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Simultaneous solutions of operator Sylvester equations
by

SANG-GU LEE (Suwon) and Quoc-PHONG VU (Athens, OH, and Hanoi)

Abstract. We consider simultaneous solutions of operator Sylvester equations A; X —
XB; =C; (1 <1i<k), where (Ai,...,Ax) and (B, ..., By) are commuting k-tuples of
bounded linear operators on Banach spaces £ and F, respectively, and (Ci,...,C}k) is
a (compatible) k-tuple of bounded linear operators from F to &, and prove that if the
joint Taylor spectra of (Ai,...,Ax) and (Bi,..., Bx) do not intersect, then this system
of Sylvester equations has a unique simultaneous solution.

1. Introduction. It is well known that if A and B are bounded linear
operators on Banach spaces £ and F, respectively, such that o(A) N o(B)
= (), then for each bounded linear operator C' : F — &, there exists a unique
bounded linear operator X : F — & which is the solution of the operator
equation

(1.1) AX - XB=C.

In the case of finite-dimensional spaces £ and F, equation is known as
the Sylvester equation, and the above result is the Sylvester theorem, a well
known fact which can be found in many textbooks in matrix theory (see,
e.g., [5]). For bounded linear operators, the above result was first obtained
by M. G. Krein (see, e.g., [3]) and then, independently, by Rosenblum [7],
who showed that the solution operator X has the form

(1.2) X = 2i [ (A= A)~'c(A = B) Tl d),

e e
where ' is a union of closed contours in the plane, with total winding
numbers 1 around o(A) and 0 around o(B).
In [6], the present authors considered the question of simultaneous solu-
tions of a system of Sylvester equations
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(1.3) AX—XB=C; (1<i<k),

where A = (A4,...,A;) and B = (By,..., By) are commuting k-tuples of
matrices of dimensions n X n and m X m, respectively, and proved that the
system has a unique simultaneous solution X for every k-tuple of mxn
matrices C = (C1, ..., C) which satisfy the compatibility condition

(14) AZCJ - C]Bz = AJCI — CZB] (fOI‘ all i,j, 1 < Z,j < ]{7),

if and only if the joint spectra of A and B do not intersect.

Recall that the joint spectrum for commuting matrices A = (A, ..., Ag)
is defined as the joint point spectrum, that is, it consists of elements A =
(A1, ..., ) in CF such that there exists a common eigenvector x # 0, A;x =
Ax foralli=1,... k.

The main idea in the proof in [6] is the observation that if the joint
spectrum of a k-tuple of commuting matrices 7 = (T4,...,T})) consists of
two disjoint components K; and Ko, then there exists an idempotent ma-
trix F which commutes with 77,...,7T; such that the joint spectrum of
the restrictions of the k-tuple (T1,...,7T)) to the range of F' is K, and
the joint spectrum of the restrictions of (71,...,T) to the range of I — F'
is KQ.

In this paper, we consider systems of operator Sylvester equations ,
where A = (Ay,...,A) and B = (By, ..., B) are commuting k-tuples of
bounded linear operators on Banach spaces £ and F, respectively, and we
extend the main result of [6] to this case.

There are several notions of joint spectrum of commuting k-tuples of
operators, which all coincide with the joint point spectrum in the case of
operators on finite-dimensional spaces, but are different in the general case of
infinite-dimensional Banach spaces. Note that any definition of spectrum de-
pends on a definition of singularity of a commuting k-tuple 7 = (11, ..., T):
if the notion of singularity is defined, then the spectrum of 7 consists of all
A= (A1,...,\x) € CF such that the k-tuple T—X = (Ty =M1, ..., T —M\.1)
is singular.

The classical notion of spectrum of 7, Spg(7T), is defined relative to
a commutative Banach algebra 2 containing 7. Namely, 7 is called non-
singular (in B) if there exist Si,..., Sk € B such that Zle T;S; = 1. As
B one can take, for example, the algebra Alg(7) generated by T, or the
bicommutant 7" of T.

J .L. Taylor introduced the notion of joint spectrum, Sp(7"), which does
not depend on any commutative algebra containing 7. Namely, to each com-
muting k-tuple 7 is associated a complex, called the Koszul complex, and
T is called non-singular if its Koszul complex is exact (see precise definition
below). It turns out that Sp(7) C Spg(7) for any B and the inclusion is,
in general, strict. Thus, the functional calculus introduced in [I0] for func-
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tions analytic on Sp(7) is richer than the functional calculus based on other
notions of joint spectrum, developed in the classical papers by Shilov [§],
Arens [1], Calderén [2], and Waelbréck [11].

In this paper we prove the following theorem, which is an extension of
the above mentioned result of [6].

THEOREM 1.1. Let A= (Ai,...,Ax) and B = (B1,...,By) be commut-
ing k-tuples of bounded linear operators on Banach spaces € and F, respec-
tively, such that Sp(A) N Sp(B) = 0. Then for every k-tuple (C1,...,Cy) of
bounded linear operators from F to £ which satisfy the condition , there
exists a unique bounded linear operator X : F — £ which is a simultaneous
solution of the Sylvester operator equations (|1.3)).

Note that, since the Taylor spectrum Sp(7) is contained in Spg (7 ), the
condition Sp(A4)NSp(B) = 0 in Theorem [1.1]is less restrictive than analogous
conditions when the Taylor spectrum is replaced by other notions of joint
spectrum of 4 and B relative to commutative Banach algebras containing
A and B, respectively.

The proof of Theorem uses the functional calculus developed by
Taylor for analytic functions on Sp(7) and, in particular, the Idempo-
tent Theorem, which states that if Sp(7) is a disjoint union of two com-
pact sets K7 and Ky, then there exists an idempotent operator F' such
that Sp(7|range(F')) = K; and Sp(Tlker(F)) = Ks (see [10, Theorem
4.9]). This is an analog of the celebrated Shilov Idempotent Theorem in
the theory of commutative Banach algebras [8]. The solution X of the op-
erator equations can be obtained from the idempotent operator F
as in the case of simultaneous Sylvester equations for matrices considered
in [6].

Below, X, £ and F are Banach spaces, and “operator” always means
“bounded linear operator”. We denote by L(E) the set of all operators on &,
and by L(F,E) the set of all operators from F to £. If T is a family of
operators on X, then 7’ denotes its commutant, 7' = {S € L(X) : ST =
TS VT € T}, and T” denotes its bicommutant (the commutant of the
commutant). For a domain & in C¥, we denote by 2(U) the algebra of
analytic functions on U, and if K is a compact set in C¥, then A(K) is the
algebra of functions analytic on a domain containing K.

2. Preliminaries: the Taylor joint spectrum. Let E¥ be the com-
plex exterior algebra with identity 1 generated by k generators. In other

words, if we denote by e1, . . ., ej, the natural basis in C¥, and E§ = C, EF, =
CFA---ACFform=1,...,k, where A is a multiplication such that eilNej =
~———

m times

—e; A e;, then EF = Gafn:() Ek . Note that the elements e; A --- A e,



90 S. G. Lee and Q. P. Vu

1 <i3 < - < iy <k, form a basis in EF so that dim EF, = (T]:;) and
dim E* = 2.
Let X be a complex Banach space, T = (T4, ...,T}) a k-tuple of pairwise
commuting operators on X, and
(2.1) X = X @ EF,.
Then X, is spanned by the elements = ® e;; A--- Ae;,,, where (i1, ..., 0m)
is a multi-index with 1 <141 < -+ < iy, < k, x € X. In other words, &}, is a
direct sum of (TIZ) copies of X', multi-indexed by 1 <141 < -+ < ip, < k.
Form=1,...,k, let d,, : X}, = X,,_1 be defined by
m
dm(z @ ey A Neiy) =Y (D) Tw@e, Ao Aeg A Ae,,
=1
where ©— means deletion. Then one can directly verify that d,, satisfies
the condition d,,dy,+1 = 0 for all m = 0,1,...,k (where, of course, dy :
Xo — {0} and dj41 : {0} — X} are naturally added), which means that the
sequence

d
(2.2) 00y &y e &y B g

is a chain complex. This complex is called the Koszul complex of the k-tuple
T on X and is denoted by K(X,T).

DEFINITION 2.1. The k-tuple T is called non-singular if its Koszul com-
plex K(X,T) is exact, i.e., if in the sequence (2.2) we have ker(d,,) =
ran(dpy+1) for all m =0,1,... k.

For A= (Ai,..., ) €CF welet T — A= (Ty — MI,...,Tp — \eI).

DEFINITION 2.2. A point A € CF is called a non-singular point for T
if 7 — A is non-singular. The set of all singular points of 7 is called the
(Taylor) joint spectrum of T and denoted by Sp(T).

Taylor [9] has shown that for each commutative k-tuple 7 in L(X)
(X #{0}), Sp(T) is a non-empty compact subset in C¥. Moreover, Sp(7) C
Sp7(T) and the inclusion is, in general, proper. Since 7' contains any com-
mutative Banach algebra 2B which contains 7, this implies that Sp(7) is, in
general, smaller than Spg (7)) for any such 9B.

Taylor [I0] also developed a functional calculus of several commuting
operators. Namely, if U is an open set containing Sp(7) and f is a function
analytic in U, then f(7) is defined as a bounded linear operator on X. The
mapping f — f(7) defines a homomorphism from the algebra 2A(Sp(7))
of functions analytic in a domain containing Sp(7) into the algebra T”.
Moreover, under this homomorphism we have 1(7) = I and z(7) = T;
for i = 1,...,k [10, Theorem 4.3]. If Sp(7) = K; U K3, where K; and K,
are disjoint compact sets, and F' = y g, (T), where xg, is the characteristic
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function of K, then F' is an idempotent operator (that is, a projection)
which belongs to 7. If we set X1 = range(F), Xo = ker(F), then X}
and Xy satisfy: (i) X = X @ Xy; (ii) A} and Ay are invariant under any
operator which commutes with each T;,7 = 1,...,k; (iii) Sp(7|X1) = K,
Sp(T|X2) = K [10, Theorem 4.9].

3. A relation between simultaneous solutions of Sylvester equa-
tions, commutant and bicommutant. First we observe the following
simple but useful fact which has a straightforward proof.

PrROPOSITION 3.1. Let A = (Ay,...,A) be a k-tuple in L(E), B =
(Bi,...,Bk) a k-tuple in L(F) and C = (C1,...,Ck) a k-tuple in L(F,E),
and let T = (T1,...,Ty) be defined by below. Then a bounded linear
operator X : F — £ is a simultaneous solution of the system if and
only if Fx € T', where

I X
o re ()

In the next theorem, we show that Fx € 7" if and only if the corre-
sponding homogeneous Sylvester equations have only the trivial simultane-
ous solutions. We would like to emphasize that in Proposition |3.1} as well
as in Theorem below, neither the commutativity of A and B, nor the
compatibility of C is assumed.

THEOREM 3.2. Let A= (Ay,...,A) and B = (B1,...,By) be k-tuples
in L(E) and L(F), respectively, andC = (C4,...,Cyk) be a k-tuple in L(F,E).
Suppose that the system has a simultaneous solution X. Then Fx € T"
if and only if the homogeneous systems of Sylvester equations A;Y — Y B;
=0, ZA; — B;Z = O have only the trivial simultaneous solutions.

Proof. First, we prove the theorem for the case C; = O foralli =1,...,k
and X = O.

Suppose the homogeneous systems A;Y — Y B, = O, ZA; — B;Z = O
have only the trivial simultaneous solutions. Let Ti(o) =A;®B; and TO =
(Tl(o)7 . ,T,go)) and F = I ® O. We must show that F € (7(0)".

Suppose S € (T(@) and let S have the following block form:

G- 1 52
Sy Sy

From STZ-(O) = TZ-(O)S we have
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(3.2) A;Sy = S1A;,
(3.3) A;Sy = S9B;,
(3.4) B;Ss = S3A;,
(3.5) BiS4 = S4BZ',

foralli =1,...,k From and the fact that the equations A;Y — Y B;
= O have only the trivial simultaneous solution it follows that Sy = 0.
Analogously, from and the fact that the equations ZA; — B;Z = O
have only the trivial simultaneous solution it follows that S5 = 0. Therefore,
S =5, @ Sy, so that SF = FS, that is, F € (T(©)".

Conversely, suppose that FF € (7). Let Y : F - and Z: £ — F be
such that A;Y —YB; =0 and ZA; — B;Z =0 for allt=1,..., k. To show
that Y = O we consider the operator Gy defined by

oY
Gy = .

It is easy to see that Gy € (T(¥). Hence Gy F = FGy, which implies
Y = O. Analogously, consider the operator

O O
H =

and observe that Hy € (T(O))’. Hence Hz F = FHyz, which implies Z = O.
Now to derive the general case observe that if X is a simultaneous solu-
tion of (|1.3), then the operators T; defined by

(3.6) T, = (gi gf) (1<i<k)

are simultaneously similar to TZ-(O)

I X
V= ,

then it can be directly verified that VT;V 1 = TZ-(O) for all : = 1,...,k.
Since (7)Y = {VSV~1 .8 e T}, (TO)Y = {VvSV-1 .85 ¢ T"} and
F = VFxV~! we obtain the statement for the general case. m

. Namely, if

4. Proof of the main result. Let A = (41,...,4) and B =
(B1,...,Bx) be commuting k-tuples in L(£) and L(F), respectively, and
C = (Cy,...,Ck) be a k-tuple in L(F,&). Define S; € L(L(F, E)) by
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Then the Sylvester equations (1.3]) can be rewritten in the form
(4.2) SiX=0C (1<i<k).

Since the S; are pairwise commuting, we have §;5;X = §;5;X (1 <14,j <k).
Hence from (4.2) we have the following necessary condition for the existence
of a simultaneous solution of (1.3):

(4.3) SiC; =8;C; (1<14,j<k),
which is another form of the compatibility condition . Furthermore, if
we define operators T; on X = £ @ F by , then either of the conditions
, is equivalent to T;T; = T;T; (1 < i,j < k), i.e. the k-tuple
T =(Ty,...,T}) is commuting.

From the definition of the joint Taylor spectrum we have the following

fact, which can be seen by looking at the Koszul complex of T and the
canonical short exact sequence 0 - & - X — F — 0 (see [9, Lemma 1.2]).

LEMMA 4.1. Sp(T) C Sp(A) U Sp(B).

ProposiTiON 4.2. If T = (T1,...,Tk) is a commuting k-tuple which
has the block upper triangular form (3.6), and f is analytic on a domain
containing Sp(A) U Sp(B), then f(T) has the block upper triangular form

(4.4 57 = (f . fé)>

for some Y € L(F,E) .

__ Proof. Note that since £ is invariant under T;, one can define operators
T; on the quotient space X := X' /€ by T;& = T;x. From the decomposition
X = £ @ F and the block upper triangular form of T;, it follows that
if we define a mapping 7 : X — F by (&) = yo, where x = g + yp is the
decomposition of z according to the direct sum X = F @ &, then « is a
(natural) isomorphism between X and F and

(4.5) (7T))(2) = (Bim)(2) forallz e X (1<i<k).

If f is analytic on a domain containing Sp(A) U Sp(B), then, in view of
the inclusion Sp(7") C Sp(A) USp(B), f(T), as well as f(A) and f(B), are
well defined. It can be seen from the definition of the functional calculus
in [10] that if z € &, then f(T)z € £ and f(T)z = f(A)z and if & € X,
then f(7)& = m From it follows that = f(T) = f(B)m (see [I0,
Proposition 4.5]). This implies that f(7) has the form (4.4).

ProposiTiON 4.3. If T = (T1,...,Tk) is a commuting k-tuple which
has the block upper triangular form
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(4.6) T, = (Ai AiX - XBi) (1<i<h),
0 B:

and f is analytic on a domain containing Sp(A)USp(B), then f(T) has the
block upper triangular form

(S FAX - XAB
(4.7) (7= ( o (8B) > .

Proof. By Proposition[t.2] f(7) has the form (4.4). Let C; = A, X — X B;
and Fy be defined by (3.1)). By Proposition Fx € T', hence Fx f(T) =
F(T)Fy, which implies ¥ = f(A)X — X f(B). w

Proposition for k =1 is contained in [4].

Proof of Theorem[I.1l To prove the existence of a simultaneous solution
X of , we apply Taylor’s functional calculus described in Section 2.
Namely, by Lemmawe have Sp(7) C K1UKs, where K1 = Sp(A), Ky =
Sp(B) are disjoint compact sets. Therefore, if y is the characteristic function
of Ki, then x € 2A(Sp(7)) and, by Proposition

(x4 X\ (I X
w (0 X))

Since x(7) commutes with 7, it follows, by Proposition that X is a
simultaneous solution of (|1.3]). The uniqueness follows from Theorem
since Fx =x(T)eT". n

From Theorem [1.1] we obtain the following results, which are extensions
of well known results from the case of single operators to the multivariate
case.

COROLLARY 4.4. Suppose T = (T1,...,Tx) is a commuting k-tuple in
L(E® F) which has the form (3.6]) such that Sp(A)NSp(B) = 0. Then there
exists an invertible operator V € L(E ® F) such that
A; O

(4.9) VT,V = (
O B

) (1<i<k).

Indeed, the operator V' can be chosen in the form

I X
o (1)

where X is the simultaneous solution of equations (|1.3]).

COROLLARY 4.5. Suppose T = (T1,...,Tx) is a commuting k-tuple in
L(E & F) which has the form (3.6) such that Sp(A) N Sp(B) = 0. Then T’



Simultaneous solutions of operator Sylvester equations 95

consists of operators S of the form

_ (@ X
(4.11) S_<O R),

where Q € A", R € B and X is uniquely determined by Q and R as the
stmultaneous solution of A; X — XB; = QC; — C;R (1 <1i < k).

Proof. First assume that C; = O for ¢ = 1,...,k. We show that in this
case T'={S=Q@®R:Q e A, Re B} Infact, if S = (]Cg[]‘g) € T, then
from ST; = T;S we have A;M = MB; and NA; = B;N fori =1,...,k,
so, by Theorem we have M = O, N = O. The general case is obtained

from this particular case and Corollary [£.4] =

COROLLARY 4.6. Let A= (Ai,...,A) be a commuting k-tuple in L(E),
(Bi,...,Bk) a commuting k-tuple in L(F), C = (Cy,...,Ck) a k-tuple in
L(F, E) which satisfies the compatibility condition , and X the simulta-
neous solution of . Furthermore, let T = (T1,...,Tx) and Fx be defined
by and (3.1). Then Sp(A)NSp(B) = 0 if and only if there is an analytic
function f on Sp(A) U Sp(B) such that Fx = f(T).

Proof. The “only if” part is already contained in the proof of Theorem
To show the “if” part, we note that if f is analytic on Sp(A) U Sp(B)
and f(T) = Fy, then, by Proposition f(A) =1, f(B) = O. Applying
[10, Theorem 4.8], we have f(A) =1 for all A € Sp(.A) and f(X) = 0 for all
A € Sp(B), hence Sp(A) N Sp(B) =0. =

Corollary [4.6 for the case of a single operator (k = 1) is contained in [4].
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