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Unconditionality of orthogonal spline systems in H'
by

GEGHAM GEVORKYAN (Yerevan), ANNA KAMONT (Gdansk),
KAREN KERYAN (Yerevan) and MARKUS PASSENBRUNNER (Linz)

Abstract. We give a simple geometric characterization of knot sequences for which
the corresponding orthonormal spline system of arbitrary order k is an unconditional basis
in the atomic Hardy space H'[0,1].

1. Introduction. This paper belongs to a series of papers studying
properties of orthonormal spline systems with arbitrary knots. The detailed
study of such systems started in the 1960’s with Z. Ciesielski’s papers [2] 3]
on properties of the Franklin system, which is an orthonormal system con-
sisting of continuous piecewise linear functions with dyadic knots. Next,
the 1972 results by J. Domsta [11] made it possible to extend the study to
orthonormal spline systems of higher order—and higher smoothness—with
dyadic knots. These systems occurred to be bases or unconditional bases in
several function spaces like LP[0,1], 1 < p < oo, C]0,1], HP[0,1], 0 < p < 1,
Sobolev spaces WP*[0, 1]; they also give characterizations of BMO and VMO
spaces, and various spaces of smooth functions (Holder functions, Zygmund
class, Besov spaces). One should mention here the work of Z. Ciesielski,
J. Domsta, S. V. Bochkarev, P. Wojtaszczyk, S.-Y. A. Chang, P. Sjolin,
J.-O. Strémberg (for more detailed references see e.g. [13], [15], [16]). Nowa-
days, results of this kind are known for wavelets.

The extension of these results to orthonormal spline systems with ar-
bitrary knots began with the case of piecewise linear systems, i.e. general
Franklin systems, or orthonormal spline systems of order 2. This was pos-
sible due to precise estimates of the inverse of the Gram matrix of piecewise
linear B-spline bases with arbitrary knots, as presented in [19]. First results
in this direction were obtained in [5] and [I3]. We would like to mention
here two results by G. G. Gevorkyan and A. Kamont. First, each general
Franklin system is an unconditional basis in LP[0, 1] for 1 < p < oo (see [14]).

2010 Mathematics Subject Classification: 42C10, 46E30.
Key words and phrases: orthonormal spline system, unconditional basis, H' spaces.

DOI: 10.4064/sm226-2-2 [123] © Instytut Matematyczny PAN, 2015



124 G. Gevorkyan et al.

Second, there is a simple geometric characterization of knot sequences for
which the corresponding general Franklin system is a basis or an uncon-
ditional basis in H'[0,1] (see [15]). For both of these results, an essential
tool is the association of a so called characteristic interval to each general
Franklin function f,,.

The case of splines of higher order is much more difficult. The exis-
tence of a uniform bound for L*°-norms of orthogonal projections on spline
spaces of order k with arbitrary order (i.e. a bound depending on k, but
independent of the sequence of knots)—was a long-standing problem known
as C. de Boor’s conjecture (1973) (cf. [8]). The case of k = 2 was settled
earlier by Z. Ciesielski [2], the cases k = 3,4 were solved by C. de Boor him-
self (1968, 1981) in [7, 9], but the positive answer in the general case was
given by A. Yu. Shadrin [22] only in 2001. A much simplified and shorter
proof was recently obtained by M. v. Golitschek (2014) in [24]. An imme-
diate consequence of A.Yu. Shadrin’s result is that if a sequence of knots is
dense in [0, 1], then the corresponding orthonormal spline system of order
k is a basis in LP[0,1], 1 < p < oo, and in C[0,1]. Moreover, Z. Ciesielski
[4] obtained several consequences of Shadrin’s result, one of them being
an estimate for the inverse of the B-spline Gram matrix. Using this esti-
mate, G. G. Gevorkyan and A. Kamont [16] extended a part of their result
from [15] to orthonormal spline systems of arbitrary order and obtained a
characterization of knot sequences for which the corresponding orthonormal
spline system of order k is a basis in H'[0,1]. Further extension required
more precise estimates for the inverse of B-spline Gram matrices, of the
type known for the piecewise linear case. Such estimates were obtained re-
cently by M. Passenbrunner and A. Yu. Shadrin [21]. Using these estimates,
M. Passenbrunner [20] proved that for each sequence of knots, the corre-
sponding orthonormal spline system of order k is an unconditional basis in
LP0,1], 1 < p < 0.

The main result of the present paper is a characterization of those knot
sequences for which the corresponding orthonormal spline system of order &
is an unconditional basis in H[0, 1].

The paper is organized as follows. In Section [2] we give the necessary
definitions and we formulate the main result of this paper, Theorem
In Sections [3| and {4 we recall or prove several facts needed to establish our
results. In particular, in Section [4] we recall precise pointwise estimates for
orthonormal spline systems with arbitrary knots, the associated characteris-
tic intervals and some combinatorial facts for characteristic intervals. Then
Section [5| contains some auxiliary results, and the proof of Theorem is
given in Section [6
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The results contained in this paper were obtained independently by two
teams, G. Gevorkyan & K. Keryan and A. Kamont & M. Passenbrunner at
the same time, so we have decided to produce a joint paper.

2. Definitions and the main result. Let £ > 2 be an integer. In
this work, we are concerned with orthonormal spline systems of order k

with arbitrary partitions. We let T = (¢,)2%, be a dense sequence of
points in the open unit interval (0,1) such that each point occurs at most
k times. Moreover, define tg := 0 and t; := 1. Such point sequences are

called k-admissible. For —k +2 < n <1, let ST(Lk) be the space of polyno-
mials of order n + k — 1 (or degree n + k — 2) on the interval [0,1] and
( f,gk));:_ k4o be the collection of orthonormal polynomials in L? = L?0,1]
such that the degree of f,gk) isn+k—2. For n > 2, let 7, be the ordered
sequence of points consisting of the grid points (tj);?zo repeated according
to their multiplicities and where the knots 0 and 1 have multiplicity k,
ie.,

Tn = (0 =Tpl="""=Tnk < Tnk+l

< S Tpptk-1 < Ttk = 0 = Tpnt2k—1 = 1).

In that case, we also define Sflk) to be the space of polynomial splines of or-
der k with grid points 7,. For each n > 2, the space Sgi)l has codimension 1

in S,(Lk) , and therefore there exists f,(Lk) € ST(lk) orthonormal to 87(1]1)1. Observe

that fT(Lk) is unique up to sign.

DEFINITION 2.1. The system of functions (fék))f:7k+2 is called the or-

thonormal spline system of order k corresponding to the sequence (t,)pe .

We will frequently omit the parameter k and write f, and S, instead of
f,gk) and S,(lk) , respectively.

Note that the case k = 2 corresponds to orthonormal systems of piecewise
linear functions, i.e. general Franklin systems.

We are interested in characterizing sequences 7 of knots such that the
system (fék))f:7k+2 is an unconditional basis in H' = H'[0,1]. By H! =
H'[0,1] we mean the atomic Hardy space on [0,1] (see [6]). A function
a:[0,1] — R is called an atom if either a = 1 or there exists an interval I"
such that:

(i) suppa C I,
(@) llalo < 71,
(i) §,a(z)de = a(z)dz = 0.
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Then, by definition, H! consists of all functions f with a representation

00
f = Z CnQn
n=1

for some atoms (a,)22; and real scalars (c,)22; such that > 7 |¢,] < 0.
The space H' becomes a Banach space under the norm

[e's)
£l = inf > Jenl,
n=1

where the inf is taken over all atomic representations Y ¢pa, of f.

To formulate our result, we need to introduce some regularity conditions
for a sequence T.

Forn>2,/<kandk—/¢+4+1<i<n+k—1, we define D;ﬁ to be the
interval [7,i, T ite)-

DEFINITION 2.2. Let ¢ < k and (t,)2, be an (-admissible (and therefore
k-admissible) point sequence. This sequence is called ¢-regular with param-
eter v > 1 if

D,
% < DY 1<AUDY),  nz2k—f+1<i<n+k-2.

In other words, (t,) is ¢-regular if there is a uniform finite bound v > 1
such that for all n, the ratios of the lengths of neighboring supports of
B-spline functions (cf. Section of order /¢ in the grid 7, are bounded
by 7.

The following characterization for ( fék)) to be a basis in H! is the main
result of [16]:

THEOREM 2.3 ([16]). Let k > 1 and let (t,) be a k-admissible sequence
of knots in [0, 1] with the corresponding orthonormal spline system (f,(Lk)) of
order k. Then (fék)) is a basis in H' if and only if (t,) is k-reqular with
some parameter vy > 1,

In this paper, we prove a characterization for ( f,(f:)) to be an uncondi-
tional basis in H'. The main result of our paper is the following:

THEOREM 2.4. Let (t,) be a k-admissible sequence of points. Then the
corresponding orthonormal spline system ( fT(Lk)) s an unconditional basis in
H' if and only if (t,) is (k — 1)-reqular with some parameter v > 1.

Let us note that in case k = 2, i.e. for general Franklin systems, both The-
orems and [2.4) were obtained by G. G. Gevorkyan and A. Kamont [15].
(In the terminology of the current paper, strong regularity from [15] is
1-regularity, and strong regularity for pairs from [I5] is 2-regularity.)
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The proof of Theorem [2:4] follows the same general scheme as the proof
of Theorem 2.2 in [15]. In Section [5] we introduce four conditions (A)—(D) for
series with respect to orthonormal spline systems of order k corresponding
to a k-admissible sequence of points. Then we study relations between these
conditions under various regularity assumptions on the underlying sequence
of points. Finally, we prove Theorem [2.4] in Section [6]

3. Preliminaries. The parameter £ > 2 will always be used for the
order of the underlying polynomials or splines. We use the notation A(t) ~
B(t) to indicate the existence of two constants c¢1, ca > 0 such that ¢; B(t) <
A(t) < eaB(t) for all ¢, where t denotes all implicit and explicit dependencies
that the expressions A and B might have. If the constants c1, co depend on
an additional parameter p, we write A(t) ~, B(t). Correspondingly, we use
the symbols <, 2, S,, 2p- For a subset E of the real line, we denote by
|E| its Lebesgue measure and by 1g the characteristic function of E. If
f: 2 — R is a real valued function and A is a real parameter, we write

[f >N ={we 2: f(w) >}

3.1. Properties of regular sequences of points. The following lem-
ma describes geometric decay of intervals in regular sequences (recall the

0

notation Dn,z = [Tn,iaTn,i-i-Z]):

LEMMA 3.1. Let (t,) be a k-admissible sequence of points that is (-reqular
for some 1 < £ < k with parameter v and let D;Ll)’“ DD DﬁLQ)Z iy D€ 0
strictly decreasing sequence of sets defined above. Then

’ ngmge’ — 1+7£’ n1,l1’

Proof. We set V; = D(e_)-_ for 1 < 5 < 2¢. Then, by definition, V;

nj,
contains £ 4 1 grid points from T, and at least 3¢ grid points of 7y,,. As a
(0)

consequence, there exists an interval Dy, for some m that satisfies

int(DY) NVa)=0, DY v, dist(DY) Vo) =0.

n2¢,m n2¢,m nag,m?

The ¢-regularity of (t,) now implies
Vael <A IDG, il < A (IVA] = Vi),

o Vael < 1 + =L ]Vl\, which proves the assertion of the lemma. =

3.2. Properties of B-spline functions. We define (Ng?)?"rlk ! to be
the collection of B-spline functions of order k corresponding to the parti-
tion 7,. Those functions are normalized so that they form a partition of
unity, i.e. Z"Jrk ! N(k)( ) = 1 for all x € [0,1]. Associated to this basis,
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there exists a biorthogonal basis of S,,, denoted by (N (k)*)?:ﬁk ~1If the pa-

n,t
rameters k and n are clear from the context, we also denote those functions

by (Ni)™F=1 and (V)™= respectively.
We will need the following well known formula for the derivative of a

nt+k—1 (k) then

linear combination of B-spline functions: if g = ) Pl N7

nt+k—1 (k—1)
(31) S = =13 (= ay)
. . vl J— |D(k_1)|
Jj=2 n,J

We now recall an elementary property of polynomials.

PROPOSITION 3.2. Let 0 < p < 1. Let I be an interval and A C I be a
subset of I with |A| > p|I|. Then, for every polynomial Q of order k on I,

max |Q(t)] Spk supIQ( )| and  {|Q(t)] dt S, S [Q(#)] dt.
1

We recall a few important results on B-splines (/V;) and their dual func-
tions (INV}¥).

PROPOSITION 3.3. Let1<p<oc andg=3 """ a;N;, where (N;)14} !
are the B-splines of order k corresponding to the partition T,. Then

(3:2) laj| Sk 15PNl ey, 1<i<n+k—1,
where J; is a subinterval [Ty i, Tnit+1] of [Tnjs Tnj+k) of mazimal length. Fur-
thermore,
n+k—1 N
33 gl (3 la?IDB) " = 1wy DO
j=1
Moreover, if h = ZnJrk Yb; N7, then

n+k—1
k) 1—p) /P k) n
(34) Il Sk (0 aPDE) T = 11y DN
j=1

The inequalites (3.2)) and (3.3)) are Lemmas 4.1 and 4.2 in [10, Chapter 5],
respectively. Inequality (3.4)) is a consequence of Shadrin’s theorem [22] that

the orthogonal projection onto Sy(Lk is bounded on L*° independently of n

and Ty,. For a deduction of (3.4) from this result, see [4, Property P.7].
n+k—1

i1 of the Gram matrix

We next consider estimates for the inverse (b;;);
((N;, N; >)?jk1 . Later, we will need a special property of this matrix, of
being checkerboard, i.e.,

(3.5) (=1)"b;; >0 for all i, 5.
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This is a simple consequence of the total positivity of the Gram matrix (cf.
[7, 18]). Moreover, we need the lower estimate for b; ;,

(3.6) \fog!_l Sk big

This is a consequence of the total positivity of the B-spline Gram matrix,
the L2-stability of B-splines and the following lemma:

LEMMA 3.4 ([20]). Let C = (Cij)ijl be a symmetric positive definite

matriz. Then for (d;) = C~! we have

n
i,j=1
—1 .

c; <dy, 1<i1<n.

3.3. Some results for orthonormal spline systems. We now recall
two results concerning orthonormal spline series.

THEOREM 3.5 ([21]). Let (fn)sl ;.o be the orthonormal spline system
of order k corresponding to an arbitrary k-admissible point sequence (t,)52.
Then, for every f € L' = L'[0,1], the series Yo ol fs fa) fn converges
to f almost everywhere.

Let f € LP = LP[0, 1] for some 1 < p < co. Since the orthonormal spline
system (fn)n>_k2 is a basis in LP, we can write f = > >° 5 an fn. Based
on this expansion, we define the square function Pf:=(3_0" ;. |an fr]?)1/?
and the mazimal function Sf := sup,,|>, <, anfn|. Moreover, given a
measurable function g, we denote by Mg the Hardy-Littlewood maximal

function of g defined as
Mg(w) := sup 1|7 {g(1)| dt,
I>x I

where the supremum is taken over all intervals I containing x. The connec-
tion between the maximal function S f and the Hardy—Littlewood maximal
function is given by the following result:

TuroreM 3.6 ([21). If f € L', then
Sf(t) Sk MF(),  te[0,1].

4. Properties of orthogonal spline functions and characteristic
intervals

4.1. Estimates for f,. This section concerns the calculation and esti-
mation of one explicit orthonormal spline function fék) for fixed k € N and
n > 2 induced by a k-admissible sequence (t,,)32,. Most of the results are
taken from [20].

Here, we change our notation slightly. We fix n and let ip with k + 1 <
ip < n+k—1 be such that 7,,_1 equals 7,, with the point 7;, removed. In the
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points of the partition 7, we omit the parameter n, and thus 7, is given by
7;:(0:7'1:...:7—k<7-k+1 S"'S’rio
S S Tpk-1 < Tppk = 0 = Tpy2k—1 = 1)

We denote by (N; : 1 <1i<n+k—1) the B-spline functions corresponding
to T,.

An (unnormalized) orthogonal spline function g € St

) that is orthogonal

to Sflk_)l, as calculated in [20], is given by

20 20 n+k—1
(4.1) g= > aiNj= > > ajbuly,
Jj=to—k j=io—k (=1

where (bjg)?ﬁ”l_l is the inverse of the Gram matrix ((Vj, Ng))?jfl_l and
(4.2)
= L T
e 2 (] 225) v
t—ig—k1 TR TSN Ty TR T
We remark that the sequence () alternates in sign, and since the matrix
(bjg)?—;:kl_ 1is checkerboard, the B-spline coefficients of ¢, that is,

10

(4.3) wy = Z ajbje, 1<t<n+k-1,
J=to—k
satisfy
io io
(4.4) ‘ 3 ajbjg‘z 3 Jagbil, 1<j<n+k-L
j=io—k j=io—k

In the definition below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [7;, 7;41] and lies close
to the newly inserted point 7;,. The choice of this interval is crucial for

proving important properties of the system ( fék))zosz 4o~ This approach

has its origins in [I4], where it is proved that general Franklin systems are
unconditional bases in LP, 1 < p < oo.

DEerFINITION 4.1. Let 7,,7,-1 be as above and 7;, be the new point
in 7, that is not present in 7,_1. We define the characteristic interval J,
corresponding to the pair (T, Tn—1) as follows.
(1) Let
A(O)::{'—k<'<'; LTkl <2 mi }
to—k<j<io: |l ]l 2 min |[re, 7ot
be the set of all j for which the support of the B-spline function N;
is approximately minimal. Observe that A is nonempty.
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(2) Define

A = { ic A9 a.] = }
j o] = max o]
For any fixed index j(@ e AM) et JO) .= [Tj(o),Tj(0)+k].
(3) The interval J(© can now be written as the union of k grid intervals
k—1
JO) — U [Tj©@ 405 Tjo 4o41]  With 7@ as above.

=0
We define the characteristic interval J, to be one of the above k
intervals that has maximal length.

A few clarifying comments are in order. Roughly speaking, we first take
the B-spline support [7;,7;4x] including the new point 7;, with minimal
length and then we choose as J,, the largest grid point interval in [7;, 7]
This definition guarantees the concentration of f, on J, in terms of the
LP-norm (cf. Lemma and the exponential decay of f, away from J,
(cf. Lemma , which are crucial for further investigations. An important
ingredient in the proof of Lemma [4.3]is Proposition which justifies why
we choose the largest grid point interval as J,,. Further important properties
of the collection (J,) of characteristic intervals are that they form a nested
family of sets and for a subsequence of decreasing characteristic intervals,
their lengths decay geometrically (cf. Lemma .

Next we remark that the constant 2 in step (1) of Definition could
also be an arbitrary number C' > 1, but C' = 1 is not allowed. This is in
contrast to the definition of characteristic intervals in [14] for piecewise linear
orthogonal functions (k = 2), where precisely C' = 1 is chosen, step (2) is
omitted and j(© is an arbitrary index in A©).

At first glance, it might seem natural to carry over the same definition to
arbitrary spline orders k, but at a certain point in the proof of Theorem
below, we estimate a o) by the constant €' —1 from below, which has to be
strictly greater than zero in order to establish . Since Theorem is
also used in the proofs of both Lemmas and [4.4] this is the reason for
a different definition of characteristic intervals, in particular for step (2) of
Definition (4.1

THEOREM 4.2 ([20]). With the above definition (4.3)) of wy for 1 < ¢ <
n+k—1 and with 5 given in Definition

(4.5) lw;o | Zk bj jo-

LEMMA 4.3 ([20]). Let Ty, Tn—1 be as above and g be the function given
in (&.1). Then f, = g/||gll2 is the L?-normalized orthogonal spline function
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corresponding to (Tpn, Tn—1) and

1fall o)~k W fnllp ~k [ Tal /P72 o | T P llgllp, 1< p < o0,

where Jy, is the characteristic interval associated to (Tp, Tn—1)-

We denote by d,,(z) the number of points in 7, between x and .J,, count-
ing endpoints of J,,. Correspondingly, for an interval V' C [0, 1], we denote
by d,, (V) the number of points in 7,, between V and J,, counting endpoints
of both J, and V.

LeMMmA 4.4 ([20]). Let Ty, Tn—1 be as above, g = Z?if_l w;N; be the

function in (4.1) with (wj)?if_l as in (4.3), and f, = g/|lglla. Then there
exists a constant 0 < q < 1 that depends only on k such that

(4.6)
qdn(Tj)

|Jn| + dist(supp N;, Jn) + \Dﬁ,j

lw;l Sk foralll<j<n-+k-—1.

Moreover, if x < inf J,, we have

4.7 < Zid /e 1<p<
Similarly, for x > sup Jy,
qdn(a:)|Jn|1/2

| T | + dist(z, J,)) =1/

(4.8) I frll op (1) Sk ( 1<p<oo.

4.2. Combinatorics of characteristic intervals. Next, we recall a
combinatorial result about the relative positions of different characteristic
intervals:

Lemma 4.5 ([20]). Let z,y € (tn)22, with x < y. Then there exists a
constant Fy, only depending on k such that

Ny := Card{n tJn C [‘T?y]a |Jn‘ > |[3§‘7y]|/2} < Fk7
where card £ denotes the cardinality of the set E.

Similarly to [14] and [I5], we need the following estimate involving char-
acteristic intervals and orthonormal spline functions:

LEMMA 4.6. Let (t,) be a k-admissible point sequence in [0,1] and let

(fr)n>—k+2 be the corresponding orthonormal spline system of order k. Then,
for each interval V = [, 8] C [0, 1],

Sl @l dt S VI

n: JJ,CV \%4
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Once we know the estimates for orthonormal spline functions as in
Lemma [4.4] and the basic combinatorial result for their characteristic in-
tervals, i.e. Lemma this result follows by the same argument that was
used in the proof of Lemma 4.6 in [14], so we skip its proof.

Instead of Lemma 3.4 of [15], we will use the following:

LEMMA 4.7. Let (t,)°, be a k-admissible knot sequence that is (k—1)-
reqular, and let A = D(k 1) for some m and i. For £ >0, let

N(A):={n:card(ANT,) =k, J, C A},
M(A L) :={n:d,(A) =4, card(ANT,) >k, |J, N A| =0},

where in both definitions we count the points in AN T, including multiplic-
itres. Then

1 ’Jn| 2
19) —= > |l Sk 1, > <o (0+1)2.
neN(A) neM(A,L)

Proof. For every n € N(A), there are only the k — 1 possibilities pW

m,i’

. Dg,)ljrkf2 for J, and by Lemma each interval Dfn?j, J=1,...,0+
k — 2, occurs at most F}, times as a characteristic interval. This implies the

first inequality in .

To prove the second, assume that each J,,, n € M(A,{), lies to the right
of A, since the other case is handled similarly. The argument is split into two
parts depending on the value of ¢, beginning with ¢ < k. In that case, for

ne M(A,L), let Jn/ be the unique interval determined by the conditions
sup JV2 = sup J,,,  |JY?| = |Jal/2.

Since dj,(A) = ¢ is constant, we group the intervals J,, into packets, where
all intervals in one packet have the same left endpoint and maximal intervals
from different packets are disjoint (up to possibly one point). By Lemma
each t € [0, 1] belongs to at most Fj, intervals Jp, /2 The (k — 1)-regularity
and ¢ < k now imply |J,| Sk, |A] and dist(A, J,,) Sk |A] forn € M(A, 1),
and thus every interval J, with n € M (A, /) is a subset of a fixed interval
whose length is comparable to |A|. Putting these things together, we obtain

| ] 1 2
Z dlst(Jn,A)+\A]<’A‘ Z ’Jn|_m Z SdeSk,«/l,

neEM(A,L) neEM(A,L) nEM(AL) y1/2

which completes the case of £ < k.
Next, assume ¢ > k 4+ 1 and define (Lj);-";l as the strictly decreasing
sequence of all sets L that satisfy

L= foi_l) and supL =supA
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for some n and 7. Moreover, set
M;(A0) :={n e M(A,¥) : card(L; N Typ) = k},

i.e., L; is a union of £ — 1 grid point intervals in the grid 7,. Then, since
|A| + dist(Jp, A) 2 |A| + dist(t, A) for t € T2 by (k — 1)-regularity,

> I =D DI dt.
i (A0 dist(Jy,, A) + | 4| nedy (A ) ji/2 dist(t, A) + |A]

If n € M;(A,l) we get, again due to (k — 1)-regularity,
inf JY/2 > inf J, > 7R Lj| 4 sup A,

and
sup J/2 <inf J, + |J,| < Cyy*|Lj| + sup A

for some constant Cy, only depending on k. Combining this with Lemma [1.5]
/2

which implies that each point ¢ belongs to at most F}, intervals J% , we get
1 Cuy*IL; |+ A 1
4.10 dt < —ds.
(4.10) Z S dist(t,A) + |4~ S s °
neM;(AL) j1/2 YRIL; |+ A

Next we will show that the above integration intervals can intersect for < ¢
indices j. Let jo > j1, so that L; D Lj,, and write jo = j1 + 2kr + t with
t <2k — 1. Then, by Lemma [3.1

Ck7€|Lj2| < Ck'yele1+2kr| < Ck'7£77r|L]'1|7

where n = 7*71/(1 + 4*71) < 1. If now r > Cj £ for a suitable constant
Ck, depending only on k and -y, we have

Ck’YE‘L]é‘ < ’Y?k‘Lh"

Thus, each point s in the integral in (4.10]) for some j belongs to at most
Oy~ intervals [y7F|L;| + |A|, Cxv*|L;| + |A|] where j is varying. So by
summing over j we conclude

n < Oyt ~ds < Op 2.
2. dist(Jn, A) + |A] = k7 ) S <Gy
neM(A,L) PaY

This completes the analysis of the case £ > k + 1, and the proof of the
lemma.

5. Four conditions on spline series and their relations. Let (¢,)
be a k-admissible sequence of knots with the corresponding orthonormal
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spline system (fy,)n>_k+2. For a sequence (an)n>—_k+2 of coeflicients, let

e 9 o)\ 1/2 U
P .= ( Z anfn) and S := mrzn?1§(+2‘ Z anfn‘-
n=—k+2 n=—k+2

If f € L', we denote by Pf and Sf the respective functions P and S cor-
responding to the coefficient sequence a,, = (f, f,). Consider the following
conditions:

(A) Pe L.

(B) The series Y o> ;5 an fn converges unconditionally in L'.

(C) SeLt.

(D) There exists a function f € H' such that a, = (f, fn).
We will discuss relations between those four conditions and prove the impli-
cations indicated in the diagram below; some results need regularity condi-
tions on (), which we also indicate.

Proposition [5.2}
supc || 2 enanfulliSkllPllL
(A) ¢ ” (B)
A N\ NPIssupe |3 enan full1,
R Proposition [5.1
=
S
] <
By
8=
L=
=R
8:
af
o .
ey
n
-
|
=
(D) < (C)

" kereg. =111 Sk ISl
Proposition

For orthonormal spline systems with dyadic knots, relations (and equiv-
alences) of these conditions have been studied by several authors, also in the
case p < 1 (see e.g. [23] 1, 12]). For general Franklin systems corresponding
to arbitrary sequences of knots, relations of these conditions were discussed
in [I5] (and earlier in [I3], also for p < 1, but for a restricted class of point
sequences). Below, we follow the approach of [15], adapted to the case of
spline orthonormal systems of order k.

We begin with the implication (B)=-(A), which is a consequence of
Khinchin’s inequality:

PROPOSITION 5.1 ((B)=(A)). Let (t,) be a k-admissible sequence of
knots with the corresponding general orthonormal spline system (fy), and



136 G. Gevorkyan et al.

let (an) be a sequence of coefficients. If the series Y 02 o anfyn converges
unconditionally in L', then P € L*. Moreover,

> e,

n=—k+2

[Pl < sup
ee{-1,1}%

Next, we investigate the implications (A)=-(B) and (A)=-(C). Once we
know the estimates and combinatorial results of Sections 3| and 4, the proof
is the same as in [I5, proof of Proposition 4.3], so we just state the result.

PROPOSITION 5.2 ((A)=-(B) and (A)=(C)). Let (t,) be a k-admissible
sequence of knots and let (a,,) be a sequence of coefficients such that P € L'.
Then S € L' and > anf, converges unconditionally in L'; moreover,

oo
sup Z Enln fn

56{_171}2 n=—k+2
Next we discuss (D)=(A).
PROPOSITION 5.3 ((D)=-(A)). Let (t,) be a k-admissible point sequence
that is (k — 1)-regular with parameter ~y. Then there exists a constant Cj, 5,
depending only on k and -, such that for each atom ¢,
1Poll1 < Chy-
Consequently, if f € H', then

IPfllr < Crpllf L

Before we proceed to the proof, let us remark that essentially the same
arguments give a direct proof of (D)=-(C), under the same assumption of
(k — 1)-regularity of (¢,), and moreover

ISFllL < Crpllf 1l

We do not present it here, since we have the implications (D)=-(A) under
the assumption of (k — 1)-regularity and (A)=-(C) under the assumption of
k-admissibility only. Note that Proposition below shows that without
the assumption of (k — 1)-regularity of the point sequence, the implications
(D)=(A) and (D)=(C) need not be true.

Proof of Proposition . Let ¢ be an atom with 8(1] ¢(u) du = 0 and let
I' = [a, B] be an interval such that supp ¢ C I" and sup |¢| < |I'|~!. Define
np = max{n : card(7,NI") < k—1}, where in the maximum, we also count
multiplicities of knots. It will be shown that

P11, [[Padlls Sk 1,

Po=( Y af2)" amd po=( Y af?)

n<np n>nr

Sk 1Pl and ISy Sk (1P

where
1/2
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First, we consider P; and prove the stronger inequality
D anl I fallh Sky 1
n<np
where a, = (¢, fn). For each n < np, we define I}, , as the unique closed

—1)

interval Dgfj with minimal j such that

(k—=1)

a < min Dn,j+1'

We note that
Fnl,oc 2 an,a for ny < ng,

and, by (k — 1)-regularity,
| I,

Let gn = Z;H'lk 1 w; N, (k]) be the unnormalized orthogonal spline function
as in and with the coefficients (w;) as in (4.3)). For £ € I', we have (cf.

(3-1) )

|wj| + |wj—1]
(5. (6 5 3
- )
where we sum over those j such that I'Nsupp N;j . FﬂD k 2 # (. By
(k — 1)-regularity, all lengths ]D(k | in this summation are comparable to
|Is,|- Moreover, by (4.6),
dn(Tn,j)
q J
gl S ———
|J’+ ISt( n]’ )+| n,j|
Again by (k — 1)-regularity, for j in (5.1),
k—1)
D 2y T,
. k
dist(DS"), Jn) + D) 2 dlst(Jn, Tno) + Dol

Combining the above inequalities, we estimate the right hand side in ([5.1))
further and get, with the notation I, := I}, o,

/ < 1 qdn(Ih)
190 (O] Sk D] || + dist(Jn, In) + | T|

As a consequence, for every T € I,

lanl = | § SOLFalt) = fu(r)] dt| < |
r

(5.2)

Suplfn( )t —r|dt
IFI

IFI | T |1/ 2 g (Tn)
TVNLu| || + dist(Jp, In) + | Tl

Let Ay D -+ D Ag be the collection of all different intervals appearing as I,
for n < np. By Lemma we have some geometric decay in the measure

Sk 1T al 2 sup g, (€)] S
ger



138 G. Gevorkyan et al.

of A;. Now fix A; and £ > 0 and consider indices n < np such that I, = A;
and d,(I,) = ¢. By the last display and Lemma

1| |Jn’qe

<

ant Wl S 2] 7T+ Qe 2) 718
and thus Lemma [£.7) implies

I
S leal Ul S (64 1P

n: Dp=A;,dn(In)=¢

Now, summing over ¢ and then over i (recall that |A;| decays like a geometric
progression by Lemma and |A;| 2 || since n < nr) yields

Z aul lfally St 1

n<np
This implies the desired inequality ||Pi¢||1 Sk 1 for the first part of Pg.

Next, we look at P,¢ and define V' to be the smallest interval whose

endpoints in 7,,.+1 and which contains I'. Moreover, V is defined to be the
smallest interval with endpoints in 7,41 and such that V contains k points
in 7p,+1 to the left of I" and as well £ points in 7y, 41 to the right of I". We
observe that due to (k — 1)-regularity and the fact that I" contains at least
k points from 7,41,

|V| ~ky ’V| ~kry |F|>

(5.3) ! _ _
(VAV) N [0,inf I ~g (VA V) N [sup I3 1|~y [V

First, we consider the integral of P>¢ over V and obtain by the Cauchy—
Schwarz inequality
| |1 /2
| Pagp(t) dt < |[13]J2]l6]l2 < T Sk 1.
1%
It remains to estimate Svc P2¢( ) dt. Since for n > np, the endpoints of

V are in Ty, either we have J, C V or J, is to the right of V, or J, is to
the left of V. If J,, C V, then

full o 1l
T

lanl = | § () (1) | <
r

and therefore, by Lemma and (5.3)),
1
Yoo anl V@) dt S I D 1T 1 fa(t)] dt

n: JnC17, n>nr ye n:JnC‘~/ Ve

V]
<, - <
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Now, let J,, be to the right of XN/; the case of J, to the left of V is
considered similarly. By (4.7) for p = oo,
dn V)‘J |1/2
mn n dt n .

This inequality, Lemma and the fact that dist(V, J, ) 2k dist(V, J,) +
V] (cf. (5.3)) allow us to deduce

dn (V)
g V] Ty
<
E lan| | frllt Sky Z dist(V, J,,) + V|

n>np ~ n>np _
Jp totheright of V Jn totheright of V

Note that V' can be a union of k — 1, k or k + 1 intervals from 7, ,41;
therefore, let V' be a union of k — 1 grid intervals from 7y,,.41, with right
endpoint of VT coinciding with the right endpoint of V. As J, is to the
right of V, we have d,,(V) = d,(VT), dist(V, J,) = dist(V*, J,,) and—by
(k — 1)-regularity—| V| ~  |[VT|, which implies

O CCCARRND et w1
n>nr dist(V, Jn) + [V] ™~ 7 n>nr dist(V*, Jn) + [VH]
Jn, to theright of V Jn, to theright of V

Finally, we employ Lemma [£.7] to conclude

< 0 ’ n
PO G RS D L D DR TG AR

n>nr _ =0 n>npr
Jn, totheright of V/ dn(VT)=¢ N
Jp totheright of V
(9]
< (+1)2%¢" <1
Sk p_(E+1)7¢ Sk L.
=0

To conclude the proof, note that if f € H* and f = >°°_, ¢yuébyy, is an
atomic decomposition of f, then (f, fr) = > o7 ¢m(dm, fn), and Pf(t) <
2 om=1 |cm|Pém(t). =

Finally, we discuss (C)=-(D).

ProprosITION 5.4 ((C)=(D)). Let (t,) be a k-admissible sequence of

knots in [0, 1] which is k-regular with parameter vy and let (a,) be a sequence
of coefficients such that S = sup,, ‘ Y on<m anfn‘ € L'. Then there exists a

function f € H' with a, = (f, f.) for each n. Moreover,
[l Shey 15512
Proof. As S € L', there is f € L' such that f = an—k+2 an frn with

convergence in L!. Indeed, this is a consequence of the relative weak com-
pactness of uniformly integrable subsets in L' and the basis property of (f;,)
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in L'. Thus, we need only show that f € H!, and this is done by finding a
suitable atomic decomposition of f.
We define Ey = By = [0, 1] and, for r > 1,

E,=[S>27, B,=[Mlg >,

where M denotes the Hardy-Littlewood maximal function and 0 < ¢, <
1/2 is a small constant only depending on k and 7 which is chosen according
to a few restrictions that will be given during the proof. We note that

INE
M]lET(t)zsupu, t €10,1],
it |
where the supremum is taken over all intervals containing ¢t. Since M is of
weak type (1,1), we have |B,| Sg~ |E|. As S € L, it follows that |E,| — 0
and hence |B;| — 0 as r — oo. Now, decompose the open set B, into a

countable union of disjoint open intervals,
Br = U Fr,m
K

where for fixed r, no two intervals I, have a common endpoint and the
above equality is up to a measure zero set (each open set of real numbers can
be decomposed into a countable union of open intervals, but it can happen
that two intervals have the same endpoint; in that case, we collect those two
intervals into one I ;). This can be achieved by taking as I, the collection
of level sets of positive measure of the function ¢ — [[0,¢] N BE|.

Moreover, observe that if I} ¢ is one of the intervals in the decomposi-
tion of B,1, then there is an interval I ,; in the decomposition of B, such
that FT_J'_L& C Fr,n'

Based on this decomposition, we define the following functions for r» > 0:

[, t € By,
1
gr(t) := T |§f@ym t € Iy
el

TR

Observe that f = go+ Y o (gr+1 — gr) in L' and g,11 — g- = 0 on BS. As
a consequence,

S gr-i—l(t) dt = S gr+1 (t) dt + S gr+1 (t) dt
Ik Fy-,KﬂB$+1 Iy xNBry1
= | rma+ > | reyde
Fr‘,mmB$+1 E:Fr+1,§CFr,N Fr+1,§

= | fwdr= | g.(t)d.

Fr,m Fr,m
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The main step of the proof is to show that
(5.4) l9-(t)| < Cry2", ae. tel0,1],

for some constant C} 4 only depending on k and . Once this inequality is
proved, we take ¢pg =1, 179 = S[l) f(u) du and

(gr-‘rl - g"'):ﬂ‘FT,n
Ck772r|Fr7,{| ’

¢r,n = Nrx = Ck,'yzryrr,n’

and observe that f = nodo + Y, .. NrxPrx is the desired atomic decomposi-

tion of f since
D < iy D 21wl = Cicy Y 2By
kK K T
Sk 27 1E SIS
T

Thus it remains to prove inequality .

To do so, we first assume ¢ € BS. Additionally, assume that ¢ is such that
the series ) anfn(t) converges to f(t) and t is not in (¢,). By Theorem
this holds for a.e. € [0,1]. We fix m and let V,,, be the maximal interval
where the function Sy, := ), ... anfn is a polynomial of order £ and that
contains ¢t. Then V,,, ¢ B, and since V,, is an interval containing ¢,

Vi N EZ 2 (1= k) [Vinl = [Vin| /2.

Since |Sy,| < 2" on E¢, the above display and Proposition imply that
|Sm| Sk 2" on V,,, and in particular |S,,(¢)| < 2". Now, Sy, (t) — f(t) as
m — oo by the assumptions on ¢, and thus

lg-(B)] = [f ()] <k 2"

This concludes the proof of in the case of t € Bf.

Next, we fix x and consider g, on I" := [, 5] := I .. Let np be the first
index such that there are k£ + 1 points from 7,,. contained in I, i.e., there
exists a support DS;)Z of a B-spline function of order k in the grid 7,,, that
is contained in I'. Additionally, we define

Up = [Tnni—kﬂ—nr,i]a Wo == [anyi-i-k’T”Fvi‘*‘zk]'

Note that if @ € 7y,,., then « is a common endpoint of Uy and I", otherwise
is an interior point of Up. Similarly, if 5 € 7,,., then ( is a common endpoint
of Wy and I', otherwise [ is an interior point of Wy. By k-regularity of
(tn), we have max(|Uo|,|Wo|) Sk |I'|- We first estimate the part Sp :=
> n<ny @nfn and show that [Sp| Sk, 27 on I'. Observe that on A := Up U
I’'UWy, Sr can be represented as a linear combination of B-splines (IV;) on
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the grid 7, of the form

i+-2k—1

Sp(t)=h(t):= > biN;(t),

j=i—2k—+1

for some coefficients (b;). For j = i —2k +1,...,i+ 2k — 1, let J; be a
maximal interval of supp N; and observe that due to k-regularity, |J;| ~p
’F’ ~kyy |Supph|.

If we assume that max;, |Sr| > Cy2", where C}, is the constant of Propo-
sition[3.2]for p = 1/2, then Proposition[3.2)implies that |Sy| > 2" on a subset
I; of J; with measure > |.J;|/2. Hence

lsupph N E,| > |J; N Ey| > |Jj|/2 2k, |supp h|.

We choose the constant ¢, in the definition of B, sufficiently small to
guarantee that this last inequality implies supph C B,. This contradicts
the choice of I', which implies that our assumption max, [Sr| > Cy2" is
not true and thus

max |Sp| < O, j=i—2k+1,..i+2k -1
J

By local stability of B-splines, i.e., inequality (3.2)) in Proposition this
implies
;] Sk 27, d=i—2k+ 1,042k 1,

and so |Sp| <k 2" on A. This means

(5.5) VISrl e 271,
r

which is inequality for the part Sp.

In order to estimate the remaining part, we inductively define two se-
quences (us, Us)i>0 and (ws, Ws)s>0 consisting of integers and intervals. Set
ug = wo = np and inductively define usy1 to be the first n > wug such that
t, € Us. Moreover, define U1 to be the B-spline support D, . ix in the

grid Ty, ,, where 7 is minimal such that Dgz) NI # (). Similarly, we define
w41 to be the first n > w;g such that ¢, € W, and Wy as the B-spline sup-

port Dq(li)ﬂ,i in the grid 7., ,, where 7 is maximal such that D1(uks)+1,i NI # 0.
It can easily be seen that this construction implies Ug11 C Ug, W1 C Wi
and a € U, B € Wy for all s > 0, or more precisely: if a € Ty, then « is
either a common endpoint of Ug and I, or an inner point of Uy, and similarly
if 8 € T,,, then 3 is either a common endpoint of Wy and I', or an inner

point of Wj.
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For a pair of indices £, m, let

k—1 k—1
Ty = § Nugivvlu,,  Ym = § Ny j—vlw,,,
v=0 v=0

where N, ; is the B-spline function on the grid 7,, with support Uy, and
Ny, ; is the B-spline function on 7, with support Wp,. The function
Gom = e+ L\ (w,uw,) + YUm
is zero on (U, UI'UW,,)¢, one on I'\ (U, UW,,) and a piecewise polynomial
function of order k in between. For ¢, m > 0, consider the following subsets
of {n:n>nr}:
Ll):={n:u<n<wu}, R(m):={n:wp<n<wmn}
If n € L(¢) N R(m), we clearly have (fy, ¢¢m) = 0 and thus
1

(5.6)  \fa)at =\ fu(t)dt — | fo(t)rm(t) dt = Ag(fn) + Bm(fn),

r r 0
where

A(fn) =\ fal®)dt =\ fu(®)ze(t) dt,

I'nuU, Uy
Bm(fn) = S fn(t) dt — S fn(t)ym(t) dt.
I'nW, Wi

This implies

IS anfn<t>dt\=\i > an(Adfa) + Bulfo)]

I'n=npr+1 £m=0neL(¢)NR(m)
’ Z an fr(t ‘dt—i—QZ S ‘ Z anfn(t)‘dt.
{=0U; necL(¥) m=0 W, neR(m)

Consider the first sum on the right hand side. On U, = D). the function

’LLg I
Y one L(¢) On fn can be represented as a linear combination of B-splines (N;)

on the grid 7,, of the form

i+k—1
D anfa=hei= ) biNj,
neL(l) j=i—k+1

for some coefficients (b;). For j = i —k+1,...,i + k — 1, let J; be a
maximal grid interval of supp N; and observe that due to k-regularity,
| i~k Ut~k |supp he|. On Jj, the function 3, cp o) anfn is a poly-
nomial of order k. If we assume max; ‘ ZneL(E) anfn} > C’k2’"+1 where C},
is the constant of Proposition [3.2] E for p = 1/2, then Proposition implies
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that |35, cp ) anfn| > 27 on aset Jr C J; with [J7| = |J;|/2; but this
means max(| >, <, @nfnls| X on<u,,, @nfnl) > 2" on J5. Hence

|Er Osupp he| > |Er N Jj| > [J5] = |Jj]/2 2k [supp hel.
We choose the constant ci, in the definition of B, sufficiently small to
guarantee that this last inequality implies supp hy C B,. This contradicts

the choice of I', which implies that our assumption max; ’ Y one L(¢) @n fn‘ >
C}2" is not true and thus

H};;}X( > anfn
neL(?)

By local stability of B-splines, i.e., inequality (3.2]), this implies
bj| Sk2', j=i—k+1,...i+k—1,

<CR2', j=i—k+1,...;i+k—1.

and so ‘ ZneL(@ anfn| <k 2" on Uy, which gives

I >0 ant

Uy, neL(¥)

Sk 2" |Uel.

Combining Lemma the inclusions Upy1 C Uy and the inequality |Up| Sk,
||, we see that Y2 |Up| Sy |I']- Thus we get

SIS at

(=0U; neL(f)
The second sum on the right hand side of (5.7) is estimated similarly, which

gives

Combining these estimates with (5.7]) and (5.5)), we find

[ r@at) = | 1> anfult)dt] s 27100
r r n

Skvfy 2T|F|_

Sk?’y 2T|F|‘

which implies (5.4)) on I", and thus the proof is complete. m

6. Proof of the main theorem. For the proof of the necessity part of
Theorem [2.4] we will use the following:

PROPOSITION 6.1. Let (t,) be a k-admissible sequence of knots that is
k-regular with parameter 7, but not (k — 1)-reqular. Then

:OC),

sup H Sl:lp |an (@) fnl 1

where the first sup is taken over all atoms ¢, and an(P) := (¢, fn).
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Proposition [6.1] implies in particular that Proposition [5.3] cannot be ex-
tended to arbitrary partitions. For the proof of Proposition we need the
following technical lemma.

LEMMA 6.2. Let (t,,) be a k-admissible sequence of knots that is k-regular
with parameter v > 1, but not (k — 1)-regular. Let £ be an arbitrary posi-
tive integer. Then, for all A > 2, there exists a finite increasing sequence
(nj)fg(l) such that if T, is the new point in Tp, not present in Tp; 1
and

Aj = [Tnj,ijfkﬂ—nj,ij—l)v Lj = [Tnj,ij—laTn]’,ij)7 Rj = [Tn]',ij77—n]',i]'+1)7
then for all i,5 with 0 <1i < j < /¢ —1 we have:

(1) RiNR; =10,

(2) 4 _A

(3) (27— 1)|L | 2 {745 —k—1 Ty ikl = 1L51/(27),
(4) |Rj| < (2v = 1)|L,],

(5) [Ljl <2(v+ Lk|R;|,

(6) min(|L;l,[R;]) > AlA;].

Proof. First, we choose a sequence (nj)ék’zo so that (1)—(4) hold. Next,
we choose a subsequence (7, )é._:%) so that (5) and (6) hold as well.

Since () is not (k — 1)-regular, for all Cy there exist ng and i such
that

(k—1) (k—1)

(k—1)
ng,io— k|—| nQ,io— k+1|

(6.1) either Cy|D no,io— k+1|

r (DS 1> GolD
We choose Cy sufficiently large such that with C; := Cj_;/y—1for j > 1 we
have Cyp > 2. We will make an additional restriction on Cy at the end of
the proof. Without loss of generality, we can assume that the first inequal-
ity in holds. Taking Ag = [Tno,iofky Tno,io—l) and Lo = [Tno,io—lv Tn07i0)7
Ro = [Tng.ios Tno,io+1), We have

(6'2) |[Tno,io—k+1a7—no,io]| 2 C0|A0|
A direct consequence of (6.2)) is
(6.3) [ Lo| = (Co —1)[Aq].

By k-regularity we have
(k)
‘D(k) ’Dno,lo il ’AO‘ + | Lo

no,iofkfl‘ > y v )

which implies
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[ Ao| + [Lo|
Y

k
(64)  [Tgsio—k—1s Taosio—rll = 1PN 1| 40| > | Ao

L A Co—1
> ’ 0| + | 0| + 0 ‘AO‘_’AO‘
2y Y 2y

L Co+1 L
:’0|+<0 1)’/10’2|0|7
27y 27y 2y
i.e., the right hand inequality of (3) for j = 0. To get the upper estimate,
note that by k-regularity,

| Ao| + [[Tng.io—k—15 Tno,io—kl| < ¥(|40] + [Lol),

hence by (6.3),
(6.5) [T .io—k—15 Tno,io—k]l < ¥[ Lol + (v = )| 40| < (27 = 1)[Lo].

This and the previous calculation give (3) for j = 0. Therefore, the con-
struction can be continued either to the right or to the left of Aj.

We continue the construction to the right of Ay by induction. Having
defined nj, A;, L; and R;, we take

Njt1 1= min{n >nj ity € /1]' U Lj}, 7 >0.

By definition of R; and nji1, property (1) is satisfied for all j > 0. We
identify tn;, , = Tn,,,,i;,,- Thus, by construction, t,,;, = 7y, ;; is a common
endpoint of L; and R; for j > 1.

In order to prove (2), we will show by induction that
(66) HTnj,ij—k—i—l,Tnj,’ij” Z CJ|A]’ and Aj+1 = Aj

for all j = 0,...,kl. We remark that the equality 441 = A; is equivalent
to the condition 7, , ,,, € Lj.

The inequality of for 7 = 0 is exactly . If the identity in
were not satisfied for j =0, i.e., 7,, ;; € Ao, by k-regularity of (¢,), applied
to the partition 7,,, we would have

1
[ Ao| = ;ILo\,

which contradicts for our choice of Cy. This means A; = Ay, and so
is true for 5 = 0. Next, assume that is satisfied for j — 1, where
1 <j < kf—1. By k-regularity, applied to 7y, and employing for j—1
repeatedly, we obtain

1
’Aj‘ + ‘Lj‘ = ’Aj U Lj’ 2 §(Tnj7ij+1 - Tnj,ijfk+1)
1
- ;(Tnj—hijﬂ - Tnj—laijfl_k?"!‘l)
Ci—q Ci1
> ——|Aj| = =14

Y v



Orthogonal spline systems in H* 147

This means, by the recursive definition of C}, that
(6.7) ILj| = Cjl441,
and in particular the first identity in is true for j. If the identity in

(6.6) were not satisfied for j, i.e., 7, 4,1 € Aj, by k-regularity of (t,),
applied to 7, we would have

SRR
1
|4;] > ;le\,

which contradicts (6.7)) and our choice of Cy. This proves for j, and
thus property (2) is true for all j =0, ..., kl.
Moreover, choosing Cjy sufficiently large, namely such that Cy >

2(y + kA, implies
(6.8) |Lj| = 2(y + 1)kA| 4],
which is a part of (6).
The lower estimate in (3) is proved by repeating the argument giving

(6.4) and using instead of (6.4). The upper estimate uses the same
arguments as the proof of (6.5)), but now we have to use (6.7) as well.

Next, we look at (4). By k-regularity and , as Cj > 1, we have
[Rj| + Ll < A (IL5] + [A44]) < 2v[Lg,

which is exactly (4).
We prove (5) by choosing a suitable subsequence of (n;) éfi o- First, assume
that (5) fails for k consecutive indices, i.e., for some s,

(6.9) |Rsir| < a|Lsyr| < a|Lsl, r=1,...,k,

where o := (2(y + 1)k)™*. We have L; = L;j41 U Rj4q for 0 < j < kf — 1.
Thus, on the one hand,

k
(6.10) Lo\ Losk = > [Raotr| < ak|Ly|

r=1

by ; on the other hand, by k-regularity of 7, .,

ak
| Ls|.

1
v v
Now, (/6.10) contradicts (6.11]) for our choice of or. We have thus proved that

there is at least one index s+, 1 <r < k, such that (5) is satisfied for s+r.
Hence we can extract a sequence of length ¢ from (nj);?il satisfying (5). For

k
1 1-—
(611) L4\ Lassl > | Loss] = (126 = 3 1Rosr) =
r=1

simplicity, this subsequence is called (nj)gj) again.
Property (6) for R; is now a simple consequence of , property (5)

and the choice of (nj)g;é. Thus, the proof of the lemma is complete. m
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Now, we are ready to proceed to the proof of Proposition [6.1}

Proof of Proposition[6.1] Let £ be an arbitrary positive integer and A > 2
a number to be chosen later. Lemma [6.2| gives a sequence (n; )e o such that
conditions (1)—(6) in Lemma [6.2] are satlsﬁed We assume that ]A()] > 0. Let
T 1= Tng,ig—1, T := T — 2|Ap| and y := 7 + 2|Ap|. Then we define an atom ¢
by

1
o= M(H[I,T] - ]l[T,y})

and let j be an arbitrary integer with 0 < j < ¢ — 1. By partial integration,
the expression an;(¢) = (¢, fn,) can be written as

4|A0]an7

Fu,y (1) 3 f, (£) dt

(x—1)f, dt—li( =) [y, (t)dt.

)
anj fn] ) t_anj(t)_fnj(T)dt
)
(¢

In order to estimate |ay,(¢)| from below, we estimate the absolute values
of I := | (x — t) fn, (t )dt from below and of I := {(y — t)fp, (t) dt from
above. We begin with Is.

Consider the function gy, connected with f,,; via fn, = gn,/l|gn;|l2 and
llgn;ll2 ~k | Jn; |=1/2 (cf. and Lemma. In the notation of Lemma
gn; 18 obtained by inserting the point ¢, ;= Tnyi; i Tn =15 and it is a com-
mon endpoint of intervals L; and R;. By construction of the characteristic
interval J,,;, properties (4)-(6) of Lemma and the k-regularity of (t,),
we have

(6.12) ‘Jnj| ~kyy ‘Lj‘ ~Eyy ’Rj|'
By property (6), we have [7,y] C L;, and therefore on [, y], the derivative
of gn; has the representation (cf. (3.1)))

i;—1

gnj( - Z gl nﬁz )7 (AS [T7 y]a

i=1;—k+1

where & = (w; — wi_l)/]D(k 2 | and the coefficients w; are given by (4.3)
associated to the partition T Fori=1i; —k+1,...i; —1 we have L; C
pk=1)

nj,i

(6.13) [T |~k [ 5]~k | D,y

, which together with the k-regularity of (¢,) and property (6) implies

WL =i — k1, L
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Moreover, by Lemma [4.4]
1
]wi|,§k—, 1§i§nj+k—l.
[Jns

Therefore

‘f’rllj (t)’ Nk ‘Jn] ’1/2‘9;13‘ (t) Sk,’y ’Lj’73/2 fOI‘ t G [T7 y]
Consequently, putting the above facts together,
(6.14) |I2| Sk 1A0f - | L5732

We now estimate [;. By properties (3) and (6) of Lemma (with
A > 2v), we have [z,7] C [7y, i;—k—1,Tn;,i;—1], and therefore on [z, 7], gy,
has the representation (cf. (3.1])

ij—2
g;@j(u):(k—l) Z &N "M ( ), u€ lx,T].
i=i;—2k+1

We split Iy = I 1 + I 2 according to whether 7 # i; — k or i = i; — k in the
above representation of g;, on [z, 7].

Note that 7, i k1, Tn;i;—k] C D( D for ij —2k+1<i<i;—kand
L;C fo_;l) fori; —k <i<i; —2. Therefore, by properties (3) and (6) of
Lemma [6.2| and the k-regularity of the sequence of knots we have

DSV gy | L] fori; —2k+1<i<i;—2,i+i;—k

TL] 7
So, by arguments analogous to the proof of (6.14) we get

(6.15)
- ij—2
il o, 2§ =) 30 N @0 dt] i |40 - 1L 72,

i=ij;—2k+1
i#i;—k

. k—
Moreover, for i = i; — k, we have D( ) Z = Ao, s0

nj, Z'_

(6.16) |11,2|~k|Jnj|1/2H<tfx>eJ N ()

> 15, k| 1, 142 40| | N

kl)’

1Dy, | Ao|?
= |&;— 1~c\|/1o!|JnJ|1/2 S = &kl [, |1/2

17

)

because t —x > |Ag| for ¢ € supp NT(Lj _ij* i+ Since the sequence wj is checker-
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board (cf. (4.4)),

6l = i, k| + |wi; —k—1] Wi, |
ij—kl = 1) = D
|Dnj,ij—k| |Dnj,ij—k‘

By definition of wy;;
lwi; k| > |ovi; gl 103, —ki; k]

where a;;_, is the factor from formula (4.2) and b;, ;. is an entry of the
inverse of the B-spline Gram matrix, both corresponding to the partition
Tn;- Formulas (4.2)) and (6.12) imply that a;; x is bounded from below by a

positive constant that only depends on k and ~ u Moreover, [b;, i, k| >
k _ k _ k
IN, 1% 2 1D, 7Y (cf. @8)). Note that DY, = Ag U Lj, so

nj,i;—k
K _ _ .
DS, 4|~k 1Ll Thus, € k| Zkq |40 7HL,| 7L Inserting the above
calculations in (6.16)), we find
Ay _
(617) il 2o [ s 1l 1577
J

We now impose conditions on the constant A > 2 from the beginning

of the proof and property (6) in Lemma It follows from (|6.17)), (6.15)
and (6.14)) that there are Cy, > 0 and ¢, > 0, depending only on & and -,

such that
4| Ag| lan; ()] = [I12] = [T1a] = |2 = ChylAo] |1 L7 = el Ao]?|L; 75/
= | Aol |1L;| 72 (Crry — crnlAo] IL;I 7).

By property (6) in Lemma we have |Ag||L;|~! < 1/A. Choosing A
sufficiently large to guarantee

Ck, Ck,
Ck:’y - “/4’Y Z 2 = 9
we get a constant my , depending only on k and +, such that
(6.18) M| Li| 7% < an, (@), 5 =0,...,0— 1

Next, we estimate § R, |gn; (t)| dt from below. First, Proposition prop-
erty (6) of Lemma [6.2] and the k-regularity of (¢,) yield

S |gnj (t)| dt zkﬁ |RJ| ‘wij|7
R,

(1) Formula is applied with 7, = 7}]. and corresponding to 7, = Tnj i - Then
[Tig—1,Tio) = Lj and [Tiy, Tig+1] = R;. By k-regularity and |Ao U L;| ~k~ |L;|, each
denominator in is ~g,y |L;|. Each numerator in is greater than either L; or Rj,
so by and k-regularity it is ~ ~ |L;| as well.
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where w;; corresponds to the partition 7,,. By definition of w;,,
V lgn; (D)1 dt Zhr Ry e, | iy i,
R,

By arguments similar to those above, |a;,| is bounded from below by a
‘ 1

constant only depending on k£ and ~, and \b,],zj Since by

Nk ‘ TLJ

k-regularity, |R;| ~ |D7(fj)ZJ |, we finally get

| lgn, ()] dt 2 1
R;

which means for f, that

S ’fnj( )|dt Jkyy |Jn]|1/2 >l<:’y |L |1/2
R;

Combining this last estimate with (6.18]) and (1) of Lemma gives

1

Ssup\an( )| dt > Z S |an; (@) fr; (B) dt 2y L.

0 Jj=1R;

This construction applies to every positive integer ¢, proving the assertion
of the proposition for |Ag| > 0.

The case |Ap| = 0 is handled similarly, with the difference that the atom
¢ is defined to be centered at 7,,;,—1 and the length of the support is
sufficiently small, depending on ¢ and |Lg|. m

With Proposition [6.1] and the results of Section [f] at hand, the proof of
Theorem [2.4] follows the proof of Theorem 2.2 in [I5], but we present it here
for the sake of completeness.

Proof of Theorem|[2.4 We start by proving the unconditional basis prop-
erty of (f,) = (fT(Lk)) assuming the (k — 1)-regularity of (¢,). If (¢,) is (k—1)-
regular, it is not difficult to check that it is also k-regular. As a consequence,
Theorem implies that (f,) is a basis in H!. Let f € H! with f = 3 a, f»
and € € {—1,1}%. We need to prove the convergence of > ena,f, in H'.
Let mq1 < mo. Then

;

mo m2 m2
H Z Enanfn 7 S,k,'y HS< Z Enanfn> ‘1 Sk HP< Z Enanfn>
n=m1 n=m1 n=m

mo m2
= <
[PCE anto)], 50 | 2 ant],
n n=mi
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where we have used Propositions and (cf. also the diagram on

page [135). So, since Y a, f, converges in H!, so does f. := Y epanfn, and
the same calculation as above shows

el Sk [ -

This implies that (f,) is an unconditional basis in H!.

We now prove the converse: (f,) being an unconditional basis in H*!
implies (k — 1)-regularity. First, if (¢,) is not k-regular, (f,) is not a ba-
sis in H! by Theorem Thus, it remains to consider the case when (¢)
is k-regular, but not (k — 1)-regular. By Theorem again, (f,) is then
a basis in H'. Suppose that (f,) is an unconditional basis in H'. Then,
for f = Y anf, and e € {—1,1}%, the function f. := Y ena,f, is also
in H'. Since || - |1 < || - || g1, the series Y a,f, also converges uncondi-
tionally in L', and thus Proposition (i.e., Khinchin’s inequality) im-
plies

I1Pfllr < sup [ felly < sup [[fellg S 1 las
g g

which is impossible due to Proposition [6.1], even for atoms. This concludes
the proof of Theorem .

As an immediate consequence of Theorem a fifth condition equiva-
lent to (A)—(D) is the unconditional convergence of Y, a, f, in H':

COROLLARY 6.3. Let (t,,) be a k-admissible and (k —1)-regular sequence
of points, with (f,) the corresponding orthonormal spline system of order k.
Let (ay) be a sequence of coefficients. Then conditions (A)—(D) from Sec-
tion [B] are equivalent. Moreover, they are equivalent to

(E) The series >, an fn converges unconditionally in H'.

In addition, for f € HY, f =" anfn, we have

£l ~1SFl ~ 1A~ sup || 3 enanf

ee{-1,1}~

Y

1

with the implied constants depending only on k and the parameter of (k—1)-
reqularity of (t,).
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