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On Lindenstrauss—Pelczynski spaces
by

JESUS CASTILLO, YOLANDA MORENO and JESUS SUAREZ (Badajoz)

Abstract. We consider some stability aspects of the classical problem of extension
of C(K)-valued operators. We introduce the class LP of Banach spaces of Lindenstrauss—
Pelczynski type as those such that every operator from a subspace of ¢y into them can be
extended to co. We show that all LP-spaces are of type Lo but not conversely. Moreover,
Loo-spaces will be characterized as those spaces E such that F-valued operators from
w™ (11, co)-closed subspaces of I; extend to I1. Regarding examples we will show that every
separable L..-space is a quotient of two LP-spaces; also, Loo-spaces not containing cg
are LP-spaces; the complemented subspaces of C(K) and the separably injective spaces
are subclasses of the LP-spaces and we show that the former does not contain the latter.
Regarding stability properties, we prove that quotients of an LP-space by a separably
injective space and twisted sums of LP-spaces are LP-spaces.

1. Introduction and preliminaries. In this work we shall be con-
cerned with some stability aspects of the classical problem of extension of
C(K)-valued and Lo-valued operators. Let us describe and motivate them.
In a 1971 paper [26] Lindenstrauss and Pelczynski proved:

THEOREM 1. Let K be a compact Hausdorff space. Every C(K)-valued
operator defined on a subspace of cg admits an extension to the whole space.

The result remained isolated until 1989 when Johnson and Zippin ob-
tained in [17] an extension to subspaces of ¢o(I"), and later in 1995, in [18],
the analogous result for w(l1, cp)-closed subspaces of I;. Further proofs of the
Lindenstrauss—Pelczyriski theorem have been provided by Zippin [34, 35].
The paper [8] contains a homological approach to both results showing that
they are in a sense dual to each other.

The general problem of extension of operators admits a natural formula-
tion in homological terms. We shall assume from the reader some familiarity
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with the basic notions and constructions of the theory of exact sequences
of Banach spaces; the necessary background can be found in [9] and, opera-

tively defined, below. We shall write 0 — Y LXLZ50=Fto represent
an exact sequence of Banach spaces and operators, which is a diagram where
the kernel of each operator coincides with the image of the preceding one.
The open mapping theorem makes Y a subspace of X through the embed-
ding j and Z the corresponding quotient space through ¢. The reader can
view F just as the name of the sequence; however, those familiar with the
theory of quasi-linear maps created in [19, 22| can in fact consider F' as a
quasi-linear map associated to the exact sequence.

We shall consider exact sequences of Banach spaces modulo the natural
equivalence relation: two sequences F' and G are said to be equivalent if there
is a commutative diagram

0 y -, x A 0=F
—_— |
0 Y X/ A 0=¢a

In this case we write F' = (. The space of equivalence classes of exact
sequences with Y as subspace and Z as quotient will be denoted Ext(Z,Y).
It is a vector space under some natural operations (see [13, III.2]) and the 0
element is the sequence 0 - Y — Y ® Z — Z — 0 with inclusion y — (y,0)
and quotient map (y, z) — z. We shall say that F' is trivial or splits when
F = 0. This means, in classical terms, that j(Y) is complemented in X.
Recall that a property P is said to be a 3-space property if whenever one
has an exact sequence 0 - Y — X — Z — 0 in which both Y and Z have
P then also X has P; see [9] for most of the available information about
3-space problems.
The lower sequence in a diagram

0 y . x 4.7 0=F
| [
0 Y X’ E 0

is a called a pull-back sequence and is naturally denoted FT. The middle
space X' is called the pull-back of ¢ and T. The sequence F'T' splits if and
only if T can be lifted to X through q. The lower sequence in a diagram

0 y -2 . X A 0=F
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is called the push-out sequence and is naturally denoted T'F. The middle
space X' is called the push-out of 7 and 7. This space has the universal
property that given operators a : E — B and b: X — B such that a1 = bj
there exists a unique operator p : X’ — B such that pi = a and pt = b. Ex-
tending an operator 7' : Y — E through j is the same as saying that TF' is
trivial. The lifting property of /(") and the fact that every Banach space Z
admits an exact sequence 0 — K(Z) — I1(I") — Z — 0, called a projective
presentation of Z, imply that every exact sequence 0 - Y — X — Z — 0 is
a push-out of a projective presentation of Z. Hence Ext(Z,Y) = 0 is equiva-
lent to the statement “every operator K(Z) — Y can be extended to I;(I")”.

That all operators Y — FE can be extended to X through j admits an
even simpler formulation: the restriction operator j* : L(X, E) — L(Y,E) is
surjective. The following terminology is quite natural and will prove to be
very useful:

DEFINITION 1. Let A be a class of Banach spaces. We say that an exact

sequence 0 — Y L X 7 0=Fis Atrivid (or that F' A-splits) if for
every A € A the restriction operator j* : £(X,A) — L(Y, A) is surjective.
We will also say that Y is A-complemented in X.

Sometimes the quantitative version of the previous notion will be used:
given A > 1, the exact sequence F' will be said to be (A, A)-trivial if for every
A € A every operator T': Y — A admits an extension T : X — A such that
111 < AT

This notion of A-triviality unifies different notions appearing in the lit-
erature: (i) trivial sequences, which correspond to A = all Banach spaces;
(ii) Kalton’s locally trivial, or locally split, sequences (see [20]), correspond-
ing to A = l(Gy), where G, is a dense (in the Banach-Mazur distance)
sequence of finite-dimensional Banach spaces (see also [14]); (iii) Zippin’s
almost trivial sequences (see [33-36]), which correspond to the choice A =
C(K)-spaces.

In this work we are concerned with C(K)-trivial and Loo-trivial se-
quences. In Section 2 we study the stability of C(K)-trivial sequences by
amalgams and duality. We first show that [,- and cp-amalgams of C(K)-
trivial sequences are C'(K)-trivial. Concerning the stability of C'(K)-trivial
sequences by duality, the Lindenstrauss—Pelczynski and Johnson—Zippin the-
orems suggest that it could be that the dual of a C'(K)-trivial sequence is
C(K)-trivial since the former implies that every exact sequence 0 — H —
X — S — 0= F with H a subspace of ¢y and S separable is C'(K)-trivial;
and the latter yields (see [10]) that its dual sequence F* is C'(K)-trivial.
However, the situation covered by those two theorems proves to be quite
peculiar; we give examples at the end of Section 2 to show that the dual and
bidual sequences of a C'(K)-trivial sequence need not be C'(K)-trivial.



216 J. M. F. Castillo et al.

In Section 3 our attention turns to those Banach spaces which can play
the role of C(K)-spaces in the Lindenstrauss-Pelczynski theorem. We call
such spaces Lindenstrauss—Pelczynski (LP, for short) spaces. Our motivation
to introduce those spaces comes from [26, p. 234, remark 2| where Linden-
strauss and Pelczynski assert that isometric Li-preduals can play the role
of C(K)-spaces regarding extension of operators from subspaces of ¢j. After
showing that every L®P-space is an L-space we then face the unavoidable
question: Must every Lo-space be an LP-space? The answer is no, which
solves Problem 6.15 of Zippin in [36]. We shall show that the same ap-
proach to the Johnson—Zippin theorem just provides a new characterization
of L-spaces (see Proposition 3.1).

As regards the problem of the identification of LP-spaces, it is clear
that complemented subspaces of C'(K)-spaces and separably injective spaces
are LP-spaces. On the way, we will give perhaps the first example of a
separably injective space that is not complemented in any C(K)-space. The
previous examples do not exhaust the class of LP-spaces: we shall show that
Lo-spaces not containing c¢g, the new exotic Lo-spaces constructed in [7],
quotients of LP-spaces by separably injective subspaces and cy-vector sums
of uniformly LP-spaces are LP-spaces.

In Section 4 we tackle the 3-space problem for the class of LP-spaces,
which needs the development of a new method of proof and new characteri-
zations of LP-spaces. Section 5 contains further remarks, examples and open
problems.

2. On the stability of C'(K)-trivial sequences by amalgams and
duality. To study the stability of C'(K)-trivial sequences we need to know
their behavior with respect to the basic homological pull-back and push-out
constructions.

PRrOPOSITION 2.1. Let A be a class of Banach spaces.

(1) A pull-back sequence of an A-trivial sequence is A-trivial.
(2) A push-out sequence of an A-trivial sequence is A-trivial.

Proof. The first assertion is obvious. The second is a consequence of the
universal property of the push-out construction. m

When, moreover, the push-out is obtained from a surjective operator one
has:

LEMMA 1. Let A be a class of Banach spaces. Consider the completed
push-out diagram of Banach spaces
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0 0
B = B
a b
0 y -2 . X Z 0=F
c d I
0 C —— D Z 0=G
1
0 0
I I
H 1%

(i) V and G are A-trivial if and only if F and H are A-trivial.
(ii) If F is A-trivial then G is A-trivial; if 'V is A-trivial, H is A-trivial.

Proof. The second part of (ii) follows from Proposition 2.1(1). Let A € A
and notice that from the diagram in the hypothesis we can construct the
commutative diagram

Now, the first part of (ii) can be easily obtained by diagram chasing while
(i) follows by simply observing that the restriction operators b* and i* are
surjective if and only if j* and a* are surjective. =

REMARK. Pelczynski’s Proposition 2.6 of [30] can be considered a rudi-
mentary version of this principle.
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The characterization of C(K)-trivial extensions that Zippin formulates
and proves in [33] is especially interesting for us.

LEMMA 2. A sequence 0 — Y L X —Z—0is (A, C(K))-trivial if and
only if there is a w*-continuous map w : By~ — ABx+ such that j*w = id.

The map w will be called a A\-w*-selector for j*. Zippin [34, 35| uses this
criterion to obtain different proofs of the Lindenstrauss—Petczyriski theorem.

It is inspired by the most natural possible situation: the sequence 0 — Y 24
C(By+) — C(By+)/Y — 0 = [y, in which §y : Y — C(By+) is the canon-
ical embedding, is (1, C(K))-trivial; indeed, the map w : By~ — B¢ (p,.)
defined as w(z*)(f) = f(2*) is a 1-w*-selector for &j.. Let us remark that
every C(K)-trivial sequence is a pull-back of 0y and conversely.

It will be useful to notice that some properties of the w*-topology in [,,
1 < p < o0, pass to l)-vector sums of Banach spaces. Given an [,-sum [, (X))
we denote by ; : [,(X,,) — X; the natural projections. It is straightforward
that given a sequence (E} ), of dual spaces, a bounded net (z4)q in {,(E}),
1 < p < oo, is w*-null if and only if for each j the net (7j(2q))q is w*-null.

Given a family of exact sequences 0 — A, — B,, — C,, — 0 = F,, we
call 0 — I,(Ay) — 1p(Bn) — [,(Cn) — 0 = 1,(F),) the l,-amalgam of (F,),,
for 1 < p < oo. Analogously, the co-amalgam of (F,,) will be denoted co(F},).
One has:

PROPOSITION 2.2. The co- and ly-amalgams of (A, C(K))-trivial ezact
sequences, 1 < p < oo, are (A, C(K))-trivial.

Proof. For each n, let w, : Bax — ABp: be a A-w*-selector for j;. If we
have the [,-amalgam

0— ZP(AH) = lp(Bn) - lp(cn) —0= lp(Fn),

it follows from the observation above that the map 2 : Blp* (Ax) — )\Blp* (B)
defined by £2[(a})] = [wn(a})] is a Al-w*-selector for x*. =

n

The situation for [,,-amalgams is entirely different because a subspace
X of o can only be C(K)-complemented if X enjoys both the Dunford—
Pettis property (weakly compact operators transform weakly compact sets
into relatively compact sets) and the Grothendieck property (all operators
with separable range are weakly compact): Indeed, if E is separable and

7 : X — E is an operator, then 6p7 : X & E 22 C(Bg~) should extend
to an operator I, — C(Bpg+); by the Grothendieck property of I, (see
[12, Cor. 12, p. 156]) this operator is weakly compact, hence dg7 is weakly
compact, as also is 7. We have shown that X has the Grothendieck property.
Since I, has the Dunford—Pettis property, every weakly compact operator
X — ¢p must do the same, which means that X also enjoys the Dunford-
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Pettis property. In particular, subspaces of [ such as lo(I5), which does
not have the Dunford—Pettis property because it contains a complemented
copy of Iy, provide sequences 0 — I(l5) — loc — @ — 0 that are not
C(K)-trivial. Therefore, the [,-amalgam of the sequences

0— 13 — 1) — ) im0

in which the embeddings are (1 + ¢)-isometries cannot be C'(K)-trivial. Nev-
ertheless, those sequences are all ((1+ ¢)?, C(K))-trivial by the existence of
the Bartle-Graves continuous selection.

Later on we shall also show that the cg-amalgam of L.-trivial sequences
is not necessarily Loo-trivial. Our concern now is to study the stability of
C(K)-trivial sequences by duality. Let us start by observing that, for every
subspace H of ¢y and every separable Banach space S, the sequence 0 —
H— X — S —0=F is C(K)-trivial as is its dual F*. That F' is C(K)-
trivial was observed by Lindenstrauss and Pelczynski in [26, Cor. 2]. The
assertion about F™ (actually, that every exact sequence 0 — Y — X —
H* — 0 is C(K)-trivial for every subspace H of ¢g) directly follows from the
equality Ext(H*, C(K)) = 0, which is a consequence of the Johnson—Zippin
theorem. It is not true, in general, that the dual or bidual of a C'(K)-trivial
sequence is C'(K)-trivial:

ExAMPLES. Consider the C(K)-trivial sequence 0 — [y LN C(B,) —

@ — 0 = F. We claim that the dual sequence 0 — Q* — Ly LN lo - 0=F*
is not C'(K)-trivial. Assume otherwise. Consider a projective presentation
of lg,

0—>K(l2)—>ll—>lg—>OEP.
The space K (l2) is complemented in its bidual (see [23]). Hence Ext(L1,K (I2))
= 0 by the Lindenstrauss lifting principle (see [25, 23], but also [5]). Thus,
the lower pull-back sequence in the diagram

0 —— K(lg) ll 12 0=P
| [
0 —— K(lo) PB L 0= Po*

splits, and therefore the quotient map 6* : L1 — Iy can be lifted to /. In
this way, there is an operator ¢ such that P = ¢F™* (see [10]) and P is
a push-out of F*; by Lemma 2.1, it must also be C(K)-trivial. But if a
projective presentation of ls is C'(K)-trivial then Ext(lo, C(K)) = 0, and it
was proved by Kalton in [21] (see also [7]) that Ext(l2, C[0,1]) # 0.

The bidual sequence

01 "5 OB - Q" —0=F"
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is also not C'(K)-trivial: since I = C(By,)** is injective, it has the Grothen-
dieck property (see [12, Cor. 12, p. 156]) and thus every operator I — S into
a separable space is weakly compact. By the Dunford—Pettis property of I,
weakly compact operators on I transform weakly compact sets onto norm
compact sets; thus, the canonical inclusion ly — C(B,) cannot be extended
to I. Another example is provided by sequences having the form

0 — co(Ap) — co(I™™) = ¢o(Cp) — 0 = F;

they have the property that F' and F* do C'(K)-split although F** does not
necessarily C'(K)-split.

3. On Banach spaces of Lindenstrauss—Pelczynski type. There
is an obvious difference between the Lindenstrauss—Pelczyriski [26] and the
Johnson—Zippin [18] theorems. While the former asserts that every sequence
0— H — ¢y — c/H — 0= F is C(K)-trivial the latter establishes that
the dual sequence F™* is Ly-trivial. Let us see that the class Lo, cannot be
enlarged, obtaining in this way a new characterization of L£.,-spaces.

PROPOSITION 3.1. For a Banach space E the following are equivalent:

(1) E is an Loo-space.
(2) Every E-valued operator defined on a w(ly,cq)-closed subspace of 11
can be extended to ly.

Proof. Recall that w(l, c)-closed subspaces of I} are precisely the or-
thogonal complements H+ to subspaces H of cy. So, as we said in Section 1,
(2) can be written as: Ext(H*, E) = 0 for every subspace H of c.

General structure results of Johnson—-Rosenthal and Zippin (see [28, 1.g.2
and 2.d.1]) imply that given a subspace H of ¢( there exist sequences (Ay,)
and (B,,) of finite-dimensional spaces such that there is an exact sequence
0 — co(An) — H — ¢o(Bn) — 0. Therefore, there is an exact sequence
0— hL(B)) — H* — 11(A};) — 0. A simple 3-space argument (see [6] or [7,
Cor. 1.2|) then shows that Ext(H*, E') = 0 is equivalent to Ext(l1(4}), E) =
0 = Ext(l;(B}), E). Therefore, (2) is equivalent to Ext(l1(Gy), E) = 0 for
every sequence (Gy,) of finite-dimensional spaces. It was already observed by
Johnson [14] that a sequence 0 — Y — X — Z — 0 = F locally splits if and
only if F'T' = 0 for every operator T : [1(G)) — Z with G, finite-dimensional.
Thus, every sequence 0 — ' — X — Z — 0 locally splits and in particular
so does any sequence 0 — E — [(I) — Q — 0 = G. Recall from [20] that
an exact sequence F' locally splits if and only if F** splits. Hence, the bidual
sequence G** splits, E** must be complemented in an L,.-space, so it is an
Loo-space and E must itself be an L-space. n

Not entirely trivial is the observation that condition (2) can be replaced
by (2') for every set I', every E-valued operator defined on a w(ly(I"), co(I))-
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closed subspace of [;(I") can be extended to {1(I"). The proof only requires
to take into consideration the decomposition lemma of [17].

The situation outlined for w*(l1, ¢g)-closed subspaces of [y, together with
Lindenstrauss—Pelczynski’s remark in [26] asserting that operators with
ranges being isometric preduals of L; extend from subspaces of ¢y to the
whole space, suggest investigating how much the class of C'(K)-spaces can
be enlarged in the Lindenstrauss—Petczyniski theorem.

DEFINITION 2. We shall say that a Banach space F is a Lindenstrauss—
Petczynski space, for short an LP-space, if all operators from subspaces of
cop into ¥ can be extended to cg.

We shall also need the quantitative version: when every operator T :
H — E admits an extension T : ¢y — E such that ||T|| < A||T|| we shall
say that F is an LP)-space. It is not hard to see that every LP-space is an
LPy-space for some .

LEMMA 3. An LPy-space is, for every € > 0, an Lo 2)+e-Space.

Proof. Let E be an LPy-space. Let T : Y — FE be a compact operator
from a subspace Y of a separable space X. Schauder’s theorem (7" is compact
if and only if T* is compact) plus the characterization of compact sets in
Banach spaces as subsets of the closed convex hull of a norm null sequence
immediately show that T factorizes through some subspace ¢ : H — c¢p
as T = BAwith A:Y — H and B : H — E. By definition, there is an
extension By : ¢ — F of B with || By|| < A||B||; moreover Sobczyk’s theorem
gives an extension A; : X — ¢y of iA with ||A;|| < 2||iA|. The composition
B1A; : X — E extends T and satisfies ||B1A;|| < 2M||T|.

Let us now show that “if E-valued compact norm one operators can be
extended with norm at most c then for every ¢ > 0, E is an L ¢4c-space”.
To this end, let 7 : Y — E be any (compact or not) norm one operator.
Each restriction 7 : F' — E of 7 to a finite-dimensional subspace F' of Y
is compact and can therefore be extended to an operator Tr : X — E with
norm at most c. Define the operator T': X — E** by

. 1
T(x)=w Ll{l(r;l) Tr(x)

where U is a free ultrafilter on the set of finite-dimensional subspaces of Y
compatible with the natural ordering. This operator 1" has norm at most
c and extends 7 : Y — E**. In particular, given an exact sequence 0 —
E —V — @ — 0, the canonical embedding ¢ : £ — E** can be extended
to V with norm at most ¢. So E** is complemented in V** with norm ¢ + ¢
(because of the principle of local reflexivity). Applying this to any embedding
0= F — lx(I) = Q — 0 one finds that E** is an L c-space, as also
isE. =
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The above argument is modeled over Lindenstrauss’ construction in [24].
A direct application of Lindenstrauss’ result is awkward: as the referee of
the paper remarked, in his memoir, Lindenstrauss considered what he calls
N,-spaces, which are spaces that are the closure of a directed union of finite-
dimensional M-injective spaces; today we know that an Ny-space is an L -
space, but we do not know how (3 depends on A.

The converse fails: we show that not every L.,-space is an LP-space.
This solves Zippin’s Problem 6.15 in [36]. The example (which was sketched
in [8]) is based on the Bourgain-Pisier construction [3| which shows that for
every separable Banach space X there is an exact sequence

0— X — LX) = Lo(X)/X — 0= BPx,

in which £,(X) is a separable L -space and L.(X)/X has the Schur
property (weakly convergent sequences are norm convergent).

PROPOSITION 3.2. Let H be a subspace of ¢y such that co/H is not iso-
morphic to co. Then Lo (H) is not an LP-space. In fact, there exists an
operator H — Lo (H) which does not extend to co.

Proof. Consider the sequence 0 — H EX co — co/H —0=F.Let 0 —

H % Lo (H) — S — 0 = BPy be a Bourgain—Pisier sequence associated
with H. Assume that ¢ extends to ¢y through j, so that F' is a pull-back of
BPpy. By Sobczyk’s theorem [28, 2.£.5], BPy is a pull-back of F. Applying
the diagonal principle [27, Thm. 2| one gets an isomorphism

Loo(H)® co/H ~co @ S.

In particular, ¢o/H is a complemented subspace of ¢o@® S. Since S and ¢ are
totally incomparable by the Schur property of S the decomposition theorem
of Edelstein-Wojtaszczyk (see [28, Thm. 2.c.13]) ensures that ¢o/H is iso-
morphic to some A®B with A complemented in ¢y and B complemented in S.
Since ¢o/H is a subspace of ¢y [28, 2.£.6], B can only be finite-dimensional,
hence ¢g/H =~ ¢y, contrary to hypothesis. m

This example immediately implies

EXAMPLE. The co-amalgam of (1, Loo)-trivial sequences is not necessar-
ily Loo-trivial.

Proof. As already mentioned, given a subspace H of ¢y there exist se-
quences (Ay) and (By) of finite-dimensional spaces such that there is an
exact sequence 0 — co(A,) — H — co(B,) — 0. Clearly, the exact se-
quences 0 — A, — l;"o(") — Cp, — 0 are (A, Lo y)-trivial. If all the amal-
gams 0 — ¢o(4,) — co(l?o(n)) — ¢9(Cr) — 0 were Loo-trivial then every
sequence 0 — H — ¢y — ¢9g/H — 0 would also be Loo-trivial: indeed, there
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would be a complete push-out diagram

0 0
CO(An) = C()(An)
0 —— H 1. cg —— <¢/H ——0=F
b c |
0 —— co(Bn) — Z —— Z/cy(By) —— 0=0bF

0 0

Vd |4

to which we apply Lemma 1(i): if V and bF are Loo-trivial then F' is
Loo-trivial (which we know it is not). It remains to check that V and bF
are Loo-trivial. The sequence V is Lyo-trivial by our assumption and the
Lindenstrauss-Rosenthal theorem that asserts that cg is automorphic (see
[27, 10]); i.e., there exists an isomorphism 7 : ¢y — ¢p making the diagram

0 —— co(4y) — o E— Z — 0

H I |

0 —— co(Bn) —— o™y —— (™™ /4,) —— 0

commutative and therefore the two sequences L.-split simultaneously. The
sequence bF' is Ly-trivial by essentially the same arguments taking into
account that Z must be a subspace of ¢y. =

The problem of identifying LP-spaces is still far from being solved, and
it actually gives rise to interesting questions. Observe that, in addition to
C(K)-spaces, it is clear that complemented subspaces of C'(K)-spaces and
separably injective spaces are also LP-spaces. The reader might be surprised
by the distinction between the two, especially regarding the fact that every
injective space is complemented in some C(K)-space. Let us show that the
two classes are indeed distinct.

PROPOSITION 3.3. There exists a separably injective space that is not
complemented in any C(K)-space.
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Proof. Consider the pull-back diagram

0 co loo —— loo/co —— 0=1T
| | o
0 o P(A) —— lx/co —— 0=1)

Benyamini shows in [1] that P()) is no less than A~! complemented in any
C(K)-space. Thus, the cp-amalgam of the family (Z,,-1)

0 — colco) — co(P(n™1)) = collos/co) — 0 = co(Z—1)

provides an exact sequence in which both co(cp) as well as ¢o(loo/co) are
C(K)-spaces. However, the space co(P(n~1)) cannot be complemented in
any C(K)-space. That ¢ is separably injective is precisely Sobczyk’s theo-
rem. That | /cq is separably injective is well known and follows from Propo-
sition 4.3 below. It was shown in [15, 32] that when X is separably injective
then co(X) is separably injective as well. Finally, separable injectivity is a
3-space property [6]. m

There are other LP-spaces. As mentioned before, according to [26, p. 234,
Remark 2|, isometric preduals of L; are LP-spaces. So, it is quite natural
to ask whether the previous classes (namely: complemented subspaces of a
C(K)-space, separably injective spaces and isometric preduals of L) exhaust
the LP-spaces. The answer is no.

PROPOSITION 3.4. FEvery L -space not containing cg is an LP-space.

Proof. Let X be a Banach space. If T is a noncompact operator whose
domain is a subspace of ¢y then 7" is an isomorphism onto a copy of ¢g; hence,
when Y contains no copy of ¢y every operator H — Y must be compact.
Now Lindenstrauss’ extension theorem for compact operators [24] yields the
result. m

By a result of Johnson and Zippin [16] separable isometric Lj-preduals
are quotients of C|0,1]. Observe that L.-spaces not containing ¢y cannot
be quotients of C'(K)-spaces (since, by [29], every operator on a C'(K)-space
is either weakly compact or an isomorphism onto a copy of ¢p). Concrete
examples of L,-spaces not containing ¢y can be obtained by applying the
Bourgain-Pisier construction 0 — X — L (X) — S — 0 to spaces X
without copies of ¢y by a simple 3-space argument (see [9, Thm. 3.2.¢]).

New examples of LP-spaces can be obtained by showing that this class
has the 3-space property.

4. The 3-space problem for LP-spaces. The purpose of this section
is to show:

THEOREM 2. The class of LP-spaces has the 3-space property.
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The proof is not simple and requires both a different characterization of
LP-spaces and a new method to obtain 3-space properties. We assume from
the reader some acquaintance with the theory of operator ideals as developed
by Pietsch in [31]. Recall that an operator ideal 2 is said to be surjective (see
[31, 4.7.9]) if whenever @Q is a quotient map and T'Q € A then T € 2; dually,
the ideal 2 is injective (see [31, 4.6.9]) if whenever J is an into isomorphism
and JT € 2 then T € 2. Consider the operator ideal Jo of those operators
that factorize through a subspace of ¢y. Recall that a functor is called ezact
when it transforms exact sequences into exact sequences.

PropoSITION 4.1. A Banach space E is an LP-space if and only if the
functorJo(-, E) is exact when acting on the category of separable Banach spaces.

Proof. Let j : Y — X be an into isomorphism, and let T' € Jo(Y, E).
Write T'= RS with S € £(Y,H), R € £(H, F) and let i : H — ¢y be an into
isomorphism. The operator R can be extended to an operator Ry : ¢g — E
through ¢ since F is an LP-space; moreover Sobczyk’s theorem allows one
to extend ¢S : Y — ¢o to an operator S; : X — ¢g through j. The operator
R15] is an extension of 7" through j. The other implication is immediate. =

The new method to obtain 3-space properties is the following.

PROPOSITION 4.2. Let 2 be a surjective and injective operator ideal. The
class of all Banach spaces E such that the functor A(-, E) is exact has the
3-space property.

Proof. The surjectivity of 2 implies that given an exact sequence 0 —
YLXx4LZ-0anda space E the induced sequence

0—A(Z, E) - Ql(X E) = Ql(Y E)

is exact. Now, let

0-A5B2C=0

be an exact sequence. By assumption, both 2((-, A) and 2I(-,C) are exact
functors and we need to prove that also 2(-, B) is exact. To this end we
construct the commutative diagram

0 0 0

0 — A(Z,4) L A(X,A) L A, A) — AY, A)/5*(AX, A))

7" 7" 7" l

0 — A(Z,B) > A(X,B) L A(Y,B) — A(Y,B)/j*A(X, B))

p* p* p* l

0 — A(Z,0) L wx,0) Lo Ay, 0) — AY,0)/5*(AX,C))
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The rows are exact by the surjectivity of 4, while the columns are also exact
by injectivity of L. By hypothesis,

A(Y,A) /57 (AUX, A)) =AY, C) /7" (A(X,C)) =0
and the exactness of the fourth column implies that
Ay, B)/j"(A(X, B)) =0,
hence (-, B) is exact. =

Since the separability assumption of the previous characterization of LP-
spaces does not affect the method of Proposition 4.2, the proof of Theorem
2 will be complete after showing:

LEMMA 1. The ideal Jg is injective and surjective.

Proof. The injectivity is a direct consequence of the definition. To show
the surjectivity, let 7 : X — E be an operator which factorizes as 7 = g1
through a subspace H of ¢y in a diagram

0 y L. x 2.z 0
.|
H
.|
E
Assume that 75 = 0. One then has the commutative diagram
0—— v —ox 2 A—
R
0 —— kerpg H - H/kerpg —— 0
o
E

It is clear that there exists an operator ¢y : H/ker o9 — E such that
woP = g. It is then obvious that @op1p = @op1. Moreover the operator
o1 is in Jo(Z, E) since H /ker ¢y, as a quotient of a subspace of ¢y, is itself
a subspace of a quotient of ¢y, hence [28, 2.f.6] a subspace of ¢j. =

Theorem 2, in particular, yields:
COROLLARY 1. Every twisted sum of C(K)-spaces is an LP-space.

The paper [7] contains most of the available information about how to
construct twisted sums of C(K)-spaces. For instance, it is shown that for
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every separable Banach space X not containing [; there exists an exact
sequence

0—C[0,1] 5 2(X) L X -0

with strictly singular quotient map. Of course, the space 2(X) is not a
quotient of a C'(K)-space. Using Theorem 4.7 of 7] one can obtain examples
of LP-spaces not containing /; which are not C(K)-spaces. We do not know
if there exist Loo-spaces not containing [y which are not LP-spaces.

New nonseparable LP-spaces can be obtained through the following sta-
bility result.

PROPOSITION 4.3. FEvery quotient of an LP-space by a separably injective
space is an LP-space.

Proof. Consider an exact sequence 0 — SI — LP 4, @ — 0 in which
the middle term is a Lindenstrauss—Pelczynski space and the subspace is
separably injective. Let ¢ : H — ) be an operator from a subspace H of cg.
Since SI is separably injective, Ext(H, SI) = 0. Hence F'¢ splits and ¢ can be
lifted through ¢ to an operator ¢ : H — LP. This operator can be extended
to an operator ¥ : ¢g — LP. The operator ¢¥ : ¢g — @ is the desired
extension of ¢. m

The same proof shows that the quotient of two separably injective spaces
is separably injective. In particular, [ /cg is separably injective. However,
the following example shows that the quotient of two LP-spaces is not nec-
essarily an LP-space.

PROPOSITION 4.4. FEvery separable Loo-space is a quotient of two LP-
spaces.

Proof. Let X be a separable L..-space. Consider the following push-out
diagram:

0 0

0 —— K I X 0

0 —— Loo(K) PO )‘L 0
S —— S
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The push-out space PO is an L.-space by a simple 3-space argument (see
[9, Thm. 3.3.b]). Since the Schur property is also a 3-space property (see [9,
6.1]), both Lo (K) and PO are therefore L-spaces with the Schur property.
Thus, they are both LP-spaces, while their quotient is X. =

COROLLARY 2. Fuvery separable Lo -space is a quotient of two Lo -spaces
with the Schur property.

Therefore, the choice X = L (H) of a separable L..-space that is not an
LP-space, as the one constructed in Proposition 3.2, shows that the quotient
of two LP-spaces need not be an LP-space, and similarly for the quotient of
two Lso-spaces with the Schur property.

5. Some open questions. We have already shown that the quotient
of two LP-spaces is not necessarily an LP-space. An especially interesting
case is:

QUESTION 1. Is I /C]0,1] an LP-space?
A variation of this question is:

QUESTION 2. Must L-spaces which are quotients of C[0,1] be LP-
spaces?

As mentioned in the introduction, Johnson and Zippin proved in [17] that
every extension 0 — H — ¢o(I') — Z — 0 is C(K)-trivial. It would be nice
to know if LP-spaces can play the role of C'(K)-spaces in this result.

QUESTION 3. Given a subspace H of ¢g(I"), does every operator H — LP
have an extension to co(I")?

Needless to say, the extension property one would like to get from LP-
spaces is: every C'(K)-trivial sequence is also LP-trivial. Unfortunately, this
does not hold.

ExXAMPLE. We already know that the Bourgain-Pisier space Loo(l2) is
an LP-space. Consider then the sequences

%, C(By) Q 0=0C,

0 lo

H

0 Iy —— Loo(lo) S 0=BP,

If j could be extended to an operator J : C(Bj,) — Lx(l2) through Jo
this would be a weakly compact operator since L (l2) does not contain cy.
Hence J would be completely continuous by the Dunford—Pettis property of
C(K)-spaces. It is therefore impossible that Jds = j.
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The method of proof developed in Proposition 4.2 is new. It is more-
over clear that it can be applied to other injective and surjective operator
ideals appearing in the literature. It is easy to check that the following ide-
als are injective and surjective (see also [31]): £ = all operators; § = finite
rank operators; 8 = compact operators; 9 = weakly compact operators;
31 = unconditionally summing operators; Jo = operators factorable through
a Hilbert space. Let us introduce some notation: given an injective and sur-
jective operator ideal 4 let E(U) be the class of all Banach spaces E such
that the functor (-, E') is exact. From Proposition 4.2 we have obtained
easy proofs that the following classes have the 3-space property: E(£) =
injective spaces; applying the method only to separable spaces one obtains
the class of separably injective spaces; E(R) = Loo-spaces (by [24]); E(20)
= Loo-spaces with the Schur property (shown in [2]). The classes E(4l) and
E(J2) seem not to have been characterized yet.

A simple homological duality argument yields:

PROPOSITION 5.1. Let 2 be an injective and surjective operator ideal.
The class of all Banach spaces E such that the functor 2(E,-) is eract has
the 3-space property.

If we write 3() for the previous class determined by the ideal 2 then
the only nontrivial case identified is 3(R) = L;-spaces.
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