Thickness conditions and Littlewood-Paley sets

by
Vladimir Lebedev (Moscow)

Abstract

We consider sets in the real line that have Littlewood-Paley properties $\mathrm{LP}(p)$ or LP and study the following question: How thick can these sets be?

1. Introduction. Let E be a closed Lebesgue measure zero set in the real line \mathbb{R} and let $I_{k}, k=1,2, \ldots$, be the intervals complementary to E, i.e., the connected components of the complement $\mathbb{R} \backslash E$. Let S_{k} be the operator defined by

$$
\widehat{S_{k} f}=1_{I_{k}} \cdot \widehat{f}, \quad f \in L^{2} \cap L^{p}(\mathbb{R})
$$

where $1_{I_{k}}$ is the characteristic function of I_{k}, and ${ }^{\wedge}$ stands for the Fourier transform. Consider the corresponding quadratic Littlewood-Paley function:

$$
S(f)=\left(\sum_{k}\left|S_{k} f\right|^{2}\right)^{1 / 2}
$$

Following [12] we say that E has property $\operatorname{LP}(p)(1<p<\infty)$ if for all $f \in L^{p}(\mathbb{R})$ we have

$$
c_{1}\|f\|_{L^{p}(\mathbb{R})} \leq\|S(f)\|_{L^{p}(\mathbb{R})} \leq c_{2}\|f\|_{L^{p}(\mathbb{R})}
$$

where c_{1}, c_{2} are positive constants independent of f. When a set has property $\mathrm{LP}(p)$ for all $p, 1<p<\infty$, we say that it has property LP.

The role of such sets in harmonic analysis and particularly in multiplier theory is well-known. We recall that if G is a locally compact Abelian group and Γ is the group dual to G, then a function $m \in L^{\infty}(\Gamma)$ is called an L^{p}-Fourier multiplier, $1 \leq p \leq \infty$, if the operator Q given by

$$
\widehat{Q f}=m \cdot \widehat{f}, \quad f \in L^{p} \cap L^{2}(G)
$$

is bounded from $L^{p}(G)$ to itself (here^ is the Fourier transform on G). The space of all such multipliers is denoted by $M_{p}(\Gamma)$. Provided with the norm

$$
\|m\|_{M_{p}(\Gamma)}=\|Q\|_{L^{p}(G) \rightarrow L^{p}(G)}
$$

[^0]the space $M_{p}(\Gamma)$ is a Banach algebra (with the usual multiplication of functions). For basic facts on multipliers in the cases when $\Gamma=\mathbb{R}, \mathbb{Z}, \mathbb{T}$, where \mathbb{Z} is the group of integers and $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$ is the circle, see [1], [13, Chap. IV], [7].

A classical example of an infinite set that has property LP is the set $E=\left\{ \pm 2^{k}: k \in \mathbb{Z}\right\} \cup\{0\}$ (see, e.g., [13, Chap. IV, Sec. 5]). From the arithmetic and combinatorial point of view, sets that have property $\operatorname{LP}(p)$ or LP were studied extensively: see, e.g., [1]-[3], [12]. With the exception of [12] these works deal with countable sets, particularly, with subsets of \mathbb{Z}. At the same time there exist uncountable sets that have property LP. This was first established by Hare and Klemes [3]; see also [8] and [9, Sec. 4].

In this paper we study the following question: How thick can a set $E \subseteq \mathbb{R}$ that has property $\operatorname{LP}(p)(p \neq 2)$ or property LP be? In Theorems 1 and 2 we show that such a set cannot be metrically very thick, namely it is porous and the measure of the δ-neighbourhood of any portion of it tends to zero quite rapidly (as $\delta \rightarrow+0$). As a consequence we obtain (see Corollary) an estimate for the Hausdorff dimension of these sets. An immediate consequence of our estimate is that if a set has property LP, then its Hausdorff dimension is zero. In Theorem 3 we show that there exist sets which are thin in several senses simultaneously but have property $\operatorname{LP}(p)$ for no $p \neq 2$. In Theorem 4 we show that a set can be quite thick but at the same time have property LP. In part our arguments are close to those used by other authors to study subsets of \mathbb{Z}, but the mere fact of existence of uncountable (i.e. thick in the sense of cardinality) sets that have property LP brings some specific details to the subject.

It is well-known that a set has property $\operatorname{LP}(p)$ if and only if it has property $\operatorname{LP}(q)$, where $1 / p+1 / q=1$ (see, e.g., [12]). Thus, it suffices to consider the case when $1<p<2$.

We use the following notation. For a set $F \subseteq \mathbb{R}$ we denote its open δ-neighbourhood $(\delta>0)$ by $(F)_{\delta}$. If F is measurable, then $|F|$ means its Lebesgue measure. A portion of a set $F \subseteq \mathbb{R}$ is a set of the form $F \cap I$, where I is a bounded interval. By $\operatorname{dim} F$ we denote the Hausdorff dimension of F. For basic properties of the Hausdorff dimension we refer the reader to [11]. For a set $F \subseteq \mathbb{R}$ and a point $t \in \mathbb{R}$ we put $F+t=\{x+t: x \in F\}$. By $\operatorname{card} A$ we denote the number of elements of a finite set A. By an arithmetic progression of length N we mean a set of the form $\{a+k d: k=1, \ldots, N\}$, where $a, d \in \mathbb{R}$ and $d \neq 0$. We use $c, c(p), c(p, E), \ldots$ to denote various positive constants which may depend only on p and the set E.
2. Results. We recall that a set $F \subseteq \mathbb{R}$ is said to be porous if there exists a constant $c>0$ such that every bounded interval $I \subseteq \mathbb{R}$ contains a subinterval J with $|J| \geq c|I|$ and $J \cap F=\emptyset$.

Theorem 1. Let $E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E has property $\operatorname{LP}(p)$ for some $p, p \neq 2$. Then E is porous.

Earlier Hare and Klemes showed that if a set in \mathbb{Z} has property LP then it is porous [2, Theorem 3.7].

To prove Theorem 1 we need certain lemmas.
Lemma 1. Let $1<p<\infty$. Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a nonconstant affine mapping. Suppose that a function $m \in M_{p}(\mathbb{R})$ is continuous at each point of the set $\varphi\left(\mathbb{Z}^{n}\right)$. Then the restriction $m \circ \varphi_{\mid \mathbb{Z}^{n}}$ of the superposition $m \circ \varphi$ to \mathbb{Z}^{n} belongs to $M_{p}\left(\mathbb{Z}^{n}\right)$, and $\left\|m \circ \varphi_{\mid \mathbb{Z}^{n}}\right\|_{M_{p}\left(\mathbb{Z}^{n}\right)} \leq c\|m\|_{M_{p}(\mathbb{R})}$, where $c=c(p)>0$ is independent of φ, m and the dimension n.

Proof. The proof is a trivial combination of two well-known assertions on multipliers. The first one is the theorem on superpositions with affine mappings [4, Chap. I, Sec. 1.3], which implies that for every $m \in M_{p}(\mathbb{R})$ we have $m \circ \varphi \in M_{p}\left(\mathbb{R}^{n}\right)$ and $\|m \circ \varphi\|_{M_{p}\left(\mathbb{R}^{n}\right)}=\|m\|_{M_{p}(\mathbb{R})}$. The second one is the de Leeuw theorem [10] (see also [5]) on restrictions to \mathbb{Z}^{n}, according to which if a function $g \in M_{p}\left(\mathbb{R}^{n}\right)$ is continuous at all points of \mathbb{Z}^{n}, then $g_{\mid \mathbb{Z}^{n}} \in M_{p}\left(\mathbb{Z}^{n}\right)$ and $\left\|g_{\mid \mathbb{Z}^{n}}\right\|_{M_{p}\left(\mathbb{Z}^{n}\right)} \leq c(p)\|g\|_{M_{p}\left(\mathbb{R}^{n}\right)}$.

Lemma 2. Let $E \subseteq \mathbb{R}$ be a nowhere dense set and let $F \subseteq \mathbb{R}$ be a finite or countable set. Then for each $\delta>0$ there exists $\xi \in \mathbb{R}$ such that $|\xi|<\delta$ and $(F+\xi) \cap E=\emptyset$.

Proof. The set

$$
\bigcup_{t \in F}(E-t)
$$

being a union of at most countable family of nowhere dense sets, cannot contain the whole interval $(-\delta, \delta)$, hence there exists $\xi \in(-\delta, \delta)$ that does not belong to the union.

We say that a (finite or countable) set $F \subseteq \mathbb{R}$ splits a closed set $E \subseteq \mathbb{R}$ if $F \subseteq \mathbb{R} \backslash E$ and no two distinct points of F are contained in the same interval complementary to E.

Lemma 3. Let $1<p<2$. Let $E \subseteq \mathbb{R}$ have property $\operatorname{LP}(p)$. Suppose that F is a subset of an arithmetic progression of length N, and F splits E. Then $\operatorname{card} F \leq c(p, E) N^{2 / q}$, where $1 / p+1 / q=1$.

Proof. This lemma can be deduced from Theorems 1.2 and 1.3 of [12]. We give an independent simple proof based on a quite standard argument. Consider an arithmetic progression $\{a+k d: k=1, \ldots, N\}$. We can assume that $d>0$. Suppose that a set $F=\left\{a+k_{j} d: j=1, \ldots, \nu\right\}$, where $1 \leq$ $k_{j} \leq N$, splits E. For $j=1, \ldots, \nu$ let Δ_{j} be the interval of length δ centered at $a+k_{j} d$, where $\delta>0$ is so small that $\delta<d$ and $\Delta_{j} \cap E=\emptyset, j=1, \ldots, \nu$.

We put

$$
m_{\theta}=\sum_{j=1}^{\nu} r_{j}(\theta) \cdot 1_{\Delta_{j}}
$$

where $r_{j}(\theta)=\operatorname{sign} \sin 2^{j} \pi \theta, \theta \in[0,1], j=1,2, \ldots$, are the Rademacher functions.

It is well-known that if a set E has property $\operatorname{LP}(p)$, then it has the Marcinkiewicz property $\operatorname{Mar}(p)$, namely $\left({ }^{1}\right)$, for each function $m \in L^{\infty}(\mathbb{R})$ whose variations $\operatorname{Var}_{I_{k}} m$ on the intervals I_{k} complementary to E are uniformly bounded, we have $m \in M_{p}(\mathbb{R})$ and

$$
\begin{equation*}
\|m\|_{M_{p}(\mathbb{R})} \leq c(p, E)\left(\|m\|_{L^{\infty}(\mathbb{R})}+\sup _{k} \operatorname{Var}_{I_{k}} m\right) \tag{1}
\end{equation*}
$$

Thus we have $\left\|m_{\theta}\right\|_{M_{p}(\mathbb{R})} \leq c$, where $c>0$ is independent of N and θ. Consider the affine mapping $\varphi(x)=a+d x, x \in \mathbb{R}$. Using Lemma 1 for $n=1$, we see that

$$
\left\|m_{\theta} \circ \varphi_{\mid \mathbb{Z}}\right\|_{M_{p}(\mathbb{Z})} \leq c(p)\left\|m_{\theta}\right\|_{M_{p}(\mathbb{R})} \leq c_{1}(p)
$$

Thus

$$
\left\|\sum_{k} m_{\theta}(a+k d) c_{k} e^{i k x}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p)\left\|_{k} c_{k} e^{i k x}\right\|_{L^{p}(\mathbb{T})}
$$

for every trigonometric polynomial $\sum_{k} c_{k} e^{i k x}$. In particular,

$$
\left\|\sum_{k=1}^{N} m_{\theta}(a+k d) e^{i k x}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p)\left\|\sum_{k=1}^{N} e^{i k x}\right\|_{L^{p}(\mathbb{T})}
$$

Hence,

$$
\begin{equation*}
\left\|\sum_{j=1}^{\nu} r_{j}(\theta) e^{i k_{j} x}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p)\left\|\sum_{k=1}^{N} e^{i k x}\right\|_{L^{p}(\mathbb{T})} \tag{2}
\end{equation*}
$$

It is easy to verify that

$$
\left\|\sum_{k=1}^{N} e^{i k x}\right\|_{L^{p}(\mathbb{T})} \leq c(p) N^{1 / q}
$$

so (2) yields

$$
\int_{\mathbb{T}}\left|\sum_{j=1}^{\nu} r_{j}(\theta) e^{i k_{j} x}\right|^{p} d x \leq c_{2}(p) N^{p / q}
$$

[^1]By integrating this inequality with respect to $\theta \in[0,1]$ and using the Khintchine inequality

$$
\left(\int_{0}^{1}\left|\sum_{j} c_{j} r_{j}(\theta)\right|^{p} d \theta\right)^{1 / p} \geq c\left(\sum_{j}\left|c_{j}\right|^{2}\right)^{1 / 2}, \quad 1 \leq p<2
$$

(see, e.g., [14, Chap. V, Sec. 8]), we obtain $\nu^{p / 2} \leq c_{3}(p) N^{p / q}$.
Proof of Theorem 1. We can assume that $1<p<2$. For a bounded interval $I \subseteq \mathbb{R}$ let

$$
d(I)=\sup \{|J|: J \text { is an interval, } J \subseteq I, J \cap E=\emptyset\}
$$

Suppose that E is not porous. Then, for each positive integer N we can find a (bounded) interval I such that $0<d(I)<|I| / 3 N$. Let $d=2 d(I)$. Consider an arithmetic progression $t_{k}=a+k d, k=1, \ldots, N$, that lies in the interior of I. Using Lemma 2 , we can find ξ such that $t_{k}+\xi \notin E, k=1, \ldots, N$, and ξ is so small that $\left\{t_{k}+\xi: k=1, \ldots, N\right\} \subseteq I$. Note that since $d=2 d(I)$, no two distinct points of the progression $\left\{t_{k}+\xi: k=1, \ldots, N\right\}$ lie in the same interval complementary to E. Thus this progression splits E. By Lemma 3 this is impossible if N is sufficiently large.

Theorem 2. Let $1<p<2$. Let $E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E has property $\operatorname{LP}(p)$. Then each portion $E \cap I$ of E satisfies

$$
\left|(E \cap I)_{\delta}\right| \leq c|I|^{2 / q} \delta^{1-2 / q}
$$

where $1 / p+1 / q=1$ and the constant $c=c(p, E)>0$ is independent of I and δ.

Theorem 2 immediately implies an estimate for the Hausdorff dimension of sets that have property $\operatorname{LP}(p)$:

Corollary. If $1<p<2$ and a set $E \subseteq \mathbb{R}$ has property $\operatorname{LP}(p)$, then $\operatorname{dim} E \leq 2 / q$, where $1 / p+1 / q=1$. Thus, if E has property LP, then $\operatorname{dim} E=0$.

Proof of Theorem 2. Consider an arbitrary portion $E \cap I$ of E. Let J be the interval concentric with I and of twice its length. Denote the left endpoint of J by a. Fix a positive integer N and consider the progression $a+k d, k=1, \ldots, N$, where $d=|J| / N$. By Lemma 2 one can find ξ such that no element of $\{a+k d+\xi: k=1, \ldots, N\}$ is in E and $I \subseteq J+\xi=$ $(a+\xi, a+N d+\xi)$.

We define intervals J_{k} by

$$
J_{k}=(a+(k-1) d+\xi, a+k d+\xi), \quad k=1, \ldots, N
$$

Consider the intervals $J_{k_{j}}$ such that $J_{k_{j}} \cap E \neq \emptyset$. Obviously their right endpoints split E, so, by Lemma 3, their number is at most $c(p) N^{2 / q}$. Thus $E \cap I$ is covered by at most $c(p) N^{2 / q}$ intervals of length $d=2|I| / N$ each.

Let $\delta>0$. We can assume that $\delta<|I|$ (otherwise the assertion of the theorem is trivial). Choosing a positive integer N so that

$$
\frac{2|I|}{N} \leq \frac{\delta}{3}<\frac{4|I|}{N}
$$

we see that $E \cap I$ can be covered by at most $c(p)(12|I| / \delta)^{2 / q}$ intervals of length $\delta / 3$ each. It remains to replace each of these intervals with the corresponding concentric interval of nine times its length. This proves the theorem. The corollary follows.

We note now that a set can be quite thin and at the same time have property $\operatorname{LP}(p)$ for no $p \neq 2$. Consider the set

$$
\begin{equation*}
F=\left\{\sum_{k=1}^{\infty} \varepsilon_{k} l_{k}: \varepsilon_{k}=0 \text { or } 1\right\} \tag{3}
\end{equation*}
$$

where $l_{k}, k=1,2, \ldots$, are positive numbers with $l_{k+1}<l_{k} / 2$. It was shown by Sjögren and Sjölin [12] that such sets have property $\mathrm{LP}(p)$ for no p, $p \neq 2$. (In particular, the Cantor triadic set does not have property $\operatorname{LP}(p)$ for $p \neq 2$.) Taking a rapidly decreasing sequence $\left\{l_{k}\right\}$ one can obtain a set F of the form (3) that is porous and has the property that the measure of its δ-neighbourhood rapidly tends to zero. Still, in a sense, any set of the form (3) is thick: it is uncountable and all its points are its accumulation points. Theorem 3 below shows that a set can be thin in several senses simultaneously, and at the same time have property $\operatorname{LP}(p)$ for no $p, p \neq 2$.

Theorem 3. Let ψ be a positive function on an interval $\left(0, \delta_{0}\right), \delta_{0}>0$, with $\lim _{\delta \rightarrow+0} \psi(\delta) / \delta=+\infty$. There exists a strictly increasing bounded sequence $a_{1}<a_{2}<\cdots$ such that the set $E=\left\{a_{k}\right\}_{k=1}^{\infty} \cup\left\{\lim _{k \rightarrow \infty} a_{k}\right\}$ satisfies the following conditions: 1) E is porous; 2) $\left|(E)_{\delta}\right| \leq \psi(\delta)$ for all sufficiently small $\delta>0$; 3) E has property $\mathrm{LP}(p)$ for no $p, p \neq 2$.

Proof. Given (real) numbers a and l_{1}, \ldots, l_{n} consider the set of all points $a+\sum_{j=1}^{n} \varepsilon_{j} l_{j}$, where $\varepsilon_{j}=0$ or 1 . Assume that the cardinality of this set is 2^{n}. Following [6] we call such a set an n-chain $\left(^{2}\right)$.

We shall need the following refinement of the Sjögren and Sjölin result on the sets (3). This refinement also provides a partial extension of Proposition 3.4 of [2], that treats subsets of integers, to the general case of closed measure zero sets in the line.

Lemma 4. Let $E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E contains n-chains with arbitrarily large n. Then E has property $\operatorname{LP}(p)$ for no $p \neq 2$.

[^2]Proof. Suppose that, contrary to the assertion, E has property $\operatorname{LP}(p)$ for some $p, p \neq 2$. We can assume that $1<p<2$.

Let n be such that E contains an n-chain

$$
\begin{equation*}
a+\sum_{j=1}^{n} \varepsilon_{j} l_{j}, \quad\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n} \tag{4}
\end{equation*}
$$

Consider the set

$$
B=\left\{a+\sum_{j=1}^{n} k_{j} l_{j}:\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}\right\}
$$

By Lemma 2 there exists an arbitrarily small ξ such that

$$
\begin{equation*}
(B+\xi) \cap E=\emptyset \tag{5}
\end{equation*}
$$

Clearly, if ξ is small enough, then no two distinct points of the chain obtained by the same shift ξ of the chain (4) can lie in the same interval complementary to E. Thus, there exists ξ such that (5) holds and the n-chain

$$
a+\xi+\sum_{j=1}^{n} \varepsilon_{j} l_{j}, \quad\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}
$$

splits E.
For each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}$ let I_{ε} denote the interval complementary to E that contains the point $a+\xi+\sum_{j=1}^{n} \varepsilon_{j} l_{j}$. For an arbitrary choice of signs \pm consider the function

$$
m=\sum_{\varepsilon \in\{0,1\}^{n}} \pm 1_{I_{\varepsilon}} .
$$

We have (see (1))

$$
\begin{equation*}
\|m\|_{M_{p}(\mathbb{R})} \leq c \tag{6}
\end{equation*}
$$

where $c>0$ is independent of n and the choice of signs.
Consider the following affine mapping φ :

$$
\varphi(x)=a+\xi+\sum_{j=1}^{n} x_{j} l_{j}, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Note that condition (5) implies that the function m is continuous at each point of $\varphi\left(\mathbb{Z}^{n}\right)$. Using Lemma 1, we obtain (see (6)) $m \circ \varphi_{\mid \mathbb{Z}^{n}} \in M_{p}\left(\mathbb{Z}^{n}\right)$ and

$$
\left\|m \circ \varphi_{\mid \mathbb{Z}^{n}}\right\|_{M_{p}\left(\mathbb{Z}^{n}\right)} \leq c
$$

where the constant $c>0$ is independent of n and the choice of signs.
Therefore, for every trigonometric polynomial $\sum_{k \in \mathbb{Z}^{n}} c_{k} e^{i(k, t)}$ on the torus \mathbb{T}^{n},

$$
\left\|\sum_{k \in \mathbb{Z}^{n}} m \circ \varphi(k) c_{k} e^{i(k, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq c\left\|\sum_{k \in \mathbb{Z}^{n}} c_{k} e^{i(k, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)}
$$

(We use (k, t) to denote the usual inner product of vectors $k \in \mathbb{Z}^{n}$ and $t \in \mathbb{T}^{n}$.) In particular, taking $c_{k}=1$ for $k \in\{0,1\}^{n}$ and $c_{k}=0$ for $k \notin$ $\{0,1\}^{n}$, we obtain

$$
\left\|\sum_{\varepsilon \in\{0,1\}^{n}} m\left(a+\xi+\sum_{j=1}^{n} \varepsilon_{j} l_{j}\right) e^{i(\varepsilon, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq c\left\|_{\varepsilon \in\{0,1\}^{n}} e^{i(\varepsilon, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)}
$$

That is,

$$
\left\|\sum_{\varepsilon \in\{0,1\}^{n}} \pm e^{i(\varepsilon, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq c\left\|_{\varepsilon \in\{0,1\}^{n}} e^{i(\varepsilon, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)}
$$

Raising this inequality to the power p and averaging with respect to the signs \pm (i.e., using the Khintchine inequality), we obtain

$$
\begin{equation*}
\left\|\sum_{\varepsilon \in\{0,1\}^{n}} e^{i(\varepsilon, t)}\right\|_{L^{2}\left(\mathbb{T}^{n}\right)} \leq c\left\|_{\varepsilon \in\{0,1\}^{n}} e^{i(\varepsilon, t)}\right\|_{L^{p}\left(\mathbb{T}^{n}\right)} \tag{7}
\end{equation*}
$$

Note that

$$
\sum_{\varepsilon \in\{0,1\}^{n}} e^{i(\varepsilon, t)}=\prod_{j=1}^{n}\left(1+e^{i t_{j}}\right), \quad t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{T}^{n}
$$

so (7) yields

$$
\begin{equation*}
\left\|1+e^{i t}\right\|_{L^{2}(\mathbb{T})}^{n} \leq c\left\|1+e^{i t}\right\|_{L^{p}(\mathbb{T})}^{n} \tag{8}
\end{equation*}
$$

Since n can be arbitrarily large, relation (8) implies

$$
\left\|1+e^{i t}\right\|_{L^{2}(\mathbb{T})} \leq\left\|1+e^{i t}\right\|_{L^{p}(\mathbb{T})}
$$

which, as one can easily verify, is impossible for $1<p<2$.
Lemma 5. Let $l_{k}, k=1,2, \ldots$, be positive numbers satisfying $l_{k+1}<$ $l_{k} / 2$. Then the set F defined by (3) contains a strictly increasing sequence $S=\left\{a_{k}\right\}_{k=1}^{\infty}$ that contains an n-chain for every n.

Proof. For $n=1,2, \ldots$ let

$$
\alpha_{n}=\sum_{k=1}^{n^{2}} l_{k}, \quad \beta_{n}=\sum_{k=1}^{n^{2}+n} l_{k}
$$

Clearly $\alpha_{1}<\beta_{1}<\alpha_{2}<\beta_{2}<\cdots$, so the closed intervals $\left[\alpha_{n}, \beta_{n}\right], n=$ $1,2, \ldots$, are pairwise disjoint.

Define sets $F_{n} \subseteq F, n=1,2, \ldots$, as follows:

$$
F_{n}=\left\{l_{1}+l_{2}+\cdots+l_{n^{2}}+\sum_{k=n^{2}+1}^{n^{2}+n} \varepsilon_{k} l_{k}: \varepsilon_{k}=0 \text { or } 1\right\} .
$$

Note that $F_{n} \subseteq\left[\alpha_{n}, \beta_{n}\right]$ for all $n=1,2, \ldots$
It remains to put $S=\bigcup_{n=1}^{\infty} F_{n}$.

We shall now complete the proof of the theorem. Replacing, if needed, the function $\psi(\delta)$ with

$$
\widetilde{\psi}(\delta)=\delta \inf _{0<t \leq \delta} \frac{\psi(t)}{t}
$$

we can assume that $\psi(\delta) / \delta \nearrow+\infty$ as $\delta \searrow 0$.
Take a strictly increasing sequence of positive integers $n_{k}, k=1,2, \ldots$, so that

$$
\begin{equation*}
6 \cdot 2^{k} \leq \psi\left(3^{-n_{k}}\right) / 3^{-n_{k}}, \quad k=1,2, \ldots \tag{9}
\end{equation*}
$$

Consider the set

$$
F=\left\{\sum_{k=1}^{\infty} \varepsilon_{k} 3^{-n_{k}}: \varepsilon_{k}=0 \text { or } 1\right\}
$$

It is clear that F is porous (as a subset of the Cantor triadic set).
Assuming that $\delta>0$ is sufficiently small, we can find k such that

$$
\begin{equation*}
3^{-n_{k+1}} \leq \delta<3^{-n_{k}} \tag{10}
\end{equation*}
$$

Note that F can be covered by 2^{k+1} closed intervals of length $3^{-n_{k+1}}$ each. Consider the δ-neighbourhood of each of these intervals. We infer that (see 10))

$$
\left|(F)_{\delta}\right| \leq 2^{k+1} 3 \delta
$$

Hence, taking (9), (10) into account, we obtain

$$
\left|(F)_{\delta}\right| \leq \frac{\psi\left(3^{-n_{k}}\right)}{3^{-n_{k}}} \delta \leq \psi(\delta)
$$

Using Lemma 5 we can find a strictly increasing sequence $S=\left\{a_{k}\right\}_{k=1}^{\infty}$ contained in F such that for every n the sequence S contains an n-chain. Let $E=S \cup\{a\}$, where $a=\lim _{k \rightarrow \infty} a_{k}$. It remains to apply Lemma 4.

Our next goal is to construct a set that has property $\operatorname{LP}(p)$ or property LP and at the same time is thick. Theorem 2 implies that if $1<p<2$ and a bounded set E has property $\operatorname{LP}(p)$, then $\left|(E)_{\delta}\right|=O\left(\delta^{1-2 / q}\right)$ as $\delta \rightarrow+0$. Hence, if a bounded set E has property LP, then $\left|(E)_{\delta}\right|=O\left(\delta^{1-\varepsilon}\right)$ for all $\varepsilon>0$. The author does not know if these estimates are sharp. A partial solution to this problem is given by Theorem 4 below. It is a simple consequence of the Hare and Klemes theorem [3, Theorem A], which provides a sufficient condition for a set to have property $\mathrm{LP}(p)$. Stated for sets in \mathbb{Z}, this theorem, as noted at the end of [3], easily transfers to sets in \mathbb{R} and allows one to construct perfect sets that have this property.

We shall use the version of the Hare and Klemes theorem stated in 9, Sec. 4]. According to this version, for each $p, 1<p<\infty$, there is a constant $\tau_{p}\left(0<\tau_{p}<1\right)$ with the following property. Let E be a closed set of measure zero in the interval $[0,1]$. Suppose that, under an appropriate numbering, the intervals $I_{k}, k=1,2, \ldots$, complementary to E in $[0,1]$ (i.e., the connected
components of $[0,1] \backslash E)$ satisfy

$$
\begin{equation*}
\delta_{k+1} / \delta_{k} \leq \tau_{p}, \quad k=1,2, \ldots, \tag{11}
\end{equation*}
$$

where $\delta_{k}=\left|I_{k}\right|$. Then E has property $\operatorname{LP}(p)$. This in turn implies that if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \delta_{k+1} / \delta_{k}=0 \tag{12}
\end{equation*}
$$

then E has property LP.
Theorem 4.
(a) Let $1<p<\infty$. There exists a perfect set $E \subseteq[0,1]$ which has property $\operatorname{LP}(p)$ and at the same time satisfies $\left|(E)_{\delta}\right| \geq c \delta \log (1 / \delta)$ for all sufficiently small $\delta>0$.
(b) Let $\gamma(\delta)$ be a positive nondecreasing function on $(0, \infty)$ with $\lim _{\delta \rightarrow+0} \gamma(\delta)=0$. There exists a perfect set $E \subseteq[0,1]$ which has property LP and at the same time satisfies $\left|(E)_{\delta}\right| \geq c \gamma(\delta) \delta \log (1 / \delta)$.
Proof. Let $\delta_{k}, k=1,2, \ldots$, be a sequence of positive numbers with

$$
\begin{equation*}
\sum_{k} \delta_{k}=1 \tag{13}
\end{equation*}
$$

Let $E \subseteq[0,1]$ be a closed set. Assume that, under an appropriate numbering, the intervals $I_{k}, k=1,2, \ldots$, complementary to E in $[0,1]$ satisfy $\left|I_{k}\right|=\delta_{k}$, $k=1,2, \ldots$ In this case we say that E is generated by the sequence $\left\{\delta_{k}\right\}$. (Certainly $|E|=0$.) Note that for each sequence $\left\{\delta_{k}\right\}$ of positive numbers with (13) there exists a perfect set $E \subseteq[0,1]$ generated by $\left\{\delta_{k}\right\}$.

It is easy to see that if E is generated by a positive sequence $\left\{\delta_{k}\right\}$ satisfying (13), then for all $\delta>0$ we have

$$
\begin{equation*}
\left|(E)_{\delta}\right| \geq 2 \delta \operatorname{card}\left\{k: \delta_{k}>2 \delta\right\} \tag{14}
\end{equation*}
$$

Indeed, if $I_{k}=\left(a_{k}, b_{k}\right)$ is an arbitrary interval complementary to E in $[0,1]$ such that $\left|I_{k}\right|>2 \delta$, then the δ-neighbourhood of E contains the intervals $\left(a_{k}, a_{k}+\delta\right)$ and $\left(b_{k}-\delta, b_{k}\right)$.

We now prove part (a) of the theorem. Fix $p, 1<p<\infty$. Let

$$
\delta_{k}=a e^{-k b}, \quad k=1,2, \ldots
$$

where the positive constants a and b are chosen so that conditions (11), (13) hold. Consider a perfect set $E \subseteq[0,1]$ generated by $\left\{\delta_{k}\right\}$. Using (14), we see that

$$
\left|(E)_{\delta}\right| \geq 2 \delta\left(\frac{1}{b} \log \frac{a}{2 \delta}-1\right)
$$

which proves (a).
Now we prove (b). Without loss of generality we can assume that $\gamma(1 / e)$ $=1 / 4$. Let

$$
b(x)=\frac{1}{\gamma\left(e^{-x}\right)}, \quad x>0
$$

The function b is nondecreasing, $b(x) \rightarrow \infty$ as $x \rightarrow \infty$, and $b(1)=4$.

Define

$$
\delta_{k}=a e^{-k b(k)}, \quad k=1,2, \ldots
$$

where $a>0$ is chosen so that (13) holds. Note that

$$
\delta_{k+1} / \delta_{k}=e^{-((k+1) b(k+1)-k b(k))} \leq e^{-b(k)} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

and thus (12) holds.
Consider a perfect set $E \subseteq[0,1]$ generated by the sequence $\left\{\delta_{k}\right\}$.
Let $\delta>0$ be sufficiently small. Choose a positive integer $k=k(\delta)$ so that

$$
\begin{equation*}
\delta_{k+1} \leq 2 \delta<\delta_{k} \tag{15}
\end{equation*}
$$

We have

$$
\operatorname{card}\left\{k: \delta_{k}>2 \delta\right\} \geq k(\delta)
$$

So (see $\boxed{14}$)

$$
\begin{equation*}
\left|(E)_{\delta}\right| \geq 2 \delta k(\delta) \tag{16}
\end{equation*}
$$

Note that 15 implies

$$
k b(k)<\log \frac{a}{2 \delta} \leq(k+1) b(k+1)
$$

Hence, for all sufficiently small $\delta>0$ we have

$$
\begin{equation*}
\frac{1}{2} k b(k)<\log \frac{1}{\delta} \leq 2(k+1) b(k+1) \tag{17}
\end{equation*}
$$

The left-hand inequality in (17) yields (recall that $b(1)=4$)

$$
2 k=\frac{1}{2} k b(1) \leq \frac{1}{2} k b(k)<\log \frac{1}{\delta},
$$

whence

$$
b(2 k) \leq b\left(\log \frac{1}{\delta}\right)=\frac{1}{\gamma(\delta)}
$$

Combining this inequality and the right-hand inequality in (17), we see that

$$
\log \frac{1}{\delta} \leq 2(k+1) b(k+1) \leq 4 k b(2 k) \leq 4 k \frac{1}{\gamma(\delta)}
$$

So,

$$
\frac{1}{4} \gamma(\delta) \log \frac{1}{\delta} \leq k=k(\delta)
$$

Thus (see (16) ,

$$
\left|(E)_{\delta}\right| \geq \frac{1}{2} \gamma(\delta) \delta \log \frac{1}{\delta}
$$

Remark. As far as the author knows, the problem of the existence of a set that has property $\operatorname{LP}(p)$ for some $p, p \neq 2$, but does not have property LP is open.

Acknowledgements. This study was carried out within The National Research University Higher School of Economics' Academic Fund Program in 2013-2014, research grant No. 12-01-0079.

References

[1] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin, 1977.
[2] K. E. Hare and I. Klemes, Properties of Littlewood-Paley sets, Math. Proc. Cambridge Philos. Soc. 105 (1989), 485-494.
[3] K. E. Hare and I. Klemes, On permutations of lacunary intervals, Trans. Amer. Math. Soc. 347 (1995), 4105-4127.
[4] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-140.
[5] M. Jodeit, Restrictions and extensions of Fourier multipliers, Studia Math. 34 (1970), 215-226.
[6] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, Berlin, 1970.
[7] R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971.
[8] V. Lebedev and A. Olevskiĭ, Bounded groups of translation invariant operators, C. R. Acad. Sci. Paris Sér. I 322 (1996), 143-147.
[9] V. V. Lebedev and A. M. Olevskiĭ, L^{p}-Fourier multipliers with bounded powers, Izv. Math. 70 (2006), 549-585.
[10] K. de Leeuw, On L^{p} multipliers, Ann. of Math. 81 (1965), 364-379.
[11] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995.
[12] P. Sjögren and P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier (Grenoble) 31 (1981), 157-175.
[13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
[14] A. Zygmund, Trigonometric Series, Vols. I, II, Cambridge Univ. Press, New York, 1959.

Vladimir Lebedev
National Research University Higher School of Economics
3 Bolshoi Trekhsvyatitelskii per.
Moscow 109028, Russia
E-mail: lebedevhome@gmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 42A45; Secondary 43A46. Key words and phrases: Littlewood-Paley set.

[^1]: $\left.{ }^{1}\right)$ Actually $\operatorname{LP}(p)$ and $\operatorname{Mar}(p)$ are equivalent: see, e.g., [12, Theorem 1.1].

[^2]: $\left(^{2}\right)$ An n-chain is a particular case of what is called a parallelepiped of dimension n, that is, of a set of cardinality 2^{n}, obtained as the Minkowski sum of n two-element sets.

