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Linear maps preserving quasi-commutativity

by

Heydar Radjavi (Waterloo, ON) and Peter Šemrl (Ljubljana)

Abstract. Let X and Y be Banach spaces and B(X) and B(Y ) the algebras of
all bounded linear operators on X and Y , respectively. We say that A, B ∈ B(X) quasi-
commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective
linear maps φ : B(X) → B(Y ) preserving quasi-commutativity. In fact, such a character-
ization can be proved for much more general algebras. In the finite-dimensional case the
same result can be obtained without the bijectivity assumption.

1. Introduction and statement of the main results. Let A be an
algebra over a field F. We say that two elements a, b ∈ A quasi-commute

if there exists a nonzero ω ∈ F such that ab = ωba. For results on quasi-
commutative matrices we refer to [6], where the Potter–Schützenberger for-
mula for such matrices is derived. This formula is of considerable interest in
the study of quantum groups. In [3] and [11] certain sufficient conditions for
quasi-commutativity of bounded operators were established and in the first
of these two papers applications to quantum mechanics were given.

In this paper we will improve Molnár’s characterization of bijective linear
maps on matrices preserving quasi-commutativity in both directions [7].
Let Mn denote the algebra of all n × n complex matrices. A linear map
φ : Mn → Mn preserves quasi-commutativity in both directions provided
that for every pair A,B ∈ Mn the matrices A and B quasi-commute if
and only if φ(A) and φ(B) quasi-commute. We say that φ preserves quasi-

commutativity if φ(A) and φ(B) quasi-commute whenever A and B quasi-
commute. Molnár proved that every bijective linear map φ : Mn → Mn,
n ≥ 2, which preserves quasi-commutativity in both directions is either an
inner automorphism multiplied by a nonzero constant, or an inner anti-
automorphism multiplied by a nonzero constant.
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We propose to consider the following questions here. Can we extend this
result to the infinite-dimensional case? Can we replace the assumption of
preserving quasi-commutativity in both directions by the weaker assumption
of preserving quasi-commutativity in one direction only? And if we restrict
to the finite-dimensional case, what can be said about quasi-commutativity
preserving linear maps in the absence of the bijectivity assumption?

When dealing with the infinite-dimensional case we arrived at a some-
what surprising result. Namely, we discovered that such maps can be char-
acterized on algebras that are much more general than operator algebras.
And moreover, the condition of preserving quasi-commutativity in one di-
rection can be replaced by a much weaker assumption that commuting pairs
are mapped into quasi-commutative pairs. We have the following result.

Theorem 1.1. Let A and B be centrally closed unital prime algebras

over a field F 6= GF(3). Suppose that charB 6= 2. Let φ : A → B be a

bijective linear map having the property that φ(a) and φ(b) quasi-commute

for every commutative pair a, b ∈ A. If neither A nor B satisfies the standard

polynomial identity of degree 4, then

φ(a) = cψ(a) + µ(a), a ∈ A,

where c is a nonzero scalar , ψ is an isomorphism or an anti-isomorphism

of A onto B, and µ is a linear mapping from A into the center of B. In

particular , φ preserves commutativity in both directions.

In the special case of algebras of bounded operators we get the following
almost straightforward consequences.

Corollary 1.2. Let X and Y be Banach spaces, dimX ≥ 3, and B(X)
and B(Y ) the algebras of all bounded linear operators on X and Y , re-

spectively. Let φ : B(X) → B(Y ) be a bijective linear map having the

property that φ(A) and φ(B) quasi-commute for every commutative pair

A,B ∈ B(X). Then either there exist a bounded linear bijective operator

T : X → Y , a (not necessarily bounded) linear functional ϕ on B(X) and a

nonzero complex number c such that

φ(A) = cTAT−1 + ϕ(A)I, A ∈ B(X),

or there exist a bounded linear bijective operator T : X ′ → Y , a (not nec-

essarily bounded) linear functional ϕ on B(X) and a nonzero scalar c such

that

φ(A) = cTA′T−1 + ϕ(A)I, A ∈ B(X).

Corollary 1.3. Let X and Y be Banach spaces, dimX ≥ 3, and B(X)
and B(Y ) the algebras of all bounded linear operators on X and Y , respec-

tively. Let φ : B(X) → B(Y ) be a bijective linear map preserving quasi-

commutativity. Then either there exist a bounded linear bijective operator
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T : X → Y and a nonzero complex number c such that

φ(A) = cTAT−1, A ∈ B(X),

or there exist a bounded linear bijective operator T : X ′ → Y and a nonzero

scalar c such that

φ(A) = cTA′T−1, A ∈ B(X).

The last result can be improved in the finite-dimensional case by re-
moving the bijectivity assumption. However, in this case the map φ can be
degenerate. To explain this notion we need some more definitions. Let A be
an algebra over a field F and V ⊂ A a linear subspace. We say that V is
commutative if every pair of elements a, b ∈ V commute. If for every pair
a, b ∈ V we can find a nonzero ω ∈ F such that ab = ωba, then we say that V
is quasi-commutative. Further, V is said to be square-zero if a2 = 0 for every
a ∈ V. If V is square-zero, then it is quasi-commutative. Indeed, if a, b ∈ V,
then 0 = (a + b)2 = ab + ba. Thus, each pair a, b ∈ V anti-commutes, that
is, ab = −ba. The converse is true if charA 6= 2. Indeed, let V ⊂ A be
an anti-commutative subspace. Then a2 = −a2 for every a ∈ V, and thus
a2 = 0. Clearly, every linear map φ : A → A whose image is either commu-
tative or square-zero preserves quasi-commutativity. We will show that in
the matrix case every linear map preserving quasi-commutativity is either
bijective, or its image is commutative or square-zero.

Theorem 1.4. Let φ : Mn →Mn, n ≥ 3, be a linear map. Assume that

φ(A) and φ(B) quasi-commute for every pair of quasi-commuting matrices

A and B. Then we have one of the following three possibilities:

(1) The range of φ is commutative.

(2) The range of φ is anti-commutative.

(3) There exist an invertible T ∈ Mn and a nonzero complex number c
such that either

φ(A) = cTAT−1, A ∈Mn,

or

φ(A) = cTAtT−1, A ∈Mn.

Here, At denotes the transpose of A.

Theorem 1.5. Let φ : M2 →M2 be a linear map. Then φ maps the set

of quasi-commuting pairs into itself if and only if one of the following four

possibilities occurs:

(1) The range of φ is commutative.

(2) There exist an invertible T ∈ M2 and a nonzero scalar c such that

either

φ(A) = cTAT−1, A ∈M2,
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or

φ(A) = cTAtT−1, A ∈M2.

(3) There exist an invertible T ∈ M2 and a nonzero scalar c such that

either

φ(A) = c(TAT−1 − (trA)I), A ∈M2,

or

φ(A) = c(TAtT−1 − (trA)I), A ∈M2.

(4) There exist an invertible T ∈ M2 and a nonzero scalar c such that

either

φ(A) = c
(

TAT−1 − 1
2
(trA)I

)

, A ∈M2,

or

φ(A) = c
(

TAtT−1 − 1
2
(trA)I

)

, A ∈M2.

Here, trA denotes the trace of A.

We conclude this section by giving some examples of square-zero matrix
spaces that are not commutative (such a space is a trivial Jordan algebra
and hence simultaneously triangularizable by Jacobson’s theorem). Let

N =

[

0 1
0 0

]

.

Then the set of all 6 × 6 matrices of the form




λN 0 µI
0 τN 0
0 0 −λN





is a 3-dimensional square-zero space which is not commutative. Further, if
V ⊂ Mn and W ⊂ Mm are non-trivial square-zero subspaces, then the set
of all (2n+m) × (2n+m) matrices of the form





A 0 µI
0 B 0
0 0 −A



 , A ∈ V, B ∈ W ,

is a square-zero space that is not commutative.
An interested reader can find an extensive bibliography in the mainly

expository article [10].

2. Preliminary results

Lemma 2.1. Let A be an algebra over an arbitrary field F, charA 6= 2,
and V ⊂ A a linear subspace. Assume that V is quasi-commutative but not

commutative. Then V is square-zero.

Proof. Assume first that V is two-dimensional. By our assumptions there
exist x, y ∈ V and a nonzero ω ∈ F, ω 6= 1, such that xy = ωyx 6= 0. Clearly,
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V is the linear span of x and y, and therefore, we have to show that a2 = 0
for every a = λx + µy, λ, µ ∈ F. We may assume that at least one of the
scalars λ, µ, say λ, is nonzero. Then there is no loss of generality in assuming
that λ = 1.

Thus, a = x+µy. It is trivial to see that a and y do not commute. Indeed,
if x + µy and y commuted, then x and y would commute, a contradiction.
It follows that ya = ηay 6= 0 for some η 6= 1.

We further know that

(a+ y)a = ξa(a+ y)

for some nonzero ξ. Again, ξ 6= 1, since otherwise a and y would commute.
Hence,

(1 − ξ)a2 = (ξ − η)ay.

We must show that the assumption a2 6= 0 leads to a contradiction.
Indeed, assume that a is not square-zero. Then

a2 = τay

with τ = (1 − ξ)−1(ξ − η) 6= 0. Since a − τy and a quasi-commute we can
find a nonzero δ such that

a(a− τy) = δ(a− τy)a.

But the left-hand side of this equality is equal to 0, and consequently,
a2 = τya. This together with a2 = τay implies that a and y commute,
a contradiction.

Let now V be of any dimension. As before, let x, y ∈ V and ω 6= 0, 1
satisfy xy = ωyx 6= 0. Assume further that there exists a ∈ V such that
a2 6= 0. Then a commutes with every b ∈ V, since otherwise the linear span
of a and b would be a two-dimensional quasi-commutative subspace that is
not commutative, which would imply by the previous step that a2 = 0, a
contradiction.

Take any c ∈ V. If d ∈ V is any element that does not commute with
c, then by the previous step applied to the linear span of c and d, we get
c2 = d2 = (c+ d)2 = 0, which further implies that c and d anti-commute. It
follows that V is the union of the subset of all elements of V that commute
with c and the subset of all elements of V that anti-commute with c. Both
these subsets are actually subspaces. A linear space cannot be a union of
two proper subspaces. So, we have proved that for every c ∈ V, either c
commutes with every element of V, or c anti-commutes with every element
of V. In particular, since x and y do not commute, we have xa = −ax. On
the other hand, we already know that a commutes with every element of V,
and thus,

ax = xa = 0.
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We will now show that a+x commutes with every element of V. Indeed,
the other possibility would be that a+x anti-commutes with every element
of V, which would imply that (a + x)a = −a(a + x). It would follow that
a2 = 0, a contradiction. In a similar way we show that a+ y commutes with
every element of V and ay = ya = 0. Hence,

a2 + xy = (a+ x)(a+ y) = (a+ y)(a+ x) = a2 + yx,

and therefore, xy = yx. This contradiction completes the proof.

From this result we can get almost directly the following property of
linear maps sending commuting pairs into quasi-commuting pairs. To for-
mulate this corollary we need two more definitions. Let A be an algebra
and a ∈ A. Then we will denote by a′ and a− the commutant of a and the
anti-commutant of a, respectively,

a′ = {b ∈ A : ab = ba}, a− = {b ∈ A : ab = −ba}.

Corollary 2.2. Let A and B be algebras over an arbitrary field F,
charB 6= 2, and let φ : A → B be a linear map. Assume that φ(a) and φ(b)
quasi-commute for every pair of elements a, b ∈ A satisfying ab = ba. Then

for every a ∈ A we have

φ(a′) ⊂ (φ(a))′ or φ(a′) ⊂ (φ(a))−.

Proof. Choose any b ∈ A that commutes with a. Then, clearly, any two
linear combinations of a and b commute. If φ(a) and φ(b) are linearly depen-
dent, then they commute. Otherwise, the linear span of these two vectors is
a two-dimensional quasi-commutative subspace of B. By the previous lemma
we have either φ(a)φ(b) = φ(b)φ(a) or φ(a)φ(b) = −φ(b)φ(a). It follows that

φ(a′) ⊂ (φ(a))′ ∪ (φ(a))−.

Clearly, if a linear subspace is contained in the union of two linear subspaces,
then it is already contained in one of these two subspaces. This completes
the proof.

3. Proofs of the main results

Proof of Theorem 1.1. By Corollary 2.2 we have

φ(A) = φ(1′) ⊂ (φ(1))′ or φ(A) ⊂ (φ(1))−.

Let us first consider the second possibility. By bijectivity we can find b ∈ A
such that φ(b) = 1. Since φ(b) and φ(1) anti-commute, we have

0 = φ(1)φ(b) + φ(b)φ(1) = 2φ(1).

Thus, φ(1) = 0, contradicting the bijectivity of φ.
It follows that we have the first possibility, that is, φ(1) and φ(a) com-

mute for every a ∈ A. In the next step we will show that φ preserves commu-
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tativity, that is, φ(a) and φ(b) commute whenever a and b commute. So, let
a, b ∈ A be any commutative pair, a 6= 0 and b 6= 0. Then the linear span of
φ(a) and φ(b) is a quasi-commutative subspace, and consequently, φ(a) and
φ(b) commute or anti-commute. We have to show that the first possibility
holds. Assume on the contrary that φ(a) and φ(b) do not commute.

We further know that φ(1 + a) and φ(b) commute or anti-commute. In
the first case we have

(φ(1) + φ(a))φ(b) = φ(b)(φ(1) + φ(a)),

which together with the commutativity of the pair φ(1), φ(b) implies that
φ(a) and φ(b) commute, a contradiction. Thus,

(φ(1) + φ(a))φ(b) = −φ(b)(φ(1) + φ(a)),

which implies that φ(1)φ(b) + φ(b)φ(1) = 2φ(1)φ(b) = 0. As B is a unital
prime algebra not of characteristic two and since φ(1)cφ(b) = cφ(1)φ(b) = 0
for every c ∈ B, we have φ(1) = 0 or φ(b) = 0, contradicting the bijectivity
of φ.

Hence, φ preserves commutativity. Our result now follows directly from
Brešar’s characterization of bijective commutativity preserving maps [1].

Proof of Corollary 1.2. Since dimX ≥ 3 and φ is bijective, we have
dimY ≥ 3. Thus, neither of the algebras B(X) and B(Y ) satisfies the stan-
dard polynomial identity of degree 4. It is easy to see that these two algebras
satisfy all other assumptions on A and B in Theorem 1.1. Thus, we can ap-
ply Theorem 1.1. It is well-known that the center of B(Y ) is the set of all
scalar operators and that every isomorphism or anti-isomorphism of B(X)
onto B(Y ) is spatially implemented. This completes the proof.

Proof of Corollary 1.3. We can apply Corollary 1.2. After composing φ
with an appropriate isomorphism or anti-isomorphism of B(Y ) onto B(X)
and multiplying the resulting map by a nonzero constant we may and will
assume that φ maps B(X) onto itself and

φ(A) = A+ ϕ(A)I, A ∈ B(X),

for some linear functional ϕ on B(X). All we have to do is to show that
ϕ = 0.

We will first show that ϕ(A) = 0 for every finite rank operator A ∈ B(X).
Let B be any nilpotent of rank 2 and of nilindex 3. Then we can write

B =





0 1 0
0 0 1
0 0 0



 ⊕ 0.
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If we set

A =





1 0 0
0 2 0
0 0 4



 ⊕ 0,

then A and B quasi-commute, and thus φ(A) = A + ϕ(A)I and φ(B) =
B+ϕ(B)I quasi-commute. Obviously, AB,A,B, I are linearly independent,
and one can then easily see that φ(A) = A+ϕ(A)I and φ(B) = B +ϕ(B)I
quasi-commute only if ϕ(A) = ϕ(B) = 0. Thus, ϕ is zero on the set of
all nilpotents of rank 2 and of nilindex 3, and by linearity, ϕ must be zero
on the set of all nilpotents of rank one. Applying linearity once more we
conclude that ϕ is the zero functional on the space of all finite rank trace
zero operators. The space of all finite rank operators is a direct sum of the
space of all finite rank trace zero operators and a one-dimensional space
spanned by C, where C is any finite rank operator with nonzero trace. As
ϕ(A) = 0 we conclude that ϕ(F ) = 0 for every finite rank F ∈ B(X).

Now let A ∈ B(X) be any operator. We decompose X into a direct sum
X = X1 ⊕ X2 where X1 is 2-dimensional. With respect to this direct sum
decomposition the operator A can be represented as

A =

[

A1 A2

A3 A4

]

where A2 : X2 → X1, A3 : X1 → X2, A4 : X2 → X2 are bounded linear
operators and A1 can be represented as a 2 × 2 matrix. Define finite rank
operators R, T ∈ B(X) by

R =

[

−A1 +R1 −A2

−A3 0

]

and T =

[

T1 0
0 0

]

,

where

R1 =

[

1 0
0 −1

]

and T1 =

[

0 1
−1 0

]

.

Then A+R anti-commutes with T , and consequently, A+R+ϕ(A)I quasi-
commutes with T . A straightforward computation shows that this is possible
only if ϕ(A) = 0. As A was an arbitrary operator, we have shown that
ϕ = 0.

Proof of Theorem 1.4. We distinguish two cases. First we assume that
the set

{A ∈Mn : φ(A) commutes with φ(A2)}

is dense in Mn. Thus, by continuity, φ(A) commutes with φ(A2) for all
A ∈Mn. By [2, Lemma 4.3], either the range of φ is commutative (in which
case we are done), or there exist an invertible matrix T , a nonzero complex
number c, and a linear functional f on Mn such that either

φ(A) = cTAT−1 + f(A)I, A ∈Mn,
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or

φ(A) = cTAtT−1 + f(A)I, A ∈Mn.

We must show that f = 0. We can assume, without loss of generality, that
c = 1, T = I, and

φ(A) = A+ f(A)I,

after composing φ with transposition if necessary.
To show that f(N) = 0 for an arbitrary nilpotent of rank one, it suffices

to verify f(E12) = 0. (Here {Eij} denotes the standard basis for Mn.) Let
A = 2E11 +E22. Then AE12 = 2E12A, and thus the two matrices A+f(A)I
and E12 + f(E12)I quasi-commute:

(A+ f(A)I) (E12 + f(E12)I) = λ(E12 + f(E12)I)(A+ f(A)I)

for some λ 6= 0. Since I, E12, and A are linearly independent, it follows that

2 + f(A) = λ(1 + f(A))

and hence λ 6= 1. But then we also have

f(E12)A = λf(E12)A

and thus f(E12) = 0.
Since the nilpotents of rank one span the trace-zero matrices, we deduce

that f(X) = α trX, X ∈ Mn, where α is a fixed scalar. Consider a pair of
quasi-commuting matrices A = E12 + E23 and B = E11 − E22 + E33. Now

φ(A) = A

and

φ(B) = (α+ 1)E11 + (α− 1)E22 + (α+ 1)E33 + α(I − E11 −E22 −E33)

will quasi-commute only if α = 0.
To complete the proof, we assume that the set

{A ∈Mn : φ(A) commutes with φ(A2)}

is not dense inMn. Thus there is a nonempty open set G such that span{φ(A),
φ(A2)} is quasi-commutative but not commutative for all A ∈ G. By Lemma
2.1, φ(A)2 = 0. Since G is open, it follows that φ(A)2 = 0 for all A ∈Mn.

Proof of Theorem 1.5. Once we show that both maps

A 7→ A− ξ(trA)I, ξ ∈ {1/2, 1},

preserve quasi-commutativity, we can apply the simple fact that the set of
quasi-commutativity preserving maps is closed under composition to con-
clude that any map as in (1), (2), (3), or (4) preserves quasi-commutativity.

Assume that nonzero A,B ∈ M2 quasi-commute. To show that A −
ξ(trA)I and B − ξ(trB)I quasi-commute, we distinguish several cases. We
start with the case in which at least one of A and B, say B, is invertible.
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From AB = λBA, λ 6= 0, we deduce that A is similar to λnA for all n. If
A has a nonzero eigenvalue, then λ = 1 or λ = −1. When λ = 1, A and
B commute, and so do A− ξ(trA)I and B − ξ(trB)I. When λ = −1, A is
similar to

[

a 0
0 −a

]

with a 6= 0. It follows from AB = −BA that the diagonal entries of B are
both zero. Thus, trA = trB = 0, and we are done. Otherwise A is nilpotent
and, without loss of generality, of the form

A =

[

0 1
0 0

]

.

Denote by A# the quasi-commutant of A, that is,A# is the set of all matrices
that quasi-commute with A. Then

A# =

{[

x z
0 y

]

: xy 6= 0 or |x| + |y| = 0

}

.

For every B ∈ A#, we clearly have B − ξ(trB)I ∈ A#. Hence A− ξ(trA)I
and B − ξ(trB)I quasi-commute.

We can now assume that A and B are both singular (and nonzero). If
they are both nilpotent, then trA = trB = 0, and we are done. Otherwise,
one of them, say A, is a scalar multiple of an idempotent of rank one. Thus,
a straightforward calculation shows that A# = A′, and we are done again.

We must prove the converse. We first consider the case in which φ(I) is
not a scalar. Then up to similarity, φ(I) has one of the following forms:

[

a 1
0 a

]

,

[

0 1
0 0

]

,

[

b 0
0 0

]

,

[

c 0
0 −c

]

,

[

d 0
0 e

]

,

where abcde 6= 0 and d 6= ±e. Note that φ(M2) is contained in φ(I)#. In
the first and third cases φ(I)# = φ(I)′, which is a commutative subspace,
completing the proof for these cases. In the second case we have

φ(M2) ⊂ φ(I)# =

{[

x z
0 y

]

: xy 6= 0 or |x| + |y| = 0

}

.

Since φ(M2) is a subspace, there exists a nonzero scalar k such that

φ(M2) ⊂

{[

x z
0 kx

]

: x, z ∈ C

}

.

If all idempotents are mapped to multiples of E12 (i.e., if x = 0 for all
these images), then, since the idempotents span M2, the space φ(M2) has
dimension one and is thus commutative. So we can assume

φ(E) =

[

x0 z0
0 kx0

]

, x0 6= 0,
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for some idempotent E of rank one. Then

φ(I − E) =

[

−x0 1 − z0
0 −kx0

]

.

Since φ(E) and φ(I−E) must necessarily quasi-commute, and since x0 6= 0,
they actually commute; hence k = 1, and we are done.

In the last two cases, it is not hard to verify that

φ(M2) ⊂

{[

x 0
0 y

]

: x, y ∈ C

}

∪

{[

0 x
y 0

]

: x, y ∈ C

}

.

Since φ(M2) is a subspace contained in the union of the above two sub-
spaces, and since φ(I) is diagonal, we deduce that φ(M2) is contained in the
commutative space of diagonal matrices.

We can assume, from now on, that φ(I) is a scalar matrix.
For our next case, we assume that there is a diagonalizable A whose

image is not diagonalizable. By adding an appropriate multiple of I to A if
necessary, we can write that, up to similarity,

A =

[

α 0
0 β

]

with αβ 6= 0. Note that the linear span of A# is M2. By hypothesis, φ(A)
is, again up to similarity,

[

0 1
0 0

]

or

[

γ 1
0 γ

]

with γ 6= 0. In both cases, φ(A)# is contained in the space T of upper
triangular matrices. It follows from φ(A#) ⊂ φ(A)# that

φ(M2) = φ(spanA#) ⊂ spanφ(A)# ⊂ T .

Our plan now is first to show that if φ(M2) is contained in
{[

0 x
0 y

]

: x, y ∈ C

}

or

{[

y x
0 0

]

: x, y ∈ C

}

,

then it is actually contained in span{E12}, and secondly, to prove that other-
wise there is an invertible diagonalizableB ∈M2 such that φ(B) = aI+bE12

with ab 6= 0. Assuming for a moment that such a B exists, we have

φ(M2) = φ(spanB#) ⊂ spanφ(B)# = φ(B)′ = span{I, E12},

and this would complete the proof.
If

φ(M2) ⊂

{[

0 x
0 y

]

: x, y ∈ C

}

,

then, since

φ(A)# ∩

{[

0 x
0 y

]

: x, y ∈ C

}

= span{E12},
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we have

φ(Eij) ∈ span{E12}, i, j = 1, 2.

The treatment is the same if

φ(M2) ⊂

{[

y x
0 0

]

: x, y ∈ C

}

.

We now turn to the second part of the plan. Consider the three linear
functionals on M2 defined by

f1(X) = φ(X)11 − φ(X)22, f2(X) = φ(X)12, f3(X) = φ(X)11

(where φ(X)ij denotes the (i, j)-entry of φ(X)), and the following two func-
tions from M2 to C: let g1(X) = detX and let g2(X) be the discriminant of
the characteristic polynomial of X. Denote by W the kernel of f1. Let

Fi = {X ∈W : fi(X) 6= 0}

for i = 2 and i = 3. Similarly, let

Gi = {X ∈W : gi(X) 6= 0}

for i = 1 and i = 2. If we can reduce our proof to the case when F2, F3, G1,
and G2 are all nonempty, then they are all dense and open in W (if the set
Gi is nonempty, then it is dense in W as a nonzero polynomial on W cannot
vanish on an open subset of W ), and therefore their intersection contains a
matrix B which has all the desired properties.

If F2 is empty, there is a scalar c2 such that f2 = c2f1, or equivalently,

φ(M2) ⊂

{[

x c2(x− y)
0 y

]

: x, y ∈ C

}

,

so that every member of φ(M2) is diagonalizable, a contradiction.

If F3 is empty, then similarly, we have one of the following three possi-
bilities:

φ(M2) ⊂

{[

0 x
0 y

]

: x, y ∈ C

}

,

φ(M2) ⊂

{[

y x
0 0

]

: x, y ∈ C

}

,

φ(M2) ⊂

{[

x y
0 kx

]

: x, y ∈ C

}

,

where k is a nonzero constant. The first two cases have already been treated.
So we assume the third case. If k = 1, the range of φ is commutative. So,
we will assume that k 6= 1. Then because φ(I) ∈ CI, we have φ(I) = 0. It
follows that the diagonal entries of A satisfy α 6= β. If φ(A) has nonzero
diagonal entries, then B = A has all the desired properties. Hence, we may
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assume that

φ(A) = φ

([

α 0
0 β

])

=

[

0 1
0 0

]

,

and therefore,

φ

([

λ 0
0 µ

])

=

[

0 τ(λ− µ)
0 0

]

, λ, µ ∈ C,

for some nonzero τ ∈ C. If φ(E12) and φ(E21) both belong to the linear
span of E12, the range of φ is commutative. So, assume that one of them,
say φ(E12), has nonzero diagonal entries:

φ(E12) =

[

p q
0 kp

]

for some p, q ∈ C with p 6= 0. Because the matrices
[

0 1
0 0

]

and

[

z 1
0 −z

]

anti-commute for every z ∈ C, their images
[

p q
0 kp

]

and

[

p q + 2τz
0 kp

]

quasi-commute for every z ∈ C. The diagonal entries of these two matrices
are all nonzero, and therefore they actually commute, a contradiction.

Since W is at least three-dimensional, G1 cannot be empty; otherwise
M2 would contain a three-dimensional subspace of singular matrices, which
is impossible. (See [4].)

Similarly, M2 does not contain a three-dimensional subspace of matrices
of the form cI+N , where c ∈ C and N2 = 0. (See, e.g., [5] and [9].) Therefore
G2 is nonempty.

We have reduced the whole problem to the case where φ maps every
diagonalizable matrix to a diagonalizable matrix. We can now apply [8] to
conclude that we have one of the three possibilities:

(1) The range of φ is simultaneously diagonalizable.
(2) There exist an invertible T ∈M2, a nonzero scalar c and a functional

f on M2 such that

φ(A) = cTAT−1 + f(A)I, A ∈M2.

(3) There exist an invertible T ∈M2, a nonzero scalar c and a functional
f on M2 such that

φ(A) = cTAtT−1 + f(A)I, A ∈M2.

In the first case, φ(M2) is commutative, and we are done. The last two cases
are reduced, after a similarity, multiplying by a constant, and a transposi-
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tion, if necessary, to just one case:

φ(A) = A+ f(A)I.

As in the proof of Theorem 1.4, we see that f(A) = α trA for some scalar α.
We will complete the proof by showing that α is zero, −1 or −1/2. Indeed,
if α 6∈ {−1,−1/2, 0}, then E12 and αE11 − (1 + α)E22 quasi-commute, but
φ(E12) = E12 and φ(αE11 − (1 + α)E22) = αE11 − (1 + α)E22 − αI =
−(1 + 2α)E22 do not.
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