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On nilpotent operators

by

Laura Burlando (Genova)

Abstract. We give several necessary and sufficient conditions in order that a bounded
linear operator on a Banach space be nilpotent. We also discuss three necessary conditions
for nilpotency. Furthermore, we construct an infinite family (in one-to-one correspondence
with the square-summable sequences (εn)n∈N of strictly positive real numbers) of non-
nilpotent quasinilpotent operators on an infinite-dimensional Hilbert space, all the iterates
of each of which have closed range. Each of these operators (as well as an operator previ-
ously constructed by C. Apostol in [Ap]) can be used to provide a negative answer to a
question posed by M. Mbekhta and J. Zemánek [MZ]. We also use our example to show
that two (equivalent to each other) of the three necessary conditions for nilpotency we
have mentioned above are not sufficient, by proving that the sequence (εn)n∈N can be
chosen so that these two conditions are satisfied. Finally, from a generalization—obtained
by using a theorem proved by M. Gonzalez and V. M. Onieva in [GO2]—of a result pro-
vided by C. Apostol in [Ap], we derive that any holomorphic function of each operator in
our example, as well as of the one constructed in [Ap], has closed range.

1. Introduction. Throughout this paper, when the scalar field is not
specified, it may be either C or R.

For each vector space V , let 0V and IV denote respectively the zero
element of V and the identity operator on V . If E is an endomorphism of V ,
we denote the kernel and the range of E by N (E) and R(E), respectively.
If X is a Banach space, L(X) stands for the Banach algebra of all bounded
linear operators on X. If T ∈ L(X) is invertible in L(X), we denote the
inverse of T in L(X) by T−1.

If X is a complex Banach space and A ∈ L(X ), let σ(A) stand for the
spectrum of A. It is well known that the resolvent function of A

R(·, A) : C \ σ(A) 3 λ 7→ (λIX − A)−1 ∈ L(X )

is holomorphic on C \ σ(A).
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For every normed space Y , we denote the norm of Y by ‖ ‖Y . Also, let
N and Z+ stand for the sets of all nonnegative integers and of all positive
integers, respectively.

We recall that a bounded linear operator T on a Banach space X is
called:

• nilpotent if there exists p ∈ N such that T p = 0L(X);
• quasinilpotent if limn→∞ n

√
‖Tn‖L(X) = 0.

Clearly, every nilpotent operator is quasinilpotent. Now suppose the Banach
space X is nonzero and let T ∈ L(X). Since T 0 = IX 6= 0L(X), if T is
nilpotent we have

min{p ∈ N : T p = 0L(X)} ∈ Z+.

We also recall that, if X is complex, then T is quasinilpotent if and only
if σ(T ) = {0} (see [TL, V, 3.5]); moreover, T is nilpotent if and only if
σ(T ) = {0} and 0 is a pole of R(·, T ) (see [TL, V, 10.5 and 10.6]). In the real
case, T being quasinilpotent is equivalent to the spectrum of the complex
extension T̃ of T to the complexification X̃ of X (see [Sc, p. 261]) being
equal to {0} (as it is not difficult to verify that ‖(T̃ )n‖

L(X̃) = ‖Tn‖L(X) for

all n ∈ N), and T being nilpotent is equivalent to σ(T̃ ) = {0} plus 0 being
a pole of R(·, T̃ ).

The problem of finding conditions ensuring that a bounded linear oper-
ator T on a Banach space X be nilpotent (or the equivalent one of finding
conditions ensuring that T−IX be nilpotent) has been considered by several
authors (see also [Ze] for an extensive bibliography about this topic). Ex-
tending I. Gelfand’s characterization of the identity operator among all the
ones having spectrum equal to {1} ([Ge2, Theorem 1]), E. Hille ([H, p. 59];
see also [St, p. 6], [HP, Theorem 4.10.1] and [Ze, Theorem 2]) characterized
nilpotency of T − IX (where X is a complex Banach space), under the hy-
pothesis σ(T ) = {1}, in terms of the asymptotic behaviour of the sequence
(Tn)n∈Z as |n| → ∞. Further necessary and sufficient conditions for nilpo-
tency of T − IX , for T satisfying σ(T ) = {1}, in terms of the asymptotic
behaviour of the sequence above as |n| → ∞, were more recently obtained
by A. Atzmon [At], J. Zemánek [Ze], M. Zarrabi [Za], and D. Drissi and
J. Zemánek [DZ]: indeed, a characterization of this kind follows from Corol-
lary 1 of [At], another one can be derived from Theorem 4 of [Ze] and further
ones are stated in [Za, 5.1] and in [DZ, Corollary of Theorem 2]. Moreover,
in [DZ, Theorems 1–3], E. Hille’s result is improved in terms of the asymp-
totic behaviour of the Cesàro means of T and T−1 as n→∞. Local results
of Gelfand–Hille type can be found, for instance, in [AD], [Ze], [EZ], [D1],
[D2]. We also recall that a characterization of nilpotency of T , in terms of
the asymptotic behaviour of the positive iterates only of IX +T and IX−T ,
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is provided in [Al, Lemma 3]. Also [At] includes a characterization of nilpo-
tency of T−IX , in terms of the asymptotic behaviour of the positive iterates
only of T and of T−IX (see [At, Corollary 7]), as well as one of nilpotency of
a quasinilpotent operator A, in terms of the growth of the resolvent function
of A (see [At, remark 3 on p. 50]). Characterizations of nilpotent operators
by means of conditions on the growth of the resolvent function can also
be found elsewhere in the literature ([Ge1, Theorem 1], see also [Na, III,
§11, Theorem 9]; [Ne, 5.4.1]). Nilpotency of T − IX , under the hypothesis
σ(T ) = {1}, is also characterized in [DZ, Theorem 4] by means of estimates
of the norm of the resolvent function as |λ| → 1+ and |λ| → 1−, and in [DZ,
Theorem 5] by means of a generalization of the uniform Abel-boundedness
condition on T and T−1. We also remark that necessary and sufficient condi-
tions for nilpotency of a quasinilpotent operator T , in terms of finiteness of
the ascent or descent of T , can be derived, as straightforward consequences,
from the characterizations of the boundary points of the spectrum which
are poles of the resolvent obtained by D. C. Lay in [L, 2.7 and 2.6, respec-
tively] (for the consequence of [L, 2.6] see [TL, V, 10.6]; the consequence of
[L, 2.7] will be explicitly recalled here, in the next section). Likewise, the
refinements of D. C. Lay’s results, provided by S. Grabiner in [Gr1, (5.4)]
and [Gr2, (4.9)], and by S. Grabiner and J. Zemánek in [GZ, 2.3], yield cor-
responding refinements of the characterizations of nilpotency derived from
[L, 2.7 and 2.6].

We are especially interested here in necessary and sufficient conditions
for nilpotency of a bounded linear operator T which involve closedness of
the ranges of the (positive) iterates of T .

In [MZ], M. Mbekhta and J. Zemánek obtained an improvement of the
uniform ergodic theorem, from which they derived a characterization of the
identity operator among all the ones having spectrum equal to {1}, in terms
of the asymptotic behaviour of the sequence (T n)n∈N as n → ∞ and of
closedness of the range of a suitable iterate of IX−T (see [MZ, Corollary 2]).
Corollary 2 of [MZ] yields the following characterization of the zero operator
among all the quasinilpotent ones, as a straightforward consequence (see also
[MZ, Corollary 4]).

(1.1) Let X be a complex nonzero Banach space and T ∈ L(X). Then
T = 0L(X) if and only if σ(T ) = {0}, n−1‖(IX − T )n‖L(X) → 0 as
n→∞ and R(Tm) is closed for some m ∈ Z+.

The result below (which generalizes (1.1)) follows immediately from [LM,
Corollary 7 and Lemma 3] (cf. also [GZ, 3.2 and (1.2b)]).

(1.2) Let X and T be as in (1.1), and p ∈ Z+. Then T p = 0L(X) if and
only if σ(T ) = {0}, n−1‖T p−1(IX − T )n‖L(X) → 0 as n → ∞ and
R(Tm) is closed for some m ∈ N satisfying m ≥ p.
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In [B2, 3.4] we obtained a generalization of the uniform ergodic theorem to
the sequence (n−p

∑n−1
k=0 T

k)n∈Z+ (with p ∈ Z+), by giving several necessary
and sufficient conditions in order that it converges in L(X) and the subspace
R((IX − T )p−1) + N (IX − T ) is closed (notice that, in the special case
p = 1, the latter condition is automatically satisfied, thus reducing the sum
of the two conditions above to uniform ergodicity of T ). A further condition,
equivalent to the ones obtained in [B2], is provided in [B3, 3.4]. Also, in [B3,
3.5] a characterization of nilpotency of T − IX is derived from [B2, 3.4]
and [B3, 3.4], yielding the following characterization of nilpotency of T as a
straightforward consequence.

(1.3) Let X be a complex nonzero Banach space, T ∈ L(X) and p ∈ Z+.
Then T p = 0L(X) if and only if σ(T ) = {0}, n−p‖(IX − T )n‖L(X) →
0 as n→∞ and R(T k) +N (T j) is closed for some (k, j) ∈ Z+×N
satisfying either k = p and j = 0 or k + j > p.

We recall that the condition limn→∞ n−1‖T p−1(IX − T )n‖L(X) = 0 implies
limn→∞ n−p‖(IX − T )n‖L(X) = 0 (see [B2, 2.4]), whereas the converse is
not true for p ≥ 2 (see [B2, 2.6]). Hence (1.3) improves (1.2) (cf. also [W,
Theorem 4]). Also, it is known that convergence to zero in L(X) (actu-
ally, even strong convergence to zero, see [W, Theorem 2]) of the sequence
(n−p(IX − T )n)n∈Z+ implies that the ascent of T is less than or equal to p.
Then from [GZ, 2.3] it follows that the norm convergence to zero require-
ment can be replaced by the weaker one that the ascent of T be less than
or equal to

{
1 in (1.1) for m > 1,

p in (1.2) for m > p and in (1.3) for k + j > p.

Notice that in the remaining cases (that is, for m = 1 in (1.1), for m = p in
(1.2) and for k = p, j = 0 in (1.3)) this is not true (see [B2, 3.5]); indeed,
uniform convergence to zero of the sequence above cannot even be replaced
by strong convergence to zero in these cases (see [GZ, 1.3]).

It is clear that eventual closedness of the ranges of the iterates of a
bounded linear operator T is a necessary condition in order that T be nilpo-
tent. The authors of [MZ] wonder whether, once quasinilpotency of T is
assumed, closedness of R(Tn) for n large enough is also sufficient for nilpo-
tency of T (see the concluding remark 3 of [MZ]). This question can be
answered in the negative. Indeed, in Theorem 3 of [Ap], C. Apostol proved
that, if σ is a (nonempty) countable compact set in the complex plane and
H is a complex infinite-dimensional Hilbert space, there exists T ∈ L(H)
such that σ(T ) = σ and p(T ) has closed range for all polynomials p. It
turns out that the operator constructed in the proof of Theorem 3 of [Ap]
is not nilpotent. Hence the proof of [Ap, Theorem 3], in the special case
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σ = {0}, yields an example of a nonnilpotent quasinilpotent bounded linear
operator T such that R(Tn) is closed for all n ∈ N.

In this paper we provide several characterizations of nilpotency and con-
struct another example showing that the question posed in [MZ] has a nega-
tive answer. We also use this example to give a negative answer to a further
question, about sufficiency of two necessary conditions for nilpotency we
derive here. In Section 2 we collect a few known results that are needed
in the rest of the paper. In Section 3 we provide some necessary and suf-
ficient conditions in order that a bounded linear operator has finite ascent
(Theorem 3.6 and Corollary 3.7). These conditions are used in Section 4, in
which several characterizations of nilpotency, for a bounded linear operator
(Theorem 4.3) and for a quasinilpotent bounded linear operator (Theorem
4.7), are obtained. Also three necessary conditions for nilpotency ((4.4.1),
(4.5.1) and (4.5.2)) are considered: (4.4.1) implies the remaining two, which
are proved to be equivalent in Theorem 4.5. Most of our conditions for nilpo-
tency involve closedness of the ranges (or of sums of ranges and kernels) of
the iterates of the operator.

Section 5 is mainly devoted to examples. Indeed, in Example 5.4 we con-
struct a nonnilpotent quasinilpotent bounded linear operator on an infinite-
dimensional Hilbert space, all the iterates of which have closed range. Actu-
ally, Example 5.4, which is the development of an example we had previously
obtained (unpublished, although mentioned, together with another example
by W. R. Wogen—about the same topic and unpublished as well—in the
final comments of [Ze]), provides an infinite family of such operators, each of
which corresponds to a square-summable sequence (εn)n∈N of strictly pos-
itive numbers. We exactly compute the reduced minimum moduli of the
iterates of these operators, in terms of the εn. We also give a formula to
determine the norms of such iterates, besides providing upper estimates for
them in terms of the εn. In Example 5.5 we use these computations to show
that the sequence (εn)n∈N can be chosen so that the operator of Example
5.4 satisfies (4.5.1) and (4.5.2), which therefore turn out not to be sufficient
for nilpotency. In Remark 5.6 we show that Examples 5.4 and 5.5 leave
open the question of sufficiency of condition (4.4.1), as it is not satisfied by
the operator of Example 5.4 for any choice of (εn)n∈N. Finally, in Propo-
sition 5.7, we remark that a result obtained in [Ap, Lemma 3]—that is,
closedness of the range of p(A) (where A is a bounded linear operator on a
complex Hilbert space H) for all polynomials p, under the hypothesis that
R((λIH − A)n) is closed for all λ ∈ σ(A) and n ∈ N—actually holds in the
more general setting of holomorphic functions of Banach space operators.
This follows from a theorem—provided by M. Gonzalez and V. M. Onieva
in [GO2]—which we are going to recall in Section 2, and clearly applies to
the operator of Example 5.4, as well as to the operator constructed in the



106 L. Burlando

proof of [Ap, Theorem 3]: indeed, any holomorphic function of any of these
two operators has closed range (Remark 5.8).

Acknowledgements. We wish to thank Warren Wogen for bringing
Apostol’s construction in Theorem 3 of [Ap] to our attention, and Jaroslav
Zemánek for his interesting and stimulating questions and comments.

2. Preliminaries. Let X be a Banach space. For every bounded linear
operator A on X, let α(A) denote the ascent of A, that is,

α(A) = inf{n ∈ N : N (An) = N (An+1)}.
Notice that α(A) ∈ N ∪ {∞} and the infimum above is attained if and only
if α(A) < ∞. Also, N (An) ( N (An+1) for all n ∈ N satisfying n < α(A)
and N (An) = N (An+1) for n ≥ α(A). Finally, the following equality is not
difficult to verify.

(2.1) If A is nilpotent, we have α(A) = min{p ∈ N : Ap = 0L(X)}.
In what follows, we will need the following characterization of nilpotent

operators, which is a consequence of [L, 2.7] and [TL, V, 3.5, 10.5 and
10.6] (in these references, the Banach space is assumed to be complex and
nonzero; anyway, the result holds in any Banach space, as the real nonzero
case follows from the complex one by going to the complex extension of the
operator, and the zero space case is trivial).

Theorem 2.2. Let X be a Banach space and T ∈ L(X) be quasinilpo-
tent. Then T is nilpotent if and only if α(T ) < ∞ and R(Tn) is closed for
some n ∈ Z+ satisfying n ≥ α(T ) + 1.

We will also use the following result by S. Grabiner and J. Zemánek.

Theorem 2.3 ([GZ, 2.1]). Let X be a Banach space and T ∈ L(X). If
α(T ) <∞ and R(T k) +N (T j) is closed for some (k, j) ∈ Z+×N satisfying
k + j ≥ α(T ) + 1, then R(Tn) + N (Tm) is closed for all (n,m) ∈ N × N
satisfying n+m ≥ α(T ).

Notice that Theorem 2.3 yields a refinement of Theorem 2.2 in which
closedness of R(Tn) for some n ≥ α(T ) + 1 can be replaced by closedness
of R(T k) +N (T j) for some (k, j) ∈ Z+ × N satisfying k + j ≥ α(T ) + 1 (a
further refinement, in which also the condition α(T ) <∞ is relaxed, follows
from [GZ, 2.3]).

For each nonempty subset S of a normed space Y , let dist(·, S) denote
the distance function to S on Y , that is,

dist(·, S) : Y 3 x 7→ dist(x, S) = inf{‖x− y‖Y : y ∈ S} ∈ R.
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For every bounded linear operator A on a Banach space X, let γ(A)
denote the reduced minimum modulus of A, that is,

γ(A) = sup{m ∈ [0,∞) : ‖Ax‖X ≥ mdist(x,N (A)) for all x ∈ X}.

Notice that γ(A) ∈ [0,∞], and γ(A) = ∞ if and only if A = 0L(X). We
also recall that, if A 6= 0L(X), the supremum above is attained and γ(A) ≤
‖A‖L(X). The following well known result will be useful.

Theorem 2.4 ([K, IV, 5.2]; [TL, IV, 5.9]). Let X be a Banach space and
let T ∈ L(X). Then R(T ) is closed if and only if γ(T ) > 0.

The following result was obtained by C. Apostol in [Ap].

Theorem 2.5 ([Ap, Lemma 3]). Let H be a complex Hilbert space and
let T ∈ L(H) be such that R((λIH − T )n) is closed for every n ∈ N and
every λ ∈ σ(T ). Then R(p(T )) is closed for every polynomial p.

The proof of Theorem 2.5 provided in [Ap] uses the fact (proved in [Ap,
Corollary of Theorem 1]) that an operator T ∈ L(H) such that R(λIH −T )
is closed for every λ ∈ σ(T ) has an at most countable spectrum. We remark
that this also holds in the general case of a Banach space operator (see [MO,
Corollary 4.3 and Remark 4.4]). Hence the proof of [Ap, Lemma 3] can be
repeated in the Banach space case. Anyway, the extension of Theorem 2.5
to the bounded linear operators on Banach spaces can also be obtained as a
straightforward consequence of the fact that, if p is the polynomial defined
by p(z) =

∏n
k=1(λk−z)mk (where n ∈ Z+, λ1, . . . , λn ∈ C, with λj 6= λh for

j 6= h, and m1, . . . ,mn ∈ Z+) and E is an endomorphism of a complex vector
space V , we have R(p(E)) =

⋂n
k=1R((λkIV −E)mk) (see [Y, Theorem], or

[Go, Corollary]) (1).
Finally, we are going to recall a result which—as we will remark in Propo-

sition 5.7—yields the extension of Theorem 2.5 to holomorphic functions of
(Banach space) operators.

If X is a complex Banach space and T ∈ L(X), let U(T ) denote the set
of all complex-valued holomorphic functions whose domain is a nonempty
open subset of C containing σ(T ). We recall (see for instance [TL, Definition
on p. 310 and subsequent comments]) that, for each f ∈ U(T ), the operator

(1) We recall that this result also holds for non-everywhere defined operators: indeed,
if p and q are polynomials with no common roots in C and A is a (possibly non-everywhere
defined) linear operator on a complex vector space, then R(pq(A)) = R(p(A))∩R(q(A)).
This—together with the equality N (p(A)) = q(A)(N (p(A)))—can be found, for instance,
in [B1, 2.2]. We take this opportunity to point out that a different proof of the results of
[B1, 2.2] had been previously provided in [GO1] (see [GO1, (1.1) and (1.3)]).
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f(T ) ∈ L(X) is defined by

f(T ) =
1

2πi

�

+∂D

f(z)R(z, T ) dz,

where D is any nonempty open bounded subset of C containing σ(T ) and
with closure contained in the domain of f , which has finitely many com-
ponents with pairwise disjoint closures, and whose boundary consists of a
finite number of simple closed rectifiable curves, no two of which intersect
and each of which is positively oriented with respect to D; +∂D denotes the
positively oriented boundary of D. This extends the canonical definition of
p(T ), where p is a polynomial with coefficients in C (see [TL, V, 8.1]).

Theorem 2.6 (see [GO2, Theorem]). Let X be a complex Banach space,
T ∈ L(X) and f ∈ U(T ). For each isolated zero µ of f , let mµ denote the
order of µ. Then R(f(T )) is closed if and only if R((λIX − T )mλ) is closed
for every isolated zero λ of f satisfying λ ∈ σ(T ).

3. Characterizations of operators with finite ascent. We remark
that, if V is a linear space, I is a nonempty set and (pi)i∈I is a family of
seminorms on V , the set W of all x ∈ V satisfying

∑
i∈I pi(x) <∞ is a linear

subspace of V . Notice also that the function q : W 3 x 7→ ∑
i∈I pi(x) ∈ R

is a seminorm on W . Moreover, q is a norm if the set {pi : i ∈ I} contains
a norm.

Definition 3.1. Let X be a normed space, let I be a nonempty set and
let P = (pi)i∈I be a family of seminorms on X such that ‖ ‖X ∈ {pi : i ∈ I}.
We will denote by XP the space of all x ∈ X satisfying

∑
i∈I pi(x) < ∞,

endowed with the norm ‖ ‖XP defined by

‖x‖XP =
∑

i∈I
pi(x) for every x ∈ XP .

We remark that XP is continuously embedded in X, since ‖ ‖X ∈ {pi :
i ∈ I} and consequently ‖x‖X ≤ ‖x‖XP for each x ∈ XP .

Lemma 3.2. Let X be a Banach space, let I be a nonempty set and let
P = (pi)i∈I be a family of continuous seminorms on X such that ‖ ‖X ∈
{pi : i ∈ I}. Then XP is a Banach space.

Proof. Let (xn)n∈N be a Cauchy sequence in XP . Since ‖x‖X ≤ ‖x‖XP
for each x ∈ XP , it follows that (xn)n∈N is also a Cauchy sequence in X.

Hence there exists x ∈ X such that xn
X−→x as n → ∞. We prove that

x ∈ XP and xn
XP−→x as n→∞.
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Fix ε > 0. Since (xn)n∈N is a Cauchy sequence in XP , there exists νε ∈ N
such that∑

i∈I
pi(xn − xm) < ε for all n,m ∈ N satisfying n,m ≥ νε.

Now let n ∈ N be such that n ≥ νε. For each nonempty finite subset F of
I, we have

∑

i∈F
pi(xn − xm) ≤

∑

i∈I
pi(xn − xm) < ε for all m ≥ νε,

which, since the elements of {pi : i ∈ I} are continuous on X, yields
∑

i∈F
pi(xn − x) ≤ ε.

If FI denotes the set of all nonempty finite subsets of I, we conclude that
∑

i∈I
pi(xn − x) = sup

{∑

i∈F
pi(xn − x) : F ∈ FI

}
≤ ε for all n ≥ νε.

Hence xn−x ∈ XP for some n ∈ N, and consequently x ∈ XP . Furthermore,

‖xn − x‖XP =
∑

i∈I
pi(xn − x)→ 0 as n→∞,

which gives the desired result.

If not all of the seminorms of the family P are continuous on X, the
normed space XP may not be complete, as the following example shows.

Example 3.3. Let X be an infinite-dimensional Banach space. Then
there exists a complete norm n on X which is not equivalent to ‖ ‖X . For
instance, n can be defined by

n(x) = ‖Tx‖X for every x ∈ X,
where T is any one-to-one discontinuous linear operator from X into X,
having closed range in X (such an operator exists, as X has infinite dimen-
sion): indeed, n is a norm as T is linear and one-to-one; furthermore, the
normed space (X, n) is complete as the range of T is closed in (X, ‖ ‖X).

Let S be the couple of seminorms on X defined by S = (n, ‖ ‖X). Then
the linear subspace XS coincides with the whole of X and

‖x‖XS = n(x) + ‖x‖X for every x ∈ X.
Notice that XS is continuously embedded in (X, n) as well as in (X, ‖ ‖X).
Since the identity map from (X, ‖ ‖X) onto (X, n) is discontinuous and both
spaces are Banach, from the closed graph theorem it follows that there exist
a sequence (xn)n∈N in X and x, y ∈ X such that (xn)n∈N converges to x in
(X, ‖ ‖X) and to y in (X, n), and x 6= y. Then (xn)n∈N is a Cauchy sequence
in both (X, ‖ ‖X) and (X, n), and consequently it is a Cauchy sequence
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in XS . Nevertheless, since XS is continuously embedded in both (X, ‖ ‖X)
and (X, n) and x 6= y, it follows that (xn)n∈N does not converge in XS .
Hence XS is not complete.

Let S be a nonempty subset of a normed space Y . We remark that
dist(·, S) is continuous on Y , as

|dist(x, S)− dist(y, S)| ≤ ‖x− y‖Y for all x, y ∈ Y.
Furthermore, if S is a linear subspace of Y , then dist(·, S) is a seminorm
on Y .

Definition 3.4. Let X be a Banach space, let T ∈ L(X) and let Σ be
a subset of N containing 0. We set

D(Σ,T ) = (dist(·,N (Tn)))n∈Σ.

Under the hypotheses of Definition 3.4, D(Σ,T ) is a family of continuous
seminorms on X; furthermore, ‖ ‖X = dist(·,N (T 0)) ∈ {dist(·,N (Tn)) :
n ∈ Σ}. Thus XD(Σ,T ) is a Banach space by Lemma 3.2.

For every element y of a normed space Y and for every ε > 0, let BY (y, ε)
stand for the open ball in Y centered at y with radius ε.

Lemma 3.5. Let X be a Banach space, let T ∈ L(X) and let Σ be an
infinite subset of N containing 0. Then XD(Σ,T ) ⊂

⋃
n∈NN (Tn).

Proof. For each x ∈ X \ ⋃n∈NN (Tn), there exists δ > 0 such that
BX(x, δ)∩⋃n∈NN (Tn) = ∅. Hence dist(x,N (Tn)) ≥ δ for all n ∈ N, which,
since Σ is infinite, gives

∑
n∈Σ dist(x,N (Tn)) =∞.

Theorem 3.6. Let X be a Banach space and let T ∈ L(X). The follow-
ing conditions are equivalent :

(3.6.1) α(T ) <∞;
(3.6.2) there exists M ∈ [0,∞) such that

∑∞
n=0 dist(x,N (Tn)) ≤M‖x‖X

for every x ∈ ⋃n∈NN (Tn);

(3.6.3)
∑∞
n=0 dist(x,N (Tn)) <∞ for every x ∈ ⋃n∈NN (Tn);

(3.6.4) there exists a strictly increasing sequence (nk)k∈N of nonnega-
tive integers such that

∑∞
k=0 dist(x,N (Tnk)) < ∞ for every x ∈⋃

n∈NN (Tn).

Furthermore, if (3.6.1)–(3.6.4) are satisfied , we have

α(T ) = min
{
M ∈ [0,∞) :

∞∑

n=0

dist(x,N (Tn)) ≤M‖x‖X

for every x ∈
⋃

n∈N
N (Tn)

}
.
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Proof. We begin by supposing that α(T ) <∞. We prove that then

(3.6.5)
∞∑

n=0

dist(x,N (Tn)) ≤ α(T )‖x‖X for every x ∈
⋃

n∈N
N (Tn).

This is clearly true if α(T ) = 0. Now assume α(T ) ∈ Z+. Then, for each
x ∈ ⋃n∈NN (Tn) = N (Tα(T )), we have

∞∑

n=0

dist(x,N (Tn)) =
α(T )−1∑

n=0

dist(x,N (Tn)) ≤
α(T )−1∑

n=0

‖x‖X = α(T )‖x‖X ,

which is the desired result.
We have thus proved that (3.6.1)⇒(3.6.2). Clearly, (3.6.2)⇒(3.6.3) and

(3.6.3)⇒(3.6.4). Now we prove that (3.6.4)⇒(3.6.1).
Suppose condition (3.6.4) holds and define Σ = {0} ∪ {nk : k ∈ N}.

Then D(Σ,T ) is a family of continuous seminorms on X and ‖ ‖X ∈
{dist(·,N (Tn)) : n ∈ Σ}. Moreover,XD(Σ,T ) ⊂

⋃
n∈NN (Tn) by Lemma 3.5.

Condition (3.6.4) gives the opposite inclusion, so XD(Σ,T ) =
⋃
n∈NN (Tn).

Since XD(Σ,T ) is continuously embedded in X and ‖ ‖XD(Σ,T ) is complete
by Lemma 3.2, from the open mapping theorem we conclude that the norms
‖ ‖XD(Σ,T) and ‖ ‖X are equivalent on XD(Σ,T ). Hence there exists M ∈
(0,∞) such that ‖x‖XD(Σ,T) ≤M‖x‖X for every x ∈ XD(Σ,T ), which gives

(3.6.6)
∞∑

k=0

dist(x,N (Tnk)) ≤M‖x‖X for every x ∈
⋃

n∈N
N (Tn).

We now prove that α(T ) <∞. If the ascent of T were infinite, for every k ∈ N
we would have N (Tnk) ( N (Tnk+1). Hence, by Riesz’s lemma, there would
exist xk ∈ N (Tnk+1) such that ‖xk‖X = 1 and dist(xk,N (Tnk)) ≥ 1/2.
Then from (3.6.6) we would obtain

M = M‖xk‖X ≥
∞∑

j=0

dist(xk,N (Tnj )) =
k∑

j=0

dist(xk,N (Tnj ))

≥ (k + 1)/2 for all k ∈ N,
which is impossible. Hence α(T ) <∞.

We have thus proved that conditions (3.6.1)–(3.6.4) are equivalent. Now
suppose they are satisfied and set

M =
{
M ∈ [0,∞) :

∞∑

n=0

dist(x,N (Tn)) ≤M‖x‖X

for every x ∈
⋃

n∈N
N (Tn)

}
.
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We will prove that α(T ) = min(M). From (3.6.5) it follows that α(T ) ∈M,
which gives the desired result if α(T ) = 0. Suppose α(T ) ∈ Z+ and let
M ∈ M. By Riesz’s lemma, for each ε ∈ (0, 1) there exists xε ∈ N (Tα(T ))
such that ‖xε‖X = 1 and dist(xε,N (Tα(T )−1)) ≥ 1− ε. Hence

M = M‖xε‖X ≥
∞∑

n=0

dist(xε,N (Tn)) =
α(T )−1∑

n=0

dist(xε,N (Tn))

≥ (1− ε)α(T ).

Letting ε→ 1−, we obtainM ≥ α(T ). Hence α(T ) = min(M), which finishes
the proof of the theorem.

Henceforth, we stipulate that λ/∞ = 0 for all λ ∈ [0,∞). This, in virtue
of Theorem 2.4, allows us to consider ‖Ax‖X/γ(A) for any A ∈ L(X) having
closed range in X (where X is any Banach space) and for every x ∈ X.

Corollary 3.7. Let X be a Banach space, T ∈ L(X) and (nk)k∈N be
a strictly increasing sequence of nonnegative integers such that R(Tnk) is
closed for all k ∈ N. Then:

(3.7.1)
∑∞
k=0 dist(x,N (Tnk))≤∑∞k=0 ‖Tnkx‖X/γ(Tnk) for every x∈X;

(3.7.2) α(T ) < ∞ if and only if
∑∞
k=0 ‖Tnkx‖X/γ(Tnk) < ∞ for every

x ∈ ⋃n∈NN (Tn).

Proof. (3.7.1) follows from the properties of the reduced minimum mod-
ulus, and the “if” part of (3.7.2) follows from (3.7.1) and Theorem 3.6.

Now we prove the “only if” part of (3.7.2). If α(T ) < ∞, we have⋃
n∈NN (Tn) =

⋃
n∈NN (Tn). Then, for each x ∈ ⋃n∈NN (Tn), the series∑∞

k=0 ‖Tnkx‖X/γ(Tnk) reduces to a finite sum and hence converges. The
corollary is proved.

4. Characterizations of nilpotent operators. In this section, we are
going to use Theorem 3.6 in order to derive characterizations of nilpotency
for a bounded linear operator on a Banach space.

Definition 4.1. Let X be a Banach space and let T ∈ L(X). We set

κ(T ) = inf{n ∈ Z+ : R(T k) is closed for all k ∈ N satisfying k ≥ n}.

We remark that κ(T ) ∈ Z+ ∪ {∞} and the infimum above is attained if
and only if κ(T ) < ∞. Notice also that κ(T ) < ∞ if and only if R(T n) is
eventually closed. In particular, κ(T ) = 1 if and only if R(T n) is closed for
all n ∈ N.

We will need the following elementary result.
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Lemma 4.2. Let X be a Banach space and let T ∈ L(X). Then T is
nilpotent if and only if α(T ) <∞ and

⋃
n∈NN (Tn) is dense in X.

Proof. If α(T ) <∞ and
⋃
n∈NN (Tn) is dense in X, we have

X =
⋃

n∈N
N (Tn) = N (Tα(T )),

which gives Tα(T ) = 0L(X). Hence T is nilpotent. The converse follows from
(2.1).

Theorem 4.3. Let X be a Banach space and let T ∈ L(X). The follow-
ing conditions are equivalent :

(4.3.1) T is nilpotent ;
(4.3.2) there exists M ∈ [0,∞) such that

∑∞
n=0 dist(x,N (Tn)) ≤M‖x‖X

for every x ∈ X;
(4.3.3)

∑∞
n=0 dist(x,N (Tn)) <∞ for every x ∈ X;

(4.3.4) there exists a strictly increasing sequence (nk)k∈N of nonnegative
integers such that

∑∞
k=0 dist(x,N (Tnk)) <∞ for every x ∈ X;

(4.3.5) κ(T ) <∞ and there exists N ∈ [0,∞) such that

∞∑

n=κ(T )

‖Tnx‖X/γ(Tn) ≤ N‖x‖X for every x ∈ X;

(4.3.6) κ(T ) <∞ and
∑∞
n=κ(T ) ‖Tnx‖X/γ(Tn) <∞ for every x ∈ X;

(4.3.7) there exists a strictly increasing sequence (nk)k∈N of nonnegative
integers such that R(Tnk) is closed for all k ∈ N and

∞∑

k=0

‖Tnkx‖X/γ(Tnk) <∞ for every x ∈ X.

Furthermore, if (4.3.1)–(4.3.7) are satisfied , we have

(4.3.8) min{p ∈ N : T p = 0L(X)}

= min
{
M ∈ [0,∞) :

∞∑

n=0

dist(x,N (Tn)) ≤M‖x‖X for every x ∈ X
}
.

Proof. From Lemma 4.2, Theorem 3.6, Lemma 3.5 and (2.1) we derive
that conditions (4.3.1)–(4.3.4) are equivalent and (4.3.8) holds if they are
satisfied.

Now suppose that (4.3.1)–(4.3.4) are satisfied. Then there exists p ∈ Z+

such that T p = 0L(X). Hence κ(T ) ≤ p. Furthermore, for each x ∈ X, we
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have
∞∑

n=κ(T )

‖Tnx‖X
γ(Tn)

=
p∑

n=κ(T )

‖Tnx‖X
γ(Tn)

≤
( p∑

n=κ(T )

‖Tn‖L(X)

γ(Tn)

)
‖x‖X ,

which gives (4.3.5).
We have thus proved that (4.3.1)–(4.3.4) imply (4.3.5). Clearly, we have

(4.3.5)⇒(4.3.6) and (4.3.6)⇒(4.3.7). Furthermore, by (3.7.1), condition
(4.3.7) implies (4.3.4), which completes the proof.

The next result follows from Theorem 4.3 (more precisely, from equiv-
alence between (4.3.1) and (4.3.6)). It can also be checked directly by ob-
serving that R(Tn) is eventually closed and the series

∑∞
n=κ(T ) T

nx/γ(Tn)
reduces to a finite sum for every x ∈ X if T is nilpotent.

Proposition 4.4. Let X be a Banach space and T ∈ L(X) be nilpotent.
Then

(4.4.1) T is quasinilpotent , κ(T ) <∞ and the series
∑∞
n=κ(T ) T

nx/γ(Tn)
converges in X for every x ∈ X.

Theorem 4.5. Let X be a Banach space and T ∈ L(X). Then the fol-
lowing two conditions are equivalent.

(4.5.1) T is quasinilpotent , κ(T ) <∞ and limn→∞ Tnx/γ(Tn) = 0X for
every x ∈ X;

(4.5.2) T is quasinilpotent ,
⋃
n∈NN (Tn) is dense in X, κ(T ) < ∞ and

the sequence (‖Tn‖L(X)/γ(Tn))n≥κ(T ) is bounded.

Furthermore, condition (4.4.1) implies (4.5.1) and (4.5.2).

Proof. Clearly, (4.4.1) implies (4.5.1). If T satisfies (4.5.1), we have

(4.5.3) lim
n→∞

‖Tnx‖X/γ(Tn) = 0 for every x ∈ X.

For each x ∈ X, since

dist(x,N (Tn)) ≤ ‖Tnx‖X/γ(Tn) for every n ≥ κ(T ),

from (4.5.3) we conclude that limn→∞ dist(x,N (Tn)) = 0, which gives x ∈⋃
n∈NN (Tn). Hence

⋃
n∈NN (Tn) = X.

From (4.5.3) it also follows that the sequence (‖T nx‖X/γ(Tn))n≥κ(T ) is
bounded for every x ∈ X. By the uniform boundedness principle, this yields
boundedness of (‖Tn‖L(X)/γ(Tn))n≥κ(T ). We have thus proved that (4.5.1)
implies (4.5.2).

Conversely, suppose (4.5.2) is satisfied and let M ∈ [0,∞) be such that

(4.5.4) ‖Tn‖L(X)/γ(Tn) ≤M for all n ≥ κ(T ).
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Fix x ∈ X. Since
⋃
n∈NN (Tn) is dense in X, we conclude that

(4.5.5) lim
n→∞

dist(x,N (Tn)) = dist
(
x,
⋃

n∈N
N (Tn)

)
= 0.

Since, by (4.5.4), for each n ≥ κ(T ) we have

‖Tnx‖X
γ(Tn)

≤ ‖T
n‖L(X)

γ(Tn)
dist(x,N (Tn)) ≤M dist(x,N (Tn)),

from (4.5.5) it follows that limn→∞ Tnx/γ(Tn) = 0X . Hence T satisfies
(4.5.1). We have thus proved that (4.5.1) and (4.5.2) are equivalent. The
proof is now complete.

We remark that the requirement that T be quasinilpotent cannot be re-
moved from conditions (4.5.1) and (4.5.2) without weakening them. Indeed,
for instance, the backward shift operator S on `2 satisfies κ(S) = 1 and
limn→∞ Snx/γ(Sn) = limn→∞ Snx = 0`2 for every x ∈ `2. Nevertheless, S
is not quasinilpotent.

The next result follows from Proposition 4.4 and Theorem 4.5. It can as
well be checked directly, by observing that R(T n) is eventually closed and
the sequence (Tnx/γ(Tn))n≥κ(T ) is eventually zero for every x ∈ X if T is
nilpotent.

Proposition 4.6. Let X be a Banach space and T ∈ L(X) be nilpotent.
Then T satisfies the equivalent conditions (4.5.1) and (4.5.2).

In the next section, we will show that (4.5.1) and (4.5.2) are not sufficient
for nilpotency of T .

Henceforth, [x] will denote the integer part of x for every x ∈ R.

Theorem 4.7. Let X be a Banach space and T ∈ L(X) be quasinilpo-
tent. The following conditions are equivalent :

(4.7.1) T is nilpotent ;
(4.7.2) there exists M ∈ [0,∞) such that

∑∞
n=0 dist(x,N (Tn)) ≤M‖x‖X

for every x ∈ ⋃n∈NN (Tn) and R(T k)+N (T j) is closed for some
(k, j) ∈ Z+ × N satisfying k + j ≥ [M ] + 1;

(4.7.3) there exists M ∈ [0,∞) such that
∑∞
n=0 dist(x,N (Tn)) ≤M‖x‖X

for every x ∈ ⋃n∈NN (Tn) and R(T k) + N (T j) is closed for all
(k, j) ∈ N× N satisfying k + j ≥ [M ];

(4.7.4)
∑∞
n=0 dist(x,N (Tn)) <∞ for all x ∈ ⋃n∈NN (Tn) and R(T k) +

N (T j) is closed for infinitely many (k, j) ∈ Z+ × N;
(4.7.5) R(T k) +N (T j) is closed for infinitely many (k, j) ∈ Z+ × N and

there exists a strictly increasing sequence (nk)k∈N of nonnegative
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integers such that
∞∑

k=0

dist(x,N (Tnk)) <∞ for every x ∈
⋃

n∈N
N (Tn);

(4.7.6) κ(T ) <∞ and there exists N ∈ [0,∞) such that
∞∑

n=κ(T )

‖Tnx‖X/γ(Tn) ≤ N‖x‖X for every x ∈
⋃

n∈N
N (Tn);

(4.7.7) κ(T ) < ∞ and
∑∞
n=κ(T ) ‖Tnx‖X/γ(Tn) < ∞ for every x ∈⋃

n∈NN (Tn);
(4.7.8) there exists a strictly increasing sequence (nk)k∈N of nonnegative

integers such that R(Tnk) is closed for all k ∈ N and
∞∑

k=0

‖Tnkx‖X/γ(Tnk) <∞ for every x ∈
⋃

n∈N
N (Tn).

Furthermore, if (4.7.1)–(4.7.8) are satisfied , we have

(4.7.9) min{p ∈ N : T p = 0L(X)}

= min
{
M ∈ [0,∞) :

∞∑

n=0

dist(x,N (Tn)) ≤M‖x‖X

for every x ∈
⋃

n∈N
N (Tn)

}
.

Proof. From Theorem 3.6, Theorem 2.3, Theorem 2.2 and (2.1) it follows
that condition (4.7.1) is equivalent to each of (4.7.4)–(4.7.5) and implies
(4.7.9) as well as (4.7.3).

Clearly, (4.7.3)⇒(4.7.2). We now prove that (4.7.2)⇒(4.7.1).
Suppose (4.7.2) is satisfied. Then, by Theorem 3.6, we have α(T ) ≤

M < ∞. Since α(T ) ∈ N, we conclude that α(T ) ≤ [M ] and consequently
α(T ) < [M ] + 1. Now Theorems 2.2 and 2.3 yield (4.7.1).

We have thus proved that conditions (4.7.1)–(4.7.5) are equivalent. From
Theorem 4.3 it follows that (4.7.1)⇒(4.7.6). Clearly, (4.7.6)⇒(4.7.7) and
(4.7.7)⇒(4.7.8). Finally, (4.7.8)⇒(4.7.1) by Corollary 3.7 and Theorem 2.2.
The proof is now complete.

5. Examples. We begin with the following property of scalar products;
we give the proof for the reader’s convenience.

We will denote the scalar product in any pre-Hilbert space by 〈·, ·〉.
Lemma 5.1. Let H be a pre-Hilbert space, and let x, y ∈ H satisfy

‖x‖H = ‖y‖H . Then x = y if and only if 〈x, y〉 = ‖x‖2H .
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Proof. Clearly, x = y gives 〈x, y〉 = ‖x‖2H . Conversely, if 〈x, y〉 = ‖x‖2H ,
we also have 〈y, x〉 = ‖x‖2H . Since ‖x‖H = ‖y‖H , we conclude that

‖x− y‖2H = 〈x− y, x− y〉 = ‖x‖2H − 〈x, y〉 − 〈y, x〉+ ‖y‖2H = 0,

which establishes the desired equality x = y.

The following result will be used in what follows.

Lemma 5.2. Let X be a Hilbert space and (xn,k)(n,k)∈N×N be an orthog-
onal double sequence in X (that is, 〈xn,k, xm,j〉 = 0 for (n, k) 6= (m, j)). If∑∞
n=0

∑∞
k=0 ‖xn,k‖2X <∞, then:

(5.2.1)
∑∞
j=0 xn,j and

∑∞
j=0 xj,k converge in X for all n, k ∈ N;

(5.2.2) both
∑∞
n=0

∑∞
k=0 xn,k and

∑∞
k=0

∑∞
n=0 xn,k converge in X and

∞∑

n=0

∞∑

k=0

xn,k =
∞∑

k=0

∞∑

n=0

xn,k;

(5.2.3)
∥∥∥
∞∑

n=0

∞∑

k=0

xn,k

∥∥∥
2

X
=
∞∑

n=0

∞∑

k=0

‖xn,k‖2X =
∞∑

k=0

∞∑

n=0

‖xn,k‖2X .

Proof. For each n ∈ N, (xn,j)j∈N is an orthogonal sequence in X and∑∞
j=0 ‖xn,j‖2X < ∞. Hence

∑∞
j=0 xn,j converges in X. From the Fubini

theorem we obtain

(5.2.4)
∞∑

k=0

∞∑

n=0

‖xn,k‖2X =
∞∑

n=0

∞∑

k=0

‖xn,k‖2X <∞.

Now the same argument as above yields convergence in X of
∑∞
j=0 xj,k for

each k ∈ N. (5.2.1) is thus proved. Notice also that

(5.2.5)

∥∥∥
∞∑

j=0

xn,j

∥∥∥
2

X
=
∞∑

j=0

‖xn,j‖2X ,

∥∥∥
∞∑

j=0

xj,k

∥∥∥
2

X
=
∞∑

j=0

‖xj,k‖2X for all n, k ∈ N.

Now we prove (5.2.2) and (5.2.3). We begin by remarking that the se-
quence (

∑∞
k=0 xn,k)n∈N is orthogonal in X: indeed, if n,m ∈ N satisfy

n 6= m, we have
〈 ∞∑

k=0

xn,k,

∞∑

j=0

xm,j

〉
=
∞∑

k=0

∞∑

j=0

〈xn,k, xm,j〉 = 0.

From (5.2.4) and (5.2.5) we obtain
∞∑

n=0

∥∥∥
∞∑

k=0

xn,k

∥∥∥
2

X
=
∞∑

n=0

∞∑

k=0

‖xn,k‖2X <∞,
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from which we conclude that
∑∞
n=0

∑∞
k=0 xn,k converges in X and

(5.2.6)
∥∥∥
∞∑

n=0

∞∑

k=0

xn,k

∥∥∥
2

X
=
∞∑

n=0

∞∑

k=0

‖xn,k‖2X .

Notice that (5.2.6), together with (5.2.4), gives (5.2.3).
By applying the same argument as above, from (5.2.4) we derive that∑∞
k=0

∑∞
n=0 xn,k converges in X and

(5.2.7)
∥∥∥
∞∑

k=0

∞∑

n=0

xn,k

∥∥∥
2

X
=
∞∑

k=0

∞∑

n=0

‖xn,k‖2X .

Now (5.2.4), (5.2.6) and (5.2.7) yield the equality

(5.2.8)
∥∥∥
∞∑

n=0

∞∑

k=0

xn,k

∥∥∥
X

=
∥∥∥
∞∑

k=0

∞∑

n=0

xn,k

∥∥∥
X
.

It remains to prove that
∑∞
n=0

∑∞
k=0 xn,k =

∑∞
k=0

∑∞
n=0 xn,k. For each

p, q ∈ N, let δpq denote the Kronecker symbol. Since
〈 ∞∑

n=0

∞∑

k=0

xn,k,
∞∑

k=0

∞∑

n=0

xn,k

〉
=
∞∑

n=0

∞∑

k=0

∞∑

j=0

∞∑

h=0

〈xn,k, xh,j〉

=
∞∑

n=0

∞∑

k=0

∞∑

j=0

∞∑

h=0

δnhδkj‖xn,k‖2X =
∞∑

n=0

∞∑

k=0

‖xn,k‖2X =
∥∥∥
∞∑

n=0

∞∑

k=0

xn,k

∥∥∥
2

X

by (5.2.6), from (5.2.8) and Lemma 5.1 we obtain the desired result.

For every subset S of a linear space V , let Span(S) denote the linear
subspace of V spanned by S.

We will also need the following property of Hilbert spaces. For the
reader’s convenience, we include a proof.

Lemma 5.3. Let X be a Hilbert space and let (Xn)n∈N be a sequence of
pairwise orthogonal closed subspaces of X. For each n ∈ N, let Pn denote
the orthogonal projection of X onto Xn. If Span(

⋃
n∈NXn) is dense in X,

then for each x ∈ X we have

x =
∞∑

n=0

Pnx, ‖x‖2X =
∞∑

n=0

‖Pnx‖2X .

Proof. Indeed, for each n ∈ N,
∑n
k=0 Pk is the orthogonal projection of

X onto the closed subspace
⊕n

k=0 Xk = Span(
⋃n
k=0 Xk). Hence, for each

x ∈ X, the norm ‖x − ∑n
k=0 Pkx‖X coincides with the distance from x

to Span(
⋃n
k=0 Xk). Since Span(

⋃
k∈NXk) is dense in X, we conclude that

limn→∞ ‖x −
∑n
k=0 Pkx‖X = 0 for each x ∈ X. Since ‖∑n

k=0 Pkx‖2X =∑n
k=0 ‖Pkx‖2X for each n ∈ N and x ∈ X, we get the desired result.
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The following question was posed in the final comments of [MZ].

Question. Is every quasinilpotent bounded linear operator T on a Ba-
nach space X, such that R(Tn) is closed for each n ∈ N, nilpotent?

As explained in the Introduction, the operator constructed in the proof
of [Ap, Theorem 3], in the special case σ = {0}, provides a negative answer
to the question above. In the following example, we construct another non-
nilpotent quasinilpotent bounded linear operator on an infinite-dimensional
Hilbert space, all the iterates of which have closed range. We also exactly
compute the reduced minimum moduli of the iterates of our operator, be-
sides giving a formula to determine their norms.

For each Hilbert space X, let dimH(X) denote the Hilbert dimension
of X.

Example 5.4. Let X be an infinite-dimensional Hilbert space. Then
there exists a sequence (Xn)n∈N of pairwise orthogonal closed subspaces
of X satisfying dimH(Xn) = dimH(X) for every n ∈ N and such that
Span(

⋃
n∈NXn) is dense in X. Furthermore, for each n ∈ N, there exists

a sequence (Xn,k)k∈N of pairwise orthogonal closed subspaces of Xn satisfy-
ing dimH(Xn,k) = dimH(Xn) = dimH(X) for all k ∈ N. Hence Xn,k ⊥ Xm,h

for all (n, k), (m,h) ∈ N× N such that (n, k) 6= (m,h).
For each n ∈ Z+ and j ∈ {0, . . . , n− 1}, let Un,j : Xn → Xj,n−1−j be a

linear isometry. We remark that

(5.4.1) R(Un,j) ⊥ R(Um,k) for all n,m ∈ Z+, j ∈ {0, . . . , n− 1} and

k ∈ {0, . . . ,m− 1} satisfying (n, j) 6= (m,k)

(as R(Un,j) ⊂ Xj,n−1−j , R(Um,k) ⊂ Xk,m−1−k and (j, n− 1− j) 6= (k,m−
1 − k)). For each n ∈ N, let Pn denote the orthogonal projection of X
onto Xn. From Lemma 5.3 it follows that for each x ∈ X,

(5.4.2) x =
∞∑

n=0

Pnx, ‖x‖2X =
∞∑

n=0

‖Pnx‖2X .

We fix a sequence (εn)n∈N of strictly positive numbers such that
∑∞
n=0 ε

2
n

<∞. Now let x ∈ X. From (5.4.2) we obtain

(5.4.3)
∞∑

j=0

ε2
j

∞∑

n=j+1

‖Un,jPnx‖2X =
∞∑

j=0

ε2
j

∞∑

n=j+1

‖Pnx‖2X ≤ ‖x‖2X
∞∑

j=0

ε2
j .

Since, by (5.4.1), we have 〈Un,jPnx,Um,kPmx〉 = 0 for all n,m ∈ Z+, j ∈
{0, . . . , n−1} and k ∈ {0, . . . ,m−1} satisfying (n, j) 6= (m,k), from Lemma
5.2 we conclude that the series

∑∞
n=j+1 Un,jPnx converges in X for each

j ∈ N, both
∑∞
j=0 εj

∑∞
n=j+1 Un,jPnx and

∑∞
n=1

∑n−1
j=0 εjUn,jPnx converge
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in X and

(5.4.4)
∞∑

n=1

n−1∑

j=0

εjUn,jPnx =
∞∑

j=0

εj

∞∑

n=j+1

Un,jPnx.

Lemma 5.2, together with (5.4.3), also yields

(5.4.5)
∥∥∥
∞∑

n=1

n−1∑

j=0

εjUn,jPnx
∥∥∥
X
≤ ‖x‖X

√√√√
∞∑

n=0

ε2
n.

Consider the linear operator T : X → X defined by

Tx =
∞∑

n=1

n−1∑

j=0

εjUn,jPnx for each x ∈ X.

From (5.4.5) it follows that T ∈ L(X) and ‖T‖L(X) ≤
√∑∞

n=0 ε
2
n.

Since R(Un,j) ⊂ Xj,n−1−j ⊂ Xj for each j ∈ N and n ≥ j + 1, from
(5.4.4) it follows that

PjTx = εj

∞∑

n=j+1

Un,jPnx for all j ∈ N, x ∈ X.

Hence, by (5.4.1), we have

(5.4.6) ‖PjTx‖2X = ε2
j

∞∑

n=j+1

‖Un,jPnx‖2X = ε2
j

∞∑

n=j+1

‖Pnx‖2X

for all j ∈ N, x ∈ X. Now let ((ak,n)n≥k)k∈N be the sequence of sequences
of real numbers which is defined by induction as follows:

a0,n = 1 for every n ∈ N
and, for each k ∈ N,

ak+1,n =
n−1∑

j=k

ε2
jak,j for every n ≥ k + 1.

We prove that, for each k ∈ N, we have

(5.4.7) ‖T kx‖2X =
∞∑

n=k

ak,n‖Pnx‖2X for all x ∈ X.

We proceed by induction. From (5.4.2) it follows that (5.4.7) holds for k = 0.
Now suppose (5.4.7) is satisfied for some k ∈ N, and let x ∈ X. By using
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(5.4.6), we obtain

‖T k+1x‖2X = ‖T k(Tx)‖2X =
∞∑

j=k

ak,j‖PjTx‖2X =
∞∑

j=k

ak,jε
2
j

∞∑

n=j+1

‖Pnx‖2X

=
∞∑

n=k+1

(n−1∑

j=k

ε2
jak,j

)
‖Pnx‖2X =

∞∑

n=k+1

ak+1,n‖Pnx‖2X ,

which establishes the desired equality for k+ 1. Hence (5.4.7) holds for each
k ∈ N.

Proceeding by induction on k, it is not difficult to check that

(5.4.8) ak,n > 0 for every k ∈ N and n ≥ k
and that the sequence (ak,n)n≥k is bounded for every k ∈ N (as

∑∞
j=0 ε

2
j

< ∞). We also remark that (ak,n)n≥k is nondecreasing for each k ∈ N;
indeed, by (5.4.8), it is strictly increasing for each k ∈ Z+. Then, if we set

ak = sup{ak,n : n ∈ N, n ≥ k} for each k ∈ N,
we have ak ∈ (0,∞) for all k ∈ N. Furthermore, from (5.4.7) we conclude
that

(5.4.9) ak,k

∞∑

n=k

‖Pnx‖2X ≤ ‖T kx‖2X ≤ ak
∞∑

n=k

‖Pnx‖2X

for all x ∈ X, k ∈ N. Since ak,k > 0 for all k ∈ N by (5.4.8), from (5.4.2)
and (5.4.9) we derive that, for each k ∈ Z+ and x ∈ X, we have

(5.4.10) x ∈ N (T k) ⇔
∞∑

n=k

‖Pnx‖2X = 0 ⇔ x =
k−1∑

j=0

Pjx ⇔ x ∈
k−1⊕

j=0

Xj .

Hence

N (T k) =
k−1⊕

j=0

Xj ( X for all k ∈ Z+,

and consequently T is not nilpotent.
We now prove that R(T k) is closed for all k ∈ N. Let k ∈ Z+. Since∑k−1
j=0 Pj is the orthogonal projection of X onto N (T k) by (5.4.10), from

(5.4.9) we conclude that

‖T kx‖X ≥
√
ak,k dist(x,N (T k)) for every x ∈ X.

Hence γ(T k) ≥ √ak,k > 0, and consequently R(T k) is closed by Theo-
rem 2.4.

Although the inequality above is sufficient in order to get closedness of
R(T k), we now determine the exact value of γ(T k), which will be needed in
the next example.
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We remark that Xk ⊂ N (T k)
⊥

by (5.4.10). This, together with (5.4.7),
yields

√
ak,k ‖x‖X = ‖T kx‖X ≥ γ(T k)‖x‖X for all x ∈ Xk,

from which, since Xk is nonzero, we derive that γ(T k) ≤ √ak,k. Hence
γ(T k) = √ak,k.

Since √a0,0 = 1 and √ah,h = εh−1
√
ah−1,h−1 for every h ∈ Z+, we

conclude that

(5.4.11) γ(T k) =
k−1∏

j=0

εj for each k ∈ Z+.

Finally, we prove that T is quasinilpotent. Let k ∈ N. From (5.4.2) and
(5.4.9) it follows that ‖T k‖L(X) ≤

√
ak. On the other hand, if we choose a

sequence (xn)n≥k of norm one elements of X satisfying xn ∈ Xn for every
n ≥ k, from (5.4.7) we obtain

‖T k‖L(X) ≥ sup{‖T kxn‖X : n ∈ N, n ≥ k}
= sup{√ak,n : n ∈ N, n ≥ k} =

√
ak.

Hence ‖T k‖L(X) =
√
ak.

We remark that a0 = 1. Since the sequence (am,n)n≥m is nondecreasing
for each m ∈ N, we also have

ah = lim
n→∞

ah,n = lim
n→∞

n−1∑

j=h−1

ε2
jah−1,j(5.4.12)

=
∞∑

j=h−1

ε2
jah−1,j ≤ ah−1

∞∑

j=h−1

ε2
j

for all h ∈ Z+. Proceeding by induction, it is not difficult to verify that

(5.4.13) ak ≤
k−1∏

j=0

( ∞∑

n=j

ε2
n

)
for every k ∈ Z+.

Actually, the inequality in (5.4.13) can be replaced by equality for k = 1
(as a0,n = 1 for all n ∈ N), whereas it is strict for k ≥ 2 (as the sequence
(ak−1,n)n≥k−1 is strictly increasing).

Since ‖T k‖L(X) =
√
ak for each k ∈ N, from (5.4.13) we obtain

(5.4.14) ‖T k‖L(X) ≤

√√√√
k−1∏

j=0

( ∞∑

n=j

ε2
n

)
for every k ∈ Z+.
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Since
∑∞
n=0 ε

2
n <∞, we have limj→∞

∑∞
n=j ε

2
n = 0. Then

k

√
‖T k‖L(X) ≤

√√√√
k−1∏

j=0

( ∞∑

n=j

ε2
n

)1/k
−−−→
k→∞

0,

from which we conclude that limk→∞ k

√
‖T k‖L(X) = 0. Hence T is quasinil-

potent.
We remark that from Theorem 2.5 it follows that, if X is a complex

Hilbert space, then p(T ) has closed range for every polynomial p with com-
plex coefficients.

If X is a real Hilbert space, Theorem 2.5 yields closedness of R(p(T̃ )) for
every polynomial p with complex coefficients. Since q(T̃ ) = q̃(T ) for every
polynomial q with real coefficients, it follows that q(T ) has closed range for
every polynomial q with real coefficients.

The following example shows that the equivalent conditions (4.5.1) and
(4.5.2) are not sufficient in order that T be nilpotent.

Example 5.5 Let X be an infinite-dimensional Hilbert space, and let
T ∈ L(X) be the operator introduced in Example 5.4 (to which we refer
for all the definitions and notations we do not recall here). We recall that
T is quasinilpotent and κ(T ) = 1. Also, since N (T k) =

⊕k−1
j=0 Xj for every

k ∈ Z+ (see (5.4.10)) and Span(
⋃
n∈NXn) is dense in X, it follows that⋃

n∈NN (Tn) is dense in X. However, T need not satisfy (4.5.1) and (4.5.2),
as the sequence (‖Tn‖L(X)/γ(Tn))n∈N need not be bounded. Indeed, since
the sequence (am,n)n≥m (introduced in Example 5.4) is nondecreasing for
each m ∈ N, by (5.4.12) we have

(5.5.1) ak =
∞∑

j=k−1

ε2
jak−1,j ≥ ak−1,k−1

∞∑

j=k−1

ε2
j for every k ∈ Z+.

Since ‖T k‖L(X) =
√
ak and γ(T k) = √

ak,k = εk−1
√
ak−1,k−1 for each

k ∈ Z+ (see Example 5.4), from (5.5.1) we conclude that, for each k ∈ Z+,
we have

‖T k‖L(X)

γ(T k)
=

√
ak

εk−1
√
ak−1,k−1

(5.5.2)

≥

√
ak−1,k−1

∑∞
j=k−1 ε

2
j

εk−1
√
ak−1,k−1

=
1

εk−1

√√√√
∞∑

j=k−1

ε2
j .

Then, if for instance we take

εj =
1√

(j + 1)(j + 2)
for every j ∈ N,
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from (5.5.2) we obtain

‖T k‖L(X)

γ(T k)
≥
√
k(k + 1)

√√√√
∞∑

j=k−1

1
(j + 1)(j + 2)

=

√√√√k(k + 1)
∞∑

j=k−1

(
1

(j + 1)
− 1

(j + 2)

)
=

√
k(k + 1)

1
k

=
√
k + 1−−−−−→

k→∞
∞.

Anyway, the sequence (εn)n∈N can also be chosen so that the sequence
(‖Tn‖L(X)/γ(Tn))n∈N is bounded. Indeed, from (5.4.11) and (5.4.14) we
derive that, for each k ∈ Z+, we have

‖T k‖L(X)

γ(T k)
≤

√∏k−1
j=0 (

∑∞
n=j ε

2
n)

∏k−1
j=0 εj

=

√√√√
k−1∏

j=0

(
1
ε2
j

∞∑

n=j

ε2
n

)
(5.5.3)

= exp
(

1
2

k−1∑

j=0

log
(

1 +
∞∑

n=j+1

ε2
n

ε2
j

))
.

Hence, if

(5.5.4)
∞∑

j=0

log
(

1 +
∞∑

n=j+1

ε2
n

ε2
j

)
<∞,

then by (5.5.3) we have

(5.5.5)
‖T k‖L(X)

γ(T k)
≤ exp

(
1
2

∞∑

j=0

log
(

1 +
∞∑

n=j+1

ε2
n

ε2
j

))
for all k ∈ N.

Notice the inequality above is satisfied for k = 0 as well, since

‖T 0‖L(X)

γ(T 0)
=
‖IX‖L(X)

γ(IX)
= 1,

∞∑

j=0

log
(

1 +
∞∑

n=j+1

ε2
n

ε2
j

)
> 0.

Now we show that (εn)n∈N can be chosen so that (5.5.4) be satisfied. If
for instance we set

εn =
1

(n+ 1)!
for every n ∈ N,

we have
∞∑

n=j+1

ε2
n

ε2
j

=
∞∑

n=j+1

(
(j + 1)!
(n+ 1)!

)2

=
∞∑

n=j+1

( n+1∏

h=j+2

1
h2

)
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≤
∞∑

n=j+1

(
1

j + 2

)2(n−j)
=
∞∑

n=1

(
1

j + 2

)2n

=
1

(j+2)2

1− 1
(j+2)2

=
1

j2 + 4j + 3

for each j ∈ N, and consequently
∞∑

j=0

log
(

1 +
∞∑

n=j+1

ε2
n

ε2
j

)
≤
∞∑

j=0

log
(

1 +
1

j2 + 4j + 3

)

≤
∞∑

j=0

1
j2 + 4j + 3

< +∞,

which gives (5.5.4). Hence, by (5.5.5), the sequence (‖T k‖L(X)/γ(T k))k∈N
is bounded. Therefore, with the latter choice of (εn)n∈N, the operator T
satisfies the equivalent conditions (4.5.1) and (4.5.2). Yet, as we have proved
in Example 5.4, T is not nilpotent.

Remark 5.6. We now prove that the operator T in Examples 5.4 and 5.5
leaves open the question whether (4.4.1) is sufficient for nilpotency, because
for no choice of the sequence (εn)n∈N does the series

∑∞
n=1 T

nx/γ(Tn) con-
verge in X for every x ∈ X.

Indeed, let X be an infinite-dimensional Hilbert space, and let T ∈ L(X)
be the operator defined in Example 5.4. We begin by remarking that, since
(as proved in Example 5.4)

(5.6.1) PjTx = εj

∞∑

n=j+1

Un,jPnx for all j ∈ N and x ∈ X,

we have Tx ∈⊕n−1
k=0 Xk for every x ∈⊕n

k=0 Xk and n ∈ Z+. Hence

(5.6.2) T kx ∈
n−k⊕

j=0

Xj for every x ∈
n⊕

j=0

Xj , k ∈ {0, . . . , n}, n ∈ Z+.

Now we prove that, for each k ∈ N, we have

(5.6.3) 〈PnT kx, PnT ky〉 = 0 for all n ∈ N and x, y ∈ X
satisfying 〈Pjx, Pjy〉 = 0 for all j ∈ N.

We proceed by induction on k. Clearly, (5.6.3) is satisfied for k = 0. Now
suppose (5.6.3) is satisfied for some k ∈ N, and let x, y ∈ X be such that
〈Pnx, Pny〉 = 0 for every n ∈ N. Then, for each n ∈ N, since the Um,n,
m ≥ n + 1, are isometries, and moreover R(Um,n) ⊥ R(Uj,n) for m 6= j by
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(5.4.1), from (5.6.1) we obtain

〈PnTx, PnTy〉 =
〈
εn

∞∑

m=n+1

Um,nPmx, εn

∞∑

j=n+1

Uj,nPjy
〉

= ε2
n

∞∑

m=n+1

∞∑

j=n+1

〈Um,nPmx,Uj,nPjy〉

= ε2
n

∞∑

m=n+1

〈Um,nPmx,Um,nPmy〉 = ε2
n

∞∑

m=n+1

〈Pmx, Pmy〉 = 0.

Since (5.6.3) is satisfied for k, we conclude that

0 = 〈PnT k(Tx), PnT k(Ty)〉 = 〈PnT k+1x, PnT
k+1y〉 for all n ∈ N.

Hence (5.6.3) is satisfied for k + 1, which gives the desired result.
Now, for each n ∈ Z+, let xn ∈ Xn be such that ‖xn‖X = 1 (such an

xn exists, as Xn is nonzero). From (5.6.2) it follows that PnT kxn = 0X for
every k = 1, . . . , n. Since xn = Pnxn, and consequently Pjxn = 0X for all
j ∈ N \ {n}, we conclude that

〈Pjxn, PjT kxn〉 = 0 for all j ∈ N, k = 1, . . . , n.

From (5.6.3) it follows that

(5.6.4) 〈PjThxn, PjTh+kxn〉 = 0 for all j, h ∈ N, k = 1, . . . , n.

Notice that Tn+1xn = 0X , as Xn ⊂
⊕n

j=0 Xj = N (Tn+1) (see (5.4.10)).
Since, by (5.6.4), 〈PjThxn, PjT kxn〉 = 0 for all j ∈ N and h, k ∈ {0, . . . , n}
with k 6= h, from (5.4.2) we obtain

〈Thxn, T kxn〉 =
〈 ∞∑

j=0

PjT
hxn,

∞∑

m=0

PmT
kxn

〉
(5.6.5)

=
∞∑

j=0

∞∑

m=0

〈PjThxn, PmT kxn〉

=
∞∑

j=0

〈PjThxn, PjT kxn〉 = 0

for all h, k ∈ {0, . . . , n} satisfying h 6= k.

Since N (Tn) =
⊕n−1

k=0 Xk by (5.4.10), and the closed subspaces Xj ,
j ∈ N, are pairwise orthogonal, we conclude that xn ∈ N (Tn)⊥. Hence
xn ∈ N (T k)

⊥
for all k = 1, . . . , n, and consequently

dist(xn,N (T k)) = ‖xn‖X = 1 for all k = 1, . . . , n.
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Then, by (5.6.5), we have

(5.6.6)
∥∥∥∥

n∑

k=1

T kxn
γ(T k)

∥∥∥∥
2

X

=
n∑

k=1

‖T kxn‖2X
γ(T k)2 ≥

n∑

k=1

(dist(xn,N (T k)))2 = n.

From (5.6.6) it follows that
∥∥∥∥

n∑

k=1

T k

γ(T k)

∥∥∥∥
L(X)

≥ √n for every n ∈ Z+.

Hence the sequence (
∑n
k=1 T

k/γ(T k))n∈Z+ is not bounded in L(X). Then,
by the uniform boundedness principle, there exists x0 ∈ X such that the
sequence (

∑n
k=1 T

kx0/γ(T k))n∈Z+ is not bounded in X, and consequently
the series

∑∞
n=1 T

nx0/γ(Tn) does not converge in X. Hence T does not
satisfy condition (4.4.1).

The following generalization of Theorem 2.5 is a consequence of Theo-
rem 2.6.

Proposition 5.7. Let X be a complex Banach space and let T ∈ L(X)
be such that R((λIX − T )n) is closed for every n ∈ N and every λ ∈ σ(T ).
Then R(f(T )) is closed for every f ∈ U(T ).

Remark 5.8. Let X be an infinite-dimensional complex Hilbert space,
and let T ∈ L(X) be the operator defined in Example 5.4. Since T is
quasinilpotent and R(Tn) is closed for every n ∈ N, from Proposition 5.7
it follows that R(f(T )) is closed for every f ∈ U(T ) (that is, for every
complex-valued function f which is holomorphic in an open neighborhood
of zero). In addition, we remark that the hypotheses of Proposition 5.7 are
also satisfied by the operator constructed in the proof of [Ap, Theorem 3],
with spectrum equal to the countable compact subset σ of the complex
plane.

Note added in proof. About at the same time of the revised version of our article,
W. R. Wogen wrote a paper entitled “Algebras of operators and closed range” (to appear
in Proc. Amer. Math. Soc.), in which a result similar to Theorem 3 of [Ap] is obtained for a
nonempty finite subset σ of C, ensuring nonalgebraicity of the operator T with σ(T ) = σ,
and closedness of the ranges of all operators in the norm closure of the polynomials in T .
Clearly, for σ = {0}, this provides a further example of a nonnilpotent quasinilpotent
operator all the iterates of which have closed range.
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