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Stochastic integration of functions with
values in a Banach space

by

J. M. A. M. van Neerven (Delft) and L. Weis (Karlsruhe)

Abstract. Let H be a separable real Hilbert space and let E be a real Banach
space. In this paper we construct a stochastic integral for certain operator-valued func-
tions Φ : (0, T ) → L(H,E) with respect to a cylindrical Wiener process {WH(t)}t∈[0,T ].
The construction of the integral is given by a series expansion in terms of the stochastic
integrals for certain E-valued functions. As a substitute for the Itô isometry we show that
the square expectation of the integral equals the radonifying norm of an operator which
is canonically associated with the integrand. We obtain characterizations for the class of
stochastically integrable functions and prove various convergence theorems. The results
are applied to the study of linear evolution equations with additive cylindrical noise in
general Banach spaces. An example is presented of a linear evolution equation driven by
a one-dimensional Brownian motion which has no weak solution.

In this paper we construct a theory of stochastic integration of operator-
valued functions with respect to a cylindrical Wiener process. The range
space of the operators is allowed to be an arbitrary real Banach space E.
A stochastic integral of this type can be used for solving the linear stochastic
Cauchy problem

(0.1)
dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],

U(0) = u0.

Here, A is the infinitesimal generator of a strongly continuous semigroup
{S(t)}t≥0 of bounded linear operators on E, the operator B is a bounded lin-
ear operator from a separable real Hilbert spaceH into E, and {WH(t)}t∈[0,T ]
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is a cylindrical H-Wiener process. Formally, equation (0.1) is solved by the
stochastic convolution process

U(t) = S(t)u0 +
t�

0

S(t− s)B dWH(s).(0.2)

It is well known that the integral on the right hand side can be interpreted
as an Itô stochastic integral if E is a Hilbert space. A comprehensive theory
of abstract stochastic differential equations in Hilbert spaces is presented in
the monograph by Da Prato and Zabczyk [5]. More generally the integral can
be defined for spaces E with martingale type 2. This has been worked out
by Brzeźniak [2]. Examples of martingale type 2 spaces are Hilbert spaces
and the Lebesgue spaces Lp(µ) with p ∈ [2,∞).

In both settings, the integral is defined for step functions first, and then
for general functions by a limiting argument. Such an argument depends on
the availability of a priori estimates for the integrals of the approximating
step functions, and the martingale type 2 property is precisely designed to
provide such estimates.

Without special assumptions on the geometry of the underlying Banach
spaceE there seems to be no general method to give a rigorous interpretation
for the integral in (0.2) as a limit of integrals of step functions. Despite
this fact, for separable Banach spaces E, necessary and sufficient conditions
for the existence and uniqueness of weak solutions of the problem (0.1)
have been obtained recently in [4]. The main idea of that paper was to
embed the equation (0.1) into some Hilbert space Ẽ containing E as a dense
subspace. In Ẽ, the equation can be solved by Hilbert space methods, and
the main point is then to show that the resulting Ẽ-valued process takes its
values in the original space E almost surely. This approach has the obvious
disadvantage that the construction of solutions is not intrinsic but depends
on an ad hoc extension argument.

In the present paper we set up a general theory of stochastic integration
for L (H,E)-valued functions that does not have these defects. The con-
struction of the stochastic integral, which can be interpreted as a stochastic
version of the Pettis integral but which turns out to possess many prop-
erties of the Lebesgue integral as well, is intrinsic and relies on a series
expansion in terms of the stochastic Pettis integrals for certain E-valued
functions. We identify the square expectation of the stochastic integral with
the radonifying norm of a certain operator canonically associated with the
integrand. The resulting isometry (cf. Theorems 2.3 and 4.2 below) serves
as a substitute for the Itô isometry. The idea to use the radonifying norm to
extend Hilbert space results to the Banach space setting was introduced in
[12], where it was applied to the H∞-calculus of unbounded operators and
square function estimates in harmonic analysis.
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Upon identifying L (R, E) with E, our integral coincides with the one
introduced by Rosiński and Suchanecki [18] in the case of strongly measur-
able E-valued functions. Even here, the connection with operator theory
provides simplified proofs and new insights.

The organization of the paper is as follows. After presenting some prelim-
inaries in Section 1, in Section 2 we start with the construction of a stochastic
integral for E-valued functions with respect to a real-valued Brownian mo-
tion and give an operator-theoretic characterization of the class of integrable
functions.

We discuss cylindrical Wiener processes in Section 3, and the construc-
tion of a stochastic integral for L (H,E)-valued functions with respect to
a cylindrical H-Wiener process is taken up in Section 4. Again we give an
operator-theoretic characterization of the class of integrable functions.

The problem of integrating L (E)-valued functions with respect to E-
valued Brownian motions is discussed in Section 5.

In Section 6 we prove a dominated convergence theorem and obtain, as
applications, various approximation and continuity results for the integral.
We further show that a monotone convergence theorem holds if and only if
E does not contain an isomorphic copy of c0.

In the final Section 7 we use our results to obtain natural direct proofs of
the main results of [3] and [4] concerning the existence, uniqueness, and mean
square continuity of weak solutions for the stochastic Cauchy problem (0.1).
An example is presented of a linear evolution equation driven by a one-
dimensional Brownian motion which has no weak solution. Our approach
also allows us to give conditions directly in terms of the resolvent of A,
which in many problems may be more accessible than the semigroup itself.

In order to keep this paper at a reasonable length, we decided to post-
pone further developments of the theory that require additional geometric
properties of the Banach space to a future paper.

It is possible to extend the results of this paper to progressively measur-
able processes with values in a UMD Banach space. This topic will be taken
up in another paper, where we will also discuss applications to stochastic
evolution equations driven by multiplicative noise.

Acknowledgments. We express our thanks to Johanna Dettweiler and
Mark Veraar for carefully reading preliminary drafts of this paper, and to
Nigel Kalton and Željko Štrkalj for many fruitful discussions on the sub-
ject matter of this paper. This paper was completed while both authors
visited the University of South Carolina. They thank the colleagues in the
Department of Mathematics for their warm hospitality.
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1. Preliminaries. In this preliminary section we fix notations and recall
some well known facts about Gaussian covariance operators and the Pettis
integral. Throughout this paper, E is a real Banach space with dual E∗.
The pairing between E and E∗ is denoted by 〈·, ·〉.

1.1. Reproducing kernel Hilbert spaces. Let X and X ′ be real Banach
spaces and let 〈·, ·〉 : X ×X ′ → R be a bounded bilinear form:

|〈x, x′〉| ≤M‖x‖ ‖x′‖ ∀x ∈ X, x′ ∈ X ′.
A bounded linear operator Q ∈ L (X ′,X) is called 〈·, ·〉-positive if

〈Qx′, x′〉 ≥ 0 for all x′ ∈ X ′,
and 〈·, ·〉-symmetric if

〈Qx′, y′〉 = 〈Qy′, x′〉 for all x′, y′ ∈ X ′.
It is easily checked that on the range of Q, the formula

[Qx′, Qy′]HQ := 〈Qx′, y′〉(1.1)

defines an inner product [ · , · ]HQ . Indeed, if either Qx′ = 0 or Qy′ = 0, then

[Qx′, Qy′]HQ = 〈Qx′, y′〉 = 〈Qy′, x′〉 = 0,

which shows that [ · , · ]HQ is well defined. We denote by HQ the real Hilbert
space obtained by completing the range of Q with respect to [ · , · ]HQ. This
space will be called the reproducing kernel Hilbert space associated with Q
and 〈·, ·〉. The inclusion mapping from the range of Q into X is easily seen
to be continuous with respect to the inner product [ · , · ]HQ and extends
uniquely to a bounded linear injection iQ from HQ into X. Using the Riesz
representation theorem, we can define an adjoint operator i′Q ∈ L (X ′,HQ)
in the natural way and we have the operator identity

Q = iQ ◦ i′Q.
For all x′, y′ ∈ X ′ we have 〈Qx′, y′〉 = [i′Qx

′, i′Qy
′]HQ . Moreover, the range of

i′Q is dense in HQ. It is an application of the Riesz representation theorem
that for two positive symmetric operators Q,R ∈ L (X ′,X) the following
assertions are equivalent (cf. [5, Proposition B.1], [15, Proposition 1.1], [8,
Proposition 2.2]):

(1) HQ ⊆ HR and the inclusion mapping HQ ↪→ HR is contractive.
(2) For all x′ ∈ X ′ we have 〈Qx′, x′〉 ≤ 〈Rx′, x′〉.

In particular it follows that if R takes its values in some closed subspace X0
of X, then so does Q. In the proof of Theorem 2.3 this will be applied to the
particular case where X0 = E, X = E∗∗, X ′ = E∗, and 〈·, ·〉 is the duality
between X ′ and X.

For more information on this topic we refer to [19, 21].
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1.2. γ-Radonifying operators. Positive symmetric operators occur natu-
rally as the covariance operators of Gaussian measures. Recall that a Radon
measure µ on E is called Gaussian if its image under every linear functional
x∗ ∈ E∗ is a Gaussian measure on R. In this paper, all Gaussian measures
will be centred , meaning that all image measures are centred as measures
on R. An E-valued random variable is called Gaussian if its distribution is
a Gaussian measure on E.

If µ is a Gaussian measure on E, there exists a unique positive symmetric
operator Q ∈ L (E∗, E), the covariance operator of µ, such that

�

E

〈x, x∗〉2 dµ(x) = 〈Qx∗, x∗〉, x∗ ∈ E∗.

The converse is not true: not every positive symmetric Q ∈ L (E∗, E) is a
Gaussian covariance.

Let H be a separable real Hilbert space and let T ∈ L (H,E) be a
bounded operator. The operator T ◦T∈L (E∗, E) is positive and symmetric.
The following well known result gives a necessary and sufficient condition
for T ◦ T ∗ to be a Gaussian covariance.

Proposition 1.1. Let (γn)∞n=1 be a sequence of independent standard
normal random variables on a probability space (Ω,F ,P). The following
assertions are equivalent :

(1) T ◦ T ∗ is the covariance of a Gaussian measure µ on E.
(2) There exists an orthonormal basis (hn)∞n=1 of H such that the Gaus-

sian series
∑∞

n=1 γn Thn converges in L2(Ω;E).

In this situation, for every orthonormal basis (hn)∞n=1 of H, the series∑∞
n=1 γn Thn converges unconditionally in Lp(Ω;E) for all p ∈ [1,∞) and

almost surely , and we have

E
∥∥∥
∞∑

n=1

γn Thn

∥∥∥
p

=
�

E

‖x‖p dµ(x).

An operator T ∈ L (H,E) satisfying the equivalent assumptions of the
proposition is called γ-radonifying. We define its γ-norm ‖T‖γ by

‖T‖2γ := E
∥∥∥
∞∑

n=1

γn Thn

∥∥∥
2
.

This number does not depend on the choice of the orthonormal basis (hn)∞n=1.
If E has type 2, then

‖T‖2γ ≤ C2
2

∞∑

n=1

‖Thn‖2,

where C2 is the (Gaussian) type 2 constant of E.
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Notice that a positive symmetric operator Q ∈ L (E∗, E) is a Gaus-
sian covariance operator if and only if the embedding iQ : HQ ↪→ E is
γ-radonifying. In this case HQ is always separable.

The space of γ-radonifying operators has the following ideal property: if
R ∈ L (H̃,H) and S ∈ L (E, Ẽ) are bounded operators and T ∈ L (H,E)
is γ-radonifying, then S ◦ T ◦R ∈ L (H̃, Ẽ) is γ-radonifying and

‖S ◦ T ◦R‖γ ≤ ‖S‖ ‖T‖γ ‖R‖.
Let M(E) denote the set of all Radon probability measures on E. A

family M ⊆M(E) is called uniformly tight if for every ε > 0 there exists a
compact set K ⊆ E such that µ(K) ≥ 1− ε for all µ ∈M . By Prokhorov’s
theorem, uniform tightness is equivalent to relative compactness in the weak
topology of M(E) generated by Cb(E), the space of bounded continuous
real-valued functions on E.

The following tightness result follows from the results in [1, Chapter 3].

Proposition 1.2. Let R ∈ L (E∗, E) be the covariance of a Gaussian
measure ν on E and let Q ⊆ L (E∗, E) be a family of positive symmetric
operators such that for all x∗ ∈ E∗ and all Q ∈ Q we have

〈Qx∗, x∗〉 ≤ 〈Rx∗, x∗〉.
Then every Q ∈ Q is the covariance of a Gaussian measure µQ on E and
for all p ∈ [1,∞) we have

�

E

‖x‖p dµQ(x) ≤
�

E

‖x‖p dν(x).

Moreover , the family {µQ}Q∈Q is uniformly tight.

More generally, the above estimate holds when we replace ‖ · ‖p by any
nonnegative convex symmetric function g ∈ L1(E, ν).

In Section 6 we will need the following result from [16]:

Proposition 1.3. Let E be a real Banach space not containing a closed
subspace isomorphic to c0. Let (µn) be a sequence of Gaussian measures on
E and let (Qn) be their sequence of covariance operators. Let Q ∈ L (E∗, E)
be a positive symmetric operator such that

lim
n→∞

〈Qnx∗, x∗〉 = 〈Qx∗, x∗〉, ∀x∗ ∈ E∗.(1.2)

If
sup
n

�

E

‖x‖2 dµn(x) <∞,(1.3)

then Q is the covariance of a centred Gaussian measure µ on E and
�

E

‖x‖2 dµ(x) ≤ lim inf
n→∞

�

E

‖x‖2 dµn(x).
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1.3. Pettis integration. Let (S,Σ, ν) be a finite measure space. A func-
tion φ : S → E is called weakly measurable if the function 〈φ, x∗〉(·) :=
〈φ(·), x∗〉 is measurable for all x∗ ∈ E∗, and Pettis integrable if it is weakly
measurable and for all measurable subsets A ∈ Σ there exists an element
yA ∈ E such that for all x∗ ∈ E∗ we have

〈yA, x∗〉 =
�

A

〈φ, x∗〉 dν.

In this situation we write

yA =
�

A

φdν.

Let 1 ≤ p ≤ ∞. We call φ : S → E weakly Lp if it is weakly measurable
and the function 〈φ, x∗〉 belongs to Lp(S) for all x∗ ∈ E∗. By the closed
graph theorem, for such a function the associated operator x∗ 7→ 〈φ, x∗〉 is
bounded from E∗ into Lp(S).

We list some sufficient conditions for Pettis integrability:

• If φ : S → E is Bochner integrable, then φ is Pettis integrable and the
two integrals coincide.
• If φ : S → E is strongly measurable and weakly Lp for some p > 1,

then φ is Pettis integrable [17, Corollary 5.31]. As a particular case,
if E is separable and φ : S → E is weakly Lp for some p > 1, then
by the Pettis measurability theorem [7, Theorem II.1.2], φ is strongly
measurable and hence Pettis integrable.
• If E does not contain a closed subspace isomorphic to c0 and φ : S → E

is strongly measurable and weakly L1, then φ is Pettis integrable [7,
Theorem II.3.7].
• Let 1 ≤ p, q ≤ ∞ satisfy 1/p + 1/q = 1. If φ : S → E is Pettis

integrable and weakly Lp, then for all f ∈ Lq(S) the function fφ is
Pettis integrable, and the induced operator Iφ : Lq(S)→ E,

Iφf :=
�

S

fφ dν, f ∈ Lq(S),

is bounded [17, Theorem 3.4].

2. Stochastic integration of E-valued functions. Let W =
{W (t)}t∈[0,T ] be a standard Brownian motion over a probability space
(Ω,F ,P), adapted to some given filtration {Ft}t∈[0,T ].

Definition 2.1. We call a function φ : (0, T ) → E stochastically inte-
grable with respect to W if it is weakly L2 and for all measurable A ⊆ (0, T )
there exists an E-valued random variable YA such that for all x∗ ∈ E∗ we
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have

〈YA, x∗〉 =
T�

0

1A(t) 〈φ(t), x∗〉 dW (t)(2.1)

almost surely. In this situation we write

YA =
�

A

φ(t) dW (t).

For strongly measurable functions φ this notion of stochastic integrability
has been introduced by Rosiński and Suchanecki (cf. also the discussion at
the end of this section).

The random variables YA are uniquely determined almost everywhere
and Gaussian. Indeed, the right hand side in (2.1) is a real-valued Gaussian
variable for all x∗ ∈ E∗. Thus, by the Fernique theorem, YA ∈ Lp(Ω;E) for
all p ∈ [1,∞).

Remark 2.2. As in [18], the underlying measure space (0, T ) (with the
Lebesgue measure) may be replaced by an arbitrary finite measure space
(S,Σ, ν). The Brownian motion should then be replaced by a Gaussian
random measure W : Σ → L2(Ω) with the following properties:

(1) For all A ∈ Σ, the random variable W (A) is centred Gaussian and

E(W (A))2 = ν(A).

(2) For all disjoint A1, . . . , An ∈ Σ, the random variables W (A1), . . . ,
W (An) are independent and we have

W (A1 ∪ · · · ∪ An) = W (A1) + · · ·+W (An).

All results of this paper can be generalized without difficulty to this more
general setting.

We collect some elementary properties of the stochastic integral that
are immediate consequences of Definition 2.1. Let φ : (0, T ) → E and ψ :
(0, T )→ E be stochastically integrable with respect to W.

• For all measurable subsets B ⊆ (0, T ) the function 1Bφ is stochasti-
cally integrable with respect to W and

T�

0

1B(t)φ(t) dW (t) =
�

B

φ(t) dW (t)

almost surely.
• For all a, b ∈ R the function aφ+ bψ is stochastically integrable with

respect to W and
T�

0

(aφ(t) + bψ(t)) dW (t) = a

T�

0

φ(t) dW (t) + b

T�

0

ψ(t) dW (t)

almost surely.
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• For all real Banach spaces F and all bounded operators S ∈ L (E,F )
the function Sφ : (0, T ) → F is stochastically integrable with respect
to W and

T�

0

Sφ(t) dW (t) = S

T�

0

φ(t) dW (t)

almost surely.

For a weakly L2 function φ : (0, T ) → E we define an operator Iφ :
L2(0, T )→ E∗∗ by

〈x∗, Iφf〉 =
T�

0

〈φ(t), x∗〉f(t) dt, f ∈ L2(0, T ), x∗ ∈ E∗.

Note that Iφ is the adjoint of the operator x∗ 7→ 〈φ(t), x∗〉. If φ is strongly
measurable, then Iφ maps L2(0, T ) into E, as may be seen by approximating
φ by step functions.

The following theorem gives a characterization of the class of stochasti-
cally integrable functions.

Theorem 2.3. For a weakly L2 function φ : (0, T ) → E the following
assertions are equivalent :

(1) φ is stochastically integrable with respect to W.
(2) There exists an E-valued random variable Y and a weak∗-sequentially

dense linear subspace F of E∗ such that for all x∗ ∈ F we have

〈Y, x∗〉 =
T�

0

〈φ(t), x∗〉 dW (t) almost surely.

(3) There exists a Gaussian measure µ on E with covariance operator
Q ∈ L (E∗, E) and a weak∗-sequentially dense linear subspace F of
E∗ such that for all x∗ ∈ F we have

T�

0

〈φ(t), x∗〉2 dt = 〈Qx∗, x∗〉.

(4) There exists a separable real Hilbert space H , a γ-radonifying oper-
ator T ∈ L (H , E), and a weak∗-sequentially dense linear subspace
F of E∗ such that for all x∗ ∈ F we have

T�

0

〈φ(t), x∗〉2 dt ≤ ‖T ∗x∗‖2H .

(5) We have Iφ ∈ L (L2(0, T ), E) and this operator is γ-radonifying.

In this situation, (2), (3), and (4) hold with F = E∗, the function φ is
Pettis integrable, the measure µ is the distribution of the random variable
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� T
0 φ(t) dW (t), and we have an isometry

E
∥∥∥
T�

0

φ(t) dW (t)
∥∥∥

2
= ‖Iφ‖2γ .(2.2)

Proof. We prove (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(1).
(1)⇒(2): This is trivial.
(2)⇒(3): For all x∗ ∈ F the random variable 〈Y, x∗〉 is Gaussian. This

implies that Y is Gaussian (this follows, e.g., from the fact that Y is essen-
tially separably valued and [4, Corollary 1.3]). Let Q denote the covariance
operator of its distribution. By the Itô isometry, for all x∗ ∈ E∗ we have

〈Qx∗, x∗〉 = E
(T�

0

〈φ(t), x∗〉 dW (t)
)2

=
T�

0

〈φ(t), x∗〉2 dt.

(3)⇒(4): Take H = HQ, the RKHS associated with Q, and T = iQ.
(4)⇒(5): Define a positive symmetric operator Q ∈ L (E∗, E∗∗) by

〈y∗, Qx∗〉 :=
T�

0

〈φ(t), x∗〉〈φ(t), y∗〉 dt, x∗, y∗ ∈ E∗.

By assumption we have 〈x∗, Qx∗〉 ≤ 〈TT ∗x∗, x∗〉 for all x∗ ∈ F . We claim
that in fact this holds for all x∗ ∈ E∗.

For the proof of the claim we consider the RKHS HR associated with
R := T ◦T ∗ and note that the operator i′R : E∗ → HR defined in Section 1.1
equals the adjoint i∗R of iR provided we identify HR and its dual in the usual
way.

Fix an arbitrary x∗ ∈ E∗ and let (x∗n) be a sequence in F converging
to x∗ weak∗ in E∗. Then limn→∞ i∗Rx

∗
n = i∗Rx

∗ weakly in HR. Indeed, i∗R is
an adjoint operator and is therefore weak∗-continuous; since HR is a Hilbert
space the weak topology and the weak∗ topology of HR coincide. By a corol-
lary to the Hahn–Banach theorem, for suitably chosen convex combinations
y∗n of the x∗n we may arrange that limn→∞ i∗Ry

∗
n = i∗Rx

∗ strongly in HR. By
choosing each y∗n in the span of x∗n, xn+1, . . . we may furthermore arrange
that limn→∞ y∗n = x∗ weak∗. From y∗n − y∗m ∈ F we have

T�

0

〈φ(t), y∗n − y∗m〉2 dt ≤ 〈R(y∗n − y∗m), (y∗n − y∗m)〉 = ‖i∗Ry∗n − i∗Ry∗m‖2HR

and therefore the sequence (〈φ, y∗n〉) is Cauchy in L2(0, T ). Let h denote
the limit. Upon passing to a pointwise almost everywhere convergent sub-
sequence and recalling that limn→∞ y∗n = x∗ weak∗, we see that h = 〈φ, x∗〉
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almost everywhere. Then

〈x∗, Qx∗〉 =
T�

0

〈φ(t), x∗〉2 dt = lim
n→∞

T�

0

〈φ(t), y∗n〉2 dt ≤ lim
n→∞

〈Ry∗n, y∗n〉

= lim
n→∞

‖i∗Ry∗n‖2HR = ‖i∗Rx∗‖2HR = 〈Rx∗, x∗〉 = 〈TT ∗x∗, x∗〉.

This proves the claim. From the observations in Section 1.1 it now follows
that Q takes its values in E. We will use this to deduce that also Iφ takes
its values in E.

Let G := {〈φ, x∗〉 : x∗ ∈ E∗}; this is a linear subspace of L2(0, T ). We
have f ∈ ker Iφ if and only if 〈x∗, Iφf〉 = 0 for all x∗ ∈ E∗, and by the very
definition of Iφ this happens if and only if f ⊥ 〈φ, x∗〉 for all x∗ ∈ E∗, i.e.,
if and only f ⊥ G. Therefore,

L2(0, T ) = G⊕ ker Iφ.(2.3)

Since for all x∗, y∗ ∈ E∗,

〈Iφ 〈φ, x∗〉, y∗〉 =
T�

0

〈φ(t), x∗〉〈φ(t), y∗〉 dt = 〈Qx∗, y∗〉

it follows that Iφ 〈φ, x∗〉 = Qx∗ for all x∗ ∈ E∗. Since Q takes its values
in E, it follows that Iφ g ∈ E for all g ∈ G. Then (2.3) shows that Iφ takes
values in E.

Now the identity Iφ ◦ Iφ=Q and the fact that Q is a Gaussian covariance
operator imply that Iφ : L2(0, T )→ E is γ-radonifying.

(5)⇒(1): Fix A ⊆ (0, T ) measurable and put φA(t) := 1A(t)φ(t). Defin-
ing MA : L2(0, T ) → L2(0, T ) by MAf := 1Af , we have IφA = Iφ ◦MA.
Hence by the right ideal property of γ-radonifying operators, IφA is γ-
radonifying.

Choose an orthonormal basis (fn) for L2(0, T ). If J : L2(0, T )→ L2(Ω)
denotes the Itô isometry, the sequence (Jfn) consists of independent stan-
dard normal random variables. It follows that the E-valued Gaussian series
YA :=

∑
n Jfn IφAfn converges in L2(Ω;E). Then for all x∗ ∈ E∗,

〈YA, x∗〉 =
∑

n

〈IφAfn, x∗〉Jfn

=
T�

0

∑

n

[〈φA, x∗〉, fn]L2(0,T ) fn(t) dW (t) =
T�

0

〈φA(t), x∗〉 dW (t)

almost surely. This proves that φ is stochastically integrable.
It remains to prove the final assertions. The Pettis integrability of φ

follows from (5) by observing that for all measurable A ⊆ (0, T ) and all
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x∗ ∈ E∗ we have
〈Iφ1A, x∗〉 =

�

A

〈φ(t), x∗〉 dt.

Finally, (2.2) is an immediate consequence of Proposition 1.1 and the fact
that µ is the distribution of

� T
0 φ(t) dW (t).

Remark 2.4. If φ is strongly measurable (in particular, by the Pettis
measurability theorem, if E separable), then in (2), (3), and (4) it suf-
fices to assume that F is weak∗-dense. Indeed, by Zorn’s lemma there exist
maximal weak∗-dense linear subspaces F (2), F (3), and F (4) of E∗ for which
these conditions hold. By arguing as in the proof of (4)⇒(5) one shows that
these subspaces are weak∗-sequentially closed. By an easy application of the
Krein–Shmul’yan theorem it then follows that they equal E∗.

The above notion of stochastic integrability was introduced, for the class
of strongly measurable functions, by Rosiński and Suchanecki [18, Section 4],
who also noted the equivalence (1)⇔(3) of Theorem 2.3 for such functions
(with F = E∗) [18, Corollary 4.2]. They also showed [18, Theorem 4.1] that
for a strongly measurable function φ, condition (3) (with F = E∗) is satisfied
if and only if φ is stochastically integrable in probability, i.e., there exists a
sequence (φn) of strongly measurable step functions and a random variable
Y such that limn→∞ φn = φ in measure and

Y = lim
n→∞

T�

0

φn(t) dW (t) in probability.

In this case we have Y =
� T
0 φ(t) dW (t). In Section 4 below, we shall extend

this characterization as follows:

Theorem 2.5 (Approximation with step functions). For a weakly L2

function φ : (0, T )→ E the following assertions are equivalent :

(1) φ is stochastically integrable with respect to W.
(2) There exists a sequence of step functions φn : (0, T ) → E with the

following properties:

(a) For all x∗ ∈ E∗ we have

lim
n→∞

〈φn, x∗〉 = 〈φ, x∗〉 in measure.(2.4)

(b) There exists a random variable Y : Ω → E such that

Y = lim
n→∞

T�

0

φn(t) dW (t) in probability.(2.5)

In this situation we have Y =
� T
0 φ(t) dW (t), the convergence in (2.4) is in

L2(0, T ), and the convergence in (2.5) is in Lp(Ω;E) for every p ∈ [1,∞).
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By results in [10, 18], a Banach space has type 2 if and only if every
function φ ∈ L2(0, T ;E) is stochastically integrable. This also follows readily
from Theorem 2.3 and the fact that for a step function

φ =
(
n

T

)1/2 n∑

j=1

1((j−1)T/n,jT/n] ⊗ xj

with xj ∈ E we have

E
∥∥∥
T�

0

φ(t) dW (t)
∥∥∥

2
= E

∥∥∥
n∑

j=1

γjxj

∥∥∥
2

where γj := (n/T )1/2(W (jT/n)−W ((j − 1)T/n)) are independent standard
normal random variables. A similar result with the implications reversed
holds for spaces with cotype 2. In Section 6 we shall extend these results to
the operator-valued case.

The following example shows that stochastic integrability does not imply
strong measurability and that Theorem 2.3 may fail if F is only assumed to
be weak∗-dense.

Example 2.6. For p ∈ [1,∞) let Ep := lp(0, 1), the space of all functions
x : (0, 1)→ R for which

‖x‖p := sup
F

∑

t∈F
|x(t)|p <∞,

where the supremum is taken over all finite subsets F of (0, 1). Note that for
every x ∈ Ep the set {t ∈ (0, 1) : x(t) 6= 0} is at most countable. Similarly we
define E∞ := l∞(0, 1) as the space of all bounded functions x : (0, 1) → R
endowed with the supremum norm.

First take p ∈ (1,∞) and define f : (0, 1) → Ep by φ(t) = 1{t}. For all
x∗ ∈ E∗p = Eq we have 〈φ(t), x∗〉 = 0 for all but at most countably many
t ∈ (0, 1), and therefore φ is Pettis integrable with

�
A φ(t) dt = 0 for all

measurable A ⊆ (0, 1). Similarly we have
1�

0

〈φ(t), x∗〉 dt = 〈Q0x
∗, x∗〉 = 0 ∀x∗ ∈ Eq,

where Q0 := 0 is the covariance operator of the Dirac measure on Ep con-
centrated at the origin. It follows that φ is stochastically integrable with

�

A

φ(t) dW (t) = 0

for all measurable A ⊆ (0, 1). On the other hand, since ‖φ(t)− φ(s)‖pEp = 2
for all t, s ∈ (0, 1) with t 6= s, the function φ fails to be essentially separably-
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valued. Consequently, φ is not strongly measurable by the Pettis measura-
bility theorem.

Next consider the function φ : (0, T ) → E1 = l1(0, 1) defined by φt :=
δ{t}. We will show that φ is not stochastically integrable, although (2)–(4)
hold for all x∗ ∈ F := c0(0, 1) if we take Y = 0, Q = 0, and T = 0 (with H
arbitrary). Here c0(0, 1) is defined as the closure in l∞(0, T ) of all finitely
supported functions. This space is norming for l1(0, 1), hence weak∗-dense
as a subspace of l∞(0, 1), but it is not weak∗-sequentially dense in l∞(0, 1).

For all x∗ ∈ F we have

〈Y, x∗〉 =
1�

0

〈φ(t), x∗〉 dW (t) = 0

almost surely, because 〈φ(t), x∗〉 = 0 for all but at most countably many
t ∈ (0, 1). Similarly,

1�

0

〈φ(t), x∗〉 dt = 〈Qx∗, x∗〉 = 〈TT ∗x∗, x∗〉 = 0

for all x∗ ∈ F .
To show that φ is not stochastically integrable, we argue by contra-

diction. If φ were stochastically integrable we could consider the random
variable

Y :=
1�

0

φ(t) dW (t).

As before, for all x∗ ∈ F we have 〈Y, x∗〉 = 0 almost surely. Since F is
norming it follows that Y = 0 almost surely. For the constant one function
1 ∈ l∞(0, 1) we then have

0 = 〈Y,1〉 =
1�

0

〈φ(t),1〉 dW (t) =
1�

0

1 dW (t) = W (1)

almost surely, a contradiction.

We proceed with some consequences of Theorem 2.3. As a first observa-
tion we note that the stochastic integrability of a function φ : (0, T ) → E
does not depend on the particular choice of the Brownian motion W (its
integral does depend on W, of course). Moreover, it follows from Theorem
2.3 that a function φ : (0, T ) → E is stochastically integrable with respect
to W if and only if φ̌ : (0, T )→ E is, where φ̌(t) := φ(T − t).

Functions that are dominated by some stochastically integrable function
are stochastically integrable:

Corollary 2.7. Let F be a weak∗-sequentially dense linear subspace
of E∗. If φ : (0, T ) → E is stochastically integrable with respect to W, and



Stochastic integration 145

if ψ : (0, T )→ E is a weakly measurable function which satisfies
T�

0

〈ψ(t), x∗〉2 dt ≤
T�

0

〈φ(t), x∗〉2 dt ∀x∗ ∈ F,

then ψ is stochastically integrable with respect to W and for all p ∈ [1,∞)
we have

E
∥∥∥
T�

0

ψ(t) dW (t)
∥∥∥
p
≤ E

∥∥∥
T�

0

φ(t) dW (t)
∥∥∥
p
.

If E is separable, it is enough to assume that F is weak∗-dense in E∗.

Proof. This follows from Proposition 1.2 and condition (4) in Theorem
2.3, applied to H = L2(0, T ) and T = Iφ. The final assertion follows from
Remark 2.4.

As a second corollary to Theorem 2.3 we show that the stochastic integral
defines a martingale that is continuous in pth mean for all p ∈ [1,∞):

Corollary 2.8. Let φ : (0, T ) → E be stochastically integrable with
respect to W. Then the E-valued process

M(t) :=
t�

0

φ(r) dW (r), t ∈ [0, T ],

is a martingale adapted to the filtration {Ft}t∈[0,T ] that is continuous in pth
moment for all p ∈ [1,∞).

Proof. For all 0 ≤ s ≤ t ≤ T and all x∗ ∈ E∗,
〈
E
(t�

0

φ(r) dW (r)
∣∣∣Fs

)
, x∗
〉

= E
(t�

0

〈φ(r), x∗〉 dW (r)
∣∣∣Fs

)

=
s�

0

〈φ(r), x∗〉 dW (r) =
〈s�

0

φ(r) dW (r), x∗
〉

almost surely. This implies that

E
(t�

0

φ(r) dW (r)
∣∣∣Fs

)
=

s�

0

φ(r) dW (r)

almost surely. This proves the martingale property.
Next let tn ↓ t in the interval [0, T ]; the case tn ↑ t is handled similarly.

Let Rn denote the covariance operator of the distribution νn of the Gaussian
random variable

� tn
t φ(r) dW (r). For all x∗ ∈ E∗ we have

lim
n→∞

〈Rtnx∗, x∗〉 = lim
n→∞

tn�

t

〈φ(r), x∗〉2 dr = 0.
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Moreover, for all n and all x∗ ∈ E∗ we have 〈Rtnx∗, x∗〉 ≤ 〈Qx∗, x∗〉, where
Q is as in (3) of Theorem 2.3. Hence by Proposition 1.2 and a standard
argument, for the associated distributions we have limn→∞ νtn = δ0 (the
Dirac measure at 0) weakly. By [1, Lemma 3.8.7], this implies

lim
n→∞

E
∥∥∥
tn�

t

φ(r) dW (r)
∥∥∥
p

= lim
n→∞

�

E

‖x‖p dνn(x) = 0.

Remark 2.9. By the same argument one proves that for every p ∈
[1,∞),

V (A) :=
�

A

φ(t) dW (t), A ⊆ (0, T ) measurable,

defines a countably additive Lp(Ω;E)-valued vector measure V which is
absolutely continuous with respect to the Lebesgue measure.

We conclude with some remarks on stochastic integrability in certain
concrete classes of Banach spaces.

For Lp-spaces, a precise characterization of Gaussian covariance opera-
tors is known (cf. [21, Theorem V.5.5]), and this can be used in conjunction
with condition (3) of Theorem 2.3 to give a precise description of the class
of stochastically integrable functions (cf. also [18, Corollary 4.3]). The fol-
lowing result extends this description to a wider class of function spaces and
does not depend on such a characterization. Rather, it exploits condition
(4) of Theorem 2.3 in a direct way.

Corollary 2.10. Let E be Banach function space with finite cotype
over a σ-finite measure space (S,Σ, ν). A strongly measurable function φ :
(0, T )→ E is stochastically integrable with respect to W if and only if

∥∥∥
(T�

0

|φ(t, ·)|2 dt
)1/2∥∥∥

E
<∞.

In this case we have
(
E
∥∥∥
T�

0

φ(t) dW (t)
∥∥∥

2

E

)1/2
∼
∥∥∥
(T�

0

|φ(t, ·)|2 dt
)1/2∥∥∥

E
,

where “∼” means that both quantities are proportional to each other with
constants depending on E only.

Here we write φ(t, ξ) := (φ(t))(ξ). Since φ can be approximated pointwise
a.e. by a sequence of E-valued step functions, and since every convergent
sequence in E contains a subsequence which converges pointwise µ-a.e., the
function (t, ξ) 7→ φ(t, ξ) is easily seen to be jointly measurable. Hence by
Fubini’s theorem, for µ-almost ξ ∈ S the function t 7→ φ(t, ξ) is measurable,
and the expressions in the statement of the theorem are well defined.
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Proof. Let (fn) be an orthonormal basis of L2(0, T ) and let (rn) be a
sequence of independent Rademacher variables.

If φ is stochastically integrable, then by the finite cotype assumption, [14,
Theorem 1.d.6, Corollary 1.f.9] and [6, Proposition 12.11, Theorem 12.27]
we obtain
(
E
∥∥∥
T�

0

φ(t) dW (t)
∥∥∥

2

E

)1/2
= ‖Iφ‖γ =

(
E
∥∥∥
∑

n

γn

T�

0

φ(t, ·)fn(t) dt
∥∥∥

2

E

)1/2

∼
(
E
∥∥∥
∑

n

rn

T�

0

φ(t, ·)fn(t) dt
∥∥∥

2

E

)1/2
∼
∥∥∥
(∑

n

∣∣∣
T�

0

φ(t, ·)fn(t) dt
∣∣∣
2)1/2∥∥∥

E

=
∥∥∥
(T�

0

|φ(t, ·)|2 dt
)1/2∥∥∥

E
.

Conversely, if ‖(
� T
0 |φ(t, ·)|2 dt)1/2‖E <∞, we can read these estimates back-

wards, but we have to check that φ is weakly L2 and that Iφ takes values
in E, since otherwise Iφ is not well defined as an operator from L2(0, T )
into E. We estimate the middle expression by applying an element x∗ ∈ E∗
of norm one:
(
E
∥∥∥
∑

n

rn

T�

0

φ(t, ·)fn(t) dt
∥∥∥

2

E

)1/2
≥
(
E
∣∣∣
∑

n

rn

T�

0

〈φ(t), x∗〉fn(t) dt
∣∣∣
2)1/2

=
(∑

n

∣∣∣
T�

0

〈φ(t), x∗〉fn(t) dt
∣∣∣
2)1/2

=
(T�

0

|〈φ(t), x∗〉|2 dt
)1/2

.

This shows that φ is weakly L2. Since φ is also strongly measurable, it follows
that φ is Pettis integrable. Then for any f ∈ L2(0, T ), fφ is Pettis integrable
as well and Iφ takes values in E.

3. Cylindrical Wiener processes. Let H be a real Hilbert space.

Definition 3.1. A cylindrical H-Wiener process WH = {WH(t)}t∈[0,T ]

is a family of bounded linear operators from H into L2(Ω) with the following
properties:

(1) For all h ∈ H, {WH(t)h}t∈[0,T ] is a standard Brownian motion;
(2) For all s, t ∈ [0, T ] and g, h ∈ H we have

E(WH(s)g ·WH(t)h) = (s ∧ t)[g, h]H .

We shall always assume that WH is adapted to a given filtration
{Ft}t∈[0,T ]; by this we mean that the Brownian motions {WH(t)h}t∈[0,T ]
are adapted to {Ft}t∈[0,T ].
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Example 3.2. If W is a standard Brownian motion, then WR(t) : R →
L2(Ω),

WR(t)h := hW (t), h ∈ R,
is a cylindrical R-Wiener process. Conversely, every cylindrical R-Wiener
process arises in this way.

More generally, suppose C ∈ L (E∗, E) is a Gaussian covariance opera-
tor and WC is an E-valued Brownian motion satisfying

E〈WC(t), x∗〉2 = t 〈Cx∗, x∗〉 ∀t ≥ 0, x∗ ∈ E∗,
i.e., C is the covariance operator of the Gaussian random variable WC(1).
Let (HC , iC) be the reproducing kernel Hilbert space associated with C.
Then the mapping

WHC (t)i∗Cx
∗ := 〈WC(t), x∗〉 t ≥ 0, x∗ ∈ E∗,

uniquely extends to a cylindrical HC-Wiener process WHC . We return to
this example in Section 5.

In the next section we shall be concerned with setting up a stochastic
integral for certain L (H,E)-valued functions with respect to a cylindrical
H-Wiener process WH . Before we can do so, we need to observe first that
we can integrate certain H-valued functions with respect toWH . In contrast
to the other integrals studied in this paper, the construction is completely
straightforward. Indeed, for a step function of the form 1(a,b] ⊗ h we define

T�

0

1(a,b](t)⊗ h dWH(t) := WH(b)h−WH(a)h.(3.1)

This is extended to arbitrary step functions ψ by linearity, and a standard
computation shows that

E
(T�

0

ψ(t) dWH(t)
)2

=
T�

0

‖ψ(t)‖2H dt.

Since the step functions are dense in L2(0, T ;H), the map

JH : ψ 7→
T�

0

ψ(t) dWH(t)

extends uniquely to an isometry from L2(0, T ;H) into L2(Ω). For all f ∈
L2(0, T ) and all h ∈ H we have

T�

0

f(t)⊗ h dWH(t) =
T�

0

f(t) dWH(t)h(3.2)
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as can be seen by approximating f with step functions and using (3.1). In
Section 7 the following integration by parts formula will be useful: for all
f ∈ C1[0, T ], B ∈ L (H,E), and x∗ ∈ E∗,

T�

0

f ′(t)WH(t)B∗x∗ dt = f(T )WH(T )B∗x∗ −
T�

0

f(t)⊗B∗x∗ dWH(t).(3.3)

This formula follows from (3.2) and the corresponding integration by parts
formula for standard Brownian motions. We will also need the following
version of Fubini’s theorem. See also [5], where an analogous version of this
result for processes is given in a slightly different formulation.

Theorem 3.3 (Fubini). Let ψ : (0, T )×(0, T )→ H be jointly measurable
and assume that T�

0

‖ψ(s, ·)‖L2(0,T ;H) ds <∞.

(1) The L2(Ω)-valued function

s 7→
T�

0

ψ(s, t) dWH(t)

is Bochner integrable.
(2) For almost all t ∈ (0, T ) we have s 7→ ψ(s, t) ∈ L1(0, T ;H), and the

H-valued function

t 7→
T�

0

ψ(s, t) ds

is square Bochner integrable.
(3) In L2(Ω) we have

T�

0

(T�

0

ψ(s, t) dWH(t)
)
ds =

T�

0

(T�

0

ψ(s, t) ds
)
dWH(t).

4. Stochastic integration of L (H,E)-valued functions. From this
point onwards we shall assume that H is a separable real Hilbert space.
As before, E is a real Banach space. In this section we define a stochastic
integral for certain L (H,E)-valued functions with respect to a cylindrical
H-Wiener processWH . In the case H = R we may identify L (R, E) with E,
in which case the integral reduces to the integral for E-valued functions of
Section 2.

We say that a function Φ : (0, T ) → L (H,E) is H-weakly L2 if for all
x∗ ∈ E∗ the map t 7→ Φ∗(t)x∗ is strongly measurable and satisfies

T�

0

‖Φ∗(t)x∗‖2H dt <∞.
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By the separability of H and the Pettis measurability theorem, the strong
measurability of t 7→ Φ∗(t)x∗ is equivalent to its weak measurability.

Definition 4.1. We call a function Φ : (0, T )→ L (H,E) stochastically
integrable with respect to WH if it is H-weakly L2 and for all measurable
A ⊆ (0, T ) there exists an E-valued random variable YA such that for all
x∗ ∈ E∗ we have

〈YA, x∗〉 =
T�

0

1A(t)Φ∗(t)x∗ dWH(t)

almost surely. In this situation we write

YA =
�

A

Φ(t) dWH(t).

The random variables YA are uniquely determined almost everywhere
and Gaussian; this is proved in the same way as in Section 2. In particular,
YA ∈ Lp(Ω;E) for all p ∈ [1,∞).

This definition agrees with the one in [20], where the case of an E-valued
Brownian motion was considered (cf. Section 5 below).

We collect some elementary properties of the stochastic integral that are
immediate consequences of Definition 4.1. Let Φ : (0, T ) → L (H,E) and
Ψ : (0, T )→ L (H,E) be stochastically integrable with respect to WH .

• For all measurable subsets B ⊆ (0, T ) the function 1BΦ is stochasti-
cally integrable with respect to WH and

T�

0

1B(t)Φ(t) dWH(t) =
�

B

Φ(t) dWH(t)

almost surely.
• For all a, b ∈ R the function aΦ+ bΨ is stochastically integrable with

respect to WH and
T�

0

(aΦ(t) + bΨ(t)) dWH(t) = a

T�

0

Φ(t) dWH(t) + b

T�

0

Ψ(t) dWH(t)

almost surely.
• For all real Banach spaces F and all bounded operators S ∈ L (E,F )

the function SΦ : (0, T ) → L (H,F ) is stochastically integrable with
respect to WH and

T�

0

SΦ(t) dWH(t) = S

T�

0

Φ(t) dWH(t)

almost surely.
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For an H-weakly L2 function Φ : (0, T )→ L (H,E) we define an opera-
tor IΦ : L2(0, T ;H)→ E∗∗ by

〈x∗, IΦf〉 :=
T�

0

[Φ∗(t)x∗, f(t)]H dt, f ∈ L2(0, T ;H), x∗ ∈ E∗.

Note that IΦ is the adjoint of the operator x∗ 7→ Φ∗(·)x∗ from E∗ into
L2(0, T ;H).

If the functions t 7→ Φ(t)h are strongly measurable for all h ∈ H, then
IΦ maps L2(0, T ;H) into E. Indeed, this is clear for step functions Φ of the
form

∑N
n=1 1An ⊗ hn with the property that t 7→ Φ(t)hn is bounded on An;

the general case follows from the fact that these step functions are dense in
L2(0, T ;H). The following theorem characterizes the class of stochastically
integrable functions.

Theorem 4.2. For an H-weakly L2 function Φ : (0, T )→ L (H,E) the
following assertions are equivalent :

(1) Φ is stochastically integrable with respect to WH .
(2) There exists an E-valued random variable Y and a weak∗-sequen-

tially dense linear subspace F of E∗ such that for all x∗ ∈ F we
have

〈Y, x∗〉 =
T�

0

Φ∗(t)x∗ dWH(t) almost surely.

(3) There exists a Gaussian measure µ on E with covariance operator
Q and a weak∗-sequentially dense linear subspace F of E∗ such that
for all x∗ ∈ F we have

T�

0

‖Φ∗(t)x∗‖2H dt = 〈Qx∗, x∗〉.

(4) There exists a separable real Hilbert space H , a γ-radonifying oper-
ator T ∈ L (H , E), and a weak∗-sequentially dense linear subspace
F of E∗ such that for all x∗ ∈ F we have

T�

0

‖Φ∗(t)x∗‖2H dt ≤ ‖T ∗x∗‖2H .

(5) IΦ maps L2(0, T ;H) into E and IΦ ∈ L (L2(0, T ;H), E) is γ-radon-
ifying.

If these equivalent conditions hold , then in (2)–(4) we may take F = E∗,
for all h ∈ H the function Φ(·)h is both Pettis integrable and stochastically
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integrable with respect to WH(·)h, and we have the representation
T�

0

Φ(t) dWH(t) =
∑

n

T�

0

Φ(t)hn dWH(t)hn,(4.1)

where (hn) is any orthonormal basis for H; the series converges uncondi-
tionally in Lp(Ω;E) for all p ∈ [1,∞) and almost surely. The measure µ is
the distribution of

� T
0 Φ(t) dWH(t) and we have an isometry

E
∥∥∥
T�

0

Φ(t) dWH(t)
∥∥∥

2
= ‖IΦ‖2γ .(4.2)

Proof. The implications (1)⇒(2)⇒(3)⇒(4)⇒(5) are proved in the same
way as the corresponding ones in Theorem 2.3.

(5)⇒(1): Fix A ⊆ (0, T ) measurable and put ΦA(t) := 1A(t)Φ(t). Defin-
ingMA : L2(0, T ;H)→ L2(0, T ;H) byMAf := 1Af , we have IΦA = IΦ◦MA.
Hence by the right ideal property of γ-radonifying operators, IΦA is γ-
radonifying.

Choose an orthonormal basis (fn) for L2(0, T ) and an orthonormal ba-
sis (hm) for H. Let k 7→ (n(k),m(k)) be a bijection from N onto N × N.
If we denote by JH : L2(0, T ;H) → L2(Ω) the Itô isometry, the sequence
(JH(fn(k) ⊗ hm(k))) consists of independent standard normal random vari-
ables. It follows that the E-valued Gaussian series

YA :=
∑

k

JH(fn(k) ⊗ hm(k) IΦA(fn(k) ⊗ hm(k))

converges unconditionally in L2(Ω;E). For all x∗ ∈ E∗ we have

〈YA, x∗〉=
∑

k

〈IΦA(fn(k) ⊗ hm(k)), x
∗〉JH(fn(k) ⊗ hm(k))(4.3)

=
∑

k

[〈ΦA(·)hm(k), x
∗〉, fn(k)]L2(0,T )

T�

0

fn(k)(t)⊗ hm(k) dWH(t)

(i)
=
∑

k

[〈ΦA(·)hm(k), x
∗〉, fn(k)]L2(0,T )

T�

0

fn(k)(t) dWH(t)hm(k)

(ii)
=
∑

m

T�

0

∑

n

[〈ΦA(·)hm, x∗〉, fn]L2(0,T ) fn(t) dWH(t)hm

=
∑

m

T�

0

〈ΦA(t)hm, x∗〉 dWH(t)hm

(iii)
=
〈∑

m

T�

0

ΦA(t)hm dWH(t)hm, x∗
〉
.
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In (i) we used the identity (3.2), in (ii) we used unconditionality, and the
convergence of the sum on the right hand side of (iii), both in Lp(Ω;E) for
all p ∈ [1,∞) and almost surely, follows from the theorems of Itô–Nisio [11]
and Hoffmann-Jørgensen [9]. Moreover,

〈∑

m

T�

0

ΦA(t)hm dWH(t)hm, x∗
〉

=
∑

m

T�

0

[hm, ΦA(t)x∗]H dWH(t)hm =
∑

m

T�

0

[hm, Φ∗A(t)x∗]Hhm dWH(t)

=
T�

0

∑

m

[hm, Φ∗A(t)x∗]Hhm dWH(t) =
T�

0

1A(t)Φ∗(t)x∗ dWH(t).

This proves that Φ is stochastically integrable. The series representation
(4.1) for the stochastic integral of Φ has already been obtained in (4.3). The
sum converges unconditionally since (hπ(n)) is an orthonormal basis for H
for every permutation π of the indices.

It remains to prove the final assertions. The Pettis integrability of Φ(·)h
follows by observing that for all A ⊆ (0, T ) measurable and all x∗ ∈ E∗ we
have

〈IΦ1A ⊗ h, x∗〉 =
�

A

〈Φ(t)h, x∗〉 dt.

Finally, (4.2) is an immediate consequence of Proposition 1.1 and the fact
that µ is the distribution of

� T
0 Φ(t) dWH(t).

Remark 4.3. If Φ is strongly measurable (in particular, if E is separa-
ble), then in (2)–(4) it suffices to assume that F is weak∗-dense.

The equivalence (2)⇔(3) (with F = E∗) was proved, in the case of
separable Banach spaces E, in [4]. The proof presented above is not only
more general, but also considerably simpler.

As in the case of E-valued functions, Theorem 4.2 shows that the stochas-
tic integrability of a function Φ does not depend on the particular choice of
the cylindrical Wiener process WH and that a function Φ is stochastically
integrable with respect to WH if and only if its time reflection Φ̌ is.

Functions that are dominated by some stochastically integrable function
are stochastically integrable:

Corollary 4.4. Let F be a weak∗-sequentially dense linear subspace
of E∗. If Φ : (0, T ) → L (H,E) is stochastically integrable with respect
to WH , and if Ψ : (0, T ) → L (H,E) is an H-weakly L2 function which
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satisfies
T�

0

‖Ψ∗(t)x∗‖2H dt ≤
T�

0

‖Φ∗(t)x∗‖2H dt ∀x∗ ∈ F,

then Ψ is stochastically integrable with respect to WH and for all p ∈ [1,∞)
we have

E
∥∥∥
T�

0

Ψ(t) dWH(t)
∥∥∥
p
dt ≤ E

∥∥∥
T�

0

Φ(t) dWH(t)
∥∥∥
p
dt.

If E is separable, it is enough to assume that F is weak∗-dense in E∗.

Parallel to Corollary 2.8 we have:

Corollary 4.5. Let Φ : (0, T ) → L (H,E) be stochastically integrable
with respect to WH . Then the E-valued process

t 7→
t�

0

Φ(r) dWH(r), t ∈ [0, T ],

is a martingale adapted to the filtration {Ft}t∈[0,T ] that is continuous in pth
moment for all p ∈ [1,∞).

Proof. The martingale property follows from the first part of Corollary
2.8 and the representation formula (4.1), and the continuity in pth moment
is proved along the lines of the second part of Corollary 2.8.

By the remarks in Section 1 we obtain the following sufficient condition
for stochastic integrability if E has type 2:

Corollary 4.6. Let E be a separable real Banach space with type 2 and
let Φ : (0, T )→ L (H,E) be an H-weakly L2 function. If

∑

n

∥∥∥
T�

0

Φ(t)gn(t) dt
∥∥∥

2
<∞

for some orthonormal basis (gn) for L2(0, T ;H), then Φ is stochastically
integrable with respect to WH and

E
∥∥∥
T�

0

Φ(t) dWH(t)
∥∥∥

2
≤ C2

2

∑

n

∥∥∥
T�

0

Φ(t)gn(t) dt
∥∥∥

2
,

where C2 is the type 2 constant of E.

Proof. The separability of E ensures that the functions t 7→ Φ(t)gn(t)
are Pettis integrable (cf. the remarks in Section 1.3). The corollary now
follows from

‖IΦ‖2γ = E
∥∥∥
∑

n

γn

T�

0

Φ(t)gn(t) dt
∥∥∥

2
≤ C2

2

∑

n

∥∥∥
T�

0

Φ(t)gn(t) dt
∥∥∥

2

and an application of Theorem 4.2.
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A similar result with the implications reversed holds for spaces with
cotype 2. For separable real Hilbert spaces E we recover the well known
fact that Φ is stochastically integrable if and only if IΦ is a Hilbert–Schmidt
operator.

We conclude this section with a reformulation of a result of [16], which
gives another sufficient condition for stochastic integrability in space of
type 2, this time in terms of a direct integrability assumption on Φ. A related
result in a slightly different setting was obtained by Brzeźniak [2].

Theorem 4.7. Let E be a separable real Banach space with type 2 and
let Φ : (0, T )→L (H,E) be H-weakly L2. If Φ(t) is γ-radonifying for almost
all t ∈ (0, T ) and

T�

0

‖Φ(t)‖2γ dt <∞,

then Φ is stochastically integrable with respect to WH and

E
∥∥∥
T�

0

Φ(t) dWH(t)
∥∥∥

2
≤ C2

2

T�

0

‖Φ(t)‖2γ dt,

where C2 denotes the type 2 constant of E.

The special case for H = R is well known [10, 18] (cf. Section 2). In the
same paper [16], an example is given of a stochastically integrable function
Φ : (0, T ) → L (l2, lp) (with 2 < p < ∞) for which none of the operators
Φ(t) is γ-radonifying.

5. Stochastic integration of L (E)-valued functions. Let C ∈
L (E∗, E) be a Gaussian covariance operator and let WC be a C-Wiener
process in E, i.e., an E-valued Brownian motion satisfying

E〈WC(t), x∗〉2 = t 〈Cx∗, x∗〉 ∀t ≥ 0, x∗ ∈ E∗.

Thus, C is the covariance operator associated with the Gaussian random
variable WC(1). As was pointed out in Example 3.2, there is a canonical way
of associating a cylindrical Wiener process WHC to WC . This construction
enables us to integrate certain functions Φ : (0, T ) → L (E) with respect
to WC . In practice, it may be rather cumbersome to compute the space
HC explicitly, however. For this reason we will reformulate the definition of
stochastic integrability in a way that avoids explicit reference to HC . The
resulting formalism is modelled after the one used in the monograph by Da
Prato and Zabczyk [5].

The identity iC ◦ i∗C = C implies, via the Pettis measurability theorem
and the fact that HC is separable, that t 7→ i∗CΦ

∗(t)x∗ is strongly measurable
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if and only if

t 7→ CΦ∗(t)x∗ is weakly measurable.(5.1)

If E is separable, this condition is automatically satisfied if all orbits t 7→
Φ(t)x are strongly measurable. If (5.1) holds, every function t 7→ i∗CΦ

∗(t)x∗

is strongly measurable, and from ‖i∗CΦ∗(t)x∗‖2HC = 〈Φ(t)CΦ∗(t)x∗, x∗〉 we

deduce that
� T
0 ‖i∗CΦ∗(t)x∗‖2HC dt <∞ if and only if

T�

0

〈Φ(t)CΦ∗(t)x∗, x∗〉 dt <∞.(5.2)

Motivated by this we say that Φ : (0, T )→ L (E) is C-weakly L2 if (5.1) and
(5.2) hold for all x∗ ∈ E∗. For such a function we may define a stochastic
integral

T�

0

〈Φ(t) dWC(t), x∗〉(5.3)

as follows. For a step function 1(a,b] ⊗ Φ0 we put

T�

0

〈1(a,b](t)⊗ Φ0 dW
C(t), x∗〉 := 〈WC(b), Φ∗0x

∗〉 − 〈WC(a), Φ∗0x
∗〉

and we extend this to arbitrary C-weakly L2 functions by linearity and an
approximation argument in the usual way.

We call a function Φ : (0, T ) → L (E) stochastically integrable with
respect to WC if it is C-weakly L2 and for every measurable set A ⊆ (0, T )
there exists an E-valued random variable YA such that for all x∗ ∈ E∗ we
have

〈YA, x∗〉 =
T�

0

〈1A(t)Φ(t) dWC(t), x∗〉

almost surely. The random variable YA is uniquely determined and Gaussian,
and we write

YA =
�

A

Φ(t) dWC(t).

Proposition 5.1. A function Φ : (0, T ) → L (E) is stochastically in-
tegrable with respect to WC if and only if Φ ◦ iC : (0, T ) → L (HC , E) is
stochastically integrable with respect to WHC . In this situation the two inte-
grals agree.

Proof. All we have to observe is that Φ is C-weakly L2 if and only if
Φ ◦ iC is HC-weakly L2, and that in this case we have
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T�

0

〈1A(t)Φ(t) dWC(t), x∗〉 =
T�

0

1A(t)i∗CΦ
∗(t)x∗ dWHC (t) ∀x∗ ∈ E∗

for all measurable A ⊆ (0, T ).

This observation enables us to reformulate Theorem 4.2 for stochastic
integrals with respect to WC . Omitting any statements containing explicit
reference to HC , we obtain:

Theorem 5.2. For a C-weakly L2 function Φ : (0, T ) → L (E) the
following assertions are equivalent :

(1) Φ is stochastically integrable with respect to WC .
(2) There exists an E-valued random variable Y and a weak∗-sequen-

tially dense linear subspace F of E∗ such that for all x∗ ∈ F we
have

〈Y, x∗〉 =
T�

0

〈Φ(t) dWC(t), x∗〉 almost surely.

(3) There exists a Gaussian measure µ on E with covariance operator
Q and a weak∗-sequentially dense linear subspace F of E∗ such that
for all x∗ ∈ E∗ we have

T�

0

〈Φ(t)CΦ∗(t)x∗, x∗〉 dt = 〈Qx∗, x∗〉.

(4) There exists a separable real Hilbert space H , a γ-radonifying op-
erator T ∈ L (H , E), and and a weak∗-sequentially dense linear
subspace F of E∗ such that for all x∗ ∈ F we have

T�

0

〈Φ(t)CΦ∗(t)x∗, x∗〉2 dt ≤ ‖T ∗x∗‖2H .

The measure µ is the distribution of
� T
0 Φ(t) dWC(t).

If E is separable, then in (2)–(4) it suffices to assume that F is weak∗-
dense in E∗.

Notice that the Itô isometry cannot be conveniently formulated in this
setting; it refers to HC in an explicit way.

Remark 5.3. In the definition of the stochastic integral (5.3) we only
used the scalar Brownian motions 〈WC , x∗〉 rather than WC itself. For this
reason, all that has been said in this section generalizes to the case of ar-
bitrary positive symmetric operators C ∈ L (E∗, E), i.e., to the case of
cylindrical C-Wiener processes in the terminology of [5]; these can be de-
fined analogously to Definition 3.1.
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6. Approximation and convergence theorems. In this section we
shall be concerned with convergence theorems for the stochastic integral for
L (H,E)-valued functions. If we apply the result to the case H = R we
obtain corresponding convergence theorems for the stochastic integral for
E-valued functions with respect to a Brownian motion.

We start with a simple finite-dimensional approximation result:

Proposition 6.1 (Finite-dimensional approximation). Let Φ : (0, T )→
L (H,E) be stochastically integrable with respect to WH . Let (hn) be an
orthonormal basis in H and denote by Pn the orthogonal projection onto the
linear span of (hk)k≤n. Then the functions Φ ◦ Pn : (0, T ) → L (H,E) are
stochastically integrable with respect to WH and

lim
n→∞

E
∥∥∥
T�

0

(Φ(t) ◦ Pn − Φ(t)) dWH(t)
∥∥∥
p

= 0 ∀p ∈ [1,∞).

Proof. Since limn→∞ ‖IΦ◦Pn−IΦ‖γ = 0, this is immediate from Theorem
4.2 and Proposition 1.1.

Next we turn to a dominated convergence theorem.

Theorem 6.2 (Dominated convergence). Let Φn : (0, T )→ L (H,E) be
a sequence of stochastically integrable functions with respect to WH . Assume
that there exists an H-weakly L2 function Φ : (0, T )→ L (H,E) such that

lim
n→∞

T�

0

‖Φ∗n(t)x∗ − Φ∗(t)x∗‖2H dt = 0 ∀x∗ ∈ E∗.(6.1)

Assume further that there exists a stochastically integrable function Ψ :
(0, T )→ L (H,E) such that for all x∗ ∈ E∗ and all n we have

T�

0

‖Φ∗n(t)x∗‖2H dt ≤
T�

0

‖Ψ∗(t)x∗‖2H dt.(6.2)

Then Φ is stochastically integrable with respect to WH and

lim
n→∞

E
∥∥∥
T�

0

(Φn(t)− Φ(t)) dWH(t)
∥∥∥
p

= 0 ∀p ∈ [1,∞).(6.3)

Proof. It follows from (6.1) and (6.2) that
T�

0

‖Φ∗(t)x∗‖2H dt ≤
T�

0

‖Ψ∗(t)x∗‖2H dt ∀x∗ ∈ E∗.

Hence by (4) of Theorem 4.2 (with H = HR and T = iR, where (HR, iR) is
the reproducing kernel Hilbert space associated with the covariance operator
R of the random variable

� T
0 Φ(t) dWH(t)), Φ is stochastically integrable with

respect to WH . Let Qn, µn, and Rn, νn, denote the covariance operators and
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the distributions of
� T
0 Φn(t) dWH(t) and

� T
0 (Φn(t) − Φ(t)) dWH(t), respec-

tively. By (6.2) and Proposition 1.2, the measures µn are uniformly tight.
By a standard argument (cf. [11]), this implies that the measures νn are uni-
formly tight as well. Thanks to condition (6.1) we have limn→∞〈Rnx∗, x∗〉
= 0 for all x∗ ∈ E∗. It follows that limn→∞ νn = δ0 weakly. Hence, by [1,
Lemma 3.8.7],

lim
n→∞

E
∥∥∥
T�

0

(Φn(t)− Φ(t)) dWH(t)
∥∥∥
p

= lim
n→∞

�

E

‖x‖p dνn(x) = 0(6.4)

for all p ∈ [1,∞).

Notice that Proposition 6.1 is contained in Theorem 6.2 as a special case.

Remark 6.3. Noting that 〈Rnx∗, x∗〉 ≤ 4〈Rx∗, x∗〉 for all x ∈ E∗, we see
that this result remains true if we replace ‖ · ‖p by any nonnegative convex
symmetric function g : E → R satisfying

�

E

g(2x) dν(x) <∞.

As a first application, we show that stochastically integrable functions
can be approximated by step functions in a suitable sense.

Theorem 6.4 (Approximation with step functions). For an H-weakly
L2 function Φ : (0, T )→ L (H,E) the following assertions are equivalent :

(1) Φ is stochastically integrable with respect to WH .
(2) There exists a sequence of step functions Φn : (0, T ) → L (H,E)

with the following properties:

(a) For all x∗ ∈ E∗ we have

lim
n→∞

Φ∗n(·)x∗ = Φ∗(·)x∗ in measure.(6.5)

(b) There exists an E-valued random variable Y such that

Y = lim
n→∞

T�

0

Φn(t) dWH(t) in probability.(6.6)

In this situation we have Y =
� T
0 Φ(t) dWH(t), the convergence in (6.5) is in

L2(0, T ;H), and the convergence in (6.6) is in Lp(Ω;E) for every p ∈ [1,∞).

Proof. (1)⇒(2): By Theorem 4.2 the functions Φ(·)h are Pettis inte-
grable. Therefore we may define, for n ≥ 1 and j = 1, . . . , 2n, bounded
operators Φj,n ∈ L (H,E) by

Φj,nh :=
2n

T

jT/2n�

(j−1)T/2n

Φ(t)h dt.
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Now define Φn : (0, T ) → L (H,E) by Φn(t) := Φj,n for t ∈ ((j − 1)T/2n,
jT/2n].

Let Gn denote the finite σ-algebra in (0, T ) generated by the 2nth
equipartition of (0, T ). Then Φ∗n(·)x∗ = E(Φ∗(·)x∗ |Gn) and (6.5) follows
follows from the vector-valued martingale convergence theorem.

By Jensen’s inequality we have
T�

0

‖Φ∗n(t)x∗‖2H dt ≤
T�

0

‖Φ∗(t)x∗‖2H dt.

Hence by Corollary 4.4, each Φn is stochastically integrable. Assertion (6.6)
now follows from Theorem 6.2, with convergence in every Lp(Ω;E).

(2)⇒(1): Let x∗ ∈ E∗ be arbitrary and fixed. Then, by (6.6),

〈Y, x∗〉 = lim
n→∞

T�

0

Φ∗n(t)x∗ dWH(t) in probability.

The variables on the right hand side being Gaussian, it follows that Y is
Gaussian and by general results on convergence of Gaussian variables the
convergence takes place in L2(Ω). Hence by the Itô isometry, the functions
Φ∗n(·)x∗ define a Cauchy sequence in L2(0, T ;H). By (6.5), the limit equals
Φ∗(·)x∗. Thus, the convergence in (6.5) takes place in L2(0, T ;H), and by
another application of the Itô isometry it follows that

〈Y, x∗〉 =
T�

0

Φ∗(t)x∗ dWH(t) almost surely.

By Theorem 4.2(2), this implies that Φ is stochastically integrable, with
integral Y .

As a further corollary to Theorem 6.2 we prove a continuity result for
stochastic convolutions, which generalizes and simplifies the main result
of [3].

Corollary 6.5. Let Φ : (0, T ) → L (H,E) be stochastically integrable
with respect to WH . Then the E-valued process

t 7→
t�

0

Φ(t− s) dWH(s) (t ∈ [0, T ])

is continuous in pth moment for all p ∈ [1,∞).

Proof. Apply Theorem 6.2 to the functions Ψ(s) := 1(0,t)(s)Φ(t− s) and
Ψn(s) := 1(0,tn)(s)Φ(tn − s), where tn → t.

We continue with a monotone convergence theorem:
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Theorem 6.6 (Monotone convergence). Suppose E is separable and does
not contain a closed subspace isomorphic to c0. Let Φn : (0, T )→ L (H,E)
be a sequence of functions that are stochastically integrable with respect
to WH . Assume that there exists an H-weakly L2 function Φ : (0, T ) →
L (H,E) such that for all x∗ ∈ E∗ we have

lim
n→∞

T�

0

‖Φ∗n(t)x∗ − Φ∗(t)x∗‖2H dt = 0(6.7)

and
T�

0

‖Φ∗n(t)x∗‖2H dt ↑
T�

0

‖Φ∗(t)x∗‖2H dt as n→∞(6.8)

monotonically. If

sup
n≥1

E
∥∥∥
T�

0

Φn(t) dWH(t)
∥∥∥

2
<∞,(6.9)

then Φ is stochastically integrable with respect to WH and for all p ∈ [1,∞)
we have

E
∥∥∥
T�

0

(Φn(t)− Φ(t)) dWH(t)
∥∥∥
p

= 0.(6.10)

Proof. First note that for all x∗ ∈ E∗ the function t 7→ Φ(t)Φ∗(t)x∗

is weakly L1. Since E does not contain an isomorphic copy of c0, these
functions are in fact Pettis integrable by the remarks in Section 1.3. Thus
we may define a positive symmetric operator Q ∈ L (E∗, E) by

Qx∗ :=
T�

0

Φ(t)Φ∗(t)x∗ dt, x∗ ∈ E∗.

Using notations as before, from (6.8) we have limn→∞〈Qnx∗, x∗〉 = 〈Qx∗, x∗〉
for all x∗ ∈ E∗. Hence the assumptions of Proposition 1.3 are satisfied and we
infer that Q is a Gaussian covariance operator. The stochastic integrability
of Φ and (6.10) now follow from the dominated convergence theorem.

Thus we see that the stochastic integral admits versions of the two clas-
sical convergence theorems of integration theory. This is possible because of
the underlying tightness conditions, which provide the compactness needed
to arrive at convergence of the integrals. Let us point out that Proposition
1.3, when specialized to the covariances of stochastic integrals, also gives a
Fatou lemma for the stochastic integral.

The following example, which is essentially a reformulation of an example
by Linde and Pietsch [13], shows that the theorem fails in every Banach space
E containing an isomorphic copy of c0. Thus, the validity of the monotone
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convergence theorem actually characterizes the Banach spaces without a
copy of c0.

Example 6.7. Let H := R, E := c0, and identify L (R, c0) with c0. We
fix an R-cylindrical Wiener process, i.e., a standard Brownian motion, and
denote it by W.

Define In := (tn−1, tn], where t0 := 0 and tn :=
∑n

j=1 1/j2 for n ≥ 1. Let
T :=

∑∞
j=1 1/j2 and define φ : (0, T )→ c0 by

φ(t) :=
(
0, . . . , 0, n/

√
ln(n+ 1), 0, . . .

)
for t ∈ In.

The function φ is not stochastically integrable with respect to W. To see
this, note that

T�

0

〈φ(t), e∗n〉2 dt = 1/ln(n+ 1),

where e∗n = (0, . . . , 0, 1, 0. . . .) is the nth unit vector of c∗0 = l1. Hence,

T�

0

〈φ(t), x∗〉2 dt = 〈Qx∗, x∗〉 ∀x∗ ∈ l1,

where Q ∈ L (l1, c0) is given by Q
(
(αn)

)
:=
(
αn/ln(n+ 1)

)
. It is shown in

[13, Theorem 11] that this operator is not a Gaussian covariance. Theorem
4.2 therefore implies that φ is not stochastically integrable.

On the other hand, the functions φn := 1(0,tn)φ are stochastically inte-
grable with respect to W and
T�

0

φn(t) dW (t) =
n∑

j=1

(W (tj)−W (tj−1))⊗ (0, . . . , 0, j/
√

ln(j + 1), 0, . . .).

It is easy to check that (6.7) and (6.8) hold, and (6.9) follows from [13, The-
orem 11]. Thus, the monotone convergence theorem fails for this example.

7. Application to the stochastic linear Cauchy problem. In this
section we will apply our results to study linear abstract Cauchy problems
with additive noise. As before, H is a separable real Hilbert space and E is
a real Banach space.

We consider the stochastic Cauchy problem

dU(t) = AU(t) dt+B dWH(t), t ∈ [0, T ],

U(0) = u0.
(7.1)

Here A is the generator of a C0-semigroup {S(t)}t≥0 on E and B ∈ L (H,E)
is a given bounded operator, and the cylindrical Wiener process WH =
{WH(t)}t∈[0,T ] is adapted to some given filtration {Ft}t∈[0,T ].
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An E-valued process {U(t, u0)}t∈[0,T ] is called a weak solution if it is
weakly progressively measurable and for all x∗ ∈ D(A∗), the domain of the
adjoint operator A∗, the following two conditions are satisfied:

(1) Almost surely, the paths t 7→ 〈U(t, u0), A∗x∗〉 are integrable.
(2) For all t ∈ [0, T ] we have, almost surely,

〈U(t, u0), x∗〉 = 〈u0, x
∗〉+

t�

0

〈U(s, u0), A∗x∗〉 ds+WH(t)B∗x∗.(7.2)

Notice that this notion of weak solution is slightly more general than the
one used in [5]. It will follow from the theorem below that both notions are
in fact equivalent.

For separable Hilbert spacesE, necessary and sufficient conditions for the
existence and uniqueness of weak solutions are presented in [5, Chapter 5].
These were extended to separable Banach spaces E in [4] with an indirect
method of proof; see also the remarks in the introduction. Continuity in pth
moment of weak solutions in the Banach space setting was proved in [3].
With the tools developed in this paper a direct proof of the results of [4]
becomes possible, which generalizes the Hilbert space arguments in [5]. In
view of the many subtle differences in the execution we present it in full
detail.

As a preliminary observation we remark that, notwithstanding the fact
that the adjoint semigroup generally fails to be strongly continuous, the
function t 7→ S(t)BB∗S∗(t)x∗ is always Bochner integrable (cf. [15, Propo-
sition 1.2]).

Theorem 7.1. The following assertions are equivalent :

(1) The problem (7.1) has a weak solution {U(t, u0)}t∈[0,T ].
(2) The function t 7→ S(t)B is stochastically integrable on (0, T ) with

respect to WH .
(3) The operator R ∈ L (E∗, E) defined by

Rx∗ :=
T�

0

S(t)BB∗S∗(t)x∗ dt, x∗ ∈ E∗,

is a Gaussian covariance operator.
(4) The operator I ∈ L (L2(0, T ;H), E) defined by

If :=
T�

0

S(t)Bf(t) dt

is γ-radonifying from L2(0, T ;H) into E.
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In this situation, for every t ∈ [0, T ] the function s 7→ S(t− s)B is stochas-
tically integrable on (0, t) with respect to WH and we have

U(t, u0) = S(t)u0 +
t�

0

S(t− s)B dWH(s)(7.3)

almost surely. In particular , up to a modification the problem (7.1) has a
unique weak solution. For all p ∈ [1,∞) the paths t 7→ U(t, u0) belong to
Lp(0, T ;E) almost surely , the process {U(t)}t∈[0,T ] is continuous in pth mo-
ment and it has a predictable version.

Proof. We start by noting that U(·, u0) is a weak solution corresponding
to the initial value u0 if and only if U(·, u0) − S(·)u0 is a weak solution
corresponding to the initial value 0. Without loss of generality we shall
therefore assume that u0 = 0.

We will prove the equivalence (1)⇔(2); the equivalences (2)⇔(3)⇔(4)
are consequences of Theorem 4.2.

(1)⇒(2): We write U(t) := U(t, 0) for convenience. Let A� denote the
part of the adjoint generator A∗ in E� := D(A∗). We will show first that
for all x∗ ∈ D(A�) and t ∈ [0, T ], almost surely we have

〈U(t), x∗〉 =
t�

0

B∗S∗(t− s)x∗ dWH(s).(7.4)

Once this is established, condition (2) of Theorem 4.2 (for F we take the
weak∗-sequentially dense subspace D(A�)) shows that for all t ∈ [0, T ] the
function s 7→ S(t − s)B is stochastically integrable on (0, t) with respect
to WH . Assertion (2) and the representation (7.3) then follow.

We follow the argument in [5, Chapter 5.2]. Fix x∗ ∈ D(A∗) and t ∈
[0, T ] and let f : [0, t] → R be an arbitrary C1 function. Since the process
{U(t)}t∈[0,T ] is weakly progressively measurable, Fubini’s theorem implies
that almost surely the identity

〈U(s), x∗〉 =
s�

0

〈U(r), A∗x∗〉 dr +WH(s)B∗x∗

holds for almost all s ∈ (0, t). If we use this in combination with (3.3), an
integration by parts gives

(7.5)
t�

0

f ′(s)〈U(s), x∗〉 ds

=
t�

0

f ′(s)
[s�

0

〈U(r), A∗x∗〉 dr
]
ds+

t�

0

f ′(s)WH(s)B∗x∗ ds



Stochastic integration 165

= f(t)
t�

0

〈U(s), A∗x∗〉 ds−
t�

0

f(s)〈U(s), A∗x∗〉 ds

+ f(t)WH(t)B∗x∗ −
t�

0

f(s)⊗B∗x∗ dWH(s)

almost surely. Multiplying both sides of (7.2) with f(t), putting F := f⊗x∗,
using (7.5) and rewriting, we obtain

〈U(t), F (t)〉 =
t�

0

〈U(s), F ′(s) + A∗F (s)〉 ds(7.6)

+
t�

0

B∗F (s) dWH(s)

almost surely. Since linear combinations of the functions f ⊗ x∗ with f ∈
C1[0, t] and x∗ ∈ D(A∗) are dense in C1([0, t];E∗)∩C([0, t];D(A∗)), by ap-
proximation this identity extends to arbitrary functions F ∈ C1([0, t];E∗)∩
C([0, t];D(A∗)). In particular we may take F (s) = S∗(t − s)x∗, with x∗ ∈
D(A�). For this choice of F , the identity (7.6) reduces to (7.4).

(2)⇒(1): Suppose now that the function t 7→ S(t)B is stochastically
integrable on (0, T ). This implies the stochastic integrability of s 7→ S(t−s)B
on (0, t) for all t ∈ (0, T ). We will check that the process defined by

U(t) :=
t�

0

S(t− s)B dWH(s)

is a weak solution of the problem (7.1) with initial value 0.
Fix x∗ ∈ D(A∗) and t ∈ [0, T ]. Then

〈U(t), A∗x∗〉 =
t�

0

B∗S∗(t− s)A∗x∗ dWH(s)

almost surely. By Theorem 3.3, the L2(Ω)-valued function t 7→ 〈U(t), A∗x∗〉
is integrable on (0, T ) and

t�

0

〈U(s), A∗x∗〉 ds =
t�

0

(t�

0

1(0,s)(r)B
∗S∗(s− r)A∗x∗ dWH(r)

)
ds

=
t�

0

(t�

0

1(0,s)(r)B
∗S∗(s− r)A∗x∗ ds

)
dWH(r)

=
t�

0

(t�

r

B∗S∗(s− r)A∗x∗ ds
)
dWH(r)
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=
t�

0

(B∗S∗(t− r)x∗ −B∗x∗) dWH(r)

=
t�

0

B∗S∗(t− r)x∗ dWH(r)−WH(t)B∗x∗

= 〈U(t), x∗〉 −WH(t)B∗x∗,

where all identities are understood in the sense of L2(Ω). In particular the
identities hold almost surely.

The continuity in pth moment of the process {U(t)}t∈[0,T ] follows from
Corollary 6.5. Since this process is also adapted, it is progressively measur-
able. By general results on stochastic processes this implies the existence of
a predictable version.

It remains to show that for all p ∈ [1,∞) we have t 7→ U(t) in Lp(0, T ;E)
almost surely. Following an argument of [4], we let µt denote the distribution
of U(t) and note that its covariance operator Rt satisfies

〈Rt x∗, x∗〉 =
t�

0

‖B∗S∗(s)x∗‖2H ds ≤ 〈RTx∗, x∗〉 = 〈Rx∗, x∗〉.

By Fubini’s theorem,

E
T�

0

‖U(t)‖p dt =
T�

0

�

E

‖x‖p dµt(x) dt ≤ T
�

E

‖x‖p dµT (x) <∞,

and the claim follows.

Corollary 7.2. If the problem (7.1) has a weak solution on the interval
[0, T ], it has a weak solution on [0,∞).

Proof. By Theorem 7.1, the operator RT ∈ L (E∗, E) defined in condi-
tion (2) is a Gaussian covariance. To prove that (7.1) has a weak solution
on the interval [0, T ′] we need to show that the operator RT ′ ∈ L (E∗, E) is
a Gaussian covariance as well.

Given any T ′ ≥ 0, choose an integer N ≥ 1 such that T ′/N ≤ T and
notice that

RT ′ =
N−1∑

n=0

S(nT ′/N)RT ′/NS
∗(nT ′/N).

SinceRT is a Gaussian covariance, so isRT ′/N . Let µ be the centred Gaussian
measure with covariance RT ′/N . Then the image measures µn := S(nT ′/N)µ
have covariances S(nT ′/N)RT ′/NS∗(nT ′/N) and their convolution µ0 ∗ · · · ∗
µN−1 has covariance RT ′ .
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The conditions in Theorem 7.1 allow us to exhibit examples of stochastic
evolution equations driven by one-dimensional Brownian motions that have
no weak solution.

Example 7.3. Let E = Lp(Γ ), where Γ denotes the unit circle in the
complex plane with its normalized Lebesgue measure. We let A = d/dθ
denote the generator of the rotation (semi)group S on Lp(Γ ), i.e., S(t)f(θ) =
f(θ + t mod 2π).

We define an R-cylindrical Wiener process WR by

WR(t)h := W (t)h, h ∈ R,
where W is a standard real Brownian motion, and for a fixed element φ ∈
Lp(Γ ) we define Bφ ∈ L (R, Lp(Γ )) by

Bφh := hφ, h ∈ R.
Let (fn) denote an orthonormal basis for L2((0, 2π);R). The corresponding
stochastic initial problem has a weak solution on [0, 2π] (and hence on [0,∞))
if and only the operator I defined in condition (3) of Theorem 7.1 (with T =
2π) is γ-radonifying. By definition this happens if and only if

∑∞
n=1 γnIfn

converges in L2(Ω;Lp(Γ )), where (γn) is a sequence of independent standard
normal random variables. For all integers N ≥M ≥ 1, by Fubini’s theorem
and the Khinchin inequalities we have

E
∥∥∥

N∑

n=M

γnIfn

∥∥∥
p

Lp(Γ )
=

2π�

0

E
∣∣∣
N∑

n=M

γnIfn(θ)
∣∣∣
p
dθ

∼
2π�

0

[ N∑

n=M

|Ifn(θ)|2
]p/2

dθ =
∥∥∥
[ N∑

n=M

|Ifn|2
]1/2∥∥∥

p

Lp(Γ )
.

Now,
N∑

n=M

|Ifn(θ)|2 =
N∑

n=M

∣∣∣
2π�

0

fn(t)φ(θ + t mod 2π) dt
∣∣∣
2

=
N∑

n=M

∣∣[fn, φθ]L2(0,2π)

∣∣2

where φθ(t) := φ(θ + t mod 2π). From this we deduce that a weak solution
exists if and only if φ ∈ L2(Γ ). In particular, for p ∈ [1, 2) and φ ∈ Lp(Γ ) \
L2(Γ ) the resulting initial value problem has no weak solution.

It is not a coincidence that nonexistence is obtained in the range p ∈ [1, 2)
only. Indeed, for p ∈ [2,∞) the space Lp(Γ ) has type 2 and Theorem 4.7
implies that the operator I is γ-radonifying if B has this property. In the
above situation, B = Bφ is a rank one operator, and such operators are
trivially γ-radonifying.

In many applications the resolvent of A is more accessible than the semi-
group generated by A. We can use Theorem 7.1 to give an existence criterion
directly in terms of the resolvent of A:
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Corollary 7.4. Let M ≥ 1 and ω0 ∈ R be chosen in such a way that
‖S(t)‖ ≤Meω0t for all t ≥ 0. The following assertions are equivalent :

(1) The problem (7.1) has a weak solution {U(t, u0)}t∈[0,T ].
(2) There exist a > ω0 and an orthonormal basis (hj)∞j=1 of H such that

E
∥∥∥
∞∑

j=1

∑

k∈Z
γjk R

(
a+ 2πik/T,A

)
Bhj

∥∥∥
2
<∞.

Here, for λ ∈ %(A) (the resolvent set of A) we write R(λ,A) := (λ − A)−1

and (γjk)j≥1, k∈Z is a doubly indexed sequence of independent standard nor-
mal random variables.

Notice that in assertion (2) we consider a complexification of E. We leave
it to the reader to supply the complexification arguments to make the proof
below rigorous.

Proof. Without loss of generality we may assume that T = 2π. We have,
for all a > ω0, k ∈ Z, and x ∈ E,

2π�

0

e−(a+ik)tS(t)x dt = UR(a+ ik,A)x,

where U := I − e−2πaS(2π) is invertible since by elementary semigroup the-
ory the spectral radius of e−2πaS(2π) is less than one. Choose (e−ik(·))k∈Z
as an orthonormal basis of L2(0, 2π). Then (e−ik(·) ⊗ hj)j≥1, k∈Z is an or-
thonormal basis of L2((0, 2π);H).

Let Φ(t) := S(t)B. The function Φa(t) := e−atΦ(t) is H-weakly L2 and
we have

‖IΦa‖2γ = E
∥∥∥
∞∑

j=1

∑

k∈Z
γjk

2π�

0

e−iktΦa(t)hj dt
∥∥∥

2

= E
∥∥∥
∞∑

j=1

∑

k∈Z
γjk

2π�

0

e−(a+ik)tS(t)Bhj dt
∥∥∥

2

= E
∥∥∥U

∞∑

j=1

∑

k∈Z
γjk R(a+ ik,A)Bhj

∥∥∥
2
.

Taking into account the invertibility of U , it follows that (2) holds if and
only if Φa is stochastically integrable. By Corollary 4.4 this happens if and
only if Φ is stochastically integrable, and by Theorem 7.1 this happens if
and only if (1) holds.

Remark 7.5. Under certain geometric assumptions on E, which are sat-
isfied by the Lp-spaces and Wα,p-spaces for 1 < p < ∞, the conditions in
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Theorem 7.1 and its corollary can be further simplified and effectively ver-
ified for concrete classes of equations. This point will be taken up in a
forthcoming paper.
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