
ommonly referred to as the gen-erator of c. Every element of A generates a unique 
osine sequen
e. The
osine sequen
e generated by a ∈ A is given by cn(a) = T|n|(a) for n ∈ Zand is denoted c(a).An A-valued 
osine sequen
e (cn)n∈Z satisfying supn∈Z ‖cn‖ < ∞ istermed bounded .Let InvA be the group of invertible elements of A. It is readily veri�edthat, for ea
h b ∈ InvA, the sequen
e c(b) de�ned by
cn(b) =

1

2
(bn + b−n) (n ∈ Z)is a 
osine sequen
e. A group de
omposition for an A-valued 
osine sequen
e

c = (cn)n∈Z is a representation of c in the form
c = c(b)(1.2)for some b ∈ InvA. Note that, in view of the uniqueness property of 
osinesequen
es, for (1.2) to hold it is ne
essary and su�
ient that

c1 = c1(b) =
1

2
(b+ b−1).The element b in (1.2) will hen
eforth be referred to as the generator ofthe 
orresponding group de
omposition. If b is doubly power bounded , i.e., if

supn∈Z ‖bn‖ <∞, then the group de
omposition is termed bounded and b issaid to generate a bounded group de
omposition.It is known that every bounded 
osine sequen
e with values in a 
omplexunital Bana
h algebra admits a spe
ial group de
omposition, here 
alled astandard group de
omposition [7℄. A pre
ise de�nition will be given later,but for now we informally 
hara
terise the standard group de
omposition ofa bounded 
osine sequen
e as being reminis
ent of the formula
cosnt =

1

2
[(cos t+ i

√
1 − cos2 t)n + (cos t+ i

√
1 − cos2 t)−n]

(n ∈ Z, t ∈ [0, 2π)).



Group de
ompositions of 
osine sequen
es 63In general, the standard group de
omposition of a bounded 
osine sequen
emay fail to be bounded. For example, there exist bounded 
osine sequen
eswith the property that all their group de
ompositions, in
luding the standardone, are unbounded [7℄.The main purpose of this paper is to investigate under what 
onditionsthe standard group de
omposition of a bounded 
osine sequen
e is itselfbounded. From a broader perspe
tive, the paper 
an be seen as an ad-dition to a growing number of studies exploring the relationship between
osine fun
tions (in
luding those more general than dis
rete) and grouprepresentations [4, 16, 25, 35℄; see also [1, Se
tion 3.16℄, [17, Se
tion 2.5℄,[18, Se
tions III.6 and III.8℄, [28, Se
tion III.1.1℄. While most of the interestin 
osine families 
omes from di�erential equations, where 
osine fun
tionsare parametrised by R rather than Z, the dis
rete 
osine fun
tions o

upya spe
ial position with regard to group de
omposability. Unlike bounded
osine sequen
es, bounded 
osine fun
tions on R fail in general to admita group de
omposition [24, 26℄ (although for some, a group de
ompositionalways exists; this is the 
ase, for example, with any bounded strongly 
on-tinuous 
osine fun
tion taking values in L (X), where X is a UMD spa
e [8℄).Ref. [7℄ sheds light on why there is a di�eren
e between Z and R in relationto 
osine families, by 
hara
terising Abelian groups G with the property thatevery bounded 
osine fun
tion on G admits a (bounded) group de
omposi-tion.The rest of the arti
le is laid out as follows. Following Se
tion 2 that 
on-tains operator-theoreti
 prerequisites, Se
tion 3 presents a simpli�ed 
on-stru
tion of the standard group de
omposition for a bounded 
osine se-quen
e. Se
tion 4 establishes that if a bounded 
osine sequen
e with valuesin L (X), where X is a 
omplex Bana
h spa
e, is generated by a s
alar-typeprespe
tral operator, then its standard group de
omposition is bounded. One
onsequen
e of this result is the fa
t that every bounded L (H)-valued 
o-sine sequen
e, where H is a 
omplex Hilbert spa
e, has a bounded standardde
omposition. The next three se
tions aim to show that a bounded 
osinesequen
e with bounded standard group de
omposition 
an be generated byan operator that is not s
alar-type prespe
tral. Relevant examples hinge onidenti�
ation of a novel family of non-prespe
tral operators. More spe
i�-
ally, following Se
tion 5 whi
h is of te
hni
al 
hara
ter, it is �rst shown inSe
tion 6 that, when 1 < p < ∞, the operator Ap de�ned as half the sumof the ba
kward and forward unit shifts in lp(Z) generates a bounded 
osinesequen
e with bounded standard group de
omposition. Next in Se
tion 7 itis shown that Ap is not prespe
tral when 1 ≤ p ≤ ∞, p 6= 2. Given thatan operator whi
h is not prespe
tral is mu
h less s
alar-type prespe
tral,it is then 
on
luded that Ap with 1 < p < ∞, p 6= 2 is not s
alar-typeprespe
tral and generates a 
osine sequen
e with bounded standard group
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kide
omposition. Interestingly, this result not only has impli
ations for 
osinesequen
es, but also relies upon manipulations with 
osine sequen
es. The�nal Se
tion 8 reveals that a bounded L (H)-valued 
osine sequen
e, with
H a 
omplex Hilbert spa
e, may admit an unbounded group de
omposition,this being di�erent from the standard group de
omposition whi
h, by theresult on de
omposability of bounded 
osine sequen
es in Hilbert spa
e men-tioned earlier, is ne
essarily bounded in this 
ase. Two examples are given,the simpler one involving a 
osine sequen
e generated by a spe
tral operator,and the more 
ompli
ated one involving a 
osine sequen
e generated by anon-spe
tral operator. In neither 
ase 
an the generator be s
alar-type pre-spe
tral, but in the se
ond example the generator turns out to be generaliseds
alar.2. Preliminaries. In this se
tion, we establish all general operator-theoreti
 de�nitions and fa
ts that will be needed later on.Suppose that X is a Bana
h spa
e. The dual spa
e of X is denoted by X ′.The value of a fun
tional x′ ∈ X ′ at x ∈ X is written 〈x, x′〉. L (X) is theBana
h algebra of all bounded linear operators on X. The identity operatoron X is denoted IX .Re
all that a subset Γ ⊂ X ′ is total if, for any x ∈ X, 〈x, x′〉 = 0 for all
x′ ∈ Γ implies x = 0.Let M be a σ-algebra of subsets of a set Ω and let Γ be a total subsetof X ′. A spe
tral measure of 
lass Γ is a map E: M → L (X) su
h that(i) E(∅) = 0 and E(Ω) = IX ,(ii) E(ω ∩ ω′) = E(ω)E(ω′) for any ω, ω′ ∈ M ,(iii) ω 7→ 〈E(ω)x, x′〉 is σ-additive for any x ∈ X and x′ ∈ Γ ,(iv) supω∈Ω ‖E(ω)‖ <∞.It follows from the Orli
z�Pettis theorem that any spe
tral measure of 
lass
X ′ is strongly σ-additive�that is, the fun
tion M ∋ ω 7→ E(ω)x ∈ E is
σ-additive for ea
h x ∈ X.The spe
trum of an operator T ∈ L (X) is denoted by σ(T ). For T ∈
L (X) and Y ⊂ X su
h that T (Y ) ⊂ Y , T |Y denotes the restri
tion of Tto Y .The Borel σ-algebra of a topologi
al spa
e Y is designated by B(Y ).Following Dunford [12℄ (
f. also [11, 13, 14℄), an operator T ∈ L (X) is
alled prespe
tral of 
lass Γ if there exists a spe
tral measure E: B(C) →
L (X) of 
lass Γ su
h that(i) TE(ω) = E(ω)T for ea
h ω ∈ B(C),(ii) σ(T |E(ω)X) ⊂ ω for ea
h ω ∈ B(C), with the bar denoting the set
losure.



Group de
ompositions of 
osine sequen
es 65The spe
tral measure E: M → L (X) of 
lass Γ satisfying (i) and (ii) isuniquely determined by T and is 
alled the resolution of the identity of 
lass
Γ for T [11, Theorem 5.13℄. Any resolution of the identity E for a prespe
traloperator T ∈ L (X), of some 
lass, is supported on σ(T ) in the sense that
E(σ(T )) = IX . In general, a prespe
tral operator of some 
lass 
an also bea prespe
tral operator of another 
lass, with a possibly di�erent resolutionof the identity [19℄ (see also [11, Example 5.35℄).If T ∈ L (X) has the form

T =
\

σ(T )

λdE(λ),where E: B(C) → L (X) is a spe
tral measure of 
lass Γ , then T is aprespe
tral operator of 
lass Γ and E is its resolution of the identity of
lass Γ . In this 
ase, T is termed a s
alar-type operator of 
lass Γ .An operator Q ∈ L (X) is 
alled quasinilpotent if limn→∞ ‖Qn‖1/n = 0,whi
h is equivalent to σ(Q) = {0}.If T ∈ L (X) is a prespe
tral operator with resolution of the identity Eof 
lass Γ and if
S =

\
σ(T )

λdE(λ), Q = T − S,(2.1)then S is a s
alar-type operator with resolution of the identity E of 
lass
Γ and Q is a quasinilpotent operator 
ommuting with {E(ω) | ω ∈ B(C)};moreover σ(T ) = σ(S). This 
hara
terisation of prespe
tral operators has apartial 
onverse: If S ∈ L (X) is a s
alar-type operator with resolution ofthe identity E of 
lass Γ and Q is a quasinilpotent operator 
ommuting with
{E(ω) | ω ∈ B(C)}, then S+Q is prespe
tral with resolution of the identity
E of 
lass Γ ; moreover, σ(S +Q) = σ(S) [11, Theorem 5.15℄.The de
omposition T = S + Q in (2.1) is 
alled the Jordan de
ompo-sition of T . It does not depend on the spe
tral measure E used to de�ne
S (and, e�e
tively, also Q)�all spe
tral measures for whi
h T is prespe
-tral yield the same S and Q. This follows from the fa
t that if an operator
T ∈ L (X), prespe
tral or not, 
an be represented as T = S +Q = S0 +Q0,where S, S0 ∈ L (X) are s
alar-type prespe
tral, and Q,Q0 ∈ L (X) arequasinilpotent, satisfying SQ = QS and S0Q0 = Q0S0, then S = S0 and
Q = Q0 [11, Theorem 5.23℄. If T ∈ L (X) 
an be written as T = S+Q with
S ∈ L (X) of s
alar type and Q ∈ L (X) quasinilpotent with SQ = QS,then S is said to be the s
alar part of T and Q is its radi
al part .An operator T ∈ L (X) is a spe
tral operator if it is a prespe
tral op-erator of 
lass X ′. In this 
ase, T has a unique resolution of the identity[11, Theorem 6.7℄. An operator T ∈ L (X) is spe
tral if and only if it hasthe form T = S + Q, where S ∈ L (X) is a s
alar-type spe
tral operatorand Q ∈ L (X) is a quasinilpotent operator whi
h 
ommutes with S. Then
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T and S have the same spe
trum and the same resolution of the identity[11, Theorem 6.8℄.Let C∞(C) be the algebra of all in�nitely di�erentiable 
omplex-valuedfun
tions on the 
omplex plane, endowed with the topology of uniform 
on-vergen
e on 
ompa
t sets for the fun
tions and all their partial derivatives.Following Foia³ [21℄ (see also [9, 29, 36℄), an operator T ∈ L (X) is 
alled gen-eralised s
alar if it admits a fun
tional 
al
ulus on C∞(C); the latter meansthat there exists a 
ontinuous C-algebra homomorphism Φ: C∞(C) → L (X)for whi
h Φ(1) = IX and Φ(idC) = T , with idC the identity fun
tion on C.Any Φ with the above properties 
an be viewed as an L (X)-valued distri-bution with 
ompa
t support�a spe
tral distribution for T . A generaliseds
alar operator, even as simple as the identity operator, may possess severaldi�erent spe
tral distributions (
f. [9, p. 94℄, [21℄).Every s
alar-type prespe
tral operator is generalised s
alar: If T ∈ L (X)is of s
alar type with a resolution of the identity E, then the mapping
Φ: C∞(C) → L (X) given by

Φ(f) =
\

σ(T )

f(λ) dE(λ) (f ∈ C∞(C))

is a 
ontinuous algebra homomorphism su
h that Φ(1) = IX and Φ(idC) = T ;see [11, Proposition 5.9℄ for a more general result.One 
an also de�ne a generalised spe
tral operator , but this rather in-volved notion will not intervene in this paper [9, 29, 36℄.3. Standard group de
omposition. For ea
h x in the interval [−1, 1],de�ne
φ(x) =

√
1 − x2 = |sin(arccosx)|.By 
onsidering the Fourier 
osine series expansion of the fun
tion [−π, π) ∋

t 7→ |sin t| ∈ R, one 
an easily 
he
k that
φ(x) =

2

π
− 4

π

∞∑

k=1

1

4k2 − 1
T2k(x) = − 2

π

∑

k∈Z

1

4k2 − 1
T2|k|(x).Here both series are absolutely 
onvergent, this being a 
onsequen
e of therepresentation

Tn(x) = cos(n arccosx) (n ∈ N0, x ∈ [−1, 1])(
f. [31, Se
tion 1.2.1℄) guaranteeing that the polynomials Tn(x) assume val-ues from [−1, 1] whenever |x| ≤ 1. Set
ψ(x) = x+ iφ(x) = x+ i

√
1 − x2for |x| ≤ 1. It is 
lear that the fun
tion ψ maps [−1, 1] homeomorphi
allyonto the 
losed upper unit semi
ir
le T+ = {z ∈ C | |z| = 1, Im z ≥ 0}.



Group de
ompositions of 
osine sequen
es 67Let A be a 
omplex Bana
h algebra with a unity e. Suppose thatan element a ∈ A generates a bounded 
osine sequen
e. Then the series∑
k∈Z

(4k2 − 1)−1c2k(a) is absolutely 
onvergent and, bearing in mind (1.1),one 
an de�ne a
tions of φ and ψ on a by setting
φ(a) = − 2

π

∑

k∈Z

1

4k2 − 1
c2k(a), ψ(a) = a+ iφ(a).The importan
e of both these a
tions lies in the following result.Theorem 3.1. Let A be a 
omplex unital Bana
h algebra. If a ∈ Agenerates a bounded 
osine sequen
e c, then ψ(a) is invertible and generatesa group de
omposition for c.Given an A-valued bounded 
osine sequen
e c generated by a ∈ A, wede�ne the standard group de
omposition of c as the group de
ompositiongenerated by ψ(a).Theorem 3.1 was �rst established in [7℄. A streamlined proof of the the-orem appeared in [4℄. Below we present an even simpler proof.Proof of Theorem 3.1. Suppose that a ∈ A generates a bounded 
osinesequen
e. We 
learly have

φ2(x) = 1 − x2(3.1)for |x| ≤ 1. We shall show that φ2(a) = e − a2, where e is the unity of A.The latter identity rewritten as ψ(a)(a − iφ(a)) = e makes it obvious that
a− iφ(a) is the inverse of ψ(a) and that

a =
1

2
(ψ(a) + ψ(a)−1),(3.2)this being all what is needed to a

omplish the proof.We have

(3.3) φ2(a) =
4

π2

∑

k,l∈Z

1

(4k2 − 1)(4l2 − 1)
c2k(a)c2l(a)

=
4

π2
· 1

2

∑

k,l∈Z

1

(4k2 − 1)(4l2 − 1)
(c2(k+l)(a) + c2(k−l)(a))

=
4

π2

∑

k,n∈Z

1

(4k2 − 1)(4(n− k)2 − 1)
c2n(a)

=
4

π2

∑

k∈Z

1

(4k2 − 1)2
c0(a)

+
4

π2

∑

n∈N

[∑

k∈Z

1

4k2 − 1

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]]
c2n(a).



68 W. Chojna
kiBy the same token,
(3.4) φ2(x) =

4

π2

∑

k∈Z

1

(4k2 − 1)2
T0(x)

+
4

π2

∑

n∈N

[ ∑

k∈Z

1

4k2 − 1

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]]
T2n(x)for |x| ≤ 1. As T0(x) = 1 and T2(x) = 2x2 − 1, (3.1) 
an be rewritten in theform

φ2(x) =
1

2
T0(x) −

1

2
T2(x).(3.5)In view of the orthogonality relations

1\
−1

Ti(x)Tj(x)(1 − x2)−1/2 dx = 0 (i 6= j)(see [31, Se
tion 4.2.2℄), the polynomial expansions in (3.4) and (3.5) 
oin-
ide, so
4

π2

∑

k∈Z

1

(4k2 − 1)2
=

1

2
,

4

π2

∑

k∈Z

1

(4k2 − 1)

[
1

4(n− k)2 − 1
+

1

4(n+ k)2 − 1

]
=

{
−1

2 if n = 1,
0 if n > 1.With these identities, (3.3) 
an now be rewritten as

φ2(a) =
1

2
c0(a) −

1

2
c2(a) = e− a2,as was to be shown.4. A 
ondition for boundedness. This se
tion presents a su�
ient
ondition for the standard group de
omposition of a bounded L (X)-valued
osine sequen
e, where X is a 
omplex Bana
h spa
e, to be bounded. Itrequires that the generator of a 
osine sequen
e should be of s
alar type.As will be shown later, the 
ondition is not a ne
essary one. Amongst its
onsequen
es, the most fundamental is that any bounded L (H)-valued 
o-sine sequen
e, where H is a 
omplex Hilbert spa
e, has a bounded standardgroup de
omposition.We begin with two preliminary results.Let T denote the unit 
ir
le {z ∈ C | |z| = 1}. For an element a of a
omplex Bana
h algebra, let σ(a) denote the spe
trum of a.Proposition 4.1. Let A be a 
omplex unital Bana
h algebra. If b ∈

InvA is su
h that c(b) is bounded , then σ(b) ⊂ T.



Group de
ompositions of 
osine sequen
es 69Proof. Suppose that for b ∈ InvA the 
osine sequen
e c(b) is bounded.Let A0 be the smallest 
omplex Bana
h algebra 
ontaining b and the unityof A. Clearly, A0 is 
ommutative. Sin
e the spe
trum of b relative to A is
ontained in the spe
trum of b relative to A0, we may assume, repla
ing A by
A0 if ne
essary, that A is 
ommutative. Let ∆(A) be the set of all 
omplex-valued homomorphisms on A. Fix τ ∈ ∆(A) arbitrarily. The invertibility of
b implies that τ(b) 6= 0. Furthermore,

τ(cn(b)) =
1

2
(τ(b)n + τ(b)−n)(4.1)for ea
h n ∈ N. Sin
e all members of ∆(A) have unit norm, it follows that

|τ(cn(b))| ≤ sup
n∈N

‖cn(b)‖.(4.2)From this we dedu
e that |τ(b)| = 1; indeed, should |τ(b)| 6= 1 hold, theright-hand side of (4.1) would diverge in modulus to in�nity as n → ∞,
ontradi
ting (4.2). To 
omplete the proof, it su�
es to invoke the identity
σ(b) = {τ(b): τ ∈ ∆(A)} (see e.g. [5, Chapter 1, �16, Proposition 9℄).Proposition 4.2. Let A be a 
omplex unital Bana
h algebra. If a ∈ Agenerates a bounded 
osine sequen
e, then σ(a) ⊂ [−1, 1].Proof. By Theorem 3.1 and Proposition 4.1, ψ(a) has spe
trum 
on-tained in T. As the fun
tion z 7→ (z+ z−1)/2 maps T onto [−1, 1], the resultfollows immediately from (3.2) and the spe
tral mapping theorem (see e.g.[5, Chapter 1, �7, Theorem 4℄).We 
an now pass to more substantial results.Theorem 4.3. Let X be a 
omplex Bana
h spa
e. If B ∈ InvL (X) iss
alar-type prespe
tral and c(B) is bounded , then B is doubly power bounded.Proof. By Proposition 4.1, the spe
trum of B is 
ontained in T. Let Ebe a resolution of the identity for B, and let KE = supω∈B(σ(B)) ‖E(ω)‖.Then, for ea
h n ∈ Z, Bn =

T
σ(B) λ

n dE(λ). Sin
e
∥∥∥
\
ω

f(λ) dE(λ)
∥∥∥ ≤ 4KE sup

λ∈ω
‖f(λ)‖for any ω ∈ B(C) and any 
omplex-valued bounded Borel fun
tion f on ω[11, p. 120℄, it follows that

‖Bn‖ ≤ 4KE sup
λ∈σ(B)

|λn| ≤ 4KE sup
λ∈T

|λn| = 4KEfor ea
h n ∈ Z.Theorem 4.4. Let X be a 
omplex Bana
h spa
e. If A ∈ L (X) is as
alar-type operator of 
lass Γ that generates a bounded 
osine sequen
e, then
ψ(A) is a s
alar-type operator of 
lass Γ that is doubly power bounded.
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kiProof. By Proposition 4.2, we have σ(A) ⊂ [−1, 1]. Let E be the resolu-tion of the identity of 
lass Γ for A. Then, on a

ount of ψ([−1, 1]) = T+,
ψ(A) =

\
σ(A)

ψ(λ) dE(λ) =
\

T+

z dF (z),

where F : B(C) → L (E) is the spe
tral measure of 
lass Γ de�ned by
F (ω) = E(ψ−1(ω)) (ω ∈ B(C)).Thus ψ(A) is a s
alar-type operator of 
lass Γ . By Theorem 3.1, c(ψ(A))

= c(A) and c(A) is bounded by assumption. Now Theorem 4.3 guaranteesthat ψ(A) is doubly power bounded.Putting the last two theorems together yields the following fundamentalresult.Theorem 4.5. Let X be a 
omplex Bana
h spa
e. If a bounded L (X)-valued 
osine sequen
e is generated by a s
alar-type prespe
tral operator , thenthe standard group de
omposition for this 
osine sequen
e is bounded.It is well known that the generator of a bounded L (H)-valued 
osinesequen
e, where H is a 
omplex Hilbert spa
e, is similar to a normal (in fa
t,hermitian) operator [6, Theorem 2.1℄. This fa
t 
ombined with Theorem 4.5and the elementary result that any operator similar to a normal operator iss
alar-type spe
tral leads to the following assertion.Theorem 4.6. The standard group de
omposition of a bounded L (H)-valued 
osine sequen
e, where H is a 
omplex Hilbert spa
e, is bounded.5. A spe
trality result. Here we re
ord a result that will be of rele-van
e in what follows. It should be 
ompared with Theorem 4.4.Given a linear subspa
e Y of a Bana
h spa
e X, we denote by Y ⊥ theannihilator of Y in X ′ de�ned as
Y ⊥ = {x′ ∈ X ′ | 〈x, x′〉 = 0 for all x ∈ Y }.Theorem 5.1. Let X be a 
omplex Bana
h spa
e. If A ∈ L (X) isprespe
tral of 
lass Γ and generates a bounded 
osine sequen
e, then ψ(A)is prespe
tral of 
lass Γ .Proof. Let E be the spe
tral resolution of the identity for A of 
lass Γ .Then setting

F (ω) = E(ψ−1(ω)) (ω ∈ B(C))de�nes a spe
tral measure of 
lass Γ . As the range of ψ 
oin
ides with T+,
F is supported on T+. Sin
e {E(ω) | ω ∈ B(C)} 
ommutes with A, itfollows that {F (ω) | ω ∈ B(C)} 
ommutes with B = ψ(A). The proof will
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es 71be 
omplete on
e we show that
σ(B|F (ω)X) ⊂ ω(5.1)for ea
h ω ∈ B(T+).Fix ω ∈ B(T+) arbitrarily. For ea
h n ∈ N, let

ω(−1)
n = ω ∩ ψ([−1,−1 + n−1)),

ω(0)
n = ω ∩ ψ([−1 + n−1, 1 − n−1]),

ω(1)
n = ω ∩ ψ((1 − n−1, 1]).We have

B|F (ω)X = B|
F (ω

(−1)
n )X

⊕B|
F (ω

(0)
n )X

⊕B|
F (ω

(1)
n )Xand further

σ(B|F (ω)X) = σ(B|
F (ω

(−1)
n )X

) ∪ σ(B|
F (ω

(0)
n )X

) ∪ σ(B|
F (ω

(1)
n )X

)(5.2)(
f. [11, Proposition 1.37℄). As A is prespe
tral, we see that
σ(A|

F (ω
(0)
n )X

) ⊂ ψ−1(ω
(0)
n ) = ψ−1(ω

(0)
n ),(5.3)where the last equality results from ψ being a homeomorphism. Furthermore,

A|
F (ω

(0)
n )X

is prespe
tral with resolution of the identity {E(ω)|
F (ω

(0)
n )X

|
ω ∈ B(C)} of 
lass Γ/(F (ω

(0)
n )X)⊥; here the quotient spa
e Γ/(F (ω

(0)
n )X)⊥is a total subspa
e of X ′/(F (ω

(0)
n )X)⊥, the latter being identi�ed with

(F (ω
(0)
n )X)′ (
f. [11, Theorem 14.2℄). Sin
e ψ−1(ω

(0)
n ) ⊂ [−1 + n−1,

1 − n−1] and sin
e ψ has a holomorphi
 extension to a neighbourhood of
[−1 + n−1, 1 − n−1], namely

ψ(z) = z +
√

1 − z2 (z ∈ C, |z| < 1),where √
1 − z2 employs the bran
h of the square root fun
tion w 7→ √

wde�ned for all w ∈ C with Rew > 0, we 
on
lude that ψ(A|
F (ω

(0)
n )X

) isprespe
tral of 
lass Γ/(F (ω
(0)
n )X)⊥ (
f. [11, Theorem 5.16℄). By (5.3) andthe spe
tral mapping theorem (see e.g. [5, Chapter 1, �7, Theorem 4℄),
ψ(A|

F (ω
(0)
n )X

) ⊂ ω
(0)
n .This together with the identity

B|
F (ω

(0)
n )X

= ψ(A|
F (ω

(0)
n )X

)implies
σ(B|

F (ω
(0)
n )X

) ⊂ ω
(0)
n ,when
e, in parti
ular,

σ(B|
F (ω

(0)
n )X

) ⊂ ω.(5.4)
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kiFor x ∈ C and r > 0, let D(x, r) = {z ∈ C | |z − x| ≤ r}. As we shall see,there exist two sequen
es (δ−n )n∈N and (δ+n )n∈N of positive numbers su
h that
σ(B|

F (ω
(−1)
n )X

) ⊂ D(−1, δ−n ) and lim
n→∞

δ−n = 0,(5.5)
σ(B|

F (ω
(1)
n )X

) ⊂ D(1, δ+n ) and lim
n→∞

δ+n = 0.(5.6)Assuming this for now, let Λ = {−1, 1} \ ω. Observe that if Λ is non-void,then, for ea
h λ ∈ Λ, there exists nλ ∈ N su
h that ω(λ)
n = ∅ whenever

n ≥ nλ; indeed, otherwise, for some λ ∈ Λ, there would exist a sequen
e
(xnk

)k∈N with xnk
∈ ω

(λ)
nk

and limk→∞ nk = ∞, implying that λ ∈ ω, whi
his a 
ontradi
tion. Let
n′ =

{
max{nλ | λ ∈ Λ} if Λ 6= ∅,
1 otherwise.Clearly, if Λ is non-void and λ ∈ Λ, then ω(λ)

n = ∅ whenever n ≥ n′. Hen
e⋃
λ∈Λ σ(B|

F (ω
(λ)
n )X

) = ∅ for n ≥ n′ regardless of whether Λ is empty or not,and (5.2) redu
es to
σ(B|F (ω)X) = σ(B|

F (ω
(0)
n )X

) ∪
⋃

λ∈{−1,1}\Λ

σ(B|
F (ω

(λ)
n )X

)

for n ≥ n′. This in 
onjun
tion with (5.4)�(5.6) implies that
σ(B|F (ω)X) ⊂ ω ∪ ({−1, 1} \ Λ).As {−1, 1} \ Λ = {−1, 1} ∩ ω ⊂ ω, we immediately obtain (5.1).We are left with establishing the existen
e of (δ−n )n∈N and (δ+n )n∈N. Weshall 
on�ne ourselves to indi
ating how to 
onstru
t the �rst sequen
e, the
onstru
tion of the other being 
ompletely analogous. For ea
h n ∈ N, let
Xn = F (ω(−1)

n )X, In = IXn
,

An = A|Xn
, Bn = B|Xn

.Given T ∈ L (X), denote by r(T ) the spe
tral radius of T . We shall showthat
lim
n→∞

r(In +Bn) = 0.(5.7)With this formula, the desired sequen
e is immediately obtained by set-ting δ−n = r(In + Bn). Sin
e Xn = E(ψ−1(ω
(−1)
n ))X and ψ−1(ω

(−1)
n ) ⊂

[−1,−1 + n−1), it follows that σ(An) ⊂ [−1,−1 + n−1]. Hen
e
r(In +An) ≤

1

n
.(5.8)Given that Bn = An + iφ(An) and that An and φ(An) 
ommute, we have

r(In +Bn) ≤ r(In +An) + r(φ(An))(5.9)
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osine sequen
es 73(
f. [5, p. 19℄). Now φ(An)
2 = In −A2

n and so
r(φ(An))

2 = r(φ(An)
2) = r((In −An)(In +An))

≤ r(In −An)r(In +An) ≤ (1 + ‖An‖)r(In +An)

≤ (1 + ‖A‖)r(In +An),where the �rst equality follows from the spe
tral radius formula and the�rst inequality follows from the fa
t that In − An and In + An 
ommute(
f. [5, p. 19℄). Putting this together with (5.8) and (5.9) yields (5.7) imme-diately.6. Cosine sequen
es generated by translations. This se
tion is 
on-
erned with 
ertain 
osine sequen
es that are naturally de�ned in terms oftranslation operators on the lp spa
es over the additive group of integers.We isolate from among these 
osine sequen
es those that have a boundedstandard group de
omposition.For 1 ≤ p ≤ ∞, let lp(Z) be the spa
e of all 
omplex-valued two-sidedsequen
es, p-summable when p < ∞ and bounded when p = ∞, with thestandard ‖ · ‖p norm. Given a two-sided sequen
e ξ and k ∈ Z, the translateof ξ by k, denoted Tkξ, is the sequen
e
(Tkξ)n = ξn+k (n ∈ Z).For 1 ≤ p ≤ ∞ and k ∈ Z, let T

(p)
k be the operator lp(Z) ∋ ξ 7→ Tkξ ∈ lp(Z).If p is understood, T

(p)
k will be abbreviated to Tk. T

(p)
k is a surje
tive linearisometry and its inverse is T

(p)
−k. T

(p)
1 and T

(p)
−1 are known as the ba
kwardunit shift and forward unit shift in lp(Z), respe
tively. Let

Ap =
1

2
(T

(p)
1 + T

(p)
−1).Consider the 
osine sequen
e generated by Ap. Obviously,

cn(Ap) =
1

2
(T(p)

n + T
(p)
−n)for ea
h n ∈ Z. By 
onstru
tion, T

(p)
1 generates a group de
omposition for

c(Ap) and, sin
e ‖T(p)
1 ‖ = 1, this group de
omposition is bounded. We shallshow that the standard group de
omposition of c(Ap) is bounded only if

1 < p <∞. We start with the following result.Theorem 6.1. If 1 < p <∞, then the standard group de
omposition of
c(Ap) is bounded.Proof. For simpli
ity, we relabel ψ(Ap) as Bp. To prove that Bp is doublypower bounded, observe �rst that, for ea
h ξ ∈ l2(Z) ∩ lp(Z),

Âpξ(t) = (cos t)ξ̂(t)
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kifor almost every (a.e.) t ∈ [0, 2π). Here ξ̂ denotes the Fourier transformof ξ�the element of L2([0, 2π)) de�ned by
ξ̂(t) =

∑

k∈Z

ξ(k)e−ikt for a.e. t ∈ [0, 2π),with the right-hand side understood as the limit in the L2-norm of the se-quen
e (dn(ξ))n∈N in L2([0, 2π)) given by
dn(ξ)(t) =

n∑

k=−n

ξ(k)e−ikt (t ∈ [0, 2π)).It is easily veri�ed that
B̂pξ(t) = (cos t+ i|sin t|)ξ̂(t) for a.e. t ∈ [0, 2π).(6.1)Let f : [0, 2π) → R be given by

f(t) =

{
1 if 0 ≤ t < π,
−1 if π ≤ t < 2π.Sin
e f is bounded, Plan
herel's theorem ensures the existen
e of a boundedlinear operator Mf : l

2(Z) → l2(Z) satisfying
M̂fξ = f ξ̂ (ξ ∈ l2(Z)).Sin
e, in addition, f is of bounded variation, it follows from a result ofSte
hkin [34℄ (
f. also [15, Theorem 6.4.4℄) that f is a p-multiplier�thereexists a positive number mp su
h that

‖Mfξ‖p ≤ mp‖ξ‖p (ξ ∈ l2(Z) ∩ lp(Z)).(6.2)Here the assumption 1 < p <∞ is 
riti
al. The estimate (6.2) together with
l2(Z) ∩ lp(Z) being dense in lp(Z) allows Mf to be uniquely extended to abounded linear operator from lp(Z) into itself, also denoted Mf , of norm
≤ mp.De�ne two (proje
tion) operators P± in L (lp(Z)) by

P± =
1

2
(Ilp(Z) ±Mf ).Clearly, we have P+ + P− = Ilp(Z), and P̂+ξ = 1[0,π)ξ̂ and P̂−ξ = 1[π,2π)ξ̂for ξ ∈ l2(Z) ∩ lp(Z). In view of (6.1), if n ∈ Z and ξ ∈ l2(Z) ∩ lp(Z), then

B̂npP
+ξ(t) = (cos t+ i sin t)n1[0,π)(t)ξ̂(t) = eintP̂+ξ(t) = T̂nP+ξ(t),

B̂npP
−ξ(t) = (cos t− i sin t)n1[π,2π)(t)ξ̂(t) = e−intP̂−ξ(t) = ̂T−nP+ξ(t)for a.e. t ∈ [0, 2π). Hen
e B

n
pP

+ = TnP
+ and B

n
pP

− = T−nP
−, and further

‖Bnp‖ ≤ ‖BnpP+‖ + ‖BnpP−‖ = ‖TnP+‖ + ‖T−nP
−‖ = ‖P+‖ + ‖P−‖.Thus Bp is doubly power bounded.
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ompositions of 
osine sequen
es 75To treat the 
ases p = 1 and p = ∞, we need an auxiliary result. For
1 ≤ p ≤ ∞, denote by lpe(Z) the spa
e of all even sequen
es in lp(Z).Theorem 6.2. Assume that either p = 1 or p = ∞. If B ∈ L (lp(Z))generates a group de
omposition for c(Ap) and if lpe(Z) is invariant for both
B and B−1, then B is not doubly power bounded.Proof. If B were doubly power bounded, then so too would be Be =
B|lpe (Z). Consequently, Be would generate a bounded group de
ompositionfor the 
osine sequen
e engendered by Ap,e = Ap|lpe (Z). But this is impossible,sin
e, in view of [7, Theorems 2.2 and 2.4℄, no group de
omposition of c(Ap,e)is bounded when either p = 1 or p = ∞.We 
an now state the �nal result of this se
tion.Theorem 6.3. The standard group de
ompositions of c(A1) and c(A∞)fail to be bounded.Proof. Suppose that either p = 1 or p = ∞. Observe that while lpe(Z) isnot an invariant subspa
e for Tk whenever k ∈ Z \ {0}, it is an invariantsubspa
e for Tk + T−k for ea
h k ∈ Z. Hen
e lpe(Z) is invariant for Ap and
φ(Ap). Set Bp = ψ(Ap) = Ap + iφ(Ap). Then B

−1
p = Ap − iφ(Ap) and lpe(Z)is invariant for both Bp and B

−1
p . Now Theorem 6.2 ensures that Bp is notdoubly power bounded.7. La
k of prespe
trality. The main goal of this se
tion is to establishthe following result.Theorem 7.1. If 1 ≤ p ≤ ∞ and p 6= 2, then Ap is not prespe
tral.While Theorem 7.1 is of interest in its own right, its primary signi�
an
ehere is that it permits showing that a bounded 
osine sequen
e may have abounded standard group de
omposition without the generator of the 
osinesequen
e being s
alar-type prespe
tral. Indeed, Theorems 6.1 and 7.1, there�exivity of lp(Z) for 1 < p <∞, and the fa
t that a prespe
tral operator ona re�exive Bana
h spa
e is spe
tral [11, Theorem 6.11℄ imply the followingresult.Theorem 7.2. If 1 < p < ∞ and p 6= 2, then Ap is not spe
tral andgenerates a bounded 
osine sequen
e with bounded standard group de
ompo-sition.One 
onsequen
e of the above theorem is that, barring the 
ase p = 2,Theorem 6.1 
annot be dedu
ed dire
tly from Theorem 4.5. That Theo-rem 6.1 in the 
ase p = 2 redu
es indeed to Theorem 4.5 results from A2being of s
alar type (see 
omments before Theorem 4.6).
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kiTheorem 7.1 has a prede
essor in the result of Fixman [19℄ andKrabbe [27℄ stating that, for ea
h 1 ≤ p ≤ ∞ with p 6= 2, the (ba
k-ward) unit shift in lp(Z) fails to be spe
tral. It is worth noting that as far asspe
trality is 
on
erned, the unit shift is typi
al of translation operators ingeneral lo
ally 
ompa
t Abelian groups�if G is su
h a group, then ex
ept intrivial 
ases, translations in Lp(G), 1 ≤ p ≤ ∞, p 6= 2, are not spe
tral [22℄,[11, Theorem 20.30℄.Theorem 7.1 makes no dire
t appeal to 
osine sequen
es, but its proof willmake a 
riti
al use of the standard group de
ompositions of 
ertain bounded
osine sequen
es. Before giving this proof, we present a few results that weshall need.For ea
h λ ∈ [−1, 1], let Xλ be the eigenspa
e of A∞ 
orresponding tothe eigenvalue λ. If a = (an)n∈Z ∈ Xλ, then
[
an+1

an

]
=

[
2λ −1
1 0

][
an
an−1

]
= · · · =

[
2λ −1
1 0

]n[
a1

a0

]

for ea
h n ∈ Z, showing that a depends linearly on a0 and a1, and hen
ethat dimXλ ≤ 2. For ea
h t ∈ T, let χt = (tn)n∈Z. It is immediately ver-i�ed that χ1 ∈ X1, χ−1 ∈ X−1, and that if |λ| < 1, then χψ(λ) and χ
ψ(λ)both belong to Xλ and are linearly independent. In parti
ular, if |λ| < 1,then dimXλ = 2, and Xλ is spanned by χψ(λ) and χψ(λ)

. As we shall provenext, X1 and X−1 are one-dimensional, spanned by χ1 and χ−1, respe
-tively.If a ∈ X1, then, for ea
h n ∈ Z, an+1 − an = an − an−1, implying that
an+1 − an = b, where b = a1 − a0. Hen
e an = a0 + nb, and, sin
e a isbounded, we have b = 0. Consequently, a = a0χ1.If a ∈ X−1, then, for ea
h n ∈ Z, an+1+an = −(an+an−1), so an+1+an =
(−1)nc, where c = a0 + a1. Hen
e, for ea
h k ∈ Z, a2k+1 − a2k−1 = a2k+1 +
a2k − (a2k + a2k−1) = 2c and further a2k+1 = 2kc + a1. The boundednessof a now implies that c = 0. Thus an+1 = −an for ea
h n ∈ Z and further
a = a0χ−1.Re
all that a 
omplex-valued two-sided sequen
e (ξn)n∈Z is almost pe-riodi
 if, for ea
h ε > 0, there exists K ∈ N su
h that every set of theform {k, k + 1, . . . , k + K}, k ∈ Z, 
ontains N ∈ Z with the property that
|ξn − ξn+N | < ε for all n ∈ Z. Equivalently, (ξn)n∈Z should belong to the
losed linear span of {χt | t ∈ T} in l∞(Z). In parti
ular, every almost pe-riodi
 sequen
e is bounded. Let ap(Z) denote the spa
e of 
omplex-valuedalmost periodi
 two-sided sequen
es. Obviously, ap(Z) is translation invari-ant, and hen
e is also an invariant subspa
e for A∞.Lemma 7.3. If A∞ is prespe
tral , then A∞|ap(Z) is s
alar-type prespe
-tral.
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ompositions of 
osine sequen
es 77Proof. First note that if R is a linear operator on l∞(Z) 
ommuting with
A∞, then, for ea
h |λ| ≤ 1, Xλ is invariant for R. Suppose now that A∞ isprespe
tral of 
lass Γ . Let S and Q be the s
alar and radi
al parts of A∞,and let E be the resolution of the identity for A∞ of 
lass Γ . Sin
e S, Q,and {E(ω) | ω ∈ B(C)} 
ommute with A∞, it follows that, for ea
h |λ| ≤ 1,
Xλ is invariant for S, Q, and all of the E(ω). We also have

A∞|Xλ
= S|Xλ

+Q|Xλ
,with S|Xλ

and Q|Xλ

ommuting. Setting E|Xλ

(ω) = E(ω)|Xλ
for ea
h

ω ∈ B(C) de�nes a spe
tral measure E|Xλ
in Xλ of 
lass Γ/X⊥

λ , the quotientspa
e Γ/X⊥
λ being a total subspa
e of X ′/X⊥

λ identi�ed with X ′
λ. Be
ause

Xλ is �nite-dimensional, all ve
tor topologies on Xλ 
oin
ide and, as a re-sult, E|Xλ
is of 
lass X ′

λ. Clearly, S|Xλ
=
T
C
λdE|Xλ

(λ), so S|Xλ
is of s
alartype. Also, we have limn→∞ ‖(Q|Xλ

)n‖ ≤ limn→∞ ‖Qn‖ = 0, implying that
Q|Xλ

is quasinilpotent. Thus A∞|Xλ
is spe
tral, and S|Xλ

and Q|Xλ
are itss
alar and radi
al parts. But A∞|Xλ

= λIXλ
, so A∞|Xλ

is in fa
t of s
alartype. Sin
e the Jordan de
omposition is unique, it follows that Q|Xλ
= 0.As every χt (t ∈ T) 
an be represented as either χψ(λ) or χψ(λ)

for some
|λ| ≤ 1, the 
losed linear spa
e spanned by the Xλ in l∞(Z) 
oin
ides with
ap(Z). Consequently, Q|ap(Z) = 0 and further A∞|ap(Z) = S|ap(Z). Sin
e
S|ap(Z) =

T
C
λdE|ap(Z)(λ), where E|ap(Z) is the spe
tral measure of 
lass

Γ/ap(Z)⊥ de�ned by E|ap(Z)(ω) = E(ω)|ap(Z) for ω ∈ B(C), it follows that
A∞|ap(Z) is a s
alar-type operator of 
lass Γ/ap(Z)⊥.Proof of Theorem 7.1. Arguing 
ontrapositively, assume that Ap is pre-spe
tral of 
lass Γ . Introdu
e the notation

A =

{
Ap if 1 ≤ p <∞ and p 6= 2,
A∞|ap(Z) if p = ∞.We �rst show that A is of s
alar type. We shall 
onsider three 
ases.Assume �rst that p = ∞. Then A = A∞|ap(Z) and that A is of s
alar typein this 
ase is ensured by Lemma 7.3.Suppose next that p = 1. Then A = A1. Let A = S + Q be the Jordande
omposition of A, with S and Q the respe
tive s
alar and radi
al parts.Then the dual operator A

′ is prespe
tral of 
lass l1(Z), and S′ and Q′ are thes
alar and radi
al parts of A
′ [11, Theorem 5.22℄. Upon identifying the dualof l1(Z) with l∞(Z), A

′ be
omes identi
al with A∞. Thus A∞ is prespe
traland, in view of Lemma 7.3, Q′|ap(Z) = 0. Sin
e ap(Z) is dense in l∞(Z) underthe weak∗ topology [3℄, it follows that Q = 0. Consequently, A1 is of s
alartype.Finally, suppose that 1 < p < ∞ and p 6= 2. Then A = Ap. By Theo-rem 5.1, the assumption that A is prespe
tral leads to the 
on
lusion that also
B = ψ(A) is prespe
tral. Sin
e lp(Z) is re�exive for the adopted value of p,
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B is in fa
t spe
tral. Moreover, by Theorem 6.1, B is doubly power bounded.A

ording to a theorem proved independently by Fixman [19℄ and Foguel [20℄and further extended by Dowson [10℄ (see also [11, Theorem 10.17℄), everydoubly power bounded spe
tral operator is of s
alar type. In view of thisresult, B is s
alar-type spe
tral, and hen
e also A = B + B

−1 is s
alar-typespe
tral.Having established that A is of s
alar type, we now produ
e a �nal 
on-tradi
tion. Our approa
h will be patterned after [22℄; see also [11, Theo-rem 20.30℄. For ea
h n ∈ N, let pn be the nth Rudin�Shapiro polynomial.There is then a sequen
e (εn)n∈N of numbers, ea
h with εn = −1 or εn = 1,su
h that
pn(z) =

n∑

k=1

εkz
k

and
sup
z∈T

|pn(z)| ≤ 5n1/2(7.1)for ea
h n ∈ N. The existen
e of su
h a sequen
e of polynomials is provedin [33℄. For ea
h n ∈ N, set
qn(z) =

n∑

k=1

εkTk(z),where�let us re
all�Tk(z) stands for the kth �rst-kind Chebyshev polyno-mial. By Theorem 4.4, B = ψ(A) is of s
alar type of 
lass Γ . Let E be theresolution of the identity for B of 
lass Γ , and letKE = supω∈B(σ(B)) ‖E(ω)‖.Sin
e σ(B) ⊂ T, it follows that, for ea
h n ∈ N, pn(B) =
T
T
pn(z) dE(z) and

pn(B
−1) =

T
T
pn(z) dE(z), and further that

‖pn(B)‖ ≤ 4KE sup
z∈T

|pn(z)|, ‖pn(B−1)‖ ≤ 4KE sup
z∈T

|pn(z)|.But, as a moment's re�e
tion reveals,
qn(A) =

1

2
(pn(B) + pn(B

−1))so, in view of (7.1),
‖qn(A)‖ ≤ 1

2
(‖pn(B)‖ + ‖pn(B−1)‖) ≤ 20KEn

1/2.(7.2)We shall now look at three 
ases. Suppose �rst that 1 ≤ p < 2. For ea
h
k ∈ N, denote by ek the two-sided sequen
e with all entries equal to 0 ex
eptthe kth entry whi
h is equal to 1. Clearly,

qn(Ap)e0 =
1

2

n∑

k=1

εk(e−k + ek),
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es 79implying that
21/p−1n1/p = ‖qn(Ap)e0‖p ≤ ‖qn(Ap)‖.(7.3)Bearing in mind that A = Ap when 1 ≤ p < 2, we see that this estimate isin
ompatible with (7.2) for large n. This establishes the theorem in the 
ase

1 ≤ p < 2.Assume now that 2 < p < ∞. First observe that with the dual of lp(Z)identi�ed with lq(Z), where q is the 
onjugate index q = p/(p− 1), A
′
p 
oin-
ides with Aq. Given that 1 < q < 2, we 
an now invoke (7.3) with p repla
edby q to 
on
lude that

21/q−1n1/q ≤ ‖qn(Aq)‖ = ‖qn(Ap)‖.But, remembering that A = Ap when 2 < p <∞, we obtain a 
ontradi
tionwith (7.2) for large n. This establishes the theorem in the 
ase 2 < p <∞.Finally, assume that p = ∞. Re
all that a subspa
e Y of the dual X ′ toa normed spa
e X is 
alled norming (1-norming) if the pseudonorm de�nedby
|||x||| = sup{|〈x, x′〉| | x′ ∈ Y, ‖x′‖ ≤ 1} (x ∈ X)is equivalent (equal, respe
tively) to the original norm onX. Using the equal-ity A

′
1 = A∞ and the fa
t that ap(Z) is a 1-norming subspa
e of l∞(Z) [3℄,we obtain

‖qn(A1)e0‖1 = sup
ξ∈ap(Z),
‖ξ‖∞=1

|〈qn(A1)e0, ξ〉|

= sup
ξ∈ap(Z),
‖ξ‖∞=1

|〈e0, qn(A∞)ξ〉| ≤ ‖qn(A∞|ap(Z))‖

for ea
h n ∈ N. On the other hand, the equality in (7.3) spe
ialised to p = 1yields n = ‖qn(A1)e0‖1 for ea
h n ∈ N. Therefore, n ≤ ‖qn(A∞|ap(Z))‖ forea
h n ∈ N. But, as A = A∞|ap(Z) when p = ∞, this is in
ompatible with(7.2) for large n, establishing the theorem in the 
ase p = ∞ and �nishingthe proof.8. Unbounded group de
ompositions. A

ording to Theorem 4.6,any bounded L (H)-valued 
osine sequen
e, where H is a 
omplex Hilbertspa
e, has a bounded standard group de
omposition. Here we show that abounded L (H)-valued 
osine sequen
e may also admit an unbounded groupde
omposition. We present two examples, of whi
h the simpler, given �rst,involves a �nite-dimensional Hilbert spa
e.Example 8.1. Let H = C2 and let c be the L (H)-valued 
osine se-quen
e generated by A = IH . Clearly, c is bounded, as all of its elements
oin
ide with IH . Identify L (H) with the algebra of all 2×2 
omplex-valued
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kimatri
es and let B =
[

1
0

1
1

]. It is immediately veri�ed that [
1
0

−1
1

] is theinverse of B and that A = (B +B−1)/2. Thus B generates a group de
om-position for c. This group de
omposition is unbounded be
ause Bn =
[1

0
n
1

]for ea
h n ∈ Z.The generator of the group de
omposition in the above example is spe
-tral, as is indeed the 
ase with any operator in a �nite-dimensional Hilbertspa
e. The next example will exhibit a bounded L (H)-valued 
osine se-quen
e, with H an in�nite-dimensional 
omplex Hilbert spa
e, admittingan unbounded group de
omposition generated by a non-spe
tral operator.While, in view of Theorem 4.3, the generator of an unbounded group de
om-position for an operator-valued bounded 
osine sequen
e 
annot be s
alar-type prespe
tral, the non-spe
tral generator in the up
oming example willbe generalised s
alar.Example 8.2. Let H be an in�nite-dimensional 
omplex Hilbert spa
e.Let (Pk)k∈N and (Qk)k∈N be two sequen
es of proje
tions in H su
h that(a) PkPl = QkQl = 0 for all k, l ∈ N with k 6= l,(b) PkQl = QlPk = 0 for all k, l ∈ N,(
) ∑∞
k=1(Pk+Qk) = IH , where the sum 
onverges in the strong operatortopology,(d) supk∈N ‖Pk‖ = ∞,(e) KPQ = supω∈F (N) ‖

∑
k∈ω(Pk +Qk)‖ <∞, where F (N) denotes theset of all �nite subsets of N.Su
h sequen
es 
an be 
onstru
ted as follows. Exploiting the assumptionthat H is in�nite-dimensional, we �rst represent H as the Hilbert spa
e ten-sor produ
t H ⊗ H , where H is a 
opy of H. Let (Uk)k∈N be a sequen
eof proje
tions in H with UkUl = 0 for k 6= l and su
h that ∑∞

k=1 Uk is un-
onditionally 
onvergent to IH in the strong operator topology. Let (Vk)k∈Nbe a sequen
e of proje
tions with VkVl = 0 for k 6= l and su
h that ∑∞
k=1 Vkis 
onditionally , but not un
onditionally, 
onvergent to IH in the strongoperator topology. The existen
e of the latter sequen
e follows from theexisten
e of 
onditional S
hauder bases in a separable, in�nite-dimensionalHilbert spa
e, whi
h was �rst established by K. I. Babenko [2℄. Another
onstru
tion of 
onditional bases in a separable Hilbert spa
e, due to C. A.M
Carthy and J. S
hwartz [32℄, is presented in detail in [30, p. 74℄. Given

ω ∈ F (N), let Vω =
∑

k∈ω Vk. For ea
h k ∈ N, 
hoose ωk ∈ F (N) so that
‖Vωk

‖ ≥ k‖Uk‖−1, this being possible be
ause ∑∞
k=1 Vk is not un
ondition-ally 
onvergent. Set

Pk = Uk ⊗ Vωk
, Qk = Uk ⊗ (IH − Vωk

)for ea
h k ∈ N. It is easily seen that the sequen
es (Pk)k∈N and (Qk)k∈Nsatisfy 
onditions (a)�(e).
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es 81Sele
t a sequen
e (tk)k∈N in T \ {1} su
h that {tk, tk} ∩ {tl, tl} = ∅ for
k 6= l and

∞∑

k=1

|tk − tk| ‖Qk‖ <∞.(8.1)For example, a sequen
e (tk)k∈N of distin
t points in the open upper semi-
ir
le {z ∈ C | |z| = 1, Im z > 0} satisfying |tk − 1| ≤ (1 + ‖Qk‖)−1k−2 forea
h k ∈ N will do. Let
B =

∞∑

k=1

(tkPk + tkQk).The series on the right-hand side 
onverges in the strong operator topology,given that it 
an be represented as
∞∑

k=1

tk(Pk +Qk) +
∞∑

k=1

(tk − tk)Qk,where, by (e), the �rst series 
onverges un
onditionally in the strong opera-tor topology, and, by (8.1), the se
ond series 
onverges in the norm operatortopology. By (a)�(
), for ea
h n ∈ Z,
Bn =

∞∑

k=1

tnk(Pk +Qk) +
∞∑

k=1

(t
n
k − tnk)Qkand further

Bn +B−n =
∞∑

k=1

(tnk + t
n
k)(Pk +Qk).(8.2)Condition (e) implies that

∥∥∥
∞∑

k=1

ck(Pk +Qk)
∥∥∥ ≤ 4KPQ sup

k∈N

|ck|(8.3)for every bounded sequen
e (ck)k∈N. In parti
ular, for ea
h n ∈ Z,
∥∥∥

∞∑

k=1

tnk(Pk +Qk)
∥∥∥ ≤ 4KPQ.As |tnk − tnk | ≤ |n| |tk − tk|, we have

∥∥∥
∞∑

k=1

(t
n
k − tnk)Qk

∥∥∥ ≤ |n|
∞∑

k=1

|tk − tk| ‖Qk‖.Consequently, bearing in mind (8.1), we �nd that
‖Bn‖ = O(|n|).
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kiThis estimate immediately implies that B is a generalised s
alar operatorwith σ(B) ⊂ T (
f. [23℄, [29, Theorem 1.5.12℄).Let A = (B + B−1)/2. The 
osine sequen
e generated by A 
oin
ideswith c(B) and is bounded, sin
e, by (8.2) and (8.3),
‖Bn +B−n‖ =

∥∥∥
∞∑

k=1

(tnk + t
n
k)(Pk +Qk)

∥∥∥ ≤ 8KPQfor ea
h n ∈ Z. Our work will be 
omplete on
e we show that B is neitherpower bounded nor spe
tral.We �rst show that B is not power bounded. Assume, on the 
ontrary,that KB = supn∈N ‖Bn‖ <∞. Note that
lim
N→∞

1

N

N∑

n=1

(st)n = δst(8.4)for s, t ∈ T, where δst denotes the Krone
ker delta. For ea
h m ∈ N, de�nea proje
tion Rm by
Rm =

m∑

k=1

(Pk +Qk).Clearly, by (e),
sup
m∈N

‖Rm‖ ≤ KPQ.(8.5)Also
BnRm =

m∑

k=1

(tnkPk + t
n
kQk)for any n,m ∈ N. Now, in view of (8.4),

lim
N→∞

1

N

N∑

n=1

snBnRm =
m∑

k=1

(δstkPk + δstkQk)for ea
h m ∈ N and ea
h s ∈ T. Putting s = tm in the above equalityand taking into a

ount that t1, . . . , tm, t1, . . . , tm are all di�erent, we �ndthat
lim
N→∞

1

N

N∑

n=1

t
n
mB

nRm = Pm.Hen
e, bearing in mind (8.5),
sup
m∈N

‖Pm‖ ≤ sup
n∈N

‖Bn‖ sup
m∈N

‖Rm‖ ≤ KBKPQ,
ontrary to (d). Thus B is not power bounded.We �nally show that B is not spe
tral. Assume, on the 
ontrary, that Bis spe
tral and let E be its resolution of the identity. Fix m ∈ N arbitrarily.
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e
BRm = RmB =

m∑

k=1

(tkPk + tkQk),it follows that the range spa
e of Rm, denoted Xm, is invariant for B. More-over, as
PlRm = RmPl = Pl (1 ≤ l ≤ m),we see that Xm is invariant for Pl when 1 ≤ l ≤ m. Therefore
B|Xm

=
m∑

k=1

(tkPk|Xm
+ tkQk|Xm

).(8.6)Remembering that t1, . . . , tm, t1, . . . , tm are all di�erent, we dedu
e immedi-ately that the set fun
tion Fm: B(C) → L (H) de�ned by
Fm(ω) =

m∑

k=1

(δtk(ω)Pk|Xm
+ δtk(ω)Qk|Xm

) (ω ∈ B(C))is a spe
tral measure. Here, for any given a ∈ C, δa denotes the Dira
 measureon C 
on
entrated at a. Sin
e the right-hand side of (8.6) 
an be interpretedas T
C
λdFm(λ), we see that B|Xm

is a s
alar-type spe
tral operator and Fmis its resolution of the identity. It now follows from a theorem of Fixman [19℄(see also [11, Theorem 12.2℄) that, for ea
h ω ⊂ B(C), Xm is invariant for
E(ω) and E(ω)|Xm

= Fm(ω). Hen
e
E(ω)Rm = Fm(ω)Rm =

[ m∑

k=1

(δtk(ω)Pk + δtk(ω)Qk)
]
Rm

=
m∑

k=1

(δtk(ω)Pk + δtk(ω)Qk).In parti
ular, E({tk})Rm = Pk for any k,m ∈ N with k ≤ m. Letting
KE = supω∈B(C) ‖E(ω)‖ and using (8.5), we 
on
lude that

sup
k∈N

‖Pk‖ ≤ KEKPQ.But this is in
ompatible with (d). Thus B is not spe
tral.
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