Products of Toeplitz operators and Hankel operators

by

Yufeng Lu and Linghui Kong (Dalian)

Abstract

We first determine when the sum of products of Hankel and Toeplitz operators is equal to zero; then we characterize when the product of a Toeplitz operator and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz operator and when it is a finite rank perturbation of a Toeplitz operator.

1. Introduction. Let D be the open unit disk in the complex plane and ∂D the unit circle. Let $d \sigma$ be the normalized Lebesgue measure on ∂D. Let $L^{2}=L^{2}(\partial D, d \sigma)$ denote the space of Lebesgue square integrable functions on the unit circle. The Hardy space H^{2} is the closed subspace of L^{2} consisting of analytic functions. Let P be the orthogonal projection from L^{2} onto H^{2}. For $f \in L^{\infty}$, the Toeplitz operator T_{f} and the Hankel operator H_{f} with symbol f are defined respectively by

$$
T_{f} h=P(f h) \quad \text { and } \quad H_{f} h=P(U(f h))
$$

for h in H^{2}. Here U is the unitary operator on L^{2} defined by $U h(w)=$ $\bar{w} \tilde{h}(w)$, where $\tilde{h}(w)=h(\bar{w})$. Clearly, $H_{f}^{*}=H_{f^{*}}$, where $f^{*}(w)=\bar{f}(\bar{w})$. The operator U maps H^{2} onto $\left[H^{2}\right]^{\perp}$ and has the following useful property: $U P=(I-P) U$. As is well known, Hankel and Toeplitz operators are closely related by the equations

$$
\begin{gather*}
T_{f g}-T_{f} T_{g}=H_{\tilde{f}} H_{g} \tag{1.1}\\
H_{f g}=H_{f} T_{g}+T_{\tilde{f}} H_{g} \tag{1.2}
\end{gather*}
$$

The second equality implies that if $g \in H^{\infty}$, then

$$
T_{\tilde{g}} H_{f}=H_{f g}=H_{f} T_{g}
$$

We refer to [5], [7], [6] for the above facts. Some more relationships be-

[^0]tween these two classes of operators have been studied in several papers. For the problem of commutation, Martínez-Avendaño [11] showed that H_{f} commutes with T_{g} if and only if either $f \in H^{\infty}$, or there exists a constant λ such that $g+\lambda f$ is in H^{∞}, and both $g+\tilde{g}$ and $g \tilde{g}$ are constants. A natural question is: When does the commutator $\left[H_{f}, T_{g}\right]=H_{f} T_{g}-T_{g} H_{f}$ have finite rank? Ding [5] answered this question and another one: When is the product $H_{f} T_{g}$ a finite rank perturbation of a Hankel operator H_{h} ? As to the compactness of $\left[H_{f}, T_{g}\right.$], Guo and Zheng [7] gave a necessary and sufficient condition.

Inspired by these results, we investigate some more relationships between these two classes of operators. We study sums of products of Hankel and Toeplitz operators and operators of the form $H_{f} T_{g}+T_{h} H_{k}$, and determine when such operators are zero. The classical result of Martínez-Avendaño [11] is recovered as a corollary of our results. Then we characterize when $H_{f} T_{g}-H_{h}$ and $H_{f} T_{g}-T_{h}$ are compact and when $T_{f} H_{g}-T_{h}$ is of finite rank.

In Section 2, we consider a class of operators of the form

$$
\sum_{j=1}^{n} H_{j} T_{j}
$$

where each H_{j} is a Hankel operator and each T_{j} is a Toeplitz operator, and determine when an operator of this type is zero (Theorem 2.5). We also characterize when an operator of the form $H_{f} T_{g}+T_{h} H_{k}$ is zero (Theorem 2.8). In Section 3, we characterize when $H_{f} T_{g}$ is a compact perturbation of a Hankel or a Toeplitz operator (Theorem 3.6 and Corollary 3.7). In Section 4, we characterize when $T_{f} H_{g}$ is a finite rank perturbation of a Toeplitz operator (Corollary 4.5).
2. Sums of products of Hankel and Toeplitz operators. In this section, we consider operators that are sums of products of Toeplitz operators and Hankel operators and determine when such an operator is equal to zero.

Given nonzero functions $f, g, h, k \in H^{2}$, we write $f \otimes g$ for the rankone operator on H^{2} defined by $f \otimes g(h)=\langle h, g\rangle f$. It is well known that $f \otimes g=h \otimes k$ if and only if there exists a nonzero constant $\alpha \in \mathbb{C}$ such that $f=\alpha h$ and $k=\bar{\alpha} g$. More generally, we have the following lemma which is essentially proved in Proposition 4 of [8]. In the following, for a given positive integer n, we let \mathbb{M}_{n} be the set of all $n \times n$ matrices and \mathbb{S}_{n} be the set of all permutations of $\{1, \ldots, n\}$. If $A \in \mathbb{M}_{n}$, we let A^{*} be the conjugate transpose of A.

Lemma 2.1. Let $f_{j}, g_{j} \in H^{2}$ for $j=1, \ldots, n$. Then

$$
\sum_{j=1}^{n} f_{j} \otimes g_{j}=0 \quad \text { on } H^{2}
$$

if and only if there exist $A \in \mathbb{M}_{n}$ and $\sigma \in \mathbb{S}_{n}$ such that

$$
[A-I]\left(\begin{array}{c}
f_{\sigma(1)} \\
\vdots \\
f_{\sigma(n)}
\end{array}\right) \quad \text { and } \quad A^{*}\left(\begin{array}{c}
g_{\sigma(1)} \\
\vdots \\
g_{\sigma(n)}
\end{array}\right)=0
$$

Lemma 2.2. $H_{\bar{z}}=1 \otimes 1$ on H^{2}.
Proof. For $f \in H^{2}$, let $f(\theta)=\sum_{n=0}^{\infty} a_{n} e^{i n \theta}$ be the Fourier series of f. Then

$$
H_{\bar{z}}(f)=P(U(\bar{z} f))=P(\tilde{f})=\tilde{f}(0)=a_{0}=\langle f, 1\rangle=1 \otimes 1(f) .
$$

Lemma 2.3. Let $f, g \in L^{\infty}$. Then

$$
\begin{aligned}
& H_{f} T_{g} T_{z}=T_{\bar{z}} H_{f} T_{g}+H_{f} 1 \otimes H_{g}^{*} 1, \\
& T_{f} H_{g} T_{z}=T_{\bar{z}} T_{f} H_{g}-H_{\tilde{f}} 1 \otimes H_{g}^{*} 1 .
\end{aligned}
$$

Proof. By Lemma 2.2 and formulas (1.1), (1.2), we have

$$
\begin{aligned}
H_{f} T_{g} T_{z} & =H_{f} T_{z g}=H_{f}\left(T_{z} T_{g}+H_{\bar{z}} H_{g}\right)=H_{f} T_{z} T_{g}+H_{f} H_{\bar{z}} H_{g} \\
& =H_{f} T_{z} T_{g}+H_{f}[1 \otimes 1] H_{g}=T_{\bar{z}} H_{f} T_{g}+H_{f} 1 \otimes H_{g}^{*} 1,
\end{aligned}
$$

and

$$
\begin{aligned}
T_{f} H_{g} T_{z} & =T_{f} T_{\bar{z}} H_{g}=\left(T_{\bar{z}} T_{f}-H_{\tilde{f}} H_{\bar{z}}\right) H_{g}=T_{\bar{z}} T_{f} H_{g}-H_{\tilde{f}} H_{\bar{z}} H_{g} \\
& =T_{\bar{z}} T_{f} H_{g}-H_{\tilde{f}}[1 \otimes 1] H_{g}=T_{\bar{z}} T_{f} H_{g}-H_{\tilde{f}} 1 \otimes H_{g}^{*} 1 .
\end{aligned}
$$

Lemma 2.4. For $f \in L^{\infty}$, the following statements are all equivalent:
(1) $H_{f} 1=0$.
(2) $H_{f}^{*} 1=0$.
(3) $H_{f}=0$.
(4) $f \in H^{\infty}$.

Proof. Calculate directly using the Fourier series of f.
We are now ready to prove the main result of this section. We say a vector is in H_{n}^{∞} if every element of the vector is in H^{∞}.

Theorem 2.5. Let $f_{j}, g_{j} \in L^{\infty}$ for $j=1, \ldots, n$. Then the operator $T=\sum_{j=1}^{n} H_{f_{j}} T_{g_{j}}$ equals 0 on H^{2} if and only if there exist $A \in \mathbb{M}_{n}$ and $\sigma \in \mathbb{S}_{n}$ such that the following three conditions hold:
(1) $[A-I] F_{\sigma}^{T} \in H_{n}^{\infty}$.
(2) $\bar{A}^{*} G_{\sigma}^{T} \in H_{n}^{\infty}$.
(3) $G_{\sigma} A F_{\sigma}^{T} \in H^{\infty}$.

Here $F_{\sigma}=\left(f_{\sigma(1)}, \ldots, f_{\sigma(n)}\right)$ and $G_{\sigma}=\left(g_{\sigma(1)}, \ldots, g_{\sigma(n)}\right)$.
Proof. First assume $T=0$. By Lemma 2.3, we have

$$
\sum_{j=1}^{n} H_{f_{j}} 1 \otimes H_{g_{j}}^{*} 1=0
$$

Then by Lemma 2.1, there exist $A=\left(a_{i j}\right)_{n \times n} \in \mathbb{M}_{n}$ and $\sigma \in \mathbb{S}_{n}$ such that

$$
\begin{align*}
{[A-I]\left(H_{f_{\sigma(1)}} 1, \ldots, H_{f_{\sigma(n)}} 1\right)^{T} } & =0 \tag{2.1}\\
A^{*}\left(H_{g_{\sigma(1)}}^{*} 1, \ldots, H_{g_{\sigma(n)}}^{*} 1\right)^{T} & =0 \tag{2.2}
\end{align*}
$$

It follows from (2.1) that

$$
H_{\sum_{j=1}^{n} a_{i j} f_{\sigma(j)}} 1=\sum_{j=1}^{n} a_{i j} H_{f_{\sigma(j)}} 1=H_{f_{\sigma(i)}} 1,
$$

so

$$
H_{\sum_{j=1}^{n} a_{i j} f_{\sigma_{(j)}}-f_{\sigma(i)}} 1=0
$$

for each $i=1, \ldots, n$. By Lemma 2.4, we have

$$
\sum_{j=1}^{n} a_{i j} f_{\sigma(j)}-f_{\sigma(i)} \in H^{\infty}
$$

for each i. This shows that $[A-I] F_{\sigma}^{T} \in H_{n}^{\infty}$, where $F_{\sigma}=\left(f_{\sigma(1)}, \ldots, f_{\sigma(n)}\right)$. This implies (1).

Next, using (2.2), we have

$$
H_{\sum_{i=1}^{n} a_{i j} g_{\sigma(i)}}^{*} 1=\sum_{i=1}^{n} \overline{a_{i j}} H_{g_{\sigma(i)}}^{*} 1=0
$$

for each j and hence

$$
\sum_{i=1}^{n} a_{i j} g_{\sigma(i)} \in H^{\infty}
$$

for each j by Lemma 2.4. So (2) holds.
To prove (3), let

$$
\left(h_{1}, \ldots, h_{n}\right)^{T}=[A-I] F_{\sigma}^{T} \quad \text { and } \quad\left(k_{1}, \ldots, k_{n}\right)^{T}=\bar{A}^{*} G_{\sigma}^{T} .
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{n} H_{h_{i}} T_{g_{\sigma(i)}} & =\sum_{i=1}^{n}\left[\sum_{j=1}^{n} a_{i j} H_{f_{\sigma(j)}}-H_{f_{\sigma(i)}}\right] T_{g_{\sigma(i)}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} H_{f_{\sigma(j)}} T_{g_{\sigma(i)}}-\sum_{i=1}^{n} H_{f_{\sigma(i)}} T_{g_{\sigma(i)}} \\
& =\sum_{j=1}^{n} H_{f_{\sigma(j)}} T_{\sum_{i=1}^{n} a_{i j} g_{\sigma(i)}}-\sum_{i=1}^{n} H_{f_{i}} T_{g_{i}} \\
& =\sum_{j=1}^{n} H_{f_{\sigma(j)}} T_{k_{j}}-\sum_{i=1}^{n} H_{f_{i}} T_{g_{i}}
\end{aligned}
$$

Since $h_{j} \in H^{\infty}$ and $k_{j} \in H^{\infty}$, we have $H_{h_{j}}=0$ by Lemma 2.4 and $H_{f_{\sigma(j)}} T_{k_{j}}=H_{f_{\sigma(j)} k_{j}}$ by (1.2) for each j. By the assumption

$$
\sum_{j=1}^{n} H_{f_{j}} T_{g_{j}}=0
$$

we have

$$
0=\sum_{j=1}^{n} H_{f_{\sigma(j)}} T_{k_{j}}=\sum_{j=1}^{n} H_{f_{\sigma(j)} k_{j}}=H_{\sum_{j=1}^{n} f_{\sigma(j)} k_{j}}
$$

so that $\sum_{j=1}^{n} f_{\sigma(j)} k_{j} \in H^{\infty}$ by Lemma 2.4. On the other hand, since $k_{i}=$ $\sum_{j=1}^{n} a_{j i} g_{\sigma(j)}$ for each i, we have

$$
\sum_{i=1}^{n} f_{\sigma(i)} k_{i}=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{\sigma(i)} a_{j i} g_{\sigma(j)}=\sum_{j=1}^{n} g_{\sigma(j)} \sum_{i=1}^{n} a_{j i} f_{\sigma(i)}=G_{\sigma} A F_{\sigma}^{T}
$$

from which (3) follows.
Now suppose (1)-(3) hold. Let

$$
\left(h_{1}, \ldots, h_{n}\right)^{T}=[A-I] F_{\sigma}^{T} \quad \text { and } \quad\left(k_{1}, \ldots, k_{n}\right)^{T}=\bar{A}^{*} G_{\sigma}^{T}
$$

Then $h_{j}, k_{j} \in H^{\infty}$ for each j. Hence $H_{h_{j}}=0$ and $H_{f_{\sigma(j)}} T_{k_{j}}=H_{f_{\sigma(j)} k_{j}}$ for each j. Using a similar argument to the above, we have

$$
\sum_{i=1}^{n} H_{f_{i}} T_{g_{i}}=\sum_{j=1}^{n} H_{f_{\sigma(j)} k_{j}}=H_{\sum_{j=1}^{n} f_{\sigma(j)} k_{j}}=H_{G_{\sigma} A F_{\sigma}^{T}}=0
$$

by (3). Thus we have $T=0$.
If we further specialize to the case $n=2$ in Theorem 2.5, we obtain a more concrete description in the next corollary.

Corollary 2.6. Let $f, g, h, k \in L^{\infty}$. Then $H_{f} T_{g}=H_{h} T_{k}$ on H^{2} if and only if one of the following statements holds:
(1) $f, h \in H^{\infty}$.
(2) $g, h, f g \in H^{\infty}$.
(3) $f, k, h k \in H^{\infty}$.
(4) $g, k, f g-h k \in H^{\infty}$.
(5) $f+\alpha h, k+\alpha g, h(k+\alpha g) \in H^{\infty}$ for some nonzero constant $\alpha \in \mathbb{C}$.

Proof. First suppose $H_{f} T_{g}=H_{h} T_{k}$. By Theorem 2.5 (with σ being the identity permutation without loss of generality), we have

$$
\begin{align*}
(a-1) f-b h & \in H^{\infty}, \\
c f-(d-1) h & \in H^{\infty}, \\
c k+a g & \in H^{\infty}, \tag{2.3}\\
d k+b g & \in H^{\infty}
\end{align*}
$$

for some constants a, b, c, d. If $f \in H^{\infty}$ and $b \neq 0$, then the first line above shows $h \in H^{\infty}$ and (1) holds. If $f \in H^{\infty}, b=0$ and $d \neq 0$, then the fourth line above shows $k \in H^{\infty}$. By Lemma 2.4 and $\sqrt{1.2}$, $h k \in H^{\infty}$. Thus (3) holds. If $f \in H^{\infty}$ and $b=d=0$, then the second line above shows $h \in H^{\infty}$, so (1) holds. Therefore, if $f \in H^{\infty}$, then (1) or (3) holds. Similarly, if $g \in H^{\infty}$, then (2) or (4) holds. Also, if $h \in H^{\infty}$, then (1) or (2) holds. Finally, if $k \in H^{\infty}$, then (3) or (4) holds.

Now assume f, g, h, k are not in H^{∞}. If $a-1=b=c=d-1=0$, then the third line and fourth line in (2.3) tell us that $g, k \in H^{\infty}$, which contradicts our assumption. Thus one of $a-1, b, c, d-1$ is nonzero. On the other hand, using the first two conditions in (2.3), we see that $a-1 \neq 0$ if and only if $b \neq 0$, and $c \neq 0$ if and only if $d-1 \neq 0$. Thus we have $f+\beta h \in H^{\infty}$, where $\beta=-b /(a-1)$ or $\beta=-(d-1) / c$. Also, if $a=b=c=d=0$, then the first two lines in (2.3) show that $f, h \in H^{\infty}$, which is a contradiction as well. So one of a, b, c, d is nonzero. By the same argument as above we have $k+\gamma g \in H^{\infty}$, where $\gamma=a / c$ or $\gamma=b / d$. By (2.3), we have

$$
\left(\begin{array}{cc}
a-1 & b \\
c & d-1
\end{array}\right)\binom{f}{-h} \in H_{2}^{\infty}, \quad\left(\begin{array}{ll}
c & a \\
d & b
\end{array}\right)\binom{k}{g} \in H_{2}^{\infty} .
$$

If one of the two 2×2 matrices is invertible, then $f, h \in H^{\infty}$, or $g, k \in H^{\infty}$, which is a contradiction. Thus the two matrices are not invertible so that their determinants are both zero, which implies $(a-1)(d-1)=b c=a d$ and hence $a+d=1$. Using this fact, we see that $\beta=\gamma$ for any $\beta \in$ $\{-b /(a-1),-(d-1) / c\}$ and $\gamma \in\{a / c, b / d\}$. Since $f+\beta h \in H^{\infty}$ and $k+\gamma g \in H^{\infty}$, we have $H_{f+\beta h}=0$ and $H_{h} T_{k+\gamma g}=H_{h(k+\gamma g)}$. It follows that

$$
\begin{align*}
& H_{f} T_{g}=\left(H_{f+\beta h}-\beta H_{h}\right) T_{g}=-\beta H_{h} T_{g} \\
& H_{h} T_{k}=H_{h}\left(T_{k+\gamma g}-\gamma T_{g}\right)=H_{h(k+\gamma g)}-\gamma H_{h} T_{g} \tag{2.4}
\end{align*}
$$

Since $H_{f} T_{g}=H_{h} T_{k}$ by assumption and $\beta=\gamma$, we have $H_{h(k+\gamma g)}=0$ and so $h(k+\gamma g) \in H^{\infty}$. So (5) follows with $\alpha=\beta=\gamma$.

Conversely, suppose one of the conditions (1)-(5) holds. If one of (1)-(4) holds, we have $H_{f} T_{g}=H_{h} T_{k}$ by Lemma 2.4 and (1.2). If (5) holds, (2.4) with $\alpha=\beta=\gamma$ shows that $H_{f} T_{g}=H_{h} T_{k}$.

Taking $h=k=0$ in Corollary 2.6, we obtain the following result which shows that the product of a Hankel and a Toeplitz operator can be zero only in trivial cases.

Corollary 2.7. Let $f, g \in L^{\infty}$. Then $H_{f} T_{g}=0$ on H^{2} if and only if one of the following conditions holds:
(1) $f \in H^{\infty}$.
(2) $g, f g \in H^{\infty}$.

Next we consider operators of the form $H_{f} T_{g}+T_{h} H_{k}$ and characterize when such an operator is zero.

Theorem 2.8. Let $f, g, h, k \in L^{\infty}$. Then $H_{f} T_{g}+T_{h} H_{k}=0$ on H^{2} if and only if one of the following statements holds:
(1) $f, \tilde{h}, \tilde{h} k \in H^{\infty}$.
(2) $f, k \in H^{\infty}$.
(3) $g, k, f g \in H^{\infty}$.
(4) $g, \tilde{h}, f g+\tilde{h} k \in H^{\infty}$.
(5) $f-\alpha \tilde{h}, k-\alpha g, \tilde{h} g \in H^{\infty}$ for some nonzero constant α.

Proof. First assume $H_{f} T_{g}+T_{h} H_{k}=0$. By Lemma 2.3, we have

$$
\begin{equation*}
H_{f} 1 \otimes H_{g}^{*} 1=H_{\tilde{h}} 1 \otimes H_{k}^{*} 1 \tag{2.5}
\end{equation*}
$$

If $H_{f} 1=0$, then $H_{\tilde{h}} 1=0$ or $H_{k}^{*} 1=0$, we have either $f, \tilde{h} \in H^{\infty}$ or $f, k \in H^{\infty}$. If $f, \tilde{h} \in H^{\infty}$, then $0=T_{h} H_{k}=H_{\tilde{h} k}$ by our assumption, hence $f, \tilde{h}, \tilde{h} k \in H^{\infty}$. So (1) or (2) holds. By similar arguments, we see that $H_{g}^{*} 1=0$ implies (3) or (4); $H_{\tilde{h}} 1=0$ implies (1) or (3); $H_{k}^{*} 1=0$ implies (2) or (4).

If none of $H_{f} 1, H_{g}^{*} 1, H_{\tilde{h}} 1, H_{k}^{*} 1$ is zero, then f, g, \tilde{h}, k are not in H^{∞}. By (2.5), we have $H_{f} 1=\alpha H_{\tilde{h}} 1$ and $H_{k}^{*} 1=\bar{\alpha} H_{g}^{*} 1$ for some nonzero constant α. It follows from Lemma 2.4 that $f-\alpha \tilde{h}, k-\alpha g \in H^{\infty}$. Hence

$$
\begin{align*}
& H_{f} T_{g}=\left[H_{f-\alpha \tilde{h}}+\alpha H_{\tilde{h}}\right] T_{g}=\alpha H_{\tilde{h}} T_{g}, \tag{2.6}\\
& T_{h} H_{k}=T_{h}\left[H_{k-\alpha g}+\alpha H_{g}\right]=\alpha T_{h} H_{g} .
\end{align*}
$$

Since $\alpha \neq 0$ and $H_{f} T_{g}+T_{h} H_{k}=0$ by assumption, we have $0=H_{\tilde{h}} T_{g}+$ $T_{h} H_{g}=H_{\tilde{h} g}$. So $\tilde{h} g \in H^{\infty}$ and (5) follows.

Conversely, if one of (1)-(4) holds, we have $H_{f} T_{g}+T_{h} H_{k}=0$ by Lemma 2.4 and (1.2). If we assume (5), then it follows from (2.6) that $H_{f} T_{g}+T_{h} H_{k}=$ $\alpha\left[H_{\tilde{h}} T_{g}+T_{h} H_{g}\right]=\alpha H_{\tilde{h} g}=0$.

Taking $h=-g, k=f$ in Theorem 2.8, we obtain the following corollary which coincides with the classical result of Martínez-Avendaño dealing with the commutation problem.

Corollary 2.9. Let $f, g \in L^{\infty}$. Then $H_{f} T_{g}=T_{g} H_{f}$ on H^{2} if and only if one of the following statements holds:
(1) $f \in H^{\infty}$.
(2) $g, \tilde{g} \in H^{\infty}$.
(3) $f+\alpha g, g+\tilde{g}, g \tilde{g} \in H^{\infty}$ for some nonzero constant α.
3. Compact perturbation. In this section, we investigate when is the product of Hankel operator and Toeplitz operator a compact perturbation of a Hankel or Toeplitz operator. First we introduce some notations. For each z in the unit disk D, the normalized reproducing kernel at z is

$$
k_{z}(w)=\frac{\sqrt{1-|z|^{2}}}{1-\bar{z} w}
$$

it is well known that $k_{z} \rightarrow 0$ weakly as $|z| \rightarrow 1^{-}$. The Möbius transform is denoted by

$$
\phi_{z}(w)=\frac{z-w}{1-\bar{z} w} .
$$

To prove our main theorems we will need results about Douglas algebras. A Douglas algebra is a closed subalgebra of L^{∞} which contains H^{∞}. The Gelfand space (space of nonzero multiplicative linear functionals) of the Douglas algebra B will be denoted by $M(B)$. If B is a Douglas algebra, then $M(B)$ can be identified with the set of nonzero linear functionals in $M\left(H^{\infty}\right)$ whose representing measures (on $M\left(L^{\infty}\right)$) are multiplicative on B, and we identify the function f with its Gelfand transform on $M(B)$. In particular, $M\left(H^{\infty}+C\right)=M\left(H^{\infty}\right)-D$, and a function $f \in H^{\infty}$ may be thought of as a continuous function on $M\left(H^{\infty}+C\right)$. A subset of $M\left(L^{\infty}\right)$ is called a support set if it is the support of the representing measure for a functional in $M\left(H^{\infty}+C\right)$. For more details, we refer the readers to [9], [2], [12], [14], [3], and 4].

For a function on the unit disk D and $m \in M\left(H^{\infty}+C\right)$, we use the notation $z \rightarrow m$ to mean that z converges to m in the maximal ideal space of H^{∞}, and we write $\lim _{z \rightarrow m} F(z)=0$ if for every net $\left\{z_{\alpha}\right\} \subset D$ converging to $m, \lim _{z_{\alpha} \rightarrow m} F\left(z_{\alpha}\right)=0$.

The following three lemmas are proved in [7].

Lemma 3.1. If $T: H^{2} \rightarrow H^{2}$ is a compact operator, then

$$
\lim _{|z| \rightarrow 1^{-}}\left\|T-T_{\tilde{\phi}_{z}} T T_{\bar{\phi}_{z}}\right\|=0
$$

Lemma 3.2. Suppose that $f, g \in L^{\infty}$. If $\lim _{z \rightarrow m}\left\|H_{g} k_{z}\right\|_{2}=0$, then $\lim _{z \rightarrow m}\left\|H_{g} T_{f} k_{z}\right\|_{2}=0$. If $\lim _{z \rightarrow m}\left\|H_{g}^{*} k_{\bar{z}}\right\|_{2}=0$, then $\lim _{z \rightarrow m}\left\|H_{g}^{*} T_{f} k_{\bar{z}}\right\|_{2}$ $=0$.

Lemma 3.3. A finite sum T of finite products of Toeplitz operators is a compact perturbation of a Toeplitz operator if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left\|T-T_{\phi_{z}}^{*} T T_{\phi_{z}}\right\|=0
$$

The following lemma of [10, Lemma 2.5] will be used later.
Lemma 3.4. Let $f \in L^{\infty}$ and $m \in M\left(H^{\infty}+C\right)$, and let S be the support set for m. Then $\left.\left.f\right|_{S} \in H^{\infty}\right|_{S}$ if and only if $\underline{\lim }_{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2}=0$.

A symbol mapping was defined on the Toeplitz algebra in 9]. It was extended in [1] to a contractive ${ }^{*}$-homomorphism $\sigma: T^{+} \rightarrow L^{\infty}$ on the Hankel algebra T^{+}which is generated by all Toeplitz operators and all Hankel operators. Moreover, it was shown in [1] that σ is a contractive *-homomorphism, and compact operators and finite products of Toeplitz and Hankel operators with at least one Hankel factor are both contained in $\operatorname{ker} \sigma$.

Proposition 3.5. For $f, g, h \in L^{\infty}$, let T denote $H_{f} T_{g}-H_{h}$, then T is compact if and only if

$$
\lim _{|z| \rightarrow 1^{-}}\left\|T^{*} T-T_{\phi_{z}}^{*} T^{*} T T_{\phi_{z}}\right\|=0
$$

Proof. The necessity is obvious according to Lemma 3.3, we only prove the sufficiency. We first show that $T^{*} T$ is a finite sum of finite products of Toeplitz operators:

$$
\begin{aligned}
T^{*} T & =\left(H_{f} T_{g}-H_{h}\right)^{*}\left(H_{f} T_{g}-H_{h}\right) \\
& =T_{g}^{*} H_{f}^{*} H_{f} T_{g}-T_{g}^{*} H_{f}^{*} H_{h}-H_{h}^{*} H_{f} T_{g}+H_{h}^{*} H_{h} \\
& =T_{g}^{*}\left(H_{f}^{*} H_{f}\right) T_{g}-T_{g}^{*}\left(H_{f}^{*} H_{h}\right)-\left(H_{h}^{*} H_{f}\right) T_{g}+\left(H_{h}^{*} H_{h}\right)
\end{aligned}
$$

Since the product of two Hankel operators is a semicommutator of two Toeplitz operators, $T^{*} T$ is indeed a finite sum of finite products of Toeplitz operators.

By Lemma 3.3, the assumption tells us that $T^{*} T$ is a compact perturbation of a Toeplitz operator T_{φ}, where $\varphi \in L^{\infty}$. Denote the compact perturbation operator by $K=T^{*} T-T_{\varphi}$. Note $T=H_{f} T_{g}-H_{h}$ is in the Hankel algebra T^{+}and σ is a ${ }^{*}$-homomorphism, $\sigma(T)=\sigma\left(H_{f} T_{g}\right)-\sigma\left(H_{h}\right)=0$,
$\sigma\left(T^{*} T\right)=\sigma(T)^{*} \sigma(T)=0$. So $\varphi=\sigma\left(T_{\varphi}\right)=\sigma\left(T^{*} T\right)-\sigma(K)=0$ since compact operators are contained in $\operatorname{ker} \sigma$ and this implies that $T^{*} T=K$ is a compact operator, and of course so is T.

Now we are ready to prove our main result in this section:
TheOrem 3.6. For $f, g, h \in L^{\infty}, H_{f} T_{g}$ is a compact perturbation of H_{h} if and only if for each support set S, one of the following conditions holds:
(1) $\left.f\right|_{S},\left.h\right|_{S}$ are in $\left.H^{\infty}\right|_{S}$.
(2) $\left.g\right|_{S},\left.(f g-h)\right|_{S}$ are in $\left.H^{\infty}\right|_{S}$.

Proof. First we prove the necessity part. Suppose that $H_{f} T_{g}-H_{h}$ is compact and denoted by T. Then

$$
\begin{aligned}
T_{\tilde{\phi}_{z}} T T_{\bar{\phi}_{z}} & =T_{\tilde{\phi}_{z}}\left(H_{f} T_{g}-H_{h}\right) T_{\bar{\phi}_{z}}=T_{\tilde{\phi}_{z}} H_{f} T_{g} T_{\bar{\phi}_{z}}-T_{\tilde{\phi}_{z}} H_{h} T_{\bar{\phi}_{z}} \\
& =H_{f} T_{\phi_{z}} T_{g} T_{\bar{\phi}_{z}}-H_{h} T_{\phi_{z}} T_{\bar{\phi}_{z}} \\
& =H_{f} T_{g} T_{\phi_{z}} T_{\bar{\phi}_{z}}-H_{f} H_{\tilde{\phi}_{z}} H_{g} T_{\bar{\phi}_{z}}-H_{h} T_{\phi_{z}} T_{\bar{\phi}_{z}} \\
& =\left(H_{f} T_{g}-H_{h}\right) T_{\phi_{z}} T_{\bar{\phi}_{z}}-H_{f} H_{\tilde{\phi}_{z}} H_{g} T_{\bar{\phi}_{z}} \\
& =\left(H_{f} T_{g}-H_{h}\right)\left(1-H_{\tilde{\phi}_{z}} H_{\bar{\phi}_{z}}\right)-H_{f} H_{\tilde{\phi}_{z}} H_{g} T_{\bar{\phi}_{z}} \\
& =\left(H_{f} T_{g}-H_{h}\right)-\left[\left(H_{f} T_{g}-H_{h}\right) k_{z}\right] \otimes k_{z}+\left[H_{f} k_{z}\right] \otimes\left[T_{\phi_{z}} H_{g}^{*} k_{\bar{z}}\right] \\
& =T-\left[T k_{z}\right] \otimes k_{z}+\left[H_{f} k_{z}\right] \otimes\left[T_{\phi_{z}} H_{g}^{*} k_{\bar{z}}\right] .
\end{aligned}
$$

The fourth and sixth equality follow from (1.1) and 1.2 , and the seventh equality follows from the equation $H_{\bar{\phi}_{z}}=-k_{\bar{z}} \otimes k_{z}$ (see [7, Lemma 5]). Noting that k_{z} converges weakly to zero as $|z| \rightarrow 1^{-}$, we have

$$
\lim _{|z| \rightarrow 1^{-}}\left\|\left[H_{f} k_{z}\right] \otimes\left[T_{\phi_{z}} H_{g}^{*} k_{\bar{z}}\right]\right\|=0
$$

by Lemma 3.1. Since
$\left\|\left[H_{f} k_{z}\right] \otimes\left[H_{g}^{*} k_{\bar{z}}\right]\right\|=\left\|\left[H_{f} k_{z}\right] \otimes\left[T_{\phi_{z}} H_{g}^{*} k_{\bar{z}}\right] T_{\phi_{z}}\right\| \leq\left\|\left[H_{f} k_{z}\right] \otimes\left[T_{\phi_{z}} H_{g}^{*} k_{\bar{z}}\right]\right\|\left\|T_{\phi_{z}}\right\|$, we conclude that

$$
\lim _{|z| \rightarrow 1^{-}}\left\|\left[H_{f} k_{z}\right] \otimes\left[H_{g}^{*} k_{\bar{z}}\right]\right\|=0
$$

Let m be in $M\left(H^{\infty}+C\right)$, and let S be the support set of m. By Carleson's Corona Theorem [4], there is a net z converging to m.

Suppose that $\underline{\lim }_{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2}=0$; note that this is equivalent to

$$
\lim _{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2}=0
$$

according to [10, Lemma 2.6], and by Lemma 3.4 we infer that $\left.f\right|_{S}$ is in $\left.H^{\infty}\right|_{S}$. Since T is compact,

$$
\lim _{z \rightarrow m}\left\|T k_{z}\right\|_{2}=\lim _{z \rightarrow m}\left\|H_{f} T_{g} k_{z}-H_{h} k_{z}\right\|_{2}=0
$$

gives $\lim _{z \rightarrow m}\left\|H_{h} k_{z}\right\|_{2}=0$ since $\lim _{z \rightarrow m}\left\|H_{f} T_{g} k_{z}\right\|_{2}=\lim _{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2}=0$ by Lemma 3.2. Similarly, $\left.h\right|_{S}$ is in $\left.H^{\infty}\right|_{S}$. So condition (1) holds.

Next suppose that there is a constant c such that $\underline{\lim }_{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2} \geq$ $c>0$. Then $\lim _{z \rightarrow m}\left\|H_{g} k_{z}\right\|_{2}=0$, which follows from the identity $\left\|H_{g}^{*} k_{\bar{z}}\right\|_{2}$ $=\left\|H_{g} k_{z}\right\|_{2}$ (see [7, Lemma 11]). By Lemma 3.4 again, $\left.g\right|_{S}$ is in $\left.H^{\infty}\right|_{S}$. Formula (1.2) tells us that

$$
H_{f g-h}=H_{f g}-H_{h}=H_{f} T_{g}-H_{h}+T_{\tilde{f}} H_{g}
$$

So

$$
\left\|H_{f g-h} k_{z}\right\|_{2} \leq\left\|H_{f} T_{g} k_{z}\right\|_{2}+\left\|T_{\tilde{f}} H_{g} k_{z}\right\|_{2} \rightarrow 0 \quad \text { as } z \rightarrow m
$$

Hence $\left.[f g-h]\right|_{S}$ is in $\left.H^{\infty}\right|_{S}$ and condition (2) holds. This completes the proof of the necessity part.

Next we prove the sufficiency part. By Proposition 3.5, we need only show

$$
\lim _{|z| \rightarrow 1^{-}}\left\|T^{*} T-T_{\phi_{z}}^{*} T^{*} T T_{\phi_{z}}\right\|=0
$$

By the Carleson Corona Theorem, the above is equivalent to the condition that for each $m \in M\left(H^{\infty}+C\right)$,

$$
\begin{equation*}
\lim _{z \rightarrow m}\left\|T^{*} T-T_{\phi_{z}}^{*} T^{*} T T_{\phi_{z}}\right\|=0 \tag{3.1}
\end{equation*}
$$

Let $m \in M\left(H^{\infty}+C\right)$, and S be the support set of m. By Carleson's Corona Theorem, there is a net z converging to m.

Suppose that condition (1) holds, i.e., $\left.f\right|_{S},\left.h\right|_{S}$ are in $\left.H^{\infty}\right|_{S}$. Lemma 3.4 tells us that

$$
\begin{align*}
\lim _{z \rightarrow m}\left\|H_{f}^{*} k_{\bar{z}}\right\|_{2} & =\lim _{z \rightarrow m}\left\|H_{f} k_{z}\right\|_{2}=0 \tag{3.2}\\
\lim _{z \rightarrow m}\left\|H_{h}^{*} k_{\bar{z}}\right\|_{2} & =\lim _{z \rightarrow m}\left\|H_{h} k_{z}\right\|_{2}=0 \tag{3.3}
\end{align*}
$$

By Proposition 3.5,

$$
\begin{aligned}
T T_{\phi_{z}} & =H_{f} T_{g} T_{\phi_{z}}-H_{h} T_{\phi_{z}}=H_{f} T_{\phi_{z}} T_{g}+H_{f} H_{\tilde{\phi}_{z}} H_{g}-T_{\tilde{\phi}_{z}} H_{h} \\
& =T_{\tilde{\phi}_{z}}\left(H_{f} T_{g}-H_{h}\right)-\left[H_{f} k_{z}\right] \otimes\left[H_{g}^{*} k_{\bar{z}}\right]=T_{\tilde{\phi}_{z}} T-\left[H_{f} k_{z}\right] \otimes\left[H_{g}^{*} k_{\bar{z}}\right]
\end{aligned}
$$

The second equality follows from (1.1) and (1.2), the third equality follows from the identity $H_{\tilde{\phi}_{z}}=-k_{z} \otimes k_{\bar{z}}$. Let $F_{z}=-\left[H_{f} k_{z}\right] \otimes\left[H_{g}^{*} k_{\bar{z}}\right]$. Then $T T_{\phi_{z}}=$ $T_{\tilde{\phi}_{z}} T-F_{z}$, and by $(3.2), \lim _{z \rightarrow m}\left\|F_{z}\right\|=0$. So we get

$$
\begin{aligned}
T_{\phi_{z}}^{*} T^{*} T T_{\phi_{z}} & =\left(T T_{\phi_{z}}\right)^{*}\left(T T_{\phi_{z}}\right) \\
& =T^{*} T_{\tilde{\phi}_{z}}^{*} T_{\tilde{\phi}_{z}} T+T^{*} T_{\tilde{\phi}_{z}}^{*} F_{z}+F_{z}^{*} T_{\tilde{\phi}_{z}} T+F_{z}^{*} F_{z} \\
& =T^{*} T-\left[T^{*} k_{\bar{z}}\right] \otimes\left[T^{*} k_{\bar{z}}\right]+T^{*} T_{\tilde{\phi}_{z}}^{*} F_{z}+F_{z}^{*} T_{\tilde{\phi}_{z}} T+F_{z}^{*} F_{z}
\end{aligned}
$$

The last equality comes from $T_{\tilde{\phi}_{z}}^{*} T_{\tilde{\phi}_{z}}=1-k_{\bar{z}} \otimes k_{\bar{z}}$. Combining (3.2) with (3.3) gives

$$
T^{*} k_{\bar{z}}=\left(H_{f} T_{g}-H_{h}\right)^{*} k_{\bar{z}}=T_{g}^{*} H_{f}^{*} k_{\bar{z}}-H_{h}^{*} k_{\bar{z}} \rightarrow 0
$$

as $z \rightarrow m$. Since $\|T\|<\infty$ and $\lim _{z \rightarrow m}\left\|F_{z}\right\|=0$,

$$
\lim _{z \rightarrow m}\left\|T^{*} T_{\tilde{\phi}_{z}}^{*} F_{z}+F_{z}^{*} T_{\tilde{\phi}_{z}} T+F_{z}^{*} F_{z}\right\|=0
$$

Clearly this implies (3.1).
Suppose that condition (2) holds. Lemma 3.4 tells us that

$$
\begin{align*}
\lim _{z \rightarrow m}\left\|H_{f g-h}^{*} k_{\bar{z}}\right\|_{2} & =\lim _{z \rightarrow m}\left\|H_{f g-h} k_{z}\right\|_{2}=0 \tag{3.4}\\
\lim _{z \rightarrow m}\left\|H_{g}^{*} k_{\bar{z}}\right\|_{2} & =\lim _{z \rightarrow m}\left\|H_{g} k_{z}\right\|_{2}=0 \tag{3.5}
\end{align*}
$$

Note that

$$
T=H_{f} T_{g}-H_{h}=H_{f g}-T_{\tilde{f}} H_{g}-H_{h}=H_{f g-h}-T_{\tilde{f}} H_{g}
$$

Then we have $\lim _{z \rightarrow m}\left\|F_{z}\right\|=0$ by (3.5) and

$$
\lim _{z \rightarrow m}\left\|T^{*} k_{\bar{z}}\right\|_{2}=\lim _{z \rightarrow m}\left\|H_{f g-h}^{*} k_{\bar{z}}-H_{g}^{*} T_{\tilde{f}}^{*} k_{\bar{z}}\right\|_{2}=0
$$

by (3.4) and Lemma 3.2. This implies (3.1).
Corollary 3.7. For $f, g, h \in L^{\infty}, H_{f} T_{g}$ is a compact perturbation of T_{h} if and only if $h=0$ and for each support set S, one of the following conditions holds:
(1) $\left.f\right|_{S}$ is in $\left.H^{\infty}\right|_{S}$.
(2) $\left.g\right|_{S},\left.[f g]\right|_{S}$ are in $\left.H^{\infty}\right|_{S}$.

Proof. Assume $H_{f} T_{g}=T_{h}+K$, where K is a compact operator. Then

$$
\begin{aligned}
\left(H_{f} 1 \otimes 1 T_{g}\right) T_{z} & =\left[H_{f}\left(1-T_{z} T_{\bar{z}}\right) T_{g}\right] T_{z}=H_{f} T_{g} T_{z}-T_{\bar{z}} H_{f} T_{g} \\
& =\left(T_{h}+K\right) T_{z}-T_{\bar{z}}\left(T_{h}+K\right)=T_{h(z-\bar{z})}+K T_{z}-T_{\bar{z}} K
\end{aligned}
$$

Noting that the leftmost term is a finite rank operator, we infer that $T_{h(z-\bar{z})}$ is a compact operator, which implies that $h=0$ by [16, Proposition 10.2]. By Theorem 3.6, (1) or (2) holds, proving the "only if" part. The "if" part is obvious by Theorem 3.6.
4. Finite rank perturbation. We need to introduce some notations. Let T, S be bounded linear operators on Hardy space. We write $T=S \bmod (F)$ to denote that the operator $T-S$ has finite rank. The Kronecker theorem [13] states that for $f \in L^{\infty}, H_{f}$ is of finite rank if and only if f is the sum of an analytic function h and a rational function r. Thus for a rational function $r \in L^{\infty}, H_{r}$ and $H_{\tilde{r}}$ are both finite rank operators. In fact, we will often use another form of Kronecker's theorem: If $f \in L^{\infty}$, then H_{f} has finite
rank if and only if there exists a nonzero analytic polynomial $p(z)$ such that $p f \in H^{\infty}$.

LEMMA 4.1. For $f, g \in L^{\infty}, H_{f}=T_{g} \bmod (F)$ if and only if $g=0$ and H_{f} has finite rank.

Proof. We only need to prove the "only if" part. Assume that $H_{f}=$ $T_{g}+F$, where F is a finite rank operator. Multiplying both sides by T_{z} on the right, we get $H_{f z}=H_{f} T_{z}=T_{g z}+F T_{z}$; then multiplying both sides by $T_{\bar{z}}$ on the left, we get $H_{f z}=T_{\bar{z}} H_{f}=T_{g \bar{z}}+T_{\bar{z}} F$. So $T_{g(z-\bar{z})}$ is of finite rank, which implies $g=0$ by [16, Proposition 10.2], and so H_{f} has finite rank.

Corollary 4.2. For $f, g \in L^{\infty}, H_{f}=T_{g}$ if and only if $g=0$ and f is analytic.

LEMMA 4.3. For f_{i}, g_{i}, h in $L^{\infty}, i=1, \ldots, n$, if $\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}=T_{h}$, then $h=0$ and there are constants A_{i}, B_{i} with $\sum_{i=1}^{n}\left|A_{i}\right|>0$ and $\sum_{i=1}^{n}\left|B_{i}\right|>0$ such that

$$
\sum_{i=1}^{n} A_{i} f_{i} \in H^{\infty} \quad \text { or } \quad \sum_{i=1}^{n} B_{i} \tilde{g}_{i} \in H^{\infty}
$$

Proof. $\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}=T_{h}$ implies that

$$
\begin{aligned}
T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}} 1 \otimes 1 H_{f_{i}}\right) & =T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}}\left(1-T_{z} T_{\bar{z}}\right) H_{f_{i}}\right) \\
& =T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}\right)-\sum_{i=1}^{n} T_{\bar{z}} T_{g_{i}} T_{z} T_{\bar{z}} H_{f_{i}} \\
& =T_{\bar{z}} T_{h}-T_{h} T_{z}=T_{h(\bar{z}-z)}
\end{aligned}
$$

The leftmost term is a finite rank operator, so the rightmost term $T_{h(\bar{z}-z)}$ is a finite rank Toeplitz operator, which implies it is zero, and so $h=0$. Furthermore, $\sum_{i=1}^{n} H_{f_{i}^{*}} T_{\bar{g}_{i}}=0$, and it follows from [5, Theorem 2.1] that there exist constants A_{i}, B_{i} with $\sum_{i=1}^{n}\left|A_{i}\right|>0$ and $\sum_{i=1}^{n}\left|B_{i}\right|>0$ such that

$$
\sum_{i=1}^{n} A_{i} f_{i} \in H^{\infty} \quad \text { or } \quad \sum_{i=1}^{n} B_{i} \tilde{g}_{i} \in H^{\infty}
$$

since $g \in H^{\infty}$ if and only if $g^{*} \in H^{\infty}$, and $\bar{g}^{*}=\tilde{g}$.
LEMMA 4.4. For f_{i}, g_{i}, h in $L^{\infty}, i=1, \ldots, n$, if $\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}-T_{h}$ has rank k, then $h=0$ and there are analytic polynomials $A_{i}(z), B_{i}(z)$ with $\max \left\{\operatorname{deg} A_{i}(z): 1 \leq i \leq n\right\}=k$ and $\max \left\{\operatorname{deg} B_{i}(z): 1 \leq i \leq n\right\}=k$ such that $\sum_{i=1}^{n} A_{i} f_{i} \in H^{\infty}$ or $\sum_{i=1}^{n} B_{i} \tilde{g}_{i} \in H^{\infty}$.

Proof. Assume that $\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}-T_{h}=F$, where F is an operator of rank k. We have

$$
\begin{aligned}
T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}} 1 \otimes 1 H_{f_{i}}\right) & =T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}}\left(1-T_{z} T_{\bar{z}}\right) H_{f_{i}}\right) \\
& =T_{\bar{z}}\left(\sum_{i=1}^{n} T_{g_{i}} H_{f_{i}}\right)-\sum_{i=1}^{n} T_{\bar{z}} T_{g_{i}} T_{z} T_{\bar{z}} H_{f_{i}} \\
& =T_{\bar{z}}\left(T_{h}+F\right)-\left(T_{h}+F\right) T_{z}=T_{h(\bar{z}-z)}+T_{\bar{z}} F-F T_{z}
\end{aligned}
$$

This implies $T_{h(\bar{z}-z)}$ is a finite rank Toeplitz operator, so $h=0$. Furthermore, $\sum_{i=1}^{n} H_{f_{i}^{*}}^{*} T_{\bar{g}_{i}}=F^{*}$, and it follows from [5, Theorem 2.2] that there exist analytic polynomials $A_{i}(z), B_{i}(z)$ with $\max \left\{\operatorname{deg} A_{i}(z): 1 \leq i \leq n\right\}=k$, and $\max \left\{\operatorname{deg} B_{i}(z): 1 \leq i \leq n\right\}=k$ such that $\sum_{i=1}^{n} A_{i} f_{i} \in H^{\infty}$ or $\sum_{i=1}^{n} B_{i} \tilde{g}_{i} \in H^{\infty}$.

Corollary 4.5. For $f, g, h \in L^{\infty}, T_{g} H_{f}=T_{h} \bmod (F)$ if and only if $h=0$ and one of the following conditions holds:
(1) H_{f} has finite rank.
(2) $H_{\tilde{g}}$ and $H_{f \tilde{g}}$ have finite rank.

Proof. First we prove the "only if" part. Suppose $T_{g} H_{f}=T_{h} \bmod (F)$. By Lemma 4.4, there are nonzero analytic polynomials $A(z)$ and $B(z)$ such that $A(z) f \in H^{\infty}$ or $B(z) \tilde{g} \in H^{\infty}$. If $A(z) f \in H^{\infty}$, then H_{f} has finite rank. If $B(z) \tilde{g} \in H^{\infty}$, then $H_{\tilde{g}}$ has finite rank. Because $T_{g} H_{f}=H_{f \tilde{g}}-H_{\tilde{g}} T_{f}=$ $H_{f \tilde{g}} \bmod (F)$, we have $H_{f \tilde{g}}=T_{h} \bmod (F)$, which implies $H_{f \tilde{g}}$ is a finite rank operator by Lemma 4.1.

The "if" part is easy and follows from the same argument as above.
Corollary 4.6. For $f, g, h \in L^{\infty}, T_{g} H_{f}=T_{h}$ if and only if $h=0$ and one of the following conditions holds:
(1) $f \in H^{\infty}$.
(2) $\tilde{g} \in H^{\infty}$ and $f \tilde{g} \in H^{\infty}$.

Proof. It is sufficient to prove the "only if" part since the "if" part is obvious. Suppose $T_{g} H_{f}=T_{h}$. It follows from Lemma 4.3 that $f \in H^{\infty}$ or $\tilde{g} \in H^{\infty}$. If $\tilde{g} \in H^{\infty}$, then $T_{g} H_{f}=H_{f \tilde{g}}=0$, so $f \tilde{g} \in H^{\infty}$. -

Theorem 4.7. For $f_{1}, f_{2}, g_{1}, g_{2}, h \in L^{\infty}$, we have

$$
T_{g_{1}} H_{f_{1}}+T_{g_{2}} H_{f_{2}}=T_{h} \bmod (F)
$$

if and only if $h=0$ and one of the following conditions holds:
(1) $H_{f_{1}}, H_{f_{2}}$ have finite rank.
(2) $H_{f_{1}}, H_{\tilde{g}_{2}}, H_{f_{2} \tilde{g}_{2}}$ have finite rank.
(3) $H_{\tilde{g}_{1}}, H_{f_{2}}, H_{f_{1} \tilde{g}_{1}}$ have finite rank.
(4) $H_{\tilde{g}_{1}}, H_{\tilde{g}_{2}}, H_{f_{1} \tilde{g}_{1}+f_{2} \tilde{g}_{2}}$ have finite rank.
(5) There exist nonzero analytic polynomials $A_{1}, A_{2}, B_{1}, B_{2}, R$ such that $A_{1} B_{1}+A_{2} B_{2}=0$ and that $A_{1} f_{1}+A_{2} f_{2}, B_{1} \tilde{g}_{1}+B_{2} \tilde{g}_{2}$ and $R\left[A_{2} f_{2}\left(B_{1} \tilde{g}_{1}+B_{2} \tilde{g}_{2}\right)\right]$ are analytic.
Proof. Suppose

$$
T_{g_{1}} H_{f_{1}}+T_{g_{2}} H_{f_{2}}=T_{h} \bmod (F) .
$$

By Lemma 4.4, $h=0$. So we get

$$
T_{g_{1}} H_{f_{1}}+T_{g_{2}} H_{f_{2}}=0 \bmod (F),
$$

which implies that

$$
H_{f_{1}^{*}} T_{\overline{g_{1}}}+H_{f_{2}^{*}} T_{\overline{g_{2}}}=0 \bmod (F) .
$$

It follows from [5, Theorem 4.2] that the above holds if and only if one of the conditions (1)-(5) holds.

Acknowledgements. The authors would like to thank the referees for their excellent suggestions. This research is supported by NSFC No. 11271059.

References

[1] J. Barría and P. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc. 273 (1982), 621-630.
[2] S.-Y. A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
[3] L. Carleson, The corona theorem, in: Proceedings of the 15th Scandinavian Congress (Oslo, 1968), Lecture Notes in Math. 118, Springer, New York, 1970, 121-132.
[4] L. Carleson, Interpolations by bounded analytic functions and the Corona problem, Ann. of Math. 76 (1962), 547-559.
[5] X. Ding, The finite rank perturbations of the product of Hankel and Toeplitz operators, J. Math. Anal. Appl. 337 (2008), 726-738.
[6] X. Ding and D. Zheng, Finite rank commutator of Toeplitz operators or Hankel operators, Houston J. Math. 34 (2008), 1099-1119.
[7] K. Guo and D. Zheng, Essentially commuting Hankel and Toeplitz operators, J. Funct. Anal. 201 (2003), 121-147.
[8] C. Gu and D. Zheng, Products of block Toeplitz operators, Pacific J. Math. 185 (1998), 115-148.
[9] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York and London, 1972.
[10] P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators, Pacific J. Math. 190 (1999), 87-109.
[11] R. A. Martínez-Avendaño, When do Toeplitz and Hankel operators commute?, Integral Equations Operator Theory 37 (2000), 341-349.
[12] D. Marshall, Subalgebras of L^{∞} containing H^{∞}, Acta Math. 137 (1976), 91-98.
[13] V. Peller, Hankel Operators and Their Applications, Springer Monogr. Math., Springer, New York, 2003.
[14] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
[15] D. Zheng, The distribution function inequality and products of Toeplitz operators and Hankel operators, J. Funct. Anal. 138 (1996), 477-501.
[16] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Amer. Math. Soc., Providence, 2007.

Yufeng Lu, Linghui Kong (corresponding author)
School of Mathematical Sciences
Dalian University of Technology
116024 Dalian, China
E-mail: lyfdlut@dlut.edu.cn
konglinghui@mail.dlut.edu.cn

Received June 12, 2013
Revised version November 10, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 47B35; Secondary 47B38.
 Key words and phrases: finite rank, compact perturbation, products, Toeplitz operator, Hankel operator.

