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Thickness conditions and Littlewood–Paley sets

by

Vladimir Lebedev (Moscow)

Abstract. We consider sets in the real line that have Littlewood–Paley properties
LP(p) or LP and study the following question: How thick can these sets be?

1. Introduction. Let E be a closed Lebesgue measure zero set in the
real line R and let Ik, k = 1, 2, . . . , be the intervals complementary to E, i.e.,
the connected components of the complement R\E. Let Sk be the operator
defined by

Ŝkf = 1Ik · f̂ , f ∈ L2 ∩ Lp(R),

where 1Ik is the characteristic function of Ik, and ̂ stands for the Fourier
transform. Consider the corresponding quadratic Littlewood–Paley function:

S(f) =
(∑

k

|Skf |2
)1/2

.

Following [12] we say that E has property LP(p) (1 < p < ∞) if for all
f ∈ Lp(R) we have

c1‖f‖Lp(R) ≤ ‖S(f)‖Lp(R) ≤ c2‖f‖Lp(R),

where c1, c2 are positive constants independent of f . When a set has property
LP(p) for all p, 1 < p <∞, we say that it has property LP.

The role of such sets in harmonic analysis and particularly in multiplier
theory is well-known. We recall that if G is a locally compact Abelian group
and Γ is the group dual to G, then a function m ∈ L∞(Γ ) is called an
Lp-Fourier multiplier, 1 ≤ p ≤ ∞, if the operator Q given by

Q̂f = m · f̂ , f ∈ Lp ∩ L2(G),

is bounded from Lp(G) to itself (here ̂ is the Fourier transform on G). The
space of all such multipliers is denoted by Mp(Γ ). Provided with the norm

‖m‖Mp(Γ ) = ‖Q‖Lp(G)→Lp(G),
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the space Mp(Γ ) is a Banach algebra (with the usual multiplication of func-
tions). For basic facts on multipliers in the cases when Γ = R, Z, T, where
Z is the group of integers and T = R/2πZ is the circle, see [1], [13, Chap.
IV], [7].

A classical example of an infinite set that has property LP is the set
E = {±2k : k ∈ Z} ∪ {0} (see, e.g., [13, Chap. IV, Sec. 5]). From the
arithmetic and combinatorial point of view, sets that have property LP(p)
or LP were studied extensively: see, e.g., [1]–[3], [12]. With the exception
of [12] these works deal with countable sets, particularly, with subsets of Z.
At the same time there exist uncountable sets that have property LP. This
was first established by Hare and Klemes [3]; see also [8] and [9, Sec. 4].

In this paper we study the following question: How thick can a set E ⊆ R
that has property LP(p) (p 6= 2) or property LP be? In Theorems 1 and 2 we
show that such a set cannot be metrically very thick, namely it is porous and
the measure of the δ-neighbourhood of any portion of it tends to zero quite
rapidly (as δ → +0). As a consequence we obtain (see Corollary) an estimate
for the Hausdorff dimension of these sets. An immediate consequence of our
estimate is that if a set has property LP, then its Hausdorff dimension is
zero. In Theorem 3 we show that there exist sets which are thin in several
senses simultaneously but have property LP(p) for no p 6= 2. In Theorem 4
we show that a set can be quite thick but at the same time have property
LP. In part our arguments are close to those used by other authors to study
subsets of Z, but the mere fact of existence of uncountable (i.e. thick in the
sense of cardinality) sets that have property LP brings some specific details
to the subject.

It is well-known that a set has property LP(p) if and only if it has
property LP(q), where 1/p + 1/q = 1 (see, e.g., [12]). Thus, it suffices to
consider the case when 1 < p < 2.

We use the following notation. For a set F ⊆ R we denote its open
δ-neighbourhood (δ > 0) by (F )δ. If F is measurable, then |F | means its
Lebesgue measure. A portion of a set F ⊆ R is a set of the form F ∩I, where
I is a bounded interval. By dimF we denote the Hausdorff dimension of F .
For basic properties of the Hausdorff dimension we refer the reader to [11].
For a set F ⊆ R and a point t ∈ R we put F + t = {x + t : x ∈ F}. By
cardA we denote the number of elements of a finite set A. By an arithmetic
progression of length N we mean a set of the form {a+ kd : k = 1, . . . , N},
where a, d ∈ R and d 6= 0. We use c, c(p), c(p,E), . . . to denote various
positive constants which may depend only on p and the set E.

2. Results. We recall that a set F ⊆ R is said to be porous if there
exists a constant c > 0 such that every bounded interval I ⊆ R contains a
subinterval J with |J | ≥ c|I| and J ∩ F = ∅.



Thickness and Littlewood–Paley sets 267

Theorem 1. Let E ⊆ R be a closed set of measure zero. Suppose that
E has property LP(p) for some p, p 6= 2. Then E is porous.

Earlier Hare and Klemes showed that if a set in Z has property LP then
it is porous [2, Theorem 3.7].

To prove Theorem 1 we need certain lemmas.

Lemma 1. Let 1 < p < ∞. Let ϕ : Rn → R be a nonconstant affine
mapping. Suppose that a function m ∈Mp(R) is continuous at each point of
the set ϕ(Zn). Then the restriction m◦ϕ|Zn of the superposition m◦ϕ to Zn
belongs to Mp(Zn), and ‖m ◦ ϕ|Zn‖Mp(Zn) ≤ c‖m‖Mp(R), where c = c(p) > 0
is independent of ϕ, m and the dimension n.

Proof. The proof is a trivial combination of two well-known assertions
on multipliers. The first one is the theorem on superpositions with affine
mappings [4, Chap. I, Sec. 1.3], which implies that for every m ∈ Mp(R)
we have m ◦ ϕ ∈ Mp(Rn) and ‖m ◦ ϕ‖Mp(Rn) = ‖m‖Mp(R). The second one
is the de Leeuw theorem [10] (see also [5]) on restrictions to Zn, according
to which if a function g ∈ Mp(Rn) is continuous at all points of Zn, then
g|Zn ∈Mp(Zn) and ‖g|Zn‖Mp(Zn) ≤ c(p)‖g‖Mp(Rn).

Lemma 2. Let E ⊆ R be a nowhere dense set and let F ⊆ R be a finite
or countable set. Then for each δ > 0 there exists ξ ∈ R such that |ξ| < δ
and (F + ξ) ∩ E = ∅.

Proof. The set ⋃
t∈F

(E − t),

being a union of at most countable family of nowhere dense sets, cannot
contain the whole interval (−δ, δ), hence there exists ξ ∈ (−δ, δ) that does
not belong to the union.

We say that a (finite or countable) set F ⊆ R splits a closed set E ⊆ R
if F ⊆ R \ E and no two distinct points of F are contained in the same
interval complementary to E.

Lemma 3. Let 1 < p < 2. Let E ⊆ R have property LP(p). Suppose that
F is a subset of an arithmetic progression of length N , and F splits E. Then
cardF ≤ c(p,E)N2/q, where 1/p+ 1/q = 1.

Proof. This lemma can be deduced from Theorems 1.2 and 1.3 of [12].
We give an independent simple proof based on a quite standard argument.
Consider an arithmetic progression {a+ kd : k = 1, . . . , N}. We can assume
that d > 0. Suppose that a set F = {a + kjd : j = 1, . . . , ν}, where 1 ≤
kj ≤ N , splits E. For j = 1, . . . , ν let ∆j be the interval of length δ centered
at a+ kjd, where δ > 0 is so small that δ < d and ∆j ∩E = ∅, j = 1, . . . , ν.
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We put

mθ =

ν∑
j=1

rj(θ) · 1∆j ,

where rj(θ) = sign sin 2jπθ, θ ∈ [0, 1], j = 1, 2, . . . , are the Rademacher
functions.

It is well-known that if a set E has property LP(p), then it has the
Marcinkiewicz property Mar(p), namely (1), for each function m ∈ L∞(R)
whose variations VarIk m on the intervals Ik complementary to E are uni-
formly bounded, we have m ∈Mp(R) and

(1) ‖m‖Mp(R) ≤ c(p,E)
(
‖m‖L∞(R) + sup

k
VarIk m

)
.

Thus we have ‖mθ‖Mp(R) ≤ c, where c > 0 is independent of N and θ.
Consider the affine mapping ϕ(x) = a + dx, x ∈ R. Using Lemma 1 for
n = 1, we see that

‖mθ ◦ ϕ|Z‖Mp(Z) ≤ c(p)‖mθ‖Mp(R) ≤ c1(p).

Thus ∥∥∥∑
k

mθ(a+ kd)cke
ikx
∥∥∥
Lp(T)

≤ c1(p)
∥∥∥∑

k

cke
ikx
∥∥∥
Lp(T)

for every trigonometric polynomial
∑

k cke
ikx. In particular,∥∥∥ N∑

k=1

mθ(a+ kd)eikx
∥∥∥
Lp(T)

≤ c1(p)
∥∥∥ N∑
k=1

eikx
∥∥∥
Lp(T)

.

Hence,

(2)
∥∥∥ ν∑
j=1

rj(θ)e
ikjx
∥∥∥
Lp(T)

≤ c1(p)
∥∥∥ N∑
k=1

eikx
∥∥∥
Lp(T)

.

It is easy to verify that∥∥∥ N∑
k=1

eikx
∥∥∥
Lp(T)

≤ c(p)N1/q,

so (2) yields
�

T

∣∣∣ ν∑
j=1

rj(θ)e
ikjx
∣∣∣p dx ≤ c2(p)Np/q.

(1) Actually LP(p) and Mar(p) are equivalent: see, e.g., [12, Theorem 1.1].
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By integrating this inequality with respect to θ ∈ [0, 1] and using the Khin-
tchine inequality( 1�

0

∣∣∣∑
j

cjrj(θ)
∣∣∣pdθ)1/p ≥ c(∑

j

|cj |2
)1/2

, 1 ≤ p < 2,

(see, e.g., [14, Chap. V, Sec. 8]), we obtain νp/2 ≤ c3(p)Np/q.

Proof of Theorem 1. We can assume that 1 < p < 2. For a bounded
interval I ⊆ R let

d(I) = sup{|J | : J is an interval, J ⊆ I, J ∩ E = ∅}.
Suppose that E is not porous. Then, for each positive integer N we can find
a (bounded) interval I such that 0 < d(I) < |I|/3N . Let d = 2d(I). Consider
an arithmetic progression tk = a+ kd, k = 1, . . . , N, that lies in the interior
of I. Using Lemma 2, we can find ξ such that tk + ξ /∈ E, k = 1, . . . , N, and
ξ is so small that {tk + ξ : k = 1, . . . , N} ⊆ I. Note that since d = 2d(I), no
two distinct points of the progression {tk + ξ : k = 1, . . . , N} lie in the same
interval complementary to E. Thus this progression splits E. By Lemma 3
this is impossible if N is sufficiently large.

Theorem 2. Let 1 < p < 2. Let E ⊆ R be a closed set of measure zero.
Suppose that E has property LP(p). Then each portion E ∩ I of E satisfies

|(E ∩ I)δ| ≤ c|I|2/qδ1−2/q,
where 1/p + 1/q = 1 and the constant c = c(p,E) > 0 is independent of I
and δ.

Theorem 2 immediately implies an estimate for the Hausdorff dimension
of sets that have property LP(p):

Corollary. If 1 < p < 2 and a set E ⊆ R has property LP(p), then
dimE ≤ 2/q, where 1/p + 1/q = 1. Thus, if E has property LP, then
dimE = 0.

Proof of Theorem 2. Consider an arbitrary portion E ∩ I of E. Let J
be the interval concentric with I and of twice its length. Denote the left
endpoint of J by a. Fix a positive integer N and consider the progression
a + kd, k = 1, . . . , N, where d = |J |/N . By Lemma 2 one can find ξ such
that no element of {a + kd + ξ : k = 1, . . . , N} is in E and I ⊆ J + ξ =
(a+ ξ, a+Nd+ ξ).

We define intervals Jk by

Jk = (a+ (k − 1)d+ ξ, a+ kd+ ξ), k = 1, . . . , N.

Consider the intervals Jkj such that Jkj ∩ E 6= ∅. Obviously their right

endpoints split E, so, by Lemma 3, their number is at most c(p)N2/q. Thus
E ∩ I is covered by at most c(p)N2/q intervals of length d = 2|I|/N each.
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Let δ > 0. We can assume that δ < |I| (otherwise the assertion of the
theorem is trivial). Choosing a positive integer N so that

2|I|
N
≤ δ

3
<

4|I|
N

,

we see that E ∩ I can be covered by at most c(p)(12|I|/δ)2/q intervals of
length δ/3 each. It remains to replace each of these intervals with the cor-
responding concentric interval of nine times its length. This proves the the-
orem. The corollary follows.

We note now that a set can be quite thin and at the same time have
property LP(p) for no p 6= 2. Consider the set

(3) F =
{ ∞∑
k=1

εklk : εk = 0 or 1
}
,

where lk, k = 1, 2, . . . , are positive numbers with lk+1 < lk/2. It was shown
by Sjögren and Sjölin [12] that such sets have property LP(p) for no p,
p 6= 2. (In particular, the Cantor triadic set does not have property LP(p)
for p 6= 2.) Taking a rapidly decreasing sequence {lk} one can obtain a set
F of the form (3) that is porous and has the property that the measure of
its δ-neighbourhood rapidly tends to zero. Still, in a sense, any set of the
form (3) is thick: it is uncountable and all its points are its accumulation
points. Theorem 3 below shows that a set can be thin in several senses
simultaneously, and at the same time have property LP(p) for no p, p 6= 2.

Theorem 3. Let ψ be a positive function on an interval (0, δ0), δ0 > 0,
with limδ→+0 ψ(δ)/δ = +∞. There exists a strictly increasing bounded se-
quence a1 < a2 < · · · such that the set E = {ak}∞k=1 ∪{limk→∞ ak} satisfies
the following conditions: 1) E is porous; 2) |(E)δ| ≤ ψ(δ) for all sufficiently
small δ > 0; 3) E has property LP(p) for no p, p 6= 2.

Proof. Given (real) numbers a and l1, . . . , ln consider the set of all points
a +

∑n
j=1 εjlj , where εj = 0 or 1. Assume that the cardinality of this set

is 2n. Following [6] we call such a set an n-chain (2).
We shall need the following refinement of the Sjögren and Sjölin result

on the sets (3). This refinement also provides a partial extension of Propo-
sition 3.4 of [2], that treats subsets of integers, to the general case of closed
measure zero sets in the line.

Lemma 4. Let E ⊆ R be a closed set of measure zero. Suppose that E
contains n-chains with arbitrarily large n. Then E has property LP(p) for
no p 6= 2.

(2) An n-chain is a particular case of what is called a parallelepiped of dimension n,
that is, of a set of cardinality 2n, obtained as the Minkowski sum of n two-element sets.
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Proof. Suppose that, contrary to the assertion, E has property LP(p)
for some p, p 6= 2. We can assume that 1 < p < 2.

Let n be such that E contains an n-chain

(4) a+

n∑
j=1

εjlj , (ε1, . . . , εn) ∈ {0, 1}n.

Consider the set

B =
{
a+

n∑
j=1

kjlj : (k1, . . . , kn) ∈ Zn
}
.

By Lemma 2 there exists an arbitrarily small ξ such that

(5) (B + ξ) ∩ E = ∅.
Clearly, if ξ is small enough, then no two distinct points of the chain obtained
by the same shift ξ of the chain (4) can lie in the same interval complemen-
tary to E. Thus, there exists ξ such that (5) holds and the n-chain

a+ ξ +
n∑
j=1

εjlj , (ε1, . . . , εn) ∈ {0, 1}n,

splits E.
For each ε = (ε1, . . . , εn) ∈ {0, 1}n let Iε denote the interval complemen-

tary to E that contains the point a+ ξ+
∑n

j=1 εjlj . For an arbitrary choice
of signs ± consider the function

m =
∑

ε∈{0,1}n
±1Iε .

We have (see (1))

(6) ‖m‖Mp(R) ≤ c,
where c > 0 is independent of n and the choice of signs.

Consider the following affine mapping ϕ:

ϕ(x) = a+ ξ +

n∑
j=1

xjlj , x = (x1, . . . , xn) ∈ Rn.

Note that condition (5) implies that the function m is continuous at each
point of ϕ(Zn). Using Lemma 1, we obtain (see (6)) m ◦ϕ|Zn ∈Mp(Zn) and

‖m ◦ ϕ|Zn‖Mp(Zn) ≤ c,
where the constant c > 0 is independent of n and the choice of signs.

Therefore, for every trigonometric polynomial
∑

k∈Zn cke
i(k,t) on the

torus Tn, ∥∥∥ ∑
k∈Zn

m ◦ ϕ(k)cke
i(k,t)

∥∥∥
Lp(Tn)

≤ c
∥∥∥ ∑
k∈Zn

cke
i(k,t)

∥∥∥
Lp(Tn)

.
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(We use (k, t) to denote the usual inner product of vectors k ∈ Zn and
t ∈ Tn.) In particular, taking ck = 1 for k ∈ {0, 1}n and ck = 0 for k /∈
{0, 1}n, we obtain∥∥∥ ∑

ε∈{0,1}n
m
(
a+ ξ +

n∑
j=1

εjlj

)
ei(ε,t)

∥∥∥
Lp(Tn)

≤ c
∥∥∥ ∑
ε∈{0,1}n

ei(ε,t)
∥∥∥
Lp(Tn)

.

That is, ∥∥∥ ∑
ε∈{0,1}n

±ei(ε,t)
∥∥∥
Lp(Tn)

≤ c
∥∥∥ ∑
ε∈{0,1}n

ei(ε,t)
∥∥∥
Lp(Tn)

.

Raising this inequality to the power p and averaging with respect to the
signs ± (i.e., using the Khintchine inequality), we obtain

(7)
∥∥∥ ∑
ε∈{0,1}n

ei(ε,t)
∥∥∥
L2(Tn)

≤ c
∥∥∥ ∑
ε∈{0,1}n

ei(ε,t)
∥∥∥
Lp(Tn)

.

Note that∑
ε∈{0,1}n

ei(ε,t) =
n∏
j=1

(1 + eitj ), t = (t1, . . . , tn) ∈ Tn,

so (7) yields

(8) ‖1 + eit‖nL2(T) ≤ c‖1 + eit‖nLp(T).

Since n can be arbitrarily large, relation (8) implies

‖1 + eit‖L2(T) ≤ ‖1 + eit‖Lp(T),

which, as one can easily verify, is impossible for 1 < p < 2.

Lemma 5. Let lk, k = 1, 2, . . . , be positive numbers satisfying lk+1 <
lk/2. Then the set F defined by (3) contains a strictly increasing sequence
S = {ak}∞k=1 that contains an n-chain for every n.

Proof. For n = 1, 2, . . . let

αn =

n2∑
k=1

lk, βn =

n2+n∑
k=1

lk.

Clearly α1 < β1 < α2 < β2 < · · · , so the closed intervals [αn, βn], n =
1, 2, . . . , are pairwise disjoint.

Define sets Fn ⊆ F , n = 1, 2, . . . , as follows:

Fn =
{
l1 + l2 + · · ·+ ln2 +

n2+n∑
k=n2+1

εklk : εk = 0 or 1
}
.

Note that Fn ⊆ [αn, βn] for all n = 1, 2, . . . .
It remains to put S =

⋃∞
n=1 Fn.
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We shall now complete the proof of the theorem. Replacing, if needed,
the function ψ(δ) with

ψ̃(δ) = δ inf
0<t≤δ

ψ(t)

t
,

we can assume that ψ(δ)/δ ↗ +∞ as δ ↘ 0.
Take a strictly increasing sequence of positive integers nk, k = 1, 2, . . . ,

so that

(9) 6 · 2k ≤ ψ(3−nk)/3−nk , k = 1, 2, . . . .

Consider the set

F =
{ ∞∑
k=1

εk3
−nk : εk = 0 or 1

}
.

It is clear that F is porous (as a subset of the Cantor triadic set).
Assuming that δ > 0 is sufficiently small, we can find k such that

(10) 3−nk+1 ≤ δ < 3−nk .

Note that F can be covered by 2k+1 closed intervals of length 3−nk+1 each.
Consider the δ-neighbourhood of each of these intervals. We infer that
(see (10))

|(F )δ| ≤ 2k+13δ.

Hence, taking (9), (10) into account, we obtain

|(F )δ| ≤
ψ(3−nk)

3−nk
δ ≤ ψ(δ).

Using Lemma 5 we can find a strictly increasing sequence S = {ak}∞k=1
contained in F such that for every n the sequence S contains an n-chain.
Let E = S ∪ {a}, where a = limk→∞ ak. It remains to apply Lemma 4.

Our next goal is to construct a set that has property LP(p) or property
LP and at the same time is thick. Theorem 2 implies that if 1 < p < 2 and
a bounded set E has property LP(p), then |(E)δ| = O(δ1−2/q) as δ → +0.
Hence, if a bounded set E has property LP, then |(E)δ| = O(δ1−ε) for all
ε > 0. The author does not know if these estimates are sharp. A partial
solution to this problem is given by Theorem 4 below. It is a simple conse-
quence of the Hare and Klemes theorem [3, Theorem A], which provides a
sufficient condition for a set to have property LP(p). Stated for sets in Z,
this theorem, as noted at the end of [3], easily transfers to sets in R and
allows one to construct perfect sets that have this property.

We shall use the version of the Hare and Klemes theorem stated in [9,
Sec. 4]. According to this version, for each p, 1 < p <∞, there is a constant
τp (0 < τp < 1) with the following property. Let E be a closed set of measure
zero in the interval [0, 1]. Suppose that, under an appropriate numbering, the
intervals Ik, k = 1, 2, . . . , complementary to E in [0, 1] (i.e., the connected
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components of [0, 1] \ E) satisfy

(11) δk+1/δk ≤ τp, k = 1, 2, . . . ,

where δk = |Ik|. Then E has property LP(p). This in turn implies that if

(12) lim
k→∞

δk+1/δk = 0,

then E has property LP.

Theorem 4.

(a) Let 1 < p < ∞. There exists a perfect set E ⊆ [0, 1] which has
property LP(p) and at the same time satisfies |(E)δ| ≥ cδ log(1/δ)
for all sufficiently small δ > 0.

(b) Let γ(δ) be a positive nondecreasing function on (0,∞) with
limδ→+0 γ(δ) = 0. There exists a perfect set E ⊆ [0, 1] which has
property LP and at the same time satisfies |(E)δ| ≥ c γ(δ)δ log(1/δ).

Proof. Let δk, k = 1, 2, . . . , be a sequence of positive numbers with

(13)
∑
k

δk = 1.

Let E ⊆ [0, 1] be a closed set. Assume that, under an appropriate numbering,
the intervals Ik, k = 1, 2, . . . , complementary to E in [0, 1] satisfy |Ik| = δk,
k = 1, 2, . . . . In this case we say that E is generated by the sequence {δk}.
(Certainly |E| = 0.) Note that for each sequence {δk} of positive numbers
with (13) there exists a perfect set E ⊆ [0, 1] generated by {δk}.

It is easy to see that if E is generated by a positive sequence {δk} satis-
fying (13), then for all δ > 0 we have

(14) |(E)δ| ≥ 2δ card{k : δk > 2δ}.
Indeed, if Ik = (ak, bk) is an arbitrary interval complementary to E in [0, 1]
such that |Ik| > 2δ, then the δ-neighbourhood of E contains the intervals
(ak, ak + δ) and (bk − δ, bk).

We now prove part (a) of the theorem. Fix p, 1 < p <∞. Let

δk = ae−kb, k = 1, 2, . . . ,

where the positive constants a and b are chosen so that conditions (11), (13)
hold. Consider a perfect set E ⊆ [0, 1] generated by {δk}. Using (14), we see
that

|(E)δ| ≥ 2δ

(
1

b
log

a

2δ
− 1

)
,

which proves (a).
Now we prove (b). Without loss of generality we can assume that γ(1/e)

= 1/4. Let

b(x) =
1

γ(e−x)
, x > 0.

The function b is nondecreasing, b(x)→∞ as x→∞, and b(1) = 4.
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Define

δk = ae−kb(k), k = 1, 2, . . . ,

where a > 0 is chosen so that (13) holds. Note that

δk+1/δk = e−((k+1)b(k+1)−kb(k)) ≤ e−b(k) → 0 as k →∞,
and thus (12) holds.

Consider a perfect set E ⊆ [0, 1] generated by the sequence {δk}.
Let δ > 0 be sufficiently small. Choose a positive integer k = k(δ) so

that

(15) δk+1 ≤ 2δ < δk.

We have

card{k : δk > 2δ} ≥ k(δ).

So (see (14))

(16) |(E)δ| ≥ 2δk(δ).

Note that (15) implies

kb(k) < log
a

2δ
≤ (k + 1)b(k + 1).

Hence, for all sufficiently small δ > 0 we have

(17)
1

2
kb(k) < log

1

δ
≤ 2(k + 1)b(k + 1).

The left-hand inequality in (17) yields (recall that b(1) = 4)

2k =
1

2
kb(1) ≤ 1

2
kb(k) < log

1

δ
,

whence

b(2k) ≤ b
(

log
1

δ

)
=

1

γ(δ)
.

Combining this inequality and the right-hand inequality in (17), we see that

log
1

δ
≤ 2(k + 1)b(k + 1) ≤ 4kb(2k) ≤ 4k

1

γ(δ)
.

So,
1

4
γ(δ) log

1

δ
≤ k = k(δ).

Thus (see (16)),

|(E)δ| ≥
1

2
γ(δ)δ log

1

δ
.

Remark. As far as the author knows, the problem of the existence of a
set that has property LP(p) for some p, p 6= 2, but does not have property
LP is open.



276 V. Lebedev

Acknowledgements. This study was carried out within The National
Research University Higher School of Economics’ Academic Fund Program
in 2013-2014, research grant No. 12-01-0079.

References

[1] R. E. Edwards and G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Springer,
Berlin, 1977.

[2] K. E. Hare and I. Klemes, Properties of Littlewood–Paley sets, Math. Proc. Cam-
bridge Philos. Soc. 105 (1989), 485–494.

[3] K. E. Hare and I. Klemes, On permutations of lacunary intervals, Trans. Amer.
Math. Soc. 347 (1995), 4105–4127.
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