STUDIA MATHEMATICA 220 (3) (2014)

Thickness conditions and Littlewood–Paley sets

by

VLADIMIR LEBEDEV (Moscow)

Abstract. We consider sets in the real line that have Littlewood–Paley properties LP(p) or LP and study the following question: How thick can these sets be?

1. Introduction. Let E be a closed Lebesgue measure zero set in the real line \mathbb{R} and let I_k , k = 1, 2, ..., be the intervals complementary to E, i.e., the connected components of the complement $\mathbb{R} \setminus E$. Let S_k be the operator defined by

$$\widehat{S_k f} = 1_{I_k} \cdot \widehat{f}, \quad f \in L^2 \cap L^p(\mathbb{R}),$$

where 1_{I_k} is the characteristic function of I_k , and $\hat{}$ stands for the Fourier transform. Consider the corresponding quadratic Littlewood–Paley function:

$$S(f) = \left(\sum_{k} |S_k f|^2\right)^{1/2}$$

Following [12] we say that E has property LP(p) $(1 if for all <math>f \in L^p(\mathbb{R})$ we have

$$c_1 \|f\|_{L^p(\mathbb{R})} \le \|S(f)\|_{L^p(\mathbb{R})} \le c_2 \|f\|_{L^p(\mathbb{R})},$$

where c_1, c_2 are positive constants independent of f. When a set has property LP(p) for all p, 1 , we say that it has property LP.

The role of such sets in harmonic analysis and particularly in multiplier theory is well-known. We recall that if G is a locally compact Abelian group and Γ is the group dual to G, then a function $m \in L^{\infty}(\Gamma)$ is called an L^{p} -Fourier multiplier, $1 \leq p \leq \infty$, if the operator Q given by

$$\widehat{Qf} = m \cdot \widehat{f}, \quad f \in L^p \cap L^2(G),$$

is bounded from $L^p(G)$ to itself (here $\widehat{}$ is the Fourier transform on G). The space of all such multipliers is denoted by $M_p(\Gamma)$. Provided with the norm

$$||m||_{M_p(\Gamma)} = ||Q||_{L^p(G) \to L^p(G)},$$

DOI: 10.4064/sm220-3-4

²⁰¹⁰ Mathematics Subject Classification: Primary 42A45; Secondary 43A46. Key words and phrases: Littlewood–Paley set.

the space $M_p(\Gamma)$ is a Banach algebra (with the usual multiplication of functions). For basic facts on multipliers in the cases when $\Gamma = \mathbb{R}$, \mathbb{Z} , \mathbb{T} , where \mathbb{Z} is the group of integers and $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$ is the circle, see [1], [13, Chap. IV], [7].

A classical example of an infinite set that has property LP is the set $E = \{\pm 2^k : k \in \mathbb{Z}\} \cup \{0\}$ (see, e.g., [13, Chap. IV, Sec. 5]). From the arithmetic and combinatorial point of view, sets that have property LP(p) or LP were studied extensively: see, e.g., [1]–[3], [12]. With the exception of [12] these works deal with countable sets, particularly, with subsets of \mathbb{Z} . At the same time there exist uncountable sets that have property LP. This was first established by Hare and Klemes [3]; see also [8] and [9, Sec. 4].

In this paper we study the following question: How thick can a set $E \subseteq \mathbb{R}$ that has property LP(p) $(p \neq 2)$ or property LP be? In Theorems 1 and 2 we show that such a set cannot be metrically very thick, namely it is porous and the measure of the δ -neighbourhood of any portion of it tends to zero quite rapidly (as $\delta \to +0$). As a consequence we obtain (see Corollary) an estimate for the Hausdorff dimension of these sets. An immediate consequence of our estimate is that if a set has property LP, then its Hausdorff dimension is zero. In Theorem 3 we show that there exist sets which are thin in several senses simultaneously but have property LP(p) for no $p \neq 2$. In Theorem 4 we show that a set can be quite thick but at the same time have property LP. In part our arguments are close to those used by other authors to study subsets of \mathbb{Z} , but the mere fact of existence of uncountable (i.e. thick in the sense of cardinality) sets that have property LP brings some specific details to the subject.

It is well-known that a set has property LP(p) if and only if it has property LP(q), where 1/p + 1/q = 1 (see, e.g., [12]). Thus, it suffices to consider the case when 1 .

We use the following notation. For a set $F \subseteq \mathbb{R}$ we denote its open δ -neighbourhood $(\delta > 0)$ by $(F)_{\delta}$. If F is measurable, then |F| means its Lebesgue measure. A *portion* of a set $F \subseteq \mathbb{R}$ is a set of the form $F \cap I$, where I is a bounded interval. By dim F we denote the Hausdorff dimension of F. For basic properties of the Hausdorff dimension we refer the reader to [11]. For a set $F \subseteq \mathbb{R}$ and a point $t \in \mathbb{R}$ we put $F + t = \{x + t : x \in F\}$. By card A we denote the number of elements of a finite set A. By an *arithmetic progression of length* N we mean a set of the form $\{a + kd : k = 1, \ldots, N\}$, where $a, d \in \mathbb{R}$ and $d \neq 0$. We use $c, c(p), c(p, E), \ldots$ to denote various positive constants which may depend only on p and the set E.

2. Results. We recall that a set $F \subseteq \mathbb{R}$ is said to be *porous* if there exists a constant c > 0 such that every bounded interval $I \subseteq \mathbb{R}$ contains a subinterval J with $|J| \ge c|I|$ and $J \cap F = \emptyset$.

THEOREM 1. Let $E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E has property LP(p) for some $p, p \neq 2$. Then E is porous.

Earlier Hare and Klemes showed that if a set in \mathbb{Z} has property LP then it is porous [2, Theorem 3.7].

To prove Theorem 1 we need certain lemmas.

LEMMA 1. Let $1 . Let <math>\varphi : \mathbb{R}^n \to \mathbb{R}$ be a nonconstant affine mapping. Suppose that a function $m \in M_p(\mathbb{R})$ is continuous at each point of the set $\varphi(\mathbb{Z}^n)$. Then the restriction $m \circ \varphi_{|\mathbb{Z}^n}$ of the superposition $m \circ \varphi$ to \mathbb{Z}^n belongs to $M_p(\mathbb{Z}^n)$, and $||m \circ \varphi_{|\mathbb{Z}^n}||_{M_p(\mathbb{Z}^n)} \leq c||m||_{M_p(\mathbb{R})}$, where c = c(p) > 0is independent of φ , m and the dimension n.

Proof. The proof is a trivial combination of two well-known assertions on multipliers. The first one is the theorem on superpositions with affine mappings [4, Chap. I, Sec. 1.3], which implies that for every $m \in M_p(\mathbb{R})$ we have $m \circ \varphi \in M_p(\mathbb{R}^n)$ and $||m \circ \varphi||_{M_p(\mathbb{R}^n)} = ||m||_{M_p(\mathbb{R})}$. The second one is the de Leeuw theorem [10] (see also [5]) on restrictions to \mathbb{Z}^n , according to which if a function $g \in M_p(\mathbb{R}^n)$ is continuous at all points of \mathbb{Z}^n , then $g|_{\mathbb{Z}^n} \in M_p(\mathbb{Z}^n)$ and $||g|_{\mathbb{Z}^n}||_{M_p(\mathbb{Z}^n)} \leq c(p)||g||_{M_p(\mathbb{R}^n)}$.

LEMMA 2. Let $E \subseteq \mathbb{R}$ be a nowhere dense set and let $F \subseteq \mathbb{R}$ be a finite or countable set. Then for each $\delta > 0$ there exists $\xi \in \mathbb{R}$ such that $|\xi| < \delta$ and $(F + \xi) \cap E = \emptyset$.

Proof. The set

$$\bigcup_{t \in F} (E - t),$$

being a union of at most countable family of nowhere dense sets, cannot contain the whole interval $(-\delta, \delta)$, hence there exists $\xi \in (-\delta, \delta)$ that does not belong to the union.

We say that a (finite or countable) set $F \subseteq \mathbb{R}$ splits a closed set $E \subseteq \mathbb{R}$ if $F \subseteq \mathbb{R} \setminus E$ and no two distinct points of F are contained in the same interval complementary to E.

LEMMA 3. Let $1 . Let <math>E \subseteq \mathbb{R}$ have property LP(p). Suppose that *F* is a subset of an arithmetic progression of length *N*, and *F* splits *E*. Then card $F \leq c(p, E)N^{2/q}$, where 1/p + 1/q = 1.

Proof. This lemma can be deduced from Theorems 1.2 and 1.3 of [12]. We give an independent simple proof based on a quite standard argument. Consider an arithmetic progression $\{a + kd : k = 1, ..., N\}$. We can assume that d > 0. Suppose that a set $F = \{a + k_jd : j = 1, ..., \nu\}$, where $1 \leq k_j \leq N$, splits E. For $j = 1, ..., \nu$ let Δ_j be the interval of length δ centered at $a + k_jd$, where $\delta > 0$ is so small that $\delta < d$ and $\Delta_j \cap E = \emptyset$, $j = 1, ..., \nu$.

We put

$$m_{\theta} = \sum_{j=1}^{\nu} r_j(\theta) \cdot 1_{\Delta_j},$$

where $r_j(\theta) = \operatorname{sign} \sin 2^j \pi \theta$, $\theta \in [0, 1]$, $j = 1, 2, \ldots$, are the Rademacher functions.

It is well-known that if a set E has property LP(p), then it has the Marcinkiewicz property Mar(p), namely $(^1)$, for each function $m \in L^{\infty}(\mathbb{R})$ whose variations $Var_{I_k} m$ on the intervals I_k complementary to E are uniformly bounded, we have $m \in M_p(\mathbb{R})$ and

(1)
$$\|m\|_{M_p(\mathbb{R})} \le c(p, E) \Big(\|m\|_{L^{\infty}(\mathbb{R})} + \sup_k \operatorname{Var}_{I_k} m \Big).$$

Thus we have $||m_{\theta}||_{M_{p}(\mathbb{R})} \leq c$, where c > 0 is independent of N and θ . Consider the affine mapping $\varphi(x) = a + dx$, $x \in \mathbb{R}$. Using Lemma 1 for n = 1, we see that

$$\|m_{\theta} \circ \varphi_{|\mathbb{Z}}\|_{M_p(\mathbb{Z})} \le c(p) \|m_{\theta}\|_{M_p(\mathbb{R})} \le c_1(p).$$

Thus

$$\left\|\sum_{k} m_{\theta}(a+kd)c_{k}e^{ikx}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p)\left\|\sum_{k} c_{k}e^{ikx}\right\|_{L^{p}(\mathbb{T})}$$

for every trigonometric polynomial $\sum_{k} c_k e^{ikx}$. In particular,

$$\left\|\sum_{k=1}^{N} m_{\theta}(a+kd)e^{ikx}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p)\left\|\sum_{k=1}^{N} e^{ikx}\right\|_{L^{p}(\mathbb{T})}.$$

Hence,

(2)
$$\left\|\sum_{j=1}^{\nu} r_{j}(\theta) e^{ik_{j}x}\right\|_{L^{p}(\mathbb{T})} \leq c_{1}(p) \left\|\sum_{k=1}^{N} e^{ikx}\right\|_{L^{p}(\mathbb{T})}$$

It is easy to verify that

$$\left\|\sum_{k=1}^{N} e^{ikx}\right\|_{L^{p}(\mathbb{T})} \leq c(p) N^{1/q},$$

so (2) yields

$$\int_{\mathbb{T}} \left| \sum_{j=1}^{\nu} r_j(\theta) e^{ik_j x} \right|^p dx \le c_2(p) N^{p/q}.$$

 $(^{1})$ Actually LP(p) and Mar(p) are equivalent: see, e.g., [12, Theorem 1.1].

268

By integrating this inequality with respect to $\theta \in [0, 1]$ and using the Khintchine inequality

$$\left(\int_{0}^{1} \left|\sum_{j} c_{j} r_{j}(\theta)\right|^{p} d\theta\right)^{1/p} \ge c \left(\sum_{j} |c_{j}|^{2}\right)^{1/2}, \quad 1 \le p < 2,$$

(see, e.g., [14, Chap. V, Sec. 8]), we obtain $\nu^{p/2} \leq c_3(p) N^{p/q}$.

Proof of Theorem 1. We can assume that $1 . For a bounded interval <math>I \subseteq \mathbb{R}$ let

 $d(I) = \sup\{|J|: J \text{ is an interval}, J \subseteq I, J \cap E = \emptyset\}.$

Suppose that E is not porous. Then, for each positive integer N we can find a (bounded) interval I such that 0 < d(I) < |I|/3N. Let d = 2d(I). Consider an arithmetic progression $t_k = a + kd$, k = 1, ..., N, that lies in the interior of I. Using Lemma 2, we can find ξ such that $t_k + \xi \notin E$, k = 1, ..., N, and ξ is so small that $\{t_k + \xi : k = 1, ..., N\} \subseteq I$. Note that since d = 2d(I), no two distinct points of the progression $\{t_k + \xi : k = 1, ..., N\}$ lie in the same interval complementary to E. Thus this progression splits E. By Lemma 3 this is impossible if N is sufficiently large. \blacksquare

THEOREM 2. Let $1 . Let <math>E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E has property LP(p). Then each portion $E \cap I$ of E satisfies

$$|(E \cap I)_{\delta}| \le c|I|^{2/q} \delta^{1-2/q},$$

where 1/p + 1/q = 1 and the constant c = c(p, E) > 0 is independent of I and δ .

Theorem 2 immediately implies an estimate for the Hausdorff dimension of sets that have property LP(p):

COROLLARY. If $1 and a set <math>E \subseteq \mathbb{R}$ has property LP(p), then $\dim E \leq 2/q$, where 1/p + 1/q = 1. Thus, if E has property LP, then $\dim E = 0$.

Proof of Theorem 2. Consider an arbitrary portion $E \cap I$ of E. Let J be the interval concentric with I and of twice its length. Denote the left endpoint of J by a. Fix a positive integer N and consider the progression a + kd, k = 1, ..., N, where d = |J|/N. By Lemma 2 one can find ξ such that no element of $\{a + kd + \xi : k = 1, ..., N\}$ is in E and $I \subseteq J + \xi = (a + \xi, a + Nd + \xi)$.

We define intervals J_k by

 $J_k = (a + (k - 1)d + \xi, \ a + kd + \xi), \quad k = 1, \dots, N.$

Consider the intervals J_{k_j} such that $J_{k_j} \cap E \neq \emptyset$. Obviously their right endpoints split E, so, by Lemma 3, their number is at most $c(p)N^{2/q}$. Thus $E \cap I$ is covered by at most $c(p)N^{2/q}$ intervals of length d = 2|I|/N each. V. Lebedev

Let $\delta > 0$. We can assume that $\delta < |I|$ (otherwise the assertion of the theorem is trivial). Choosing a positive integer N so that

$$\frac{2|I|}{N} \le \frac{\delta}{3} < \frac{4|I|}{N},$$

we see that $E \cap I$ can be covered by at most $c(p)(12|I|/\delta)^{2/q}$ intervals of length $\delta/3$ each. It remains to replace each of these intervals with the corresponding concentric interval of nine times its length. This proves the theorem. The corollary follows.

We note now that a set can be quite thin and at the same time have property LP(p) for no $p \neq 2$. Consider the set

(3)
$$F = \Big\{ \sum_{k=1}^{\infty} \varepsilon_k l_k : \varepsilon_k = 0 \text{ or } 1 \Big\},$$

where l_k , k = 1, 2, ..., are positive numbers with $l_{k+1} < l_k/2$. It was shown by Sjögren and Sjölin [12] that such sets have property LP(p) for no p, $p \neq 2$. (In particular, the Cantor triadic set does not have property LP(p)for $p \neq 2$.) Taking a rapidly decreasing sequence $\{l_k\}$ one can obtain a set F of the form (3) that is porous and has the property that the measure of its δ -neighbourhood rapidly tends to zero. Still, in a sense, any set of the form (3) is thick: it is uncountable and all its points are its accumulation points. Theorem 3 below shows that a set can be thin in several senses simultaneously, and at the same time have property LP(p) for no $p, p \neq 2$.

THEOREM 3. Let ψ be a positive function on an interval $(0, \delta_0)$, $\delta_0 > 0$, with $\lim_{\delta \to +0} \psi(\delta)/\delta = +\infty$. There exists a strictly increasing bounded sequence $a_1 < a_2 < \cdots$ such that the set $E = \{a_k\}_{k=1}^{\infty} \cup \{\lim_{k \to \infty} a_k\}$ satisfies the following conditions: 1) E is porous; 2) $|(E)_{\delta}| \leq \psi(\delta)$ for all sufficiently small $\delta > 0$; 3) E has property LP(p) for no $p, p \neq 2$.

Proof. Given (real) numbers a and l_1, \ldots, l_n consider the set of all points $a + \sum_{j=1}^n \varepsilon_j l_j$, where $\varepsilon_j = 0$ or 1. Assume that the cardinality of this set is 2^n . Following [6] we call such a set an *n*-chain (²).

We shall need the following refinement of the Sjögren and Sjölin result on the sets (3). This refinement also provides a partial extension of Proposition 3.4 of [2], that treats subsets of integers, to the general case of closed measure zero sets in the line.

LEMMA 4. Let $E \subseteq \mathbb{R}$ be a closed set of measure zero. Suppose that E contains n-chains with arbitrarily large n. Then E has property LP(p) for no $p \neq 2$.

270

 $[\]binom{2}{n}$ An *n*-chain is a particular case of what is called a parallelepiped of dimension *n*, that is, of a set of cardinality 2^n , obtained as the Minkowski sum of *n* two-element sets.

Proof. Suppose that, contrary to the assertion, E has property LP(p) for some $p, p \neq 2$. We can assume that 1 .

Let n be such that E contains an n-chain

(4)
$$a + \sum_{j=1}^{n} \varepsilon_j l_j, \quad (\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n.$$

Consider the set

$$B = \left\{ a + \sum_{j=1}^{n} k_j l_j : (k_1, \dots, k_n) \in \mathbb{Z}^n \right\}.$$

By Lemma 2 there exists an arbitrarily small ξ such that

$$(5) (B+\xi) \cap E = \emptyset$$

Clearly, if ξ is small enough, then no two distinct points of the chain obtained by the same shift ξ of the chain (4) can lie in the same interval complementary to E. Thus, there exists ξ such that (5) holds and the *n*-chain

$$a + \xi + \sum_{j=1}^{n} \varepsilon_j l_j, \quad (\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n,$$

splits E.

For each $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \in \{0, 1\}^n$ let I_{ε} denote the interval complementary to E that contains the point $a + \xi + \sum_{j=1}^n \varepsilon_j l_j$. For an arbitrary choice of signs \pm consider the function

$$m = \sum_{\varepsilon \in \{0,1\}^n} \pm 1_{I_\varepsilon}.$$

We have (see (1))

(6) $||m||_{M_p(\mathbb{R})} \le c,$

where c > 0 is independent of n and the choice of signs.

Consider the following affine mapping φ :

$$\varphi(x) = a + \xi + \sum_{j=1}^{n} x_j l_j, \quad x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Note that condition (5) implies that the function m is continuous at each point of $\varphi(\mathbb{Z}^n)$. Using Lemma 1, we obtain (see (6)) $m \circ \varphi_{|\mathbb{Z}^n} \in M_p(\mathbb{Z}^n)$ and

$$\|m \circ \varphi_{|\mathbb{Z}^n}\|_{M_p(\mathbb{Z}^n)} \le c_{!}$$

where the constant c > 0 is independent of n and the choice of signs.

Therefore, for every trigonometric polynomial $\sum_{k \in \mathbb{Z}^n} c_k e^{i(k,t)}$ on the torus \mathbb{T}^n ,

$$\Big\|\sum_{k\in\mathbb{Z}^n} m\circ\varphi(k)c_k e^{i(k,t)}\Big\|_{L^p(\mathbb{T}^n)} \le c\Big\|\sum_{k\in\mathbb{Z}^n} c_k e^{i(k,t)}\Big\|_{L^p(\mathbb{T}^n)}.$$

V. Lebedev

(We use (k,t) to denote the usual inner product of vectors $k \in \mathbb{Z}^n$ and $t \in \mathbb{T}^n$.) In particular, taking $c_k = 1$ for $k \in \{0,1\}^n$ and $c_k = 0$ for $k \notin \{0,1\}^n$, we obtain

$$\Big\|\sum_{\varepsilon\in\{0,1\}^n} m\Big(a+\xi+\sum_{j=1}^n \varepsilon_j l_j\Big)e^{i(\varepsilon,t)}\Big\|_{L^p(\mathbb{T}^n)} \le c\Big\|\sum_{\varepsilon\in\{0,1\}^n} e^{i(\varepsilon,t)}\Big\|_{L^p(\mathbb{T}^n)}.$$

That is,

$$\Big\|\sum_{\varepsilon\in\{0,1\}^n} \pm e^{i(\varepsilon,t)}\Big\|_{L^p(\mathbb{T}^n)} \le c\Big\|\sum_{\varepsilon\in\{0,1\}^n} e^{i(\varepsilon,t)}\Big\|_{L^p(\mathbb{T}^n)}.$$

Raising this inequality to the power p and averaging with respect to the signs \pm (i.e., using the Khintchine inequality), we obtain

(7)
$$\left\|\sum_{\varepsilon\in\{0,1\}^n} e^{i(\varepsilon,t)}\right\|_{L^2(\mathbb{T}^n)} \le c \left\|\sum_{\varepsilon\in\{0,1\}^n} e^{i(\varepsilon,t)}\right\|_{L^p(\mathbb{T}^n)}.$$

Note that

$$\sum_{\varepsilon \in \{0,1\}^n} e^{i(\varepsilon,t)} = \prod_{j=1}^n (1+e^{it_j}), \quad t = (t_1, \dots, t_n) \in \mathbb{T}^n,$$

so (7) yields

(8)
$$\|1 + e^{it}\|_{L^2(\mathbb{T})}^n \le c \|1 + e^{it}\|_{L^p(\mathbb{T})}^n.$$

Since n can be arbitrarily large, relation (8) implies

$$||1 + e^{it}||_{L^2(\mathbb{T})} \le ||1 + e^{it}||_{L^p(\mathbb{T})},$$

which, as one can easily verify, is impossible for 1 .

LEMMA 5. Let l_k , k = 1, 2, ..., be positive numbers satisfying $l_{k+1} < l_k/2$. Then the set F defined by (3) contains a strictly increasing sequence $S = \{a_k\}_{k=1}^{\infty}$ that contains an n-chain for every n.

Proof. For $n = 1, 2, \ldots$ let

$$\alpha_n = \sum_{k=1}^{n^2} l_k, \quad \beta_n = \sum_{k=1}^{n^2+n} l_k.$$

Clearly $\alpha_1 < \beta_1 < \alpha_2 < \beta_2 < \cdots$, so the closed intervals $[\alpha_n, \beta_n]$, $n = 1, 2, \ldots$, are pairwise disjoint.

Define sets $F_n \subseteq F$, $n = 1, 2, \ldots$, as follows:

$$F_n = \Big\{ l_1 + l_2 + \dots + l_{n^2} + \sum_{k=n^2+1}^{n^2+n} \varepsilon_k l_k : \varepsilon_k = 0 \text{ or } 1 \Big\}.$$

Note that $F_n \subseteq [\alpha_n, \beta_n]$ for all $n = 1, 2, \ldots$

It remains to put $S = \bigcup_{n=1}^{\infty} F_n$.

We shall now complete the proof of the theorem. Replacing, if needed, the function $\psi(\delta)$ with

$$\widetilde{\psi}(\delta) = \delta \inf_{0 < t \le \delta} \frac{\psi(t)}{t},$$

we can assume that $\psi(\delta)/\delta \nearrow +\infty$ as $\delta \searrow 0$.

Take a strictly increasing sequence of positive integers $n_k, k = 1, 2, ...,$ so that

(9)
$$6 \cdot 2^k \le \psi(3^{-n_k})/3^{-n_k}, \quad k = 1, 2, \dots$$

Consider the set

$$F = \Big\{ \sum_{k=1}^{\infty} \varepsilon_k 3^{-n_k} : \varepsilon_k = 0 \text{ or } 1 \Big\}.$$

It is clear that F is porous (as a subset of the Cantor triadic set).

Assuming that $\delta > 0$ is sufficiently small, we can find k such that

(10)
$$3^{-n_{k+1}} \le \delta < 3^{-n_k}$$

Note that F can be covered by 2^{k+1} closed intervals of length $3^{-n_{k+1}}$ each. Consider the δ -neighbourhood of each of these intervals. We infer that (see (10))

$$|(F)_{\delta}| \le 2^{k+1} 3\delta.$$

Hence, taking (9), (10) into account, we obtain

$$|(F)_{\delta}| \le \frac{\psi(3^{-n_k})}{3^{-n_k}} \delta \le \psi(\delta).$$

Using Lemma 5 we can find a strictly increasing sequence $S = \{a_k\}_{k=1}^{\infty}$ contained in F such that for every n the sequence S contains an n-chain. Let $E = S \cup \{a\}$, where $a = \lim_{k \to \infty} a_k$. It remains to apply Lemma 4.

Our next goal is to construct a set that has property LP(p) or property LP and at the same time is thick. Theorem 2 implies that if 1 anda bounded set <math>E has property LP(p), then $|(E)_{\delta}| = O(\delta^{1-2/q})$ as $\delta \to +0$. Hence, if a bounded set E has property LP, then $|(E)_{\delta}| = O(\delta^{1-\varepsilon})$ for all $\varepsilon > 0$. The author does not know if these estimates are sharp. A partial solution to this problem is given by Theorem 4 below. It is a simple consequence of the Hare and Klemes theorem [3, Theorem A], which provides a sufficient condition for a set to have property LP(p). Stated for sets in \mathbb{Z} , this theorem, as noted at the end of [3], easily transfers to sets in \mathbb{R} and allows one to construct perfect sets that have this property.

We shall use the version of the Hare and Klemes theorem stated in [9, Sec. 4]. According to this version, for each $p, 1 , there is a constant <math>\tau_p$ ($0 < \tau_p < 1$) with the following property. Let E be a closed set of measure zero in the interval [0, 1]. Suppose that, under an appropriate numbering, the intervals $I_k, k = 1, 2, \ldots$, complementary to E in [0, 1] (i.e., the connected

components of $[0,1] \setminus E$) satisfy

(11) $\delta_{k+1}/\delta_k \le \tau_p, \quad k = 1, 2, \dots,$

where $\delta_k = |I_k|$. Then *E* has property LP(*p*). This in turn implies that if (12) $\lim_{k \to \infty} \delta_{k+1}/\delta_k = 0,$

then E has property LP.

Theorem 4.

- (a) Let $1 . There exists a perfect set <math>E \subseteq [0,1]$ which has property LP(p) and at the same time satisfies $|(E)_{\delta}| \ge c\delta \log(1/\delta)$ for all sufficiently small $\delta > 0$.
- (b) Let $\gamma(\delta)$ be a positive nondecreasing function on $(0,\infty)$ with $\lim_{\delta \to +0} \gamma(\delta) = 0$. There exists a perfect set $E \subseteq [0,1]$ which has property LP and at the same time satisfies $|(E)_{\delta}| \ge c \gamma(\delta) \delta \log(1/\delta)$.

Proof. Let δ_k , $k = 1, 2, \ldots$, be a sequence of positive numbers with

(13)
$$\sum_{k} \delta_k = 1.$$

Let $E \subseteq [0, 1]$ be a closed set. Assume that, under an appropriate numbering, the intervals I_k , k = 1, 2, ..., complementary to E in [0, 1] satisfy $|I_k| = \delta_k$, k = 1, 2, ... In this case we say that E is generated by the sequence $\{\delta_k\}$. (Certainly |E| = 0.) Note that for each sequence $\{\delta_k\}$ of positive numbers with (13) there exists a perfect set $E \subseteq [0, 1]$ generated by $\{\delta_k\}$.

It is easy to see that if E is generated by a positive sequence $\{\delta_k\}$ satisfying (13), then for all $\delta > 0$ we have

(14)
$$|(E)_{\delta}| \ge 2\delta \operatorname{card}\{k : \delta_k > 2\delta\}.$$

Indeed, if $I_k = (a_k, b_k)$ is an arbitrary interval complementary to E in [0, 1] such that $|I_k| > 2\delta$, then the δ -neighbourhood of E contains the intervals $(a_k, a_k + \delta)$ and $(b_k - \delta, b_k)$.

We now prove part (a) of the theorem. Fix
$$p, 1 . Let $\delta_k = a e^{-kb}, \quad k = 1, 2, \dots,$$$

where the positive constants a and b are chosen so that conditions (11), (13) hold. Consider a perfect set $E \subseteq [0, 1]$ generated by $\{\delta_k\}$. Using (14), we see that

$$|(E)_{\delta}| \ge 2\delta \left(\frac{1}{b}\log\frac{a}{2\delta} - 1\right),$$

which proves (a).

Now we prove (b). Without loss of generality we can assume that $\gamma(1/e) = 1/4$. Let

$$b(x) = \frac{1}{\gamma(e^{-x})}, \quad x > 0.$$

The function b is nondecreasing, $b(x) \to \infty$ as $x \to \infty$, and b(1) = 4.

Define

$$\delta_k = a e^{-kb(k)}, \quad k = 1, 2, \dots,$$

where a > 0 is chosen so that (13) holds. Note that

$$\delta_{k+1}/\delta_k = e^{-((k+1)b(k+1)-kb(k))} \le e^{-b(k)} \to 0$$
 as $k \to \infty$,

and thus (12) holds.

Consider a perfect set $E \subseteq [0, 1]$ generated by the sequence $\{\delta_k\}$.

Let $\delta > 0$ be sufficiently small. Choose a positive integer $k = k(\delta)$ so that

(15)
$$\delta_{k+1} \le 2\delta < \delta_k.$$

We have

$$\operatorname{card}\{k : \delta_k > 2\delta\} \ge k(\delta).$$

So (see (14))

(16) $|(E)_{\delta}| \ge 2\delta k(\delta).$

Note that (15) implies

$$kb(k) < \log \frac{a}{2\delta} \le (k+1)b(k+1).$$

Hence, for all sufficiently small $\delta > 0$ we have

(17)
$$\frac{1}{2}kb(k) < \log \frac{1}{\delta} \le 2(k+1)b(k+1).$$

The left-hand inequality in (17) yields (recall that b(1) = 4)

$$2k = \frac{1}{2}kb(1) \le \frac{1}{2}kb(k) < \log\frac{1}{\delta},$$

whence

$$b(2k) \le b\left(\log\frac{1}{\delta}\right) = \frac{1}{\gamma(\delta)}$$

Combining this inequality and the right-hand inequality in (17), we see that

$$\log \frac{1}{\delta} \le 2(k+1)b(k+1) \le 4kb(2k) \le 4k\frac{1}{\gamma(\delta)}.$$

So,

$$\frac{1}{4}\gamma(\delta)\log\frac{1}{\delta} \le k = k(\delta).$$

Thus (see (16)),

$$|(E)_{\delta}| \ge \frac{1}{2}\gamma(\delta)\delta\log\frac{1}{\delta}.$$

REMARK. As far as the author knows, the problem of the existence of a set that has property LP(p) for some $p, p \neq 2$, but does not have property LP is open.

V. Lebedev

Acknowledgements. This study was carried out within The National Research University Higher School of Economics' Academic Fund Program in 2013-2014, research grant No. 12-01-0079.

References

- R. E. Edwards and G. I. Gaudry, *Littlewood–Paley and Multiplier Theory*, Springer, Berlin, 1977.
- [2] K. E. Hare and I. Klemes, Properties of Littlewood-Paley sets, Math. Proc. Cambridge Philos. Soc. 105 (1989), 485–494.
- [3] K. E. Hare and I. Klemes, On permutations of lacunary intervals, Trans. Amer. Math. Soc. 347 (1995), 4105–4127.
- [4] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93–140.
- [5] M. Jodeit, Restrictions and extensions of Fourier multipliers, Studia Math. 34 (1970), 215–226.
- [6] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, Berlin, 1970.
- [7] R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971.
- [8] V. Lebedev and A. Olevskiĭ, Bounded groups of translation invariant operators, C. R. Acad. Sci. Paris Sér. I 322 (1996), 143–147.
- [9] V. V. Lebedev and A. M. Olevskii, L^p-Fourier multipliers with bounded powers, Izv. Math. 70 (2006), 549–585.
- [10] K. de Leeuw, On L^p multipliers, Ann. of Math. 81 (1965), 364–379.
- [11] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995.
- [12] P. Sjögren and P. Sjölin, Littlewood–Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier (Grenoble) 31 (1981), 157–175.
- [13] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.
- [14] A. Zygmund, Trigonometric Series, Vols. I, II, Cambridge Univ. Press, New York, 1959.

Vladimir Lebedev

National Research University Higher School of Economics

3 Bolshoi Trekhsvyatitelskii per.

Moscow 109028, Russia

E-mail: lebedevhome@gmail.com

Received May 3, 2013 Revised version December 15, 2013 (7784)