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On group decompositions of bounded cosine sequences
by

WOoJCIECH CHOJNACKI (Adelaide and Warszawa)

Abstract. A two-sided sequence (¢p)nez with values in a complex unital Banach alge-
bra is a cosine sequence if it satisfies ¢p4m +Cn—m = 2¢ncm for any n,m € Z with ¢y equal
to the unity of the algebra. A cosine sequence (¢n)nez is bounded if sup, ¢y [lcn|| < oco.
A (bounded) group decomposition for a cosine sequence ¢ = (¢n)nez iS a representa-
tion of ¢ as ¢, = (b™ + b ")/2 for every n € Z, where b is an invertible element of
the algebra (satisfying sup, ¢y ||b"] < oo, respectively). It is known that every bounded
cosine sequence possesses a universally defined group decomposition, here referred to as
a standard group decomposition. The present paper reveals various classes of bounded
operator-valued cosine sequences for which the standard group decomposition is bounded.
One such class consists of all bounded .Z(X)-valued cosine sequences (¢y)nez, with X a
complex Banach space and .Z(X) the algebra of all bounded linear operators on X, for
which ¢; is scalar-type prespectral. Every bounded ¥ (H)-valued cosine sequence, where
H is a complex Hilbert space, falls into this class. A different class of bounded cosine se-
quences with bounded standard group decomposition is formed by certain .Z(X)-valued
cosine sequences (c¢p)nez, with X a reflexive Banach space, for which ¢; is not scalar-type
spectral—in fact, not even spectral. The isolation of this class uncovers a novel family
of non-prespectral operators. Examples are also given of bounded .Z(H)-valued cosine
sequences, with H a complex Hilbert space, that admit an unbounded group decompo-
sition, this being different from the standard group decomposition which in this case is
necessarily bounded.

1. Introduction. Let A be a complex Banach algebra with a unity e
and a norm || - ||. A two-sided sequence ¢ = (¢, )nez With values in A is called
a cosine sequence, or a discrete cosine function, if

(i) cntm + Cn—m = 2¢cpcpy, for any n,m € Z,

(ii) co =e.
As is easily verified, every cosine sequence c is even: the equality c_, = ¢,
holds for all n € Z. Furthermore, every cosine sequence is uniquely deter-
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mined by its element indexed by 1. More specifically, if ¢ is a cosine sequence,
then

(1.1) cn =T(c1) (n€Z),

where, for n € Ng = NU {0}, T,,(x) is the nth Chebyshev polynomial of the

first kind
[n/2]

n
T — n—2k/,.2 1 k:'
W)=Y () e
k=0
The representation (1.1) follows easily from the evenness property of cosine
sequences mentioned above and the recursive formulae

To(z) =1, Ti(x)==z, Thyi(x)=2xT,(x)—Th—1(x)

(cf. [31, Section 1.2.1]). The element ¢; is commonly referred to as the gen-
erator of c. Every element of A generates a unique cosine sequence. The
cosine sequence generated by a € A is given by c,(a) = Tj,/(a) for n € Z
and is denoted c(a).

An A-valued cosine sequence (cp)nez satisfying sup,cz |cn| < oo is
termed bounded.

Let InvA be the group of invertible elements of A. It is readily verified
that, for each b € InvA, the sequence ¢(b) defined by

e) =5 "+ (ne)

is a cosine sequence. A group decomposition for an A-valued cosine sequence
¢ = (¢p)nez s a representation of ¢ in the form

(1.2) ¢ =c(b)

for some b € InvA. Note that, in view of the uniqueness property of cosine
sequences, for (1.2) to hold it is necessary and sufficient that

a=a) =50+,

The element b in (1.2) will henceforth be referred to as the generator of
the corresponding group decomposition. If b is doubly power bounded, i.e., if
sup,ez ||b"|| < oo, then the group decomposition is termed bounded and b is
said to generate a bounded group decomposition.

It is known that every bounded cosine sequence with values in a complex
unital Banach algebra admits a special group decomposition, here called a
standard group decomposition [7]. A precise definition will be given later,
but for now we informally characterise the standard group decomposition of
a bounded cosine sequence as being reminiscent of the formula

1
cosnt = 3 [(cost +iv/1 —cos?t)" 4 (cost +1iv/1 — cos?t) "]

(n€Z,tel0,2m)).
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In general, the standard group decomposition of a bounded cosine sequence
may fail to be bounded. For example, there exist bounded cosine sequences
with the property that all their group decompositions, including the standard
one, are unbounded |[7].

The main purpose of this paper is to investigate under what conditions
the standard group decomposition of a bounded cosine sequence is itself
bounded. From a broader perspective, the paper can be seen as an ad-
dition to a growing number of studies exploring the relationship between
cosine functions (including those more general than discrete) and group
representations [4, 16, 25, 35|; see also [1, Section 3.16], [17, Section 2.5],
[18, Sections III.6 and III.8], [28, Section III.1.1]. While most of the interest
in cosine families comes from differential equations, where cosine functions
are parametrised by R rather than Z, the discrete cosine functions occupy
a special position with regard to group decomposability. Unlike bounded
cosine sequences, bounded cosine functions on R fail in general to admit
a group decomposition [24, 26] (although for some, a group decomposition
always exists; this is the case, for example, with any bounded strongly con-
tinuous cosine function taking values in .2 (X), where X is a UMD space [§]).
Ref. [7] sheds light on why there is a difference between Z and R in relation
to cosine families, by characterising Abelian groups G with the property that
every bounded cosine function on G admits a (bounded) group decomposi-
tion.

The rest of the article is laid out as follows. Following Section 2 that con-
tains operator-theoretic prerequisites, Section 3 presents a simplified con-
struction of the standard group decomposition for a bounded cosine se-
quence. Section 4 establishes that if a bounded cosine sequence with values
in Z(X), where X is a complex Banach space, is generated by a scalar-type
prespectral operator, then its standard group decomposition is bounded. One
consequence of this result is the fact that every bounded .Z(H)-valued co-
sine sequence, where H is a complex Hilbert space, has a bounded standard
decomposition. The next three sections aim to show that a bounded cosine
sequence with bounded standard group decomposition can be generated by
an operator that is not scalar-type prespectral. Relevant examples hinge on
identification of a novel family of non-prespectral operators. More specifi-
cally, following Section 5 which is of technical character, it is first shown in
Section 6 that, when 1 < p < oo, the operator A, defined as half the sum
of the backward and forward unit shifts in [P(Z) generates a bounded cosine
sequence with bounded standard group decomposition. Next in Section 7 it
is shown that A, is not prespectral when 1 < p < oo, p # 2. Given that
an operator which is not prespectral is much less scalar-type prespectral,
it is then concluded that A, with 1 < p < oo, p # 2 is not scalar-type
prespectral and generates a cosine sequence with bounded standard group
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decomposition. Interestingly, this result not only has implications for cosine
sequences, but also relies upon manipulations with cosine sequences. The
final Section 8 reveals that a bounded £ (H )-valued cosine sequence, with
H a complex Hilbert space, may admit an unbounded group decomposition,
this being different from the standard group decomposition which, by the
result on decomposability of bounded cosine sequences in Hilbert space men-
tioned earlier, is necessarily bounded in this case. Two examples are given,
the simpler one involving a cosine sequence generated by a spectral operator,
and the more complicated one involving a cosine sequence generated by a
non-spectral operator. In neither case can the generator be scalar-type pre-
spectral, but in the second example the generator turns out to be generalised
scalar.

2. Preliminaries. In this section, we establish all general operator-
theoretic definitions and facts that will be needed later on.

Suppose that X is a Banach space. The dual space of X is denoted by X”.
The value of a functional 2’ € X" at x € X is written (z,2’). £(X) is the
Banach algebra of all bounded linear operators on X. The identity operator
on X is denoted Ix.

Recall that a subset I' C X’ is total if, for any x € X, (z,2’) = 0 for all
2’ € I implies x = 0.

Let .# be a o-algebra of subsets of a set {2 and let I" be a total subset
of X'. A spectral measure of class I' is a map E: .# — £ (X) such that

(i) E(0) =0 and E(2) = Iy,

(i) FlwNw') = E(w)E(W') for any w,w’ € A4,
(ili) w— (E(w)z,z’) is o-additive for any z € X and 2’ € T,
(iv) supeq [[E(w)] < oco.

It follows from the Orlicz—Pettis theorem that any spectral measure of class
X' is strongly o-additive—that is, the function .# > w — E(w)r € E is
o-additive for each x € X.

The spectrum of an operator 7' € £ (X) is denoted by o(T). For T' €
Z(X) and Y C X such that T(Y) C Y, T|y denotes the restriction of T’
toY.

The Borel o-algebra of a topological space Y is designated by Z(Y).

Following Dunford [12] (cf. also [11, 13, 14]), an operator T' € Z(X) is
called prespectral of class I' if there exists a spectral measure E: #(C) —
Z(X) of class I'" such that

(i) TE(w) = E(w)T for each w € B(C),
(ii) o(T|pw)x) C w for each w € (C), with the bar denoting the set
closure.
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The spectral measure E: # — £(X) of class I' satisfying (i) and (ii) is
uniquely determined by 7" and is called the resolution of the identity of class
I' for T'[11, Theorem 5.13]. Any resolution of the identity E for a prespectral
operator T' € Z(X), of some class, is supported on ¢(7") in the sense that
E(o(T)) = Ix. In general, a prespectral operator of some class can also be
a prespectral operator of another class, with a possibly different resolution
of the identity [19] (see also [11, Example 5.35]).
If T € £(X) has the form

T= | XdE()),
o(T)
where E: #(C) — Z(X) is a spectral measure of class I', then T is a
prespectral operator of class I' and E is its resolution of the identity of
class I'. In this case, T is termed a scalar-type operator of class I.

An operator Q € .Z(X) is called quasinilpotent if lim,, o ||Q"||/" = 0,
which is equivalent to o(Q) = {0}.

If T e Z£(X) is a prespectral operator with resolution of the identity E
of class I" and if
(2.1) S= | XE()), Q@=T-5,

o(T)

then S is a scalar-type operator with resolution of the identity E of class
I" and @ is a quasinilpotent operator commuting with {F(w) | w € #(C)};
moreover o(7T") = o(S). This characterisation of prespectral operators has a
partial converse: If S € Z(X) is a scalar-type operator with resolution of
the identity E of class I" and @) is a quasinilpotent operator commuting with
{E(w) | w e B(C)}, then S+ Q is prespectral with resolution of the identity
E of class I'; moreover, o(S + Q) = o(S5) [11, Theorem 5.15].

The decomposition ' = S + @ in (2.1) is called the Jordan decompo-
sition of T. It does not depend on the spectral measure E used to define
S (and, effectively, also @))—all spectral measures for which 7" is prespec-
tral yield the same S and @. This follows from the fact that if an operator
T € £(X), prespectral or not, can be represented as T'= S+ Q = Sy + Qo,
where S, Sy € Z(X) are scalar-type prespectral, and @, Qo € Z(X) are
quasinilpotent, satisfying SQ = QS and SoQo = QoSp, then S = Sy and
@ = Qo [11, Theorem 5.23|. If T' € .Z(X) can be written as 7' = S+ Q) with
S € Z(X) of scalar type and @ € Z(X) quasinilpotent with SQ = @S,
then S is said to be the scalar part of T and Q) is its radical part.

An operator T' € Z(X) is a spectral operator if it is a prespectral op-
erator of class X’. In this case, T" has a unique resolution of the identity
[11, Theorem 6.7]. An operator T' € Z(X) is spectral if and only if it has
the form 7" = S + @, where S € Z(X) is a scalar-type spectral operator
and Q € Z(X) is a quasinilpotent operator which commutes with S. Then
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T and S have the same spectrum and the same resolution of the identity
[11, Theorem 6.8].

Let C*°(C) be the algebra of all infinitely differentiable complex-valued
functions on the complex plane, endowed with the topology of uniform con-
vergence on compact sets for the functions and all their partial derivatives.
Following Foiag [21] (see also [9, 29, 36]), an operator T' € £ (X) is called gen-
eralised scalar if it admits a functional calculus on C°°(C); the latter means
that there exists a continuous C-algebra homomorphism ¢: C*°(C) — Z(X)
for which @(1) = Ix and ®(id¢) = 7', with idc the identity function on C.
Any & with the above properties can be viewed as an .Z’(X)-valued distri-
bution with compact support—a spectral distribution for T. A generalised
scalar operator, even as simple as the identity operator, may possess several
different spectral distributions (cf. [9, p. 94], [21]).

Every scalar-type prespectral operator is generalised scalar: If T' € Z(X)
is of scalar type with a resolution of the identity FE, then the mapping
¢: C°(C) — Z(X) given by

o(f)="| fNAEX) (f€C®(0))
o(T)

is a continuous algebra homomorphism such that $(1) = Ix and ¢(idc) = T;
see [11, Proposition 5.9] for a more general result.

One can also define a generalised spectral operator, but this rather in-
volved notion will not intervene in this paper [9, 29, 36].

3. Standard group decomposition. For each z in the interval [—1, 1],

define
#(x) =1 — 2% = |sin(arccos x)|.

By considering the Fourier cosine series expansion of the function [—m,7) 3
t — |sint| € R, one can easily check that

oo

2 4 1 2 1
2Oy D) = -2 Y Ty ().
o) = e Ak~ 1 () T AR -1 21k ()

Here both series are absolutely convergent, this being a consequence of the
representation

T, (x) = cos(narccosz) (n € Ny, z € [-1,1])

(cf. [31, Section 1.2.1]) guaranteeing that the polynomials 7;,(x) assume val-
ues from [—1,1] whenever |z| < 1. Set

(z) =z +id(x) =z +iv1— 2>
for |z| < 1. It is clear that the function ¢ maps [—1, 1] homeomorphically
onto the closed upper unit semicircle Tt = {2z € C | |2|] =1, Imz > 0}.
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Let A be a complex Banach algebra with a unity e. Suppose that
an element a € A generates a bounded cosine sequence. Then the series
> pez(4k?* — 1) tegy(a) is absolutely convergent and, bearing in mind (1.1),
one can define actions of ¢ and v on a by setting

¢<a>=—324k21 en(@),  Y(a) =a+ida)

The importance of both these actions lies in the following result.

THEOREM 3.1. Let A be a compler unital Banach algebra. If a € A
generates a bounded cosine sequence c, then 1(a) is invertible and generates
a group decomposition for c.

Given an A-valued bounded cosine sequence ¢ generated by a € A, we
define the standard group decomposition of c¢ as the group decomposition
generated by ¥(a).

Theorem 3.1 was first established in [7]. A streamlined proof of the the-
orem appeared in [4]. Below we present an even simpler proof.

Proof of Theorem 3.1. Suppose that a € A generates a bounded cosine
sequence. We clearly have

(3.1) P*(z) =1—2?
for |x| < 1. We shall show that ¢?(a) = e — a?, where ¢ is the unity of A.

The latter identity rewritten as ¥ (a)(a — i¢(a)) = e makes it obvious that
a —i¢(a) is the inverse of ¥ (a) and that

1 _
(3:2) a =3 W) +v()),
this being all what is needed to accomplish the proof.
We have
(33) ¢a)== > ! ear(@)ea(a)
2 (4k? —1)(412 - 1)
k,leZ
4 1 1
=35 Z @2 - DAE = 1) (ca(r+i)(@) + cop—py(a))
k,lE€Z
4 1
2 Z @Z - Dam —pr=1 2@
nez
4
) Z 4k;2 —1yz (@)

ke
722[2%2—1[ z) 1+4(n+}c)2—1”02"(a)'
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By the same token,

B4 F@ =5 gEomEhe)
kEZ

* %Z [Z 4k21— 1 [4(7@—;)2— 1 4(n+}€)2 - 1”7[’2"(”’”)

neN -kez

for |z| < 1. As To(x) = 1 and Ta(z) = 222 — 1, (3.1) can be rewritten in the
form

(3.5) & () = 5 Tolw) — 5 Tol).

In view of the orthogonality relations

1

| T@)Ti@) (1 —a®)de =0 (i #))

-1
(see [31, Section 4.2.2]), the polynomial expansions in (3.4) and (3.5) coin-
cide, so

4 1 1
FZ (4k2—1)2 2
kEZ

iZ 1 [ 1 N 1 ]_{—% if n =1,
2L @171 1k =1 o ifns1.
With these identities, (3.3) can now be rewritten as

¢2(a) = %co(a) — %cz(a) —e—d?,

as was to be shown. =

4. A condition for boundedness. This section presents a sufficient
condition for the standard group decomposition of a bounded .Z (X )-valued
cosine sequence, where X is a complex Banach space, to be bounded. It
requires that the generator of a cosine sequence should be of scalar type.
As will be shown later, the condition is not a necessary one. Amongst its
consequences, the most fundamental is that any bounded .Z(H)-valued co-
sine sequence, where H is a complex Hilbert space, has a bounded standard
group decomposition.

We begin with two preliminary results.

Let T denote the unit circle {z € C | |z] = 1}. For an element a of a
complex Banach algebra, let o(a) denote the spectrum of a.

PROPOSITION 4.1. Let A be a complex unital Banach algebra. If b €
InvA is such that c(b) is bounded, then o(b) C T.



Group decompositions of cosine sequences 69

Proof. Suppose that for b € InvA the cosine sequence ¢(b) is bounded.
Let Ag be the smallest complex Banach algebra containing b and the unity
of A. Clearly, Ay is commutative. Since the spectrum of b relative to A is
contained in the spectrum of b relative to Ay, we may assume, replacing A by
A if necessary, that A is commutative. Let A(A) be the set of all complex-
valued homomorphisms on A. Fix 7 € A(A) arbitrarily. The invertibility of
b implies that 7(b) # 0. Furthermore,

1 n —n
(4.1) 7(cn(0)) = 5 (r(0)" + 7(0)™")
for each n € N. Since all members of A(A) have unit norm, it follows that
(4.2) [7(c, (b)) < sup ||, ()]
neN

From this we deduce that |7(b)| = 1; indeed, should |7(b)| # 1 hold, the
right-hand side of (4.1) would diverge in modulus to infinity as n — oo,
contradicting (4.2). To complete the proof, it suffices to invoke the identity
o(b) ={7(b): 7 € A(A)} (see e.g. [5, Chapter 1, §16, Proposition 9]). =
PROPOSITION 4.2. Let A be a complex unital Banach algebra. If a € A

generates a bounded cosine sequence, then o(a) C [—1,1].

Proof. By Theorem 3.1 and Proposition 4.1, ¢ (a) has spectrum con-
tained in T. As the function z — (24 271)/2 maps T onto [—1, 1], the result
follows immediately from (3.2) and the spectral mapping theorem (see e.g.

[5, Chapter 1, §7, Theorem 4]). =
We can now pass to more substantial results.

THEOREM 4.3. Let X be a complex Banach space. If B € Inv.Z(X) is
scalar-type prespectral and ¢(B) is bounded, then B is doubly power bounded.

Proof. By Proposition 4.1, the spectrum of B is contained in T. Let F
be a resolution of the identity for B, and let Kg = sup,c g (p)) [ E(W)]-

Then, for each n € Z, B" = SU(B) A" dE(\). Since
| § 70 aBoy]| < axsu 701

for any w € #(C) and any complex-valued bounded Borel function f on w
[11, p. 120], it follows that

IB"|| < 4Kp sup |X"| < 4Kpsup |\"| = 4K
A€a(B) €T

foreachn € Z. »
THEOREM 4.4. Let X be a complex Banach space. If A € L (X) is a

scalar-type operator of class I' that generates a bounded cosine sequence, then
Y(A) is a scalar-type operator of class I' that is doubly power bounded.
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Proof. By Proposition 4.2, we have 0(A) C [—1,1]. Let E be the resolu-
tion of the identity of class I" for A. Then, on account of ¢ ([—1,1]) = T,

w(A) = | v dEN) = | zdF(2),

o(A) T+
where F': #(C) — Z(F) is the spectral measure of class I" defined by
Fw)=E@W '(w) (we ()

Thus ¥(A) is a scalar-type operator of class I'. By Theorem 3.1, c(¢(A))
= ¢(A) and ¢(A) is bounded by assumption. Now Theorem 4.3 guarantees
that ¥(A) is doubly power bounded. =

Putting the last two theorems together yields the following fundamental
result.

THEOREM 4.5. Let X be a complex Banach space. If a bounded £ (X)-
valued cosine sequence is generated by a scalar-type prespectral operator, then
the standard group decomposition for this cosine sequence is bounded.

It is well known that the generator of a bounded .#(H)-valued cosine
sequence, where H is a complex Hilbert space, is similar to a normal (in fact,
hermitian) operator [6, Theorem 2.1|. This fact combined with Theorem 4.5
and the elementary result that any operator similar to a normal operator is
scalar-type spectral leads to the following assertion.

THEOREM 4.6. The standard group decomposition of a bounded £ (H)-
valued cosine sequence, where H is a complex Hilbert space, is bounded.

5. A spectrality result. Here we record a result that will be of rele-
vance in what follows. It should be compared with Theorem 4.4.

Given a linear subspace Y of a Banach space X, we denote by Y1 the
annihilator of Y in X' defined as

Yt ={s' e X |(x,2))=0forall z €Y}

THEOREM 5.1. Let X be a complex Banach space. If A € Z(X) is
prespectral of class I' and generates a bounded cosine sequence, then ¥(A)
1s prespectral of class I.

Proof. Let E be the spectral resolution of the identity for A of class I.
Then setting

Fw)=E@ '(w) (we2B(0)
defines a spectral measure of class I'. As the range of ¢ coincides with T,

F is supported on TT. Since {F(w) | w € #(C)} commutes with A, it
follows that {F(w) | w € #(C)} commutes with B = 1)(A). The proof will
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be complete once we show that
(5.1) o(Blpwyx) Cw

for each w € A(T).
Fix w € %(T™") arbitrarily. For each n € N, let

Wi =wny(-1,-1+n),
wﬁlo) =wny([-1+ n 11— n’l]),
wil) =wne((1—n" 1))
We have

Blpw)x = Bl © Bl ® Bl 0y x

F( (0)
and further

(5.2) o(Blpw)x) = o(B| )UU(B| o) )UU(B’ o) x)

Flwn )X
(cf. [11, Proposition 1.37]). As A is prespectral we see that

0 1, (0)
(5.3) (Al ) € 1) = 971 @),
where the last equality results from ¢ being a homeomorphism. Furthermore,
A|F(w(0))X is prespectral with resolution of the identity {E(w)], Fo®)x |

we AB(C)} of class I'/(F(w ))X) ; here the quotient space I'/(F'(w 0))X)

is a total subspace of X'/(F (wT(LO))X )L, the latter being identified with

(F(w,(P))X)/ (cf. [11, Theorem 14.2]). Since ¥ (w{) < [-1 + n7!,
1 — n~!] and since 1 has a holomorphic extension to a neighbourhood of
[-14+n"1 1 —n"1], namely

v(z)=z+V1-22 (2z€C, |z|<1),

where /1 — 22 employs the branch of the square root function w — /w

defined for all w € C with Rew > 0, we conclude that ¢(A|F(w(o>)X) is

prespectral of class F/(F(wﬁlo))X)L (cf. [11, Theorem 5.16]). By (5.3) and
the spectral mapping theorem (see e.g. [5, Chapter 1, §7, Theorem 4]),

(o)

(A| 0))X) Cwn’.
This together with the identity
Bl oy x = YAl p o) x)

implies

(B’ o) )ngo),

whence, in particular,
(5-4) (Bl p,0yx) C -
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For x € C and r > 0, let D(x,r) = {2z € C | |z — x| < r}. As we shall see,
there exist two sequences (8;, )nen and (3,7),en of positive numbers such that

(5.5) o(Bl, W D)x ) C D(—1,6,) and lim 6, =0,
(5.6) (By o) ) € D(1,6F) and  lim 67 = 0.

Assuming this for now, let A = {—1,1} \ @. Observe that if A is non-void,

then, for each A € A, there exists n) € N such that wﬁb)‘) = () whenever
n > ny; indeed, otherwise, for some A € A, there would exist a sequence
(M)

is a contradiction. Let

n,:{max{nA])\E/l} if A#0,

and limg_,, ng = o0, implying that A\ € w, which

1 otherwise.
Clearly, if A is non-void and \ € A, then w = 0 whenever n > n’. Hence
Useao(B \ o) ) =0 for n > n’ regardless of whether A is empty or not,
and (5.2) reduces to
U(B|F(w)X) = O-(B|F(wglo))X) U U O-(B|F(w7(LA))X)
Ae{—1,11\4
for n > n/. This in conjunction with (5.4)—(5.6) implies that

o(Blpwx) CwU({—1,1}\ 4).
As {-1,1}\ A ={-1,1} N@ C @, we immediately obtain (5.1).
We are left with establishing the existence of (4, )nen and (6 )pen. We
shall confine ourselves to indicating how to construct the first sequence, the
construction of the other being completely analogous. For each n € N, let

X, =FwSX, I,=Ix,,

An:A|Xn7 BTL:B‘X»”'
Given T € Z(X), denote by r(T') the spectral radius of 7. We shall show
that
(5.7) lim r(I, + B,) = 0.

With this formula, the desired sequence is immediately obtained by set-
ting 07 = r(I + Bn). Since X, = E( L (wi V)X and v 1w ™)
[—1,—1+n~1), it follows that o(A,) C [-1,—1+ n~!]. Hence

1
(5.8) r(I, + A,) < —
Given that B, = A,, +i¢(A,) and that A, and ¢(A4,) commute, we have

(5.9) r(In + By) < (I + An) +7(6(An))
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(cf. [5, p. 19]). Now ¢(A,,)? = I, — A2 and so

T(¢(An))2 = 7’(¢(An)2) =71((In — An)(In + Ayn))
< r(ln — Ap)r(ln + An) < (1 + [[An|)r(In + An)
< (1 +[lAlDr(In + An),

where the first equality follows from the spectral radius formula and the
first inequality follows from the fact that I, — A, and I, + A, commute
(cf. [5, p- 19]). Putting this together with (5.8) and (5.9) yields (5.7) imme-
diately. m

6. Cosine sequences generated by translations. This section is con-
cerned with certain cosine sequences that are naturally defined in terms of
translation operators on the [P spaces over the additive group of integers.
We isolate from among these cosine sequences those that have a bounded
standard group decomposition.

For 1 < p < oo, let {P(Z) be the space of all complex-valued two-sided
sequences, p-summable when p < oo and bounded when p = oo, with the
standard || - ||, norm. Given a two-sided sequence § and k € Z, the translate
of £ by k, denoted Tj&, is the sequence

(Tk’g)n = &ntk (’I’L € Z)'
For1 <p<ooandke€Z,let Tl(cp) be the operator [P(Z) 3 & — Ti& € IP(Z).
If p is understood, T,(Cp) will be abbreviated to Tj. T,(Cp) is a surjective linear

isometry and its inverse is T(_p,z. Tgp ) and T(_pz are known as the backward

unit shift and forward unit shift in IP(Z), respectively. Let
1
Ay =5 (T +T7).
Consider the cosine sequence generated by A,. Obviously,
1
ea(Ay) = 5 (TP +T2)

for each n € Z. By construction, Tgp ) generates a group decomposition for

c(Ap) and, since ||T§p )|| = 1, this group decomposition is bounded. We shall
show that the standard group decomposition of ¢(A,) is bounded only if
1 < p < 0o. We start with the following result.

THEOREM 6.1. If 1 < p < oo, then the standard group decomposition of
c(Ap) is bounded.

Proof. For simplicity, we relabel ¢(A,) as B,. To prove that By, is doubly
power bounded, observe first that, for each ¢ € 1?(Z) N IP(Z),

AE(t) = (cost)E(t)
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for almost every (a.e.) t € [0,27). Here ¢ denotes the Fourier transform
of &—the element of L?([0,27)) defined by

()= &(k)e ™ for ae. t € [0,27),
keZ

with the right-hand side understood as the limit in the L?-norm of the se-
quence (dy,(€))nen in L2([0,27)) given by

da(€)(t) = ) E(k)e™™ (¢ € [0,2m)).

k=—n
It is easily verified that
(6.1) B,E(t) = (cost +ilsint|)é(t) for a.e. t € [0,2m).
Let f: [0,27) — R be given by
1 ifo<st<m,
ro={", |
-1 ifrm<t<2nm.
Since f is bounded, Plancherel’s theorem ensures the existence of a bounded
linear operator My: [2(Z) — I1?(Z) satisfying
Myt =f¢ (£ €l(2).
Since, in addition, f is of bounded variation, it follows from a result of
Stechkin [34] (cf. also [15, Theorem 6.4.4]) that f is a p-multiplier—there
exists a positive number m,, such that

(6.2) IMy€lly < myllélly (€ € P(Z) NIP(Z)).

Here the assumption 1 < p < oo is critical. The estimate (6.2) together with
I>(Z) N IP(Z) being dense in [P(Z) allows M; to be uniquely extended to a
bounded linear operator from [P(Z) into itself, also denoted My, of norm
< Mmy.

Define two (projection) operators P* in .Z(IP(Z)) by

1
P* = o (Inz) & My).

Clearly, we have PT + P~ = Iip(z), and ]§+\£ = 1[07W)§A and 15—\5 = 1[7r727r)§
for £ € 1?(Z) NIP(Z). In view of (6.1), if n € Z and ¢ € I2(Z) N IP(Z), then

BrPHE(t) = (cost +isint) 1y - (H)E(t) = e™PTE(t) = T,PTE(t),

BrP—¢(t) = (cost — isint) 1z on)(1)E(t) = e ™ P=£(t) = T_, P+E(1)
for a.e. t € [0,2n). Hence By P* = T,,P* and ByP~ = T_,P~, and further

BRI < IBR P + BR P = [Tu P + TP~ || = [P + [ P~
Thus By, is doubly power bounded. =
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To treat the cases p = 1 and p = oo, we need an auxiliary result. For
1 < p < oo, denote by [5(Z) the space of all even sequences in [P(Z).

THEOREM 6.2. Assume that either p =1 or p = oo. If B € Z(IP(Z))
generates a group decomposition for ¢(A,) and if IE(Z) is invariant for both
B and B!, then B is not doubly power bounded.

Proof. If B were doubly power bounded, then so too would be B, =
B !zg(z)- Consequently, B, would generate a bounded group decomposition
for the cosine sequence engendered by A, . = Ay| 12 (z)- But this is impossible,
since, in view of |7, Theorems 2.2 and 2.4|, no group decomposition of c(A, )
is bounded when either p=1or p=o00. n

We can now state the final result of this section.

THEOREM 6.3. The standard group decompositions of c¢(A1) and c(As)
fail to be bounded.

Proof. Suppose that either p = 1 or p = co. Observe that while (£(Z) is
not an invariant subspace for Ty whenever k € Z \ {0}, it is an invariant
subspace for T, + T_j, for each k € Z. Hence ¥ (Z) is invariant for A, and
d(Ap). Set By, = ¥(Ap) = A, +i¢(Ap). Then B! = A, —ip(A,) and I£(Z)
is invariant for both B, and B; 1. Now Theorem 6.2 ensures that B, is not
doubly power bounded. =

7. Lack of prespectrality. The main goal of this section is to establish
the following result.

THEOREM 7.1. If 1 <p < oo and p # 2, then A, is not prespectral.

While Theorem 7.1 is of interest in its own right, its primary significance
here is that it permits showing that a bounded cosine sequence may have a
bounded standard group decomposition without the generator of the cosine
sequence being scalar-type prespectral. Indeed, Theorems 6.1 and 7.1, the
reflexivity of IP(Z) for 1 < p < oo, and the fact that a prespectral operator on
a reflexive Banach space is spectral [11, Theorem 6.11] imply the following
result.

THEOREM 7.2. If 1 < p < 00 and p # 2, then A, is not spectral and
generates a bounded cosine sequence with bounded standard group decompo-
sition.

One consequence of the above theorem is that, barring the case p = 2,
Theorem 6.1 cannot be deduced directly from Theorem 4.5. That Theo-
rem 6.1 in the case p = 2 reduces indeed to Theorem 4.5 results from Ag
being of scalar type (see comments before Theorem 4.6).
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Theorem 7.1 has a predecessor in the result of Fixman [19] and
Krabbe [27] stating that, for each 1 < p < oo with p # 2, the (back-
ward) unit shift in [P(Z) fails to be spectral. It is worth noting that as far as
spectrality is concerned, the unit shift is typical of translation operators in
general locally compact Abelian groups—if G is such a group, then except in
trivial cases, translations in LP(G), 1 < p < oo, p # 2, are not spectral [22],
[11, Theorem 20.30].

Theorem 7.1 makes no direct appeal to cosine sequences, but its proof will
make a critical use of the standard group decompositions of certain bounded
cosine sequences. Before giving this proof, we present a few results that we
shall need.

For each A € [—1,1], let X be the eigenspace of A, corresponding to
the eigenvalue . If a = (an)nez € X, then

ant1 ][220 =1 an 1 22 —1]"a

ot e A R Ear A
for each n € Z, showing that a depends linearly on ag and a;, and hence
that dim X, < 2. For each t € T, let x; = (t")nez. It is immediately ver-
ified that x1 € X1, x-1 € X_1, and that if [\ < 1, then xy(,) and Xo0
both belong to X, and are linearly independent. In particular, if |A| < 1,
then dim X\ = 2, and X is spanned by X)) and Xo0 As we shall prove
next, X; and X_; are one-dimensional, spanned by x; and x_i, respec-
tively.

If a € X, then, for each n € Z, any+1 — ap, = an — an—1, implying that
Gnt+1 — an = b, where b = a; — ag. Hence a, = ag + nb, and, since a is
bounded, we have b = 0. Consequently, a = agx1.

If a € X_1, then, for eachn € Z, apy1+a, = —(ap+an—1), 80 apy1+a, =
(—=1)"c, where ¢ = ag + a;. Hence, for each k € Z, agg11 — agk—1 = agg+1 +
asy, — (agk + asg—1) = 2¢ and further asgr1 = 2kc + a1. The boundedness
of a now implies that ¢ = 0. Thus a,+1 = —a, for each n € Z and further
a = agx-1.

Recall that a complex-valued two-sided sequence (&,,)nez is almost pe-
riodic if, for each € > 0, there exists K € N such that every set of the
form {k,k+1,...,k+ K}, k € Z, contains N € Z with the property that
|&n — Enan| < € for all n € Z. Equivalently, (&,),cz should belong to the
closed linear span of {x; | t € T} in [*°(Z). In particular, every almost pe-
riodic sequence is bounded. Let ap(Z) denote the space of complex-valued
almost periodic two-sided sequences. Obviously, ap(Z) is translation invari-
ant, and hence is also an invariant subspace for A..

LEMMA 7.3. If A is prespectral, then AOO|ap(Z) 1s scalar-type prespec-
tral.
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Proof. First note that if R is a linear operator on [°°(Z) commuting with
Ao, then, for each |A| < 1, X is invariant for R. Suppose now that A, is
prespectral of class I'. Let S and @ be the scalar and radical parts of Ay,
and let E be the resolution of the identity for A, of class I'. Since S, Q,
and {F(w) | w € B(C)} commute with A, it follows that, for each || < 1,
X, is invariant for S, @, and all of the E(w). We also have

Aoo|X>\ — S|X>\ + Q|X>\a

with S|x, and Q|x, commuting. Setting E|x,(w) = E(w)|x, for each
w € #(C) defines a spectral measure F|x, in X of class I'/ X, the quotient
space I'/ X" being a total subspace of X’/X; identified with X}. Because
X is finite-dimensional, all vector topologies on X coincide and, as a re-
sult, E|x, is of class X}. Clearly, S|x, = (s AdE|x,()), so S|x, is of scalar
type. Also, we have lim,,_, [[(Q]x,)"] < limy o [|Q"] = 0, implying that
Q|x, is quasinilpotent. Thus A |x, is spectral, and S|x, and Q|x, are its
scalar and radical parts. But Ay|x, = Alx,, so Ax|x, is in fact of scalar
type. Since the Jordan decomposition is unique, it follows that Q|x, = 0.
As every x; (t € T) can be represented as either .y or Xo0n for some
|A| < 1, the closed linear space spanned by the X in [°°(Z) coincides with
ap(Z). Consequently, Qlszy = 0 and further Aso|apz) = Slap(z). Since
Slapz) = Sc AdE|ap(zy(N), where Elg,z) is the spectral measure of class
I'/ap(Z)* defined by E|yz)(w) = E(w)]gp(z) for w € B(C), it follows that

Acolap(z) is a scalar-type operator of class T'/ap(Z)*. =

Proof of Theorem 7.1. Arguing contrapositively, assume that A, is pre-
spectral of class I'. Introduce the notation
A A, ifl<p<ooandp#2,
{Aoo|a,p(Z) if p = oo.
We first show that A is of scalar type. We shall consider three cases.

Assume first that p = oo. Then A = A, (z) and that A is of scalar type
in this case is ensured by Lemma 7.3.

Suppose next that p = 1. Then A = Ay. Let A = S + @ be the Jordan
decomposition of A, with .S and () the respective scalar and radical parts.
Then the dual operator A’ is prespectral of class I'(Z), and S’ and Q' are the
scalar and radical parts of A’ [11, Theorem 5.22|. Upon identifying the dual
of 11(Z) with [°°(Z), A’ becomes identical with A.,. Thus A, is prespectral
and, in view of Lemma 7.3, Q'[4,(z) = 0. Since ap(Z) is dense in [°°(Z) under
the weak™ topology [3], it follows that @ = 0. Consequently, A; is of scalar
type.

Finally, suppose that 1 < p < oo and p # 2. Then A = A,. By Theo-
rem 5.1, the assumption that A is prespectral leads to the conclusion that also
B = ¢(A) is prespectral. Since IP(Z) is reflexive for the adopted value of p,
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B is in fact spectral. Moreover, by Theorem 6.1, B is doubly power bounded.
According to a theorem proved independently by Fixman [19] and Foguel [20]
and further extended by Dowson [10] (see also [11, Theorem 10.17]), every
doubly power bounded spectral operator is of scalar type. In view of this
result, B is scalar-type spectral, and hence also A = B + B~! is scalar-type
spectral.

Having established that A is of scalar type, we now produce a final con-
tradiction. Our approach will be patterned after [22]; see also [11, Theo-
rem 20.30]. For each n € N, let p, be the nth Rudin—Shapiro polynomial.
There is then a sequence (gy,)nen of numbers, each with €, = —1 or &, = 1,

such that
pn(2) = Z ep2”
k=1
and
(7.1) sup |pn(2)| < 5nt/2

z€T

for each n € N. The existence of such a sequence of polynomials is proved
in [33]. For each n € N, set

in(2) =Y exTi(2),
k=1

where—]let us recall—7T}(z) stands for the kth first-kind Chebyshev polyno-
mial. By Theorem 4.4, B = ¢)(A) is of scalar type of class I'. Let E be the
resolution of the identity for B of class I', and let K = sup,,c (»(g)) [ £(w)||-
Since ¢(B) C T, it follows that, for each n € N, p,(B) = {; pn(2) dE(z) and
pn(B™1) = {;pn(2) dE(2), and further that

lpn(B)I| < 4Kpsup [pa(2)],  [lpa(B™H)|| < 4K g sup |pa(2)].
z€T zeT
But, as a moment’s reflection reveals,

an(A) = 5 (n(B) + pa(B7))

so, in view of (7.1),

72 @< 5 ()] + lpa(B)]) < 20Kpn'2

We shall now look at three cases. Suppose first that 1 < p < 2. For each
k € N, denote by e the two-sided sequence with all entries equal to 0 except
the kth entry which is equal to 1. Clearly,

1 n
qn(Ap)eo = B ; er(e—k +ex),
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implying that
(7.3) 2P P = lgu (Ap)eolly < llgn(Ap)]|-

Bearing in mind that A = A, when 1 < p < 2, we see that this estimate is
incompatible with (7.2) for large n. This establishes the theorem in the case
1<p<2.

Assume now that 2 < p < oco. First observe that with the dual of [P(Z)
identified with 19(Z), where ¢ is the conjugate index ¢ = p/(p — 1), A, coin-
cides with A,. Given that 1 < ¢ < 2, we can now invoke (7.3) with p replaced
by ¢ to conclude that

9l/a=1,1/q < lgn(ADI = llan(Ap)]|.

But, remembering that A = A, when 2 < p < 0o, we obtain a contradiction
with (7.2) for large n. This establishes the theorem in the case 2 < p < co.
Finally, assume that p = co. Recall that a subspace Y of the dual X’ to
a normed space X is called norming (1-norming) if the pseudonorm defined
by
2l = sup{[{z,2)[ | 2" € Y, [l2] <1} (v € X)

is equivalent (equal, respectively) to the original norm on X. Using the equal-
ity A} = Ax and the fact that ap(Z) is a 1-norming subspace of [*°(Z) [3],
we obtain

lgn(Av)eollr = sup  [(gn(A1)eo, &)

§€ap(Z),
[I€]loc=1

= sup [{€0, gn(Acc)§)| < llan(Acs|ap@))

£€ap(Z),

€lloo=1
for each n € N. On the other hand, the equality in (7.3) specialised to p = 1
yields n = ||gn(A1)eol[1 for each n € N. Therefore, n < [|gn(Acc|ap(z))ll for
each n € N. But, as A = AOO‘ap(Z) when p = o0, this is incompatible with
(7.2) for large n, establishing the theorem in the case p = 0o and finishing
the proof. m

8. Unbounded group decompositions. According to Theorem 4.6,
any bounded Z(H )-valued cosine sequence, where H is a complex Hilbert
space, has a bounded standard group decomposition. Here we show that a
bounded .Z(H )-valued cosine sequence may also admit an unbounded group
decomposition. We present two examples, of which the simpler, given first,
involves a finite-dimensional Hilbert space.

EXAMPLE 8.1. Let H = C? and let ¢ be the .Z(H)-valued cosine se-
quence generated by A = Iy. Clearly, ¢ is bounded, as all of its elements
coincide with If. Identify . (H ) with the algebra of all 2 x 2 complex-valued
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matrices and let B = [(1) H It is immediately verified that [[1) _11] is the
inverse of B and that A = (B + B~!)/2. Thus B generates a group decom-

0 1]

position for ¢. This group decomposition is unbounded because B" = [0 1

for each n € Z.

The generator of the group decomposition in the above example is spec-
tral, as is indeed the case with any operator in a finite-dimensional Hilbert
space. The next example will exhibit a bounded .Z(H)-valued cosine se-
quence, with H an infinite-dimensional complex Hilbert space, admitting
an unbounded group decomposition generated by a non-spectral operator.
While, in view of Theorem 4.3, the generator of an unbounded group decom-
position for an operator-valued bounded cosine sequence cannot be scalar-
type prespectral, the non-spectral generator in the upcoming example will
be generalised scalar.

ExXAMPLE 8.2. Let H be an infinite-dimensional complex Hilbert space.
Let (Pg)ren and (Qr)ren be two sequences of projections in H such that

(a) PoP, = QrQ; =0 for all k,1 € N with k # [,

(b) P.Q,=QP, =0 for all k,l € N,

(€) > pe1(Pe+Qk) = I, where the sum converges in the strong operator
topology,

(d) supgen [|Px = oo,

(e) Kpq = supyeczm) | 2orewn(Px + Qr)ll < oo, where 7 (N) denotes the
set of all finite subsets of N.

Such sequences can be constructed as follows. Exploiting the assumption
that H is infinite-dimensional, we first represent H as the Hilbert space ten-
sor product J ® J, where S is a copy of H. Let (Ug)ren be a sequence
of projections in . with UpU; = 0 for k # [ and such that Y ;2 Uy is un-
conditionally convergent to I, in the strong operator topology. Let (Vj)ren
be a sequence of projections with Vi V; = 0 for k # [ and such that > ;2 Vj
is conditionally, but not unconditionally, convergent to I, in the strong
operator topology. The existence of the latter sequence follows from the
existence of conditional Schauder bases in a separable, infinite-dimensional
Hilbert space, which was first established by K. I. Babenko [2]. Another
construction of conditional bases in a separable Hilbert space, due to C. A.
McCarthy and J. Schwartz [32], is presented in detail in [30, p. 74]. Given
we FN), let V, = >, Vi For each k € N, choose w; € .7 (N) so that
Vil > K||Ug|| =, this being possible because > 7, Vi is not uncondition-
ally convergent. Set

Pk:Uk®Vwk, Qk:Uk®(IJ~f—Vwk)

for each & € N. It is easily seen that the sequences (Pp)ren and (Qk)ken
satisfy conditions (a)—(e).



Group decompositions of cosine sequences 81

Select a sequence (tg)ren in T\ {1} such that {tg,tx} N {t;, ¢} = 0 for
k # 1 and

o

(8.1) D It — el [|Qkl| < oo

k=1
For example, a sequence (tx)ren of distinct points in the open upper semi-
circle {z € C | |z| = 1,Im 2z > 0} satisfying |t — 1| < (1 + ||Qx||)~'k~2 for
each k € N will do. Let

B =) (txPs + TkQx)-

k=1
The series on the right-hand side converges in the strong operator topology,
given that it can be represented as

o0 o0
> t(Pe+ Q) + YTk — 1) Qs
k=1 k=1
where, by (e), the first series converges unconditionally in the strong opera-

tor topology, and, by (8.1), the second series converges in the norm operator
topology. By (a)—(c), for each n € Z,

oo o0
=D (P4 Q)+ (T — )@
k=1 k=1

and further

(8.2) B"+B ™" =) (tf + 1) (P + Qu).
k=1

Condition (e) implies that

(83) H Z ek (Pr + Q) H <4Kpq sup |ck]

k=1

for every bounded sequence (ck)ken. In particular, for each n € Z,
o0
H ZtZ(Pk + Qk)H < 4Kpq.
As [t — t7] < |n] [tk — tk|, we have

|5 - @] < nl 3 e~ ul Q.
k=1 k=1

Consequently, bearing in mind (8.1), we find that
1B™| = O(|nl).
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This estimate immediately implies that B is a generalised scalar operator
with o(B) C T (cf. [23], [29, Theorem 1.5.12]).

Let A = (B + B1)/2. The cosine sequence generated by A coincides
with ¢(B) and is bounded, since, by (8.2) and (8.3),

o0
1"+ B = || Yo + ) (P + Qu)|| < 8K g
k=1

for each n € Z. Our work will be complete once we show that B is neither
power bounded nor spectral.

We first show that B is not power bounded. Assume, on the contrary,
that Kp = sup,¢y || B"|| < co. Note that

N
ol
(84) Jim E_l(st) = Ost

for s,t € T, where d5 denotes the Kronecker delta. For each m € N, define
a projection R,, by

= (P + Q).
k=1
Clearly, by (e),
(8.5) sup || Ry || < Kpq.
meN
Also .
B"Ry =Y (P + 5, Q)
k=1

for any n,m € N. Now, in view of (8.4),
N m

. 1 _
FENED DECUSES SIS IR
n=1 k=1
for each m € N and each s € T. Putting s = t,, in the above equality
and taking into account that t1,...,%m,t1,...,t;, are all different, we find
that
N
o
n=

Hence, bearing in mind (8.5),

sup || P < sup [[B"|| sup |[Rm| < KpKpq,
meN neN meN

contrary to (d). Thus B is not power bounded.
We finally show that B is not spectral. Assume, on the contrary, that B
is spectral and let E be its resolution of the identity. Fix m € N arbitrarily.



Group decompositions of cosine sequences 83

Since
m

BRy = RnB =) (txPs +1:Qu),
k=1
it follows that the range space of R,,, denoted X,,, is invariant for B. More-
over, as

PRy, =RnP =hF (1§l§m)7

we see that X, is invariant for P, when 1 <[ < m. Therefore

m
(8.6) Blx,, = > (txPelx,, + 4Qxlx,.)-
k=1
Remembering that t1,..., ¢y, t1,...,ty are all different, we deduce immedi-
ately that the set function F,: Z(C) — Z(H) defined by
m
() = 00, (@) Pl + 05, (@)Q4lx,,)  (w € 2(C))
k=1
is a spectral measure. Here, for any given a € C, §, denotes the Dirac measure
on C concentrated at a. Since the right-hand side of (8.6) can be interpreted
as {- AdFy,()), we see that Bly,, is a scalar-type spectral operator and F,
is its resolution of the identity. It now follows from a theorem of Fixman [19]
(see also [11, Theorem 12.2]) that, for each w C B(C), X,, is invariant for
E(w) and F(w)|x,, = Fn(w). Hence
m
E(w) Ry = Fyn(w)Run = [Z(% (w)Py + 6, (w)Qk)} Ry
k=1

= (84, () Pr + 6, (w) Q)
k=

—_

In particular, E({tx})R,, = Py for any k,m € N with £ < m. Letting
Kg = sup,eg(c) | E(w)|| and using (8.5), we conclude that

sup || P|l < KpKpq-
keN

But this is incompatible with (d). Thus B is not spectral.
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