
STUDIA MATHEMATICA 220 (3) (2014)

Products of Toeplitz operators and Hankel operators

by

Yufeng Lu and Linghui Kong (Dalian)

Abstract. We first determine when the sum of products of Hankel and Toeplitz
operators is equal to zero; then we characterize when the product of a Toeplitz operator
and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz
operator and when it is a finite rank perturbation of a Toeplitz operator.

1. Introduction. Let D be the open unit disk in the complex plane and
∂D the unit circle. Let dσ be the normalized Lebesgue measure on ∂D. Let
L2 = L2(∂D, dσ) denote the space of Lebesgue square integrable functions
on the unit circle. The Hardy spaceH2 is the closed subspace of L2 consisting
of analytic functions. Let P be the orthogonal projection from L2 onto H2.
For f ∈ L∞, the Toeplitz operator Tf and the Hankel operator Hf with
symbol f are defined respectively by

Tfh = P (fh) and Hfh = P (U(fh))

for h in H2. Here U is the unitary operator on L2 defined by Uh(w) =
w̄h̃(w), where h̃(w) = h(w̄). Clearly, H∗f = Hf∗ , where f∗(w) = f̄(w̄).

The operator U maps H2 onto [H2]⊥ and has the following useful property:
UP = (I−P )U . As is well known, Hankel and Toeplitz operators are closely
related by the equations

Tfg − TfTg = Hf̃Hg,(1.1)

Hfg = HfTg + Tf̃Hg.(1.2)

The second equality implies that if g ∈ H∞, then

Tg̃Hf = Hfg = HfTg.

We refer to [5], [7], [6] for the above facts. Some more relationships be-
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tween these two classes of operators have been studied in several papers.
For the problem of commutation, Mart́ınez-Avendaño [11] showed that Hf

commutes with Tg if and only if either f ∈ H∞, or there exists a constant
λ such that g + λf is in H∞, and both g + g̃ and gg̃ are constants. A nat-
ural question is: When does the commutator [Hf , Tg] = HfTg − TgHf have
finite rank? Ding [5] answered this question and another one: When is the
product HfTg a finite rank perturbation of a Hankel operator Hh? As to the
compactness of [Hf , Tg], Guo and Zheng [7] gave a necessary and sufficient
condition.

Inspired by these results, we investigate some more relationships between
these two classes of operators. We study sums of products of Hankel and
Toeplitz operators and operators of the form HfTg + ThHk, and determine
when such operators are zero. The classical result of Mart́ınez-Avendaño
[11] is recovered as a corollary of our results. Then we characterize when
HfTg − Hh and HfTg − Th are compact and when TfHg − Th is of finite
rank.

In Section 2, we consider a class of operators of the form

n∑
j=1

HjTj ,

where each Hj is a Hankel operator and each Tj is a Toeplitz operator, and
determine when an operator of this type is zero (Theorem 2.5). We also char-
acterize when an operator of the form HfTg+ThHk is zero (Theorem 2.8). In
Section 3, we characterize when HfTg is a compact perturbation of a Hankel
or a Toeplitz operator (Theorem 3.6 and Corollary 3.7). In Section 4, we
characterize when TfHg is a finite rank perturbation of a Toeplitz operator
(Corollary 4.5).

2. Sums of products of Hankel and Toeplitz operators. In this
section, we consider operators that are sums of products of Toeplitz opera-
tors and Hankel operators and determine when such an operator is equal to
zero.

Given nonzero functions f, g, h, k ∈ H2, we write f ⊗ g for the rank-
one operator on H2 defined by f ⊗ g(h) = 〈h, g〉f . It is well known that
f ⊗ g = h⊗ k if and only if there exists a nonzero constant α ∈ C such that
f = αh and k = ᾱg. More generally, we have the following lemma which
is essentially proved in Proposition 4 of [8]. In the following, for a given
positive integer n, we let Mn be the set of all n× n matrices and Sn be the
set of all permutations of {1, . . . , n}. If A ∈Mn, we let A∗ be the conjugate
transpose of A.
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Lemma 2.1. Let fj , gj ∈ H2 for j = 1, . . . , n. Then

n∑
j=1

fj ⊗ gj = 0 on H2

if and only if there exist A ∈Mn and σ ∈ Sn such that

[A− I]


fσ(1)

...

fσ(n)

 and A∗


gσ(1)

...

gσ(n)

 = 0.

Lemma 2.2. Hz̄ = 1⊗ 1 on H2.

Proof. For f ∈ H2, let f(θ) =
∑∞

n=0 ane
inθ be the Fourier series of f .

Then

Hz̄(f) = P (U(z̄f)) = P (f̃) = f̃(0) = a0 = 〈f, 1〉 = 1⊗ 1(f).

Lemma 2.3. Let f, g ∈ L∞. Then

HfTgTz = Tz̄HfTg +Hf1⊗H∗g1,

TfHgTz = Tz̄TfHg −Hf̃1⊗H∗g1.

Proof. By Lemma 2.2 and formulas (1.1), (1.2), we have

HfTgTz = HfTzg = Hf (TzTg +Hz̄Hg) = HfTzTg +HfHz̄Hg

= HfTzTg +Hf [1⊗ 1]Hg = Tz̄HfTg +Hf1⊗H∗g1,

and

TfHgTz = TfTz̄Hg = (Tz̄Tf −Hf̃Hz̄)Hg = Tz̄TfHg −Hf̃Hz̄Hg

= Tz̄TfHg −Hf̃ [1⊗ 1]Hg = Tz̄TfHg −Hf̃1⊗H∗g1.

Lemma 2.4. For f ∈ L∞, the following statements are all equivalent:

(1) Hf1 = 0.
(2) H∗f1 = 0.
(3) Hf = 0.
(4) f ∈ H∞.

Proof. Calculate directly using the Fourier series of f .

We are now ready to prove the main result of this section. We say a
vector is in H∞n if every element of the vector is in H∞.

Theorem 2.5. Let fj , gj ∈ L∞ for j = 1, . . . , n. Then the operator
T =

∑n
j=1HfjTgj equals 0 on H2 if and only if there exist A ∈ Mn and

σ ∈ Sn such that the following three conditions hold:
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(1) [A− I]F Tσ ∈ H∞n .
(2) Ā∗GTσ ∈ H∞n .
(3) GσAF

T
σ ∈ H∞.

Here Fσ = (fσ(1), . . . , fσ(n)) and Gσ = (gσ(1), . . . , gσ(n)).

Proof. First assume T = 0. By Lemma 2.3, we have

n∑
j=1

Hfj1⊗H
∗
gj1 = 0.

Then by Lemma 2.1, there exist A = (aij)n×n ∈Mn and σ ∈ Sn such that

[A− I](Hfσ(1)1, . . . ,Hfσ(n)1)T = 0,(2.1)

A∗(H∗gσ(1)1, . . . ,H
∗
gσ(n)

1)T = 0.(2.2)

It follows from (2.1) that

H∑n
j=1 aijfσ(j)

1 =
n∑
j=1

aijHfσ(j)1 = Hfσ(i)1,

so

H∑n
j=1 aijfσ(j)−fσ(i)1 = 0

for each i = 1, . . . , n. By Lemma 2.4, we have

n∑
j=1

aijfσ(j) − fσ(i) ∈ H∞

for each i. This shows that [A− I]F Tσ ∈ H∞n , where Fσ = (fσ(1), . . . , fσ(n)).
This implies (1).

Next, using (2.2), we have

H∗∑n
i=1 aijgσ(i)

1 =

n∑
i=1

aijH
∗
gσ(i)

1 = 0

for each j and hence
n∑
i=1

aijgσ(i) ∈ H∞

for each j by Lemma 2.4. So (2) holds.

To prove (3), let

(h1, . . . , hn)T = [A− I]F Tσ and (k1, . . . , kn)T = Ā∗GTσ .
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Then
n∑
i=1

HhiTgσ(i) =
n∑
i=1

[ n∑
j=1

aijHfσ(j) −Hfσ(i)

]
Tgσ(i)

=
n∑
i=1

n∑
j=1

aijHfσ(j)Tgσ(i) −
n∑
i=1

Hfσ(i)Tgσ(i)

=
n∑
j=1

Hfσ(j)T
∑n
i=1 aijgσ(i)

−
n∑
i=1

HfiTgi

=

n∑
j=1

Hfσ(j)Tkj −
n∑
i=1

HfiTgi .

Since hj ∈ H∞ and kj ∈ H∞, we have Hhj = 0 by Lemma 2.4 and
Hfσ(j)Tkj = Hfσ(j)kj by (1.2) for each j. By the assumption

n∑
j=1

HfjTgj = 0,

we have

0 =
n∑
j=1

Hfσ(j)Tkj =
n∑
j=1

Hfσ(j)kj = H∑n
j=1 fσ(j)kj

,

so that
∑n

j=1 fσ(j)kj ∈ H∞ by Lemma 2.4. On the other hand, since ki =∑n
j=1 ajigσ(j) for each i, we have

n∑
i=1

fσ(i)ki =
n∑
i=1

n∑
j=1

fσ(i)ajigσ(j) =
n∑
j=1

gσ(j)

n∑
i=1

ajifσ(i) = GσAF
T
σ ,

from which (3) follows.
Now suppose (1)–(3) hold. Let

(h1, . . . , hn)T = [A− I]F Tσ and (k1, . . . , kn)T = Ā∗GTσ .

Then hj , kj ∈ H∞ for each j. Hence Hhj = 0 and Hfσ(j)Tkj = Hfσ(j)kj for
each j. Using a similar argument to the above, we have

n∑
i=1

HfiTgi =
n∑
j=1

Hfσ(j)kj = H∑n
j=1 fσ(j)kj

= HGσAFTσ
= 0

by (3). Thus we have T = 0.

If we further specialize to the case n = 2 in Theorem 2.5, we obtain a
more concrete description in the next corollary.

Corollary 2.6. Let f, g, h, k ∈ L∞. Then HfTg = HhTk on H2 if and
only if one of the following statements holds:
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(1) f, h ∈ H∞.
(2) g, h, fg ∈ H∞.
(3) f, k, hk ∈ H∞.
(4) g, k, fg − hk ∈ H∞.
(5) f + αh, k + αg, h(k + αg) ∈ H∞ for some nonzero constant α ∈ C.

Proof. First suppose HfTg = HhTk. By Theorem 2.5(with σ being the
identity permutation without loss of generality), we have

(a− 1)f − bh ∈ H∞,
cf − (d− 1)h ∈ H∞,

ck + ag ∈ H∞,
dk + bg ∈ H∞

(2.3)

for some constants a, b, c, d. If f ∈ H∞ and b 6= 0, then the first line above
shows h ∈ H∞ and (1) holds. If f ∈ H∞, b = 0 and d 6= 0, then the fourth
line above shows k ∈ H∞. By Lemma 2.4 and (1.2), hk ∈ H∞. Thus (3)
holds. If f ∈ H∞ and b = d = 0, then the second line above shows h ∈ H∞,
so (1) holds. Therefore, if f ∈ H∞, then (1) or (3) holds. Similarly, if
g ∈ H∞, then (2) or (4) holds. Also, if h ∈ H∞, then (1) or (2) holds.
Finally, if k ∈ H∞, then (3) or (4) holds.

Now assume f, g, h, k are not in H∞. If a−1 = b = c = d−1 = 0, then the
third line and fourth line in (2.3) tell us that g, k ∈ H∞, which contradicts
our assumption. Thus one of a− 1, b, c, d− 1 is nonzero. On the other hand,
using the first two conditions in (2.3), we see that a − 1 6= 0 if and only if
b 6= 0, and c 6= 0 if and only if d − 1 6= 0. Thus we have f + βh ∈ H∞,
where β = −b/(a − 1) or β = −(d − 1)/c. Also, if a = b = c = d = 0, then
the first two lines in (2.3) show that f, h ∈ H∞, which is a contradiction as
well. So one of a, b, c, d is nonzero. By the same argument as above we have
k + γg ∈ H∞, where γ = a/c or γ = b/d. By (2.3), we have(

a− 1 b

c d− 1

)(
f

−h

)
∈ H∞2 ,

(
c a

d b

)(
k

g

)
∈ H∞2 .

If one of the two 2× 2 matrices is invertible, then f, h ∈ H∞, or g, k ∈ H∞,
which is a contradiction. Thus the two matrices are not invertible so that
their determinants are both zero, which implies (a − 1)(d − 1) = bc = ad
and hence a + d = 1. Using this fact, we see that β = γ for any β ∈
{−b/(a − 1),−(d − 1)/c} and γ ∈ {a/c, b/d}. Since f + βh ∈ H∞ and
k + γg ∈ H∞, we have Hf+βh = 0 and HhTk+γg = Hh(k+γg). It follows
that

HfTg = (Hf+βh − βHh)Tg = −βHhTg,

HhTk = Hh(Tk+γg − γTg) = Hh(k+γg) − γHhTg.
(2.4)
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Since HfTg = HhTk by assumption and β = γ, we have Hh(k+γg) = 0 and
so h(k + γg) ∈ H∞. So (5) follows with α = β = γ.

Conversely, suppose one of the conditions (1)–(5) holds. If one of (1)–(4)
holds, we have HfTg = HhTk by Lemma 2.4 and (1.2). If (5) holds, (2.4)
with α = β = γ shows that HfTg = HhTk.

Taking h = k = 0 in Corollary 2.6, we obtain the following result which
shows that the product of a Hankel and a Toeplitz operator can be zero only
in trivial cases.

Corollary 2.7. Let f, g ∈ L∞. Then HfTg = 0 on H2 if and only if
one of the following conditions holds:

(1) f ∈ H∞.
(2) g, fg ∈ H∞.

Next we consider operators of the form HfTg + ThHk and characterize
when such an operator is zero.

Theorem 2.8. Let f, g, h, k ∈ L∞. Then HfTg + ThHk = 0 on H2 if
and only if one of the following statements holds:

(1) f, h̃, h̃k ∈ H∞.
(2) f, k ∈ H∞.
(3) g, k, fg ∈ H∞.
(4) g, h̃, fg + h̃k ∈ H∞.

(5) f − αh̃, k − αg, h̃g ∈ H∞ for some nonzero constant α.

Proof. First assume HfTg + ThHk = 0. By Lemma 2.3, we have

(2.5) Hf1⊗H∗g1 = Hh̃1⊗H∗k1.

If Hf1 = 0, then Hh̃1 = 0 or H∗k1 = 0, we have either f, h̃ ∈ H∞

or f, k ∈ H∞. If f, h̃ ∈ H∞, then 0 = ThHk = Hh̃k by our assumption,

hence f, h̃, h̃k ∈ H∞. So (1) or (2) holds. By similar arguments, we see that
H∗g1 = 0 implies (3) or (4); Hh̃1 = 0 implies (1) or (3); H∗k1 = 0 implies (2)
or (4).

If none of Hf1, H∗g1, Hh̃1, H∗k1 is zero, then f, g, h̃, k are not in H∞. By
(2.5), we have Hf1 = αHh̃1 and H∗k1 = ᾱH∗g1 for some nonzero constant α.

It follows from Lemma 2.4 that f − αh̃, k − αg ∈ H∞. Hence

HfTg = [Hf−αh̃ + αHh̃]Tg = αHh̃Tg,

ThHk = Th[Hk−αg + αHg] = αThHg.
(2.6)

Since α 6= 0 and HfTg + ThHk = 0 by assumption, we have 0 = Hh̃Tg +

ThHg = Hh̃g. So h̃g ∈ H∞ and (5) follows.
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Conversely, if one of (1)–(4) holds, we have HfTg +ThHk = 0 by Lemma
2.4 and (1.2). If we assume (5), then it follows from (2.6) that HfTg+ThHk =
α[Hh̃Tg + ThHg] = αHh̃g = 0.

Taking h = −g, k = f in Theorem 2.8, we obtain the following corollary
which coincides with the classical result of Mart́ınez-Avendaño dealing with
the commutation problem.

Corollary 2.9. Let f, g ∈ L∞. Then HfTg = TgHf on H2 if and only
if one of the following statements holds:

(1) f ∈ H∞.
(2) g, g̃ ∈ H∞.
(3) f + αg, g + g̃, gg̃ ∈ H∞ for some nonzero constant α.

3. Compact perturbation. In this section, we investigate when is the
product of Hankel operator and Toeplitz operator a compact perturbation
of a Hankel or Toeplitz operator. First we introduce some notations. For
each z in the unit disk D, the normalized reproducing kernel at z is

kz(w) =

√
1− |z|2

1− z̄w
,

it is well known that kz → 0 weakly as |z| → 1−. The Möbius transform is
denoted by

φz(w) =
z − w
1− z̄w

.

To prove our main theorems we will need results about Douglas algebras.
A Douglas algebra is a closed subalgebra of L∞ which contains H∞. The
Gelfand space (space of nonzero multiplicative linear functionals) of the
Douglas algebra B will be denoted by M(B). If B is a Douglas algebra,
then M(B) can be identified with the set of nonzero linear functionals in
M(H∞) whose representing measures (on M(L∞)) are multiplicative on B,
and we identify the function f with its Gelfand transform on M(B). In
particular, M(H∞ + C) = M(H∞) − D, and a function f ∈ H∞ may be
thought of as a continuous function on M(H∞ + C). A subset of M(L∞)
is called a support set if it is the support of the representing measure for a
functional in M(H∞ +C). For more details, we refer the readers to [9], [2],
[12], [14], [3], and [4].

For a function on the unit disk D and m ∈ M(H∞ + C), we use the
notation z → m to mean that z converges to m in the maximal ideal space
of H∞, and we write limz→m F (z) = 0 if for every net {zα} ⊂ D converging
to m, limzα→m F (zα) = 0.

The following three lemmas are proved in [7].
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Lemma 3.1. If T : H2 → H2 is a compact operator, then

lim
|z|→1−

‖T − Tφ̃zTTφ̄z‖ = 0.

Lemma 3.2. Suppose that f, g ∈ L∞. If limz→m ‖Hgkz‖2 = 0, then
limz→m ‖HgTfkz‖2 = 0. If limz→m ‖H∗gkz̄‖2 = 0, then limz→m ‖H∗gTfkz̄‖2
= 0.

Lemma 3.3. A finite sum T of finite products of Toeplitz operators is a
compact perturbation of a Toeplitz operator if and only if

lim
|z|→1−

‖T − T ∗φzTTφz‖ = 0.

The following lemma of [10, Lemma 2.5] will be used later.

Lemma 3.4. Let f ∈ L∞ and m ∈M(H∞+C), and let S be the support
set for m. Then f |S ∈ H∞|S if and only if limz→m‖Hfkz‖2 = 0.

A symbol mapping was defined on the Toeplitz algebra in [9]. It was
extended in [1] to a contractive ∗-homomorphism σ : T+ → L∞ on the
Hankel algebra T+ which is generated by all Toeplitz operators and all
Hankel operators. Moreover, it was shown in [1] that σ is a contractive
*-homomorphism, and compact operators and finite products of Toeplitz
and Hankel operators with at least one Hankel factor are both contained in
kerσ.

Proposition 3.5. For f, g, h ∈ L∞, let T denote HfTg −Hh, then T is
compact if and only if

lim
|z|→1−

‖T ∗T − T ∗φzT
∗TTφz‖ = 0.

Proof. The necessity is obvious according to Lemma 3.3; we only prove
the sufficiency. We first show that T ∗T is a finite sum of finite products of
Toeplitz operators:

T ∗T = (HfTg −Hh)∗(HfTg −Hh)

= T ∗gH
∗
fHfTg − T ∗gH∗fHh −H∗hHfTg +H∗hHh

= T ∗g (H∗fHf )Tg − T ∗g (H∗fHh)− (H∗hHf )Tg + (H∗hHh).

Since the product of two Hankel operators is a semicommutator of two
Toeplitz operators, T ∗T is indeed a finite sum of finite products of Toeplitz
operators.

By Lemma 3.3, the assumption tells us that T ∗T is a compact perturba-
tion of a Toeplitz operator Tϕ, where ϕ ∈ L∞. Denote the compact pertur-
bation operator by K = T ∗T − Tϕ. Note T = HfTg −Hh is in the Hankel
algebra T+ and σ is a ∗-homomorphism, σ(T ) = σ(HfTg) − σ(Hh) = 0,
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σ(T ∗T ) = σ(T )∗σ(T ) = 0. So ϕ = σ(Tϕ) = σ(T ∗T ) − σ(K) = 0 since com-
pact operators are contained in kerσ and this implies that T ∗T = K is a
compact operator, and of course so is T .

Now we are ready to prove our main result in this section:

Theorem 3.6. For f, g, h ∈ L∞, HfTg is a compact perturbation of Hh

if and only if for each support set S, one of the following conditions holds:

(1) f |S , h|S are in H∞|S.
(2) g|S , (fg − h)|S are in H∞|S.

Proof. First we prove the necessity part. Suppose that HfTg − Hh is
compact and denoted by T . Then

Tφ̃zTTφ̄z = Tφ̃z(HfTg −Hh)Tφ̄z = Tφ̃zHfTgTφ̄z − Tφ̃zHhTφ̄z

= HfTφzTgTφ̄z −HhTφzTφ̄z

= HfTgTφzTφ̄z −HfHφ̃z
HgTφ̄z −HhTφzTφ̄z

= (HfTg −Hh)TφzTφ̄z −HfHφ̃z
HgTφ̄z

= (HfTg −Hh)(1−Hφ̃z
Hφ̄z)−HfHφ̃z

HgTφ̄z

= (HfTg −Hh)− [(HfTg −Hh)kz]⊗ kz + [Hfkz]⊗ [TφzH
∗
gkz̄]

= T − [Tkz]⊗ kz + [Hfkz]⊗ [TφzH
∗
gkz̄].

The fourth and sixth equality follow from (1.1) and (1.2), and the seventh
equality follows from the equation Hφ̄z = −kz̄ ⊗ kz (see [7, Lemma 5]).

Noting that kz converges weakly to zero as |z| → 1−, we have

lim
|z|→1−

‖[Hfkz]⊗ [TφzH
∗
gkz̄]‖ = 0

by Lemma 3.1. Since

‖[Hfkz]⊗[H∗gkz̄]‖ = ‖[Hfkz]⊗[TφzH
∗
gkz̄]Tφz‖ ≤ ‖[Hfkz]⊗[TφzH

∗
gkz̄]‖ ‖Tφz‖,

we conclude that

lim
|z|→1−

‖[Hfkz]⊗ [H∗gkz̄]‖ = 0.

Let m be in M(H∞+C), and let S be the support set of m. By Carleson’s
Corona Theorem [4], there is a net z converging to m.

Suppose that limz→m‖Hfkz‖2 = 0; note that this is equivalent to

lim
z→m

‖Hfkz‖2 = 0

according to [10, Lemma 2.6], and by Lemma 3.4 we infer that f |S is in H∞|S .
Since T is compact,

lim
z→m

‖Tkz‖2 = lim
z→m

‖HfTgkz −Hhkz‖2 = 0
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gives limz→m ‖Hhkz‖2 = 0 since limz→m ‖HfTgkz‖2 = limz→m ‖Hfkz‖2 = 0
by Lemma 3.2. Similarly, h|S is in H∞|S . So condition (1) holds.

Next suppose that there is a constant c such that limz→m‖Hfkz‖2 ≥
c > 0. Then limz→m ‖Hgkz‖2 = 0, which follows from the identity ‖H∗gkz̄‖2
= ‖Hgkz‖2 (see [7, Lemma 11]). By Lemma 3.4 again, g|S is in H∞|S . For-
mula (1.2) tells us that

Hfg−h = Hfg −Hh = HfTg −Hh + Tf̃Hg.

So

‖Hfg−hkz‖2 ≤ ‖HfTgkz‖2 + ‖Tf̃Hgkz‖2 → 0 as z → m.

Hence [fg − h]|S is in H∞|S and condition (2) holds. This completes the
proof of the necessity part.

Next we prove the sufficiency part. By Proposition 3.5, we need only
show

lim
|z|→1−

‖T ∗T − T ∗φzT
∗TTφz‖ = 0.

By the Carleson Corona Theorem, the above is equivalent to the condition
that for each m ∈M(H∞ + C),

(3.1) lim
z→m

‖T ∗T − T ∗φzT
∗TTφz‖ = 0.

Let m ∈M(H∞+C), and S be the support set of m. By Carleson’s Corona
Theorem, there is a net z converging to m.

Suppose that condition (1) holds, i.e., f |S , h|S are in H∞|S . Lemma 3.4
tells us that

lim
z→m

‖H∗fkz̄‖2 = lim
z→m

‖Hfkz‖2 = 0,(3.2)

lim
z→m

‖H∗hkz̄‖2 = lim
z→m

‖Hhkz‖2 = 0.(3.3)

By Proposition 3.5,

TTφz = HfTgTφz −HhTφz = HfTφzTg +HfHφ̃z
Hg − Tφ̃zHh

= Tφ̃z(HfTg −Hh)− [Hfkz]⊗ [H∗gkz̄] = Tφ̃zT − [Hfkz]⊗ [H∗gkz̄].

The second equality follows from (1.1) and (1.2), the third equality follows
from the identity Hφ̃z

= −kz⊗kz̄. Let Fz = −[Hfkz]⊗ [H∗gkz̄]. Then TTφz =

Tφ̃zT − Fz, and by (3.2), limz→m ‖Fz‖ = 0. So we get

T ∗φzT
∗TTφz = (TTφz)

∗(TTφz)

= T ∗T ∗
φ̃z
Tφ̃zT + T ∗T ∗

φ̃z
Fz + F ∗z Tφ̃zT + F ∗z Fz

= T ∗T − [T ∗kz̄]⊗ [T ∗kz̄] + T ∗T ∗
φ̃z
Fz + F ∗z Tφ̃zT + F ∗z Fz.
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The last equality comes from T ∗
φ̃z
Tφ̃z = 1 − kz̄ ⊗ kz̄. Combining (3.2) with

(3.3) gives

T ∗kz̄ = (HfTg −Hh)∗kz̄ = T ∗gH
∗
fkz̄ −H∗hkz̄ → 0

as z → m. Since ‖T‖ <∞ and limz→m ‖Fz‖ = 0,

lim
z→m

‖T ∗T ∗
φ̃z
Fz + F ∗z Tφ̃zT + F ∗z Fz‖ = 0.

Clearly this implies (3.1).

Suppose that condition (2) holds. Lemma 3.4 tells us that

lim
z→m

‖H∗fg−hkz̄‖2 = lim
z→m

‖Hfg−hkz‖2 = 0,(3.4)

lim
z→m

‖H∗gkz̄‖2 = lim
z→m

‖Hgkz‖2 = 0.(3.5)

Note that

T = HfTg −Hh = Hfg − Tf̃Hg −Hh = Hfg−h − Tf̃Hg.

Then we have limz→m ‖Fz‖ = 0 by (3.5) and

lim
z→m

‖T ∗kz̄‖2 = lim
z→m

‖H∗fg−hkz̄ −H∗gT ∗f̃ kz̄‖2 = 0

by (3.4) and Lemma 3.2. This implies (3.1).

Corollary 3.7. For f, g, h ∈ L∞, HfTg is a compact perturbation of
Th if and only if h = 0 and for each support set S, one of the following
conditions holds:

(1) f |S is in H∞|S.
(2) g|S , [fg]|S are in H∞|S.

Proof. Assume HfTg = Th +K, where K is a compact operator. Then

(Hf1⊗ 1Tg)Tz = [Hf (1− TzTz̄)Tg]Tz = HfTgTz − Tz̄HfTg

= (Th +K)Tz − Tz̄(Th +K) = Th(z−z̄) +KTz − Tz̄K.
Noting that the leftmost term is a finite rank operator, we infer that Th(z−z̄)
is a compact operator, which implies that h = 0 by [16, Proposition 10.2].
By Theorem 3.6, (1) or (2) holds, proving the “only if” part. The “if” part
is obvious by Theorem 3.6.

4.Finite rankperturbation. We need to introduce some notations. Let
T, S be bounded linear operators on Hardy space. We write T =S mod (F )
to denote that the operator T − S has finite rank. The Kronecker theorem
[13] states that for f ∈ L∞, Hf is of finite rank if and only if f is the sum of
an analytic function h and a rational function r. Thus for a rational function
r ∈ L∞, Hr and Hr̃ are both finite rank operators. In fact, we will often
use another form of Kronecker’s theorem: If f ∈ L∞, then Hf has finite
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rank if and only if there exists a nonzero analytic polynomial p(z) such that
pf ∈ H∞.

Lemma 4.1. For f, g ∈ L∞, Hf = Tg mod (F ) if and only if g = 0 and
Hf has finite rank.

Proof. We only need to prove the “only if” part. Assume that Hf =
Tg + F , where F is a finite rank operator. Multiplying both sides by Tz on
the right, we get Hfz = HfTz = Tgz + FTz; then multiplying both sides by
Tz̄ on the left, we get Hfz = Tz̄Hf = Tgz̄ + Tz̄F . So Tg(z−z̄) is of finite rank,
which implies g = 0 by [16, Proposition 10.2], and so Hf has finite rank.

Corollary 4.2. For f, g ∈ L∞, Hf = Tg if and only if g = 0 and f is
analytic.

Lemma 4.3. For fi, gi, h in L∞, i = 1, . . . , n, if
∑n

i=1 TgiHfi = Th, then
h = 0 and there are constants Ai, Bi with

∑n
i=1 |Ai| > 0 and

∑n
i=1 |Bi| > 0

such that
n∑
i=1

Aifi ∈ H∞ or
n∑
i=1

Big̃i ∈ H∞.

Proof.
∑n

i=1 TgiHfi = Th implies that

Tz̄

( n∑
i=1

Tgi1⊗ 1Hfi

)
= Tz̄

( n∑
i=1

Tgi(1− TzTz̄)Hfi

)
= Tz̄

( n∑
i=1

TgiHfi

)
−

n∑
i=1

Tz̄TgiTzTz̄Hfi

= Tz̄Th − ThTz = Th(z̄−z).

The leftmost term is a finite rank operator, so the rightmost term Th(z̄−z)
is a finite rank Toeplitz operator, which implies it is zero, and so h = 0.
Furthermore,

∑n
i=1Hf∗i

Tḡi = 0, and it follows from [5, Theorem 2.1] that
there exist constants Ai, Bi with

∑n
i=1 |Ai| > 0 and

∑n
i=1 |Bi| > 0 such

that
n∑
i=1

Aifi ∈ H∞ or

n∑
i=1

Big̃i ∈ H∞

since g ∈ H∞ if and only if g∗ ∈ H∞, and ḡ∗ = g̃.

Lemma 4.4. For fi, gi, h in L∞, i = 1, . . . , n, if
∑n

i=1 TgiHfi − Th has
rank k, then h = 0 and there are analytic polynomials Ai(z), Bi(z) with
max{degAi(z) : 1 ≤ i ≤ n} = k and max{degBi(z) : 1 ≤ i ≤ n} = k such
that

∑n
i=1Aifi ∈ H∞ or

∑n
i=1Big̃i ∈ H∞.
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Proof. Assume that
∑n

i=1 TgiHfi − Th = F , where F is an operator of
rank k. We have

Tz̄

( n∑
i=1

Tgi1⊗ 1Hfi

)
= Tz̄

( n∑
i=1

Tgi(1− TzTz̄)Hfi

)
= Tz̄

( n∑
i=1

TgiHfi

)
−

n∑
i=1

Tz̄TgiTzTz̄Hfi

= Tz̄(Th + F )− (Th + F )Tz = Th(z̄−z) + Tz̄F − FTz.
This implies Th(z̄−z) is a finite rank Toeplitz operator, so h = 0. Further-

more,
∑n

i=1Hf∗i
Tḡi = F ∗, and it follows from [5, Theorem 2.2] that there ex-

ist analytic polynomials Ai(z), Bi(z) with max{degAi(z) : 1 ≤ i ≤ n} = k,
and max{degBi(z) : 1 ≤ i ≤ n} = k such that

∑n
i=1Aifi ∈ H∞ or∑n

i=1Big̃i ∈ H∞.

Corollary 4.5. For f, g, h ∈ L∞, TgHf = Th mod (F ) if and only if
h = 0 and one of the following conditions holds:

(1) Hf has finite rank.
(2) Hg̃ and Hfg̃ have finite rank.

Proof. First we prove the “only if” part. Suppose TgHf = Th mod (F ).
By Lemma 4.4, there are nonzero analytic polynomials A(z) and B(z) such
that A(z)f ∈ H∞ or B(z)g̃ ∈ H∞. If A(z)f ∈ H∞, then Hf has finite rank.
If B(z)g̃ ∈ H∞, then Hg̃ has finite rank. Because TgHf = Hfg̃ − Hg̃Tf =
Hfg̃ mod (F ), we have Hfg̃ = Th mod (F ), which implies Hfg̃ is a finite
rank operator by Lemma 4.1.

The “if” part is easy and follows from the same argument as above.

Corollary 4.6. For f, g, h ∈ L∞, TgHf = Th if and only if h = 0 and
one of the following conditions holds:

(1) f ∈ H∞.
(2) g̃ ∈ H∞ and fg̃ ∈ H∞.

Proof. It is sufficient to prove the “only if” part since the “if” part is
obvious. Suppose TgHf = Th. It follows from Lemma 4.3 that f ∈ H∞ or
g̃ ∈ H∞. If g̃ ∈ H∞, then TgHf = Hfg̃ = 0, so fg̃ ∈ H∞.

Theorem 4.7. For f1, f2, g1, g2, h ∈ L∞, we have

Tg1Hf1 + Tg2Hf2 = Th mod (F )

if and only if h = 0 and one of the following conditions holds:

(1) Hf1 , Hf2 have finite rank.
(2) Hf1 , Hg̃2 , Hf2g̃2 have finite rank.
(3) Hg̃1 , Hf2 , Hf1g̃1 have finite rank.
(4) Hg̃1 , Hg̃2 , Hf1g̃1+f2g̃2 have finite rank.
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(5) There exist nonzero analytic polynomials A1, A2, B1, B2, R such that
A1B1 + A2B2 = 0 and that A1f1 + A2f2, B1g̃1 + B2g̃2 and
R[A2f2(B1g̃1 +B2g̃2)] are analytic.

Proof. Suppose

Tg1Hf1 + Tg2Hf2 = Th mod (F ).

By Lemma 4.4, h = 0. So we get

Tg1Hf1 + Tg2Hf2 = 0 mod (F ),

which implies that

Hf∗1
Tḡ1 +Hf∗2

Tḡ2 = 0 mod (F ).

It follows from [5, Theorem 4.2] that the above holds if and only if one of
the conditions (1)–(5) holds.
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