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On Lindenstrauss�Peª
zy«ski spa
esby
Jesús Castillo, Yolanda Moreno and Jesús Suárez (Badajoz)Abstra
t. We 
onsider some stability aspe
ts of the 
lassi
al problem of extensionof C(K)-valued operators. We introdu
e the 
lass LP of Bana
h spa
es of Lindenstrauss�Peª
zy«ski type as those su
h that every operator from a subspa
e of c0 into them 
an beextended to c0. We show that all LP-spa
es are of type L∞ but not 
onversely. Moreover,

L∞-spa
es will be 
hara
terized as those spa
es E su
h that E-valued operators from
w∗(l1, c0)-
losed subspa
es of l1 extend to l1. Regarding examples we will show that everyseparable L∞-spa
e is a quotient of two LP-spa
es; also, L∞-spa
es not 
ontaining c0are LP-spa
es; the 
omplemented subspa
es of C(K) and the separably inje
tive spa
esare sub
lasses of the LP-spa
es and we show that the former does not 
ontain the latter.Regarding stability properties, we prove that quotients of an LP-spa
e by a separablyinje
tive spa
e and twisted sums of LP-spa
es are LP-spa
es.1. Introdu
tion and preliminaries. In this work we shall be 
on-
erned with some stability aspe
ts of the 
lassi
al problem of extension of
C(K)-valued and L∞-valued operators. Let us des
ribe and motivate them.In a 1971 paper [26℄ Lindenstrauss and Peª
zy«ski proved:Theorem 1. Let K be a 
ompa
t Hausdor� spa
e. Every C(K)-valuedoperator de�ned on a subspa
e of c0 admits an extension to the whole spa
e.The result remained isolated until 1989 when Johnson and Zippin ob-tained in [17℄ an extension to subspa
es of c0(Γ ), and later in 1995, in [18℄,the analogous result for w(l1, c0)-
losed subspa
es of l1. Further proofs of theLindenstrauss�Peª
zy«ski theorem have been provided by Zippin [34, 35℄.The paper [8℄ 
ontains a homologi
al approa
h to both results showing thatthey are in a sense dual to ea
h other.The general problem of extension of operators admits a natural formula-tion in homologi
al terms. We shall assume from the reader some familiarity2000 Mathemati
s Subje
t Classi�
ation: 46B20, 46M18, 46B25.Key words and phrases: extension of operators, exa
t sequen
e of Bana
h spa
es,3-spa
e property, operator ideal.The resear
h of the �rst two authors has been supported in part by DGICYT proje
tMTM2004-02635. The work of the third author was supported in part by a Marie Curiegrant HPMT-GH-01-00286-04 at Karlsruhe University under the dire
tion of Prof. L. Weis.[213℄



214 J. M. F. Castillo et al.with the basi
 notions and 
onstru
tions of the theory of exa
t sequen
esof Bana
h spa
es; the ne
essary ba
kground 
an be found in [9℄ and, opera-tively de�ned, below. We shall write 0 → Y
j
→ X

q
→ Z → 0 ≡ F to representan exa
t sequen
e of Bana
h spa
es and operators, whi
h is a diagram wherethe kernel of ea
h operator 
oin
ides with the image of the pre
eding one.The open mapping theorem makes Y a subspa
e of X through the embed-ding j and Z the 
orresponding quotient spa
e through q. The reader 
anview F just as the name of the sequen
e; however, those familiar with thetheory of quasi-linear maps 
reated in [19, 22℄ 
an in fa
t 
onsider F as aquasi-linear map asso
iated to the exa
t sequen
e.We shall 
onsider exa
t sequen
es of Bana
h spa
es modulo the naturalequivalen
e relation: two sequen
es F and G are said to be equivalent if thereis a 
ommutative diagram

0 −−−−→ Y
j

−−−−→ X −−−−→ Z −−−−→ 0 ≡ F∥∥∥ T

y
∥∥∥

0 −−−−→ Y −−−−→ X ′ −−−−→ Z −−−−→ 0 ≡ GIn this 
ase we write F ≡ G. The spa
e of equivalen
e 
lasses of exa
tsequen
es with Y as subspa
e and Z as quotient will be denoted Ext(Z, Y ).It is a ve
tor spa
e under some natural operations (see [13, III.2℄) and the 0element is the sequen
e 0 → Y → Y ⊕Z → Z → 0 with in
lusion y 7→ (y, 0)and quotient map (y, z) 7→ z. We shall say that F is trivial or splits when
F ≡ 0. This means, in 
lassi
al terms, that j(Y ) is 
omplemented in X.Re
all that a property P is said to be a 3-spa
e property if whenever onehas an exa
t sequen
e 0 → Y → X → Z → 0 in whi
h both Y and Z have
P then also X has P; see [9℄ for most of the available information about3-spa
e problems.The lower sequen
e in a diagram

0 −−−−→ Y
j

−−−−→ X
q

−−−−→ Z −−−−→ 0 ≡ F∥∥∥
x

xT

0 −−−−→ Y −−−−→ X ′ −−−−→ E −−−−→ 0is a 
alled a pull-ba
k sequen
e and is naturally denoted FT . The middlespa
e X ′ is 
alled the pull-ba
k of q and T . The sequen
e FT splits if andonly if T 
an be lifted to X through q. The lower sequen
e in a diagram
0 −−−−→ Y

j
−−−−→ X −−−−→ Z −−−−→ 0 ≡ F

T

y
yt

∥∥∥

0 −−−−→ E
i

−−−−→ X ′ −−−−→ Z −−−−→ 0
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alled the push-out sequen
e and is naturally denoted TF . The middlespa
e X ′ is 
alled the push-out of j and T . This spa
e has the universalproperty that given operators a : E → B and b : X → B su
h that aT = bjthere exists a unique operator p : X ′ → B su
h that pi = a and pt = b. Ex-tending an operator T : Y → E through j is the same as saying that TF istrivial. The lifting property of l1(Γ ) and the fa
t that every Bana
h spa
e Zadmits an exa
t sequen
e 0 → K(Z) → l1(Γ ) → Z → 0, 
alled a proje
tivepresentation of Z, imply that every exa
t sequen
e 0 → Y → X → Z → 0 isa push-out of a proje
tive presentation of Z. Hen
e Ext(Z, Y ) = 0 is equiva-lent to the statement �every operator K(Z) → Y 
an be extended to l1(Γ )�.That all operators Y → E 
an be extended to X through j admits aneven simpler formulation: the restri
tion operator j∗ : L(X,E) → L(Y,E) issurje
tive. The following terminology is quite natural and will prove to bevery useful:Definition 1. Let A be a 
lass of Bana
h spa
es. We say that an exa
tsequen
e 0 → Y
j
→ X → Z → 0 ≡ F is A-trivial (or that F A-splits) if forevery A ∈ A the restri
tion operator j∗ : L(X,A) → L(Y,A) is surje
tive.We will also say that Y is A-
omplemented in X.Sometimes the quantitative version of the previous notion will be used:given λ ≥ 1, the exa
t sequen
e F will be said to be (λ,A)-trivial if for every

A ∈ A every operator T : Y → A admits an extension T̂ : X → A su
h that
‖T̂‖ ≤ λ‖T‖.This notion of A-triviality uni�es di�erent notions appearing in the lit-erature: (i) trivial sequen
es, whi
h 
orrespond to A = all Bana
h spa
es;(ii) Kalton's lo
ally trivial, or lo
ally split, sequen
es (see [20℄), 
orrespond-ing to A = l∞(Gn), where Gn is a dense (in the Bana
h�Mazur distan
e)sequen
e of �nite-dimensional Bana
h spa
es (see also [14℄); (iii) Zippin'salmost trivial sequen
es (see [33�36℄), whi
h 
orrespond to the 
hoi
e A =
C(K)-spa
es.In this work we are 
on
erned with C(K)-trivial and L∞-trivial se-quen
es. In Se
tion 2 we study the stability of C(K)-trivial sequen
es byamalgams and duality. We �rst show that lp- and c0-amalgams of C(K)-trivial sequen
es are C(K)-trivial. Con
erning the stability of C(K)-trivialsequen
es by duality, the Lindenstrauss�Peª
zy«ski and Johnson�Zippin the-orems suggest that it 
ould be that the dual of a C(K)-trivial sequen
e is
C(K)-trivial sin
e the former implies that every exa
t sequen
e 0 → H →
X → S → 0 ≡ F with H a subspa
e of c0 and S separable is C(K)-trivial;and the latter yields (see [10℄) that its dual sequen
e F ∗ is C(K)-trivial.However, the situation 
overed by those two theorems proves to be quitepe
uliar; we give examples at the end of Se
tion 2 to show that the dual andbidual sequen
es of a C(K)-trivial sequen
e need not be C(K)-trivial.
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tion 3 our attention turns to those Bana
h spa
es whi
h 
an playthe role of C(K)-spa
es in the Lindenstrauss�Peª
zy«ski theorem. We 
allsu
h spa
es Lindenstrauss�Peª
zy«ski (LP, for short) spa
es. Our motivationto introdu
e those spa
es 
omes from [26, p. 234, remark 2℄ where Linden-strauss and Peª
zy«ski assert that isometri
 L1-preduals 
an play the roleof C(K)-spa
es regarding extension of operators from subspa
es of c0. Aftershowing that every LP-spa
e is an L∞-spa
e we then fa
e the unavoidablequestion: Must every L∞-spa
e be an LP-spa
e? The answer is no, whi
hsolves Problem 6.15 of Zippin in [36℄. We shall show that the same ap-proa
h to the Johnson�Zippin theorem just provides a new 
hara
terizationof L∞-spa
es (see Proposition 3.1).As regards the problem of the identi�
ation of LP-spa
es, it is 
learthat 
omplemented subspa
es of C(K)-spa
es and separably inje
tive spa
esare LP-spa
es. On the way, we will give perhaps the �rst example of aseparably inje
tive spa
e that is not 
omplemented in any C(K)-spa
e. Theprevious examples do not exhaust the 
lass of LP-spa
es: we shall show that
L∞-spa
es not 
ontaining c0, the new exoti
 L∞-spa
es 
onstru
ted in [7℄,quotients of LP-spa
es by separably inje
tive subspa
es and c0-ve
tor sumsof uniformly LP-spa
es are LP-spa
es.In Se
tion 4 we ta
kle the 3-spa
e problem for the 
lass of LP-spa
es,whi
h needs the development of a new method of proof and new 
hara
teri-zations of LP-spa
es. Se
tion 5 
ontains further remarks, examples and openproblems.

2. On the stability of C(K)-trivial sequen
es by amalgams andduality. To study the stability of C(K)-trivial sequen
es we need to knowtheir behavior with respe
t to the basi
 homologi
al pull-ba
k and push-out
onstru
tions.Proposition 2.1. Let A be a 
lass of Bana
h spa
es.(1) A pull-ba
k sequen
e of an A-trivial sequen
e is A-trivial.(2) A push-out sequen
e of an A-trivial sequen
e is A-trivial.Proof. The �rst assertion is obvious. The se
ond is a 
onsequen
e of theuniversal property of the push-out 
onstru
tion.When, moreover, the push-out is obtained from a surje
tive operator onehas:Lemma 1. Let A be a 
lass of Bana
h spa
es. Consider the 
ompletedpush-out diagram of Bana
h spa
es
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0 0
y

y

B = B
ya

yb

0 −−−−→ Y
j

−−−−→ X −−−−→ Z −−−−→ 0 ≡ F
yc

yd ‖

0 −−−−→ C −−−−→
i

D −−−−→ Z −−−−→ 0 ≡ G
y

y

0 0

||| |||

H V(i) V and G are A-trivial if and only if F and H are A-trivial.(ii) If F is A-trivial then G is A-trivial ; if V is A-trivial , H is A-trivial.Proof. The se
ond part of (ii) follows from Proposition 2.1(1). Let A ∈ Aand noti
e that from the diagram in the hypothesis we 
an 
onstru
t the
ommutative diagram
x

x

L(B,A) = L(B,A)
xb∗

xa∗

0 −−−−→ L(Z,A) −−−−→ L(X,A)
j∗

−−−−→ L(Y,A) −−−−→

‖
xd∗

xc∗

0 −−−−→ L(Z,A) −−−−→ L(D,A)
i∗

−−−−→ L(C,A) −−−−→
x

x

0 0Now, the �rst part of (ii) 
an be easily obtained by diagram 
hasing while(i) follows by simply observing that the restri
tion operators b∗ and i∗ aresurje
tive if and only if j∗ and a∗ are surje
tive.
Remark. Peª
zy«ski's Proposition 2.6 of [30℄ 
an be 
onsidered a rudi-mentary version of this prin
iple.



218 J. M. F. Castillo et al.The 
hara
terization of C(K)-trivial extensions that Zippin formulatesand proves in [33℄ is espe
ially interesting for us.Lemma 2. A sequen
e 0 → Y
j
→ X → Z → 0 is (λ,C(K))-trivial if andonly if there is a w∗-
ontinuous map ω : BY ∗ → λBX∗ su
h that j∗ω = id.The map ω will be 
alled a λ-w∗-sele
tor for j∗. Zippin [34, 35℄ uses this
riterion to obtain di�erent proofs of the Lindenstrauss�Peª
zy«ski theorem.It is inspired by the most natural possible situation: the sequen
e 0 → Y

δY→
C(BY ∗) → C(BY ∗)/Y → 0 ≡ ∁Y , in whi
h δY : Y → C(BY ∗) is the 
anon-i
al embedding, is (1, C(K))-trivial; indeed, the map ω : BY ∗ → BC(BY ∗ )de�ned as ω(x∗)(f) = f(x∗) is a 1-w∗-sele
tor for δ∗Y . Let us remark thatevery C(K)-trivial sequen
e is a pull-ba
k of ∁Y and 
onversely.It will be useful to noti
e that some properties of the w∗-topology in lp,
1 ≤ p ≤ ∞, pass to lp-ve
tor sums of Bana
h spa
es. Given an lp-sum lp(Xn)we denote by πj : lp(Xn) → Xj the natural proje
tions. It is straightforwardthat given a sequen
e (E∗

n)n of dual spa
es, a bounded net (xα)α in lp(E∗
n),

1 ≤ p ≤ ∞, is w∗-null if and only if for ea
h j the net (πj(xα))α is w∗-null.Given a family of exa
t sequen
es 0 → An → Bn → Cn → 0 ≡ Fn, we
all 0 → lp(An) → lp(Bn) → lp(Cn) → 0 ≡ lp(Fn) the lp-amalgam of (Fn)n,for 1 ≤ p ≤ ∞. Analogously, the c0-amalgam of (Fn) will be denoted c0(Fn).One has:Proposition 2.2. The c0- and lp-amalgams of (λ,C(K))-trivial exa
tsequen
es, 1 ≤ p <∞, are (λ,C(K))-trivial.Proof. For ea
h n, let ωn : BA∗

n
→ λBB∗

n
be a λ-w∗-sele
tor for j∗n. If wehave the lp-amalgam

0 → lp(An)
χ
→ lp(Bn) → lp(Cn) → 0 ≡ lp(Fn),it follows from the observation above that the map Ω : Blp∗(A∗

n) → λBlp∗(B∗

n)de�ned by Ω[(a∗n)] = [ωn(a∗n)] is a λ-w∗-sele
tor for χ∗.The situation for l∞-amalgams is entirely di�erent be
ause a subspa
e
X of l∞ 
an only be C(K)-
omplemented if X enjoys both the Dunford�Pettis property (weakly 
ompa
t operators transform weakly 
ompa
t setsinto relatively 
ompa
t sets) and the Grothendie
k property (all operatorswith separable range are weakly 
ompa
t): Indeed, if E is separable and
τ : X → E is an operator, then δEτ : X

τ
→ E

δE→ C(BE∗) should extendto an operator l∞ → C(BE∗); by the Grothendie
k property of l∞ (see[12, Cor. 12, p. 156℄) this operator is weakly 
ompa
t, hen
e δEτ is weakly
ompa
t, as also is τ . We have shown that X has the Grothendie
k property.Sin
e l∞ has the Dunford�Pettis property, every weakly 
ompa
t operator
X → c0 must do the same, whi
h means that X also enjoys the Dunford�
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ular, subspa
es of l∞ su
h as l∞(ln2 ), whi
h doesnot have the Dunford�Pettis property be
ause it 
ontains a 
omplemented
opy of l2, provide sequen
es 0 → l∞(ln2 ) → l∞ → Q → 0 that are not
C(K)-trivial. Therefore, the l∞-amalgam of the sequen
es

0 → ln2 → lm(n)
∞ → lm(n)

∞ /ln2 → 0in whi
h the embeddings are (1+ε)-isometries 
annot be C(K)-trivial. Nev-ertheless, those sequen
es are all ((1 + ε)2, C(K))-trivial by the existen
e ofthe Bartle�Graves 
ontinuous sele
tion.Later on we shall also show that the c0-amalgam of L∞-trivial sequen
esis not ne
essarily L∞-trivial. Our 
on
ern now is to study the stability of
C(K)-trivial sequen
es by duality. Let us start by observing that, for everysubspa
e H of c0 and every separable Bana
h spa
e S, the sequen
e 0 →
H → X → S → 0 ≡ F is C(K)-trivial as is its dual F ∗. That F is C(K)-trivial was observed by Lindenstrauss and Peª
zy«ski in [26, Cor. 2℄. Theassertion about F ∗ (a
tually, that every exa
t sequen
e 0 → Y → X →
H∗ → 0 is C(K)-trivial for every subspa
e H of c0) dire
tly follows from theequality Ext(H∗, C(K)) = 0, whi
h is a 
onsequen
e of the Johnson�Zippintheorem. It is not true, in general, that the dual or bidual of a C(K)-trivialsequen
e is C(K)-trivial:
Examples. Consider the C(K)-trivial sequen
e 0 → l2

δ
→ C(Bl2) →

Q→ 0 ≡ F . We 
laim that the dual sequen
e 0 → Q∗ → L1
δ∗
→ l2 → 0 ≡ F ∗is not C(K)-trivial. Assume otherwise. Consider a proje
tive presentationof l2,

0 → K(l2) → l1 → l2 → 0 ≡ P.The spa
eK(l2) is 
omplemented in its bidual (see [23℄). Hen
e Ext(L1,K(l2))
= 0 by the Lindenstrauss lifting prin
iple (see [25, 23℄, but also [5℄). Thus,the lower pull-ba
k sequen
e in the diagram

0 −−−−→ K(l2) −−−−→ l1 −−−−→ l2 −−−−→ 0 ≡ P
∥∥∥

x
xδ∗

0 −−−−→ K(l2) −−−−→ PB −−−−→ L1 −−−−→ 0 ≡ Pδ∗splits, and therefore the quotient map δ∗ : L1 → l2 
an be lifted to l1. Inthis way, there is an operator φ su
h that P ≡ φF ∗ (see [10℄) and P isa push-out of F ∗; by Lemma 2.1, it must also be C(K)-trivial. But if aproje
tive presentation of l2 is C(K)-trivial then Ext(l2, C(K)) = 0, and itwas proved by Kalton in [21℄ (see also [7℄) that Ext(l2, C[0, 1]) 6= 0.The bidual sequen
e
0 → l2

δ∗∗
−→ C(Bl2)

∗∗ → Q∗∗ → 0 ≡ F ∗∗



220 J. M. F. Castillo et al.is also not C(K)-trivial: sin
e I = C(Bl2)
∗∗ is inje
tive, it has the Grothen-die
k property (see [12, Cor. 12, p. 156℄) and thus every operator I → S intoa separable spa
e is weakly 
ompa
t. By the Dunford�Pettis property of I,weakly 
ompa
t operators on I transform weakly 
ompa
t sets onto norm
ompa
t sets; thus, the 
anoni
al in
lusion l2 → C(Bl2) 
annot be extendedto I. Another example is provided by sequen
es having the form

0 → c0(An) → c0(l
m(n)
∞ ) → c0(Cn) → 0 ≡ F ;they have the property that F and F ∗ do C(K)-split although F ∗∗ does notne
essarily C(K)-split.3. On Bana
h spa
es of Lindenstrauss�Peª
zy«ski type. Thereis an obvious di�eren
e between the Lindenstrauss�Peª
zy«ski [26℄ and theJohnson�Zippin [18℄ theorems. While the former asserts that every sequen
e

0 → H → c0 → c0/H → 0 ≡ F is C(K)-trivial the latter establishes thatthe dual sequen
e F ∗ is L∞-trivial. Let us see that the 
lass L∞ 
annot beenlarged, obtaining in this way a new 
hara
terization of L∞-spa
es.Proposition 3.1. For a Bana
h spa
e E the following are equivalent :(1) E is an L∞-spa
e.(2) Every E-valued operator de�ned on a w(l1, c0)-
losed subspa
e of l1
an be extended to l1.Proof. Re
all that w(l1, c0)-
losed subspa
es of l1 are pre
isely the or-thogonal 
omplements H⊥ to subspa
es H of c0. So, as we said in Se
tion 1,(2) 
an be written as: Ext(H∗, E) = 0 for every subspa
e H of c0.General stru
ture results of Johnson�Rosenthal and Zippin (see [28, 1.g.2and 2.d.1℄) imply that given a subspa
e H of c0 there exist sequen
es (An)and (Bn) of �nite-dimensional spa
es su
h that there is an exa
t sequen
e
0 → c0(An) → H → c0(Bn) → 0. Therefore, there is an exa
t sequen
e
0 → l1(B

∗
n) → H∗ → l1(A

∗
n) → 0. A simple 3-spa
e argument (see [6℄ or [7,Cor. 1.2℄) then shows that Ext(H∗, E) = 0 is equivalent to Ext(l1(A

∗
n), E) =

0 = Ext(l1(B
∗
n), E). Therefore, (2) is equivalent to Ext(l1(Gn), E) = 0 forevery sequen
e (Gn) of �nite-dimensional spa
es. It was already observed byJohnson [14℄ that a sequen
e 0 → Y → X → Z → 0 ≡ F lo
ally splits if andonly if FT ≡ 0 for every operator T : l1(Gn) → Z withGn �nite-dimensional.Thus, every sequen
e 0 → E → X → Z → 0 lo
ally splits and in parti
ularso does any sequen
e 0 → E → l∞(I) → Q → 0 ≡ G. Re
all from [20℄ thatan exa
t sequen
e F lo
ally splits if and only if F ∗∗ splits. Hen
e, the bidualsequen
e G∗∗ splits, E∗∗ must be 
omplemented in an L∞-spa
e, so it is an

L∞-spa
e and E must itself be an L∞-spa
e.Not entirely trivial is the observation that 
ondition (2) 
an be repla
edby (2′) for every set Γ , every E-valued operator de�ned on a w(l1(Γ ), c0(Γ ))-
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losed subspa
e of l1(Γ ) 
an be extended to l1(Γ ). The proof only requiresto take into 
onsideration the de
omposition lemma of [17℄.The situation outlined for w∗(l1, c0)-
losed subspa
es of l1, together withLindenstrauss�Peª
zy«ski's remark in [26℄ asserting that operators withranges being isometri
 preduals of L1 extend from subspa
es of c0 to thewhole spa
e, suggest investigating how mu
h the 
lass of C(K)-spa
es 
anbe enlarged in the Lindenstrauss�Peª
zy«ski theorem.Definition 2. We shall say that a Bana
h spa
e E is a Lindenstrauss�Peª
zy«ski spa
e, for short an LP-spa
e, if all operators from subspa
es of
c0 into E 
an be extended to c0.We shall also need the quantitative version: when every operator T :
H → E admits an extension T̂ : c0 → E su
h that ‖T̂‖ ≤ λ‖T‖ we shallsay that E is an LPλ-spa
e. It is not hard to see that every LP-spa
e is an
LPλ-spa
e for some λ.Lemma 3. An LPλ-spa
e is, for every ε > 0, an L∞,2λ+ε-spa
e.Proof. Let E be an LPλ-spa
e. Let T : Y → E be a 
ompa
t operatorfrom a subspa
e Y of a separable spa
e X. S
hauder's theorem (T is 
ompa
tif and only if T ∗ is 
ompa
t) plus the 
hara
terization of 
ompa
t sets inBana
h spa
es as subsets of the 
losed 
onvex hull of a norm null sequen
eimmediately show that T fa
torizes through some subspa
e i : H → c0as T = BA with A : Y → H and B : H → E. By de�nition, there is anextension B1 : c0 → E of B with ‖B1‖ ≤ λ‖B‖; moreover Sob
zyk's theoremgives an extension A1 : X → c0 of iA with ‖A1‖ ≤ 2‖iA‖. The 
omposition
B1A1 : X → E extends T and satis�es ‖B1A1‖ ≤ 2λ‖T‖.Let us now show that �if E-valued 
ompa
t norm one operators 
an beextended with norm at most c then for every ε > 0, E is an L∞,c+ε-spa
e�.To this end, let τ : Y → E be any (
ompa
t or not) norm one operator.Ea
h restri
tion τF : F → E of τ to a �nite-dimensional subspa
e F of Yis 
ompa
t and 
an therefore be extended to an operator TF : X → E withnorm at most c. De�ne the operator T : X → E∗∗ by

T (x) = w∗- lim
U(F )

TF (x)where U is a free ultra�lter on the set of �nite-dimensional subspa
es of Y
ompatible with the natural ordering. This operator T has norm at most
c and extends τ : Y → E∗∗. In parti
ular, given an exa
t sequen
e 0 →
E → V → Q → 0, the 
anoni
al embedding δ : E → E∗∗ 
an be extendedto V with norm at most c. So E∗∗ is 
omplemented in V ∗∗ with norm c+ ε(be
ause of the prin
iple of lo
al re�exivity). Applying this to any embedding
0 → E → l∞(I) → Q → 0 one �nds that E∗∗ is an L∞,c+ε-spa
e, as alsois E.
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onstru
tion in [24℄.A dire
t appli
ation of Lindenstrauss' result is awkward: as the referee ofthe paper remarked, in his memoir, Lindenstrauss 
onsidered what he 
alls
Nλ-spa
es, whi
h are spa
es that are the 
losure of a dire
ted union of �nite-dimensional λ-inje
tive spa
es; today we know that an Nλ-spa
e is an L∞,β-spa
e, but we do not know how β depends on λ.The 
onverse fails: we show that not every L∞-spa
e is an LP-spa
e.This solves Zippin's Problem 6.15 in [36℄. The example (whi
h was sket
hedin [8℄) is based on the Bourgain�Pisier 
onstru
tion [3℄ whi
h shows that forevery separable Bana
h spa
e X there is an exa
t sequen
e

0 → X → L∞(X) → L∞(X)/X → 0 ≡ BPX ,in whi
h L∞(X) is a separable L∞-spa
e and L∞(X)/X has the S
hurproperty (weakly 
onvergent sequen
es are norm 
onvergent).Proposition 3.2. Let H be a subspa
e of c0 su
h that c0/H is not iso-morphi
 to c0. Then L∞(H) is not an LP-spa
e. In fa
t , there exists anoperator H → L∞(H) whi
h does not extend to c0.Proof. Consider the sequen
e 0 → H
j
→ c0 → c0/H → 0 ≡ F . Let 0 →

H
i
→ L∞(H) → S → 0 ≡ BPH be a Bourgain�Pisier sequen
e asso
iatedwith H. Assume that i extends to c0 through j, so that F is a pull-ba
k of

BPH . By Sob
zyk's theorem [28, 2.f.5℄, BPH is a pull-ba
k of F . Applyingthe diagonal prin
iple [27, Thm. 2℄ one gets an isomorphism
L∞(H) ⊕ c0/H ≃ c0 ⊕ S.In parti
ular, c0/H is a 
omplemented subspa
e of c0⊕S. Sin
e S and c0 aretotally in
omparable by the S
hur property of S the de
omposition theoremof Edelstein�Wojtasz
zyk (see [28, Thm. 2.
.13℄) ensures that c0/H is iso-morphi
 to someA⊕B with A 
omplemented in c0 and B 
omplemented in S.Sin
e c0/H is a subspa
e of c0 [28, 2.f.6℄, B 
an only be �nite-dimensional,hen
e c0/H ≃ c0, 
ontrary to hypothesis.This example immediately implies

Example. The c0-amalgam of (µ,L∞)-trivial sequen
es is not ne
essar-ily L∞-trivial.Proof. As already mentioned, given a subspa
e H of c0 there exist se-quen
es (An) and (Bn) of �nite-dimensional spa
es su
h that there is anexa
t sequen
e 0 → c0(An) → H → c0(Bn) → 0. Clearly, the exa
t se-quen
es 0 → An → l
m(n)
∞ → Cn → 0 are (λ,L∞,λ)-trivial. If all the amal-gams 0 → c0(An) → c0(l

m(n)
∞ ) → c0(Cn) → 0 were L∞-trivial then everysequen
e 0 → H → c0 → c0/H → 0 would also be L∞-trivial: indeed, there
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omplete push-out diagram
0 0
y

y

c0(An) = c0(An)
ya

yi

0 −−−−→ H
j

−−−−→ c0 −−−−→ c0/H −−−−→ 0 ≡ F
yb

yc ‖

0 −−−−→ c0(Bn) −−−−→
d

Z −−−−→ Z/c0(Bn) −−−−→ 0 ≡ bF
y

y

0 0

||| |||

V d Vto whi
h we apply Lemma 1(i): if V and bF are L∞-trivial then F is
L∞-trivial (whi
h we know it is not). It remains to 
he
k that V and bFare L∞-trivial. The sequen
e V is L∞-trivial by our assumption and theLindenstrauss�Rosenthal theorem that asserts that c0 is automorphi
 (see[27, 10℄); i.e., there exists an isomorphism τ : c0 → c0 making the diagram

0 −−−−→ c0(An) −−−−→ c0 −−−−→ Z −−−−→ 0
∥∥∥

yτ

y

0 −−−−→ c0(Bn) −−−−→ c0(l
m(n)
∞ ) −−−−→ c0(l

m(n)
∞ /An) −−−−→ 0
ommutative and therefore the two sequen
es L∞-split simultaneously. Thesequen
e bF is L∞-trivial by essentially the same arguments taking intoa

ount that Z must be a subspa
e of c0.The problem of identifying LP-spa
es is still far from being solved, andit a
tually gives rise to interesting questions. Observe that, in addition to

C(K)-spa
es, it is 
lear that 
omplemented subspa
es of C(K)-spa
es andseparably inje
tive spa
es are also LP-spa
es. The reader might be surprisedby the distin
tion between the two, espe
ially regarding the fa
t that everyinje
tive spa
e is 
omplemented in some C(K)-spa
e. Let us show that thetwo 
lasses are indeed distin
t.Proposition 3.3. There exists a separably inje
tive spa
e that is not
omplemented in any C(K)-spa
e.
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k diagram
0 −−−−→ c0 −−−−→ l∞ −−−−→ l∞/c0 −−−−→ 0 ≡ I

∥∥∥
x

xλ·1

0 −−−−→ c0 −−−−→ P (λ) −−−−→ l∞/c0 −−−−→ 0 ≡ IλBenyamini shows in [1℄ that P (λ) is no less than λ−1 
omplemented in any
C(K)-spa
e. Thus, the c0-amalgam of the family (In−1)

0 → c0(c0) → c0(P (n−1)) → c0(l∞/c0) → 0 ≡ c0(In−1)provides an exa
t sequen
e in whi
h both c0(c0) as well as c0(l∞/c0) are
C(K)-spa
es. However, the spa
e c0(P (n−1)) 
annot be 
omplemented inany C(K)-spa
e. That c0 is separably inje
tive is pre
isely Sob
zyk's theo-rem. That l∞/c0 is separably inje
tive is well known and follows from Propo-sition 4.3 below. It was shown in [15, 32℄ that when X is separably inje
tivethen c0(X) is separably inje
tive as well. Finally, separable inje
tivity is a3-spa
e property [6℄.There are other LP-spa
es. As mentioned before, a

ording to [26, p. 234,Remark 2℄, isometri
 preduals of L1 are LP-spa
es. So, it is quite naturalto ask whether the previous 
lasses (namely: 
omplemented subspa
es of a
C(K)-spa
e, separably inje
tive spa
es and isometri
 preduals of L1) exhaustthe LP-spa
es. The answer is no.Proposition 3.4. Every L∞-spa
e not 
ontaining c0 is an LP-spa
e.Proof. Let X be a Bana
h spa
e. If T is a non
ompa
t operator whosedomain is a subspa
e of c0 then T is an isomorphism onto a 
opy of c0; hen
e,when Y 
ontains no 
opy of c0 every operator H → Y must be 
ompa
t.Now Lindenstrauss' extension theorem for 
ompa
t operators [24℄ yields theresult.By a result of Johnson and Zippin [16℄ separable isometri
 L1-predualsare quotients of C[0, 1]. Observe that L∞-spa
es not 
ontaining c0 
annotbe quotients of C(K)-spa
es (sin
e, by [29℄, every operator on a C(K)-spa
eis either weakly 
ompa
t or an isomorphism onto a 
opy of c0). Con
reteexamples of L∞-spa
es not 
ontaining c0 
an be obtained by applying theBourgain�Pisier 
onstru
tion 0 → X → L∞(X) → S → 0 to spa
es Xwithout 
opies of c0 by a simple 3-spa
e argument (see [9, Thm. 3.2.e℄).New examples of LP-spa
es 
an be obtained by showing that this 
lasshas the 3-spa
e property.4. The 3-spa
e problem for LP-spa
es. The purpose of this se
tionis to show:Theorem 2. The 
lass of LP-spa
es has the 3-spa
e property.



Lindenstrauss�Peª
zy«ski spa
es 225The proof is not simple and requires both a di�erent 
hara
terization of
LP-spa
es and a new method to obtain 3-spa
e properties. We assume fromthe reader some a
quaintan
e with the theory of operator ideals as developedby Piets
h in [31℄. Re
all that an operator ideal A is said to be surje
tive (see[31, 4.7.9℄) if whenever Q is a quotient map and TQ ∈ A then T ∈ A; dually,the ideal A is inje
tive (see [31, 4.6.9℄) if whenever J is an into isomorphismand JT ∈ A then T ∈ A. Consider the operator ideal J0 of those operatorsthat fa
torize through a subspa
e of c0. Re
all that a fun
tor is 
alled exa
twhen it transforms exa
t sequen
es into exa
t sequen
es.Proposition 4.1. A Bana
h spa
e E is an LP-spa
e if and only if thefun
tor J0(·, E) is exa
t when a
ting on the 
ategory of separableBana
h spa
es.Proof. Let j : Y → X be an into isomorphism, and let T ∈ J0(Y,E).Write T = RS with S ∈ L(Y,H), R ∈ L(H,E) and let i : H → c0 be an intoisomorphism. The operator R 
an be extended to an operator R1 : c0 → Ethrough i sin
e E is an LP-spa
e; moreover Sob
zyk's theorem allows oneto extend iS : Y → c0 to an operator S1 : X → c0 through j. The operator
R1S1 is an extension of T through j. The other impli
ation is immediate.The new method to obtain 3-spa
e properties is the following.Proposition 4.2. Let A be a surje
tive and inje
tive operator ideal. The
lass of all Bana
h spa
es E su
h that the fun
tor A(·, E) is exa
t has the3-spa
e property.Proof. The surje
tivity of A implies that given an exa
t sequen
e 0 →

Y
j
→ X

q
→ Z → 0 and a spa
e E the indu
ed sequen
e

0 → A(Z,E)
q∗

→ A(X,E)
j∗

→ A(Y,E)is exa
t. Now, let
0 → A

i
→ B

p
→ C → 0be an exa
t sequen
e. By assumption, both A(·, A) and A(·, C) are exa
tfun
tors and we need to prove that also A(·, B) is exa
t. To this end we
onstru
t the 
ommutative diagram

0 0 0y
y

y

0 −−→ A(Z,A)
q∗

−−→ A(X,A)
j∗

−−→ A(Y,A) −−→ A(Y,A)/j∗(A(X,A))

i∗

y i∗

y i∗

y
y

0 −−→ A(Z,B)
q∗

−−→ A(X,B)
j∗

−−→ A(Y,B) −−→ A(Y,B)/j∗(A(X,B))

p∗
y p∗

y p∗
y

y

0 −−→ A(Z,C)
q∗

−−→ A(X,C)
j∗

−−→ A(Y,C) −−→ A(Y,C)/j∗(A(X,C))
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t by the surje
tivity of U, while the 
olumns are also exa
tby inje
tivity of U. By hypothesis,
A(Y,A)/j∗(A(X,A)) = A(Y,C)/j∗(A(X,C)) = 0and the exa
tness of the fourth 
olumn implies that

A(Y,B)/j∗(A(X,B)) = 0,hen
e A(·, B) is exa
t.Sin
e the separability assumption of the previous 
hara
terization of LP-spa
es does not a�e
t the method of Proposition 4.2, the proof of Theorem2 will be 
omplete after showing:Lemma 1. The ideal J0 is inje
tive and surje
tive.Proof. The inje
tivity is a dire
t 
onsequen
e of the de�nition. To showthe surje
tivity, let τ : X → E be an operator whi
h fa
torizes as τ = ϕ0ϕ1through a subspa
e H of c0 in a diagram
0 −−−−→ Y

j
−−−−→ X

p
−−−−→ Z −−−−→ 0

ϕ1

y

H

ϕ0

y

EAssume that τj = 0. One then has the 
ommutative diagram
0 −−−−→ Y

j
−−−−→ X

p
−−−−→ Z −−−−→ 0

y ϕ1

y ϕ̃1

y

0 −−−−→ kerϕ0 −−−−→ H −−−−→
P

H/kerϕ0 −−−−→ 0

ϕ0

y

EIt is 
lear that there exists an operator ϕ̃0 : H/kerϕ0 → E su
h that
ϕ̃0P = ϕ0. It is then obvious that ϕ̃0ϕ̃1p = ϕ0ϕ1. Moreover the operator
ϕ̃0ϕ̃1 is in I0(Z,E) sin
e H/kerϕ0, as a quotient of a subspa
e of c0, is itselfa subspa
e of a quotient of c0, hen
e [28, 2.f.6℄ a subspa
e of c0.Theorem 2, in parti
ular, yields:Corollary 1. Every twisted sum of C(K)-spa
es is an LP-spa
e.The paper [7℄ 
ontains most of the available information about how to
onstru
t twisted sums of C(K)-spa
es. For instan
e, it is shown that for
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h spa
e X not 
ontaining l1 there exists an exa
tsequen
e
0 → C[0, 1]

i
→ Ω(X)

q
→ X → 0with stri
tly singular quotient map. Of 
ourse, the spa
e Ω(X) is not aquotient of a C(K)-spa
e. Using Theorem 4.7 of [7℄ one 
an obtain examplesof LP-spa
es not 
ontaining l1 whi
h are not C(K)-spa
es. We do not knowif there exist L∞-spa
es not 
ontaining l1 whi
h are not LP-spa
es.New nonseparable LP-spa
es 
an be obtained through the following sta-bility result.Proposition 4.3. Every quotient of an LP-spa
e by a separably inje
tivespa
e is an LP-spa
e.Proof. Consider an exa
t sequen
e 0 → SI → LP

q
→ Q → 0 in whi
hthe middle term is a Lindenstrauss�Peª
zy«ski spa
e and the subspa
e isseparably inje
tive. Let φ : H → Q be an operator from a subspa
e H of c0.Sin
e SI is separably inje
tive, Ext(H, SI) = 0. Hen
e Fφ splits and φ 
an belifted through q to an operator ψ : H → LP. This operator 
an be extendedto an operator Ψ : c0 → LP. The operator qΨ : c0 → Q is the desiredextension of φ.The same proof shows that the quotient of two separably inje
tive spa
esis separably inje
tive. In parti
ular, l∞/c0 is separably inje
tive. However,the following example shows that the quotient of two LP-spa
es is not ne
-essarily an LP-spa
e.Proposition 4.4. Every separable L∞-spa
e is a quotient of two LP-spa
es.Proof. Let X be a separable L∞-spa
e. Consider the following push-outdiagram:

0 0
y

y

0 −−−−→ K −−−−→ l1 −−−−→ X −−−−→ 0
y

y
∥∥∥

0 −−−−→ L∞(K) −−−−→ PO −−−−→ X −−−−→ 0
y

y

S S
y

y

0 0
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e PO is an L∞-spa
e by a simple 3-spa
e argument (see[9, Thm. 3.3.b℄). Sin
e the S
hur property is also a 3-spa
e property (see [9,6.1℄), both L∞(K) and PO are therefore L∞-spa
es with the S
hur property.Thus, they are both LP-spa
es, while their quotient is X.Corollary 2. Every separable L∞-spa
e is a quotient of two L∞-spa
eswith the S
hur property.Therefore, the 
hoi
e X = L∞(H) of a separable L∞-spa
e that is not an
LP-spa
e, as the one 
onstru
ted in Proposition 3.2, shows that the quotientof two LP-spa
es need not be an LP-spa
e, and similarly for the quotient oftwo L∞-spa
es with the S
hur property.5. Some open questions. We have already shown that the quotientof two LP-spa
es is not ne
essarily an LP-spa
e. An espe
ially interesting
ase is:
Question 1. Is l∞/C[0, 1] an LP-spa
e?A variation of this question is:
Question 2. Must L∞-spa
es whi
h are quotients of C[0, 1] be LP-spa
es?As mentioned in the introdu
tion, Johnson and Zippin proved in [17℄ thatevery extension 0 → H → c0(Γ ) → Z → 0 is C(K)-trivial. It would be ni
eto know if LP-spa
es 
an play the role of C(K)-spa
es in this result.
Question 3. Given a subspa
eH of c0(Γ ), does every operatorH → LPhave an extension to c0(Γ )?Needless to say, the extension property one would like to get from LP-spa
es is: every C(K)-trivial sequen
e is also LP-trivial. Unfortunately, thisdoes not hold.
Example. We already know that the Bourgain�Pisier spa
e L∞(l2) isan LP-spa
e. Consider then the sequen
es

0 −−−−→ l2
δ2−−−−→ C(Bl2) −−−−→ Q −−−−→ 0 ≡ ∁l2∥∥∥

0 −−−−→ l2
j

−−−−→ L∞(l2) −−−−→ S −−−−→ 0 ≡ BPl2If j 
ould be extended to an operator J : C(Bl2) → L∞(l2) through δ2this would be a weakly 
ompa
t operator sin
e L∞(l2) does not 
ontain c0.Hen
e J would be 
ompletely 
ontinuous by the Dunford�Pettis property of
C(K)-spa
es. It is therefore impossible that Jδ2 = j.
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lear that it 
an be applied to other inje
tive and surje
tive operatorideals appearing in the literature. It is easy to 
he
k that the following ide-als are inje
tive and surje
tive (see also [31℄): L = all operators; F = �niterank operators; K = 
ompa
t operators; W = weakly 
ompa
t operators;
U = un
onditionally summing operators; J2 = operators fa
torable througha Hilbert spa
e. Let us introdu
e some notation: given an inje
tive and sur-je
tive operator ideal U let E(U) be the 
lass of all Bana
h spa
es E su
hthat the fun
tor U(·, E) is exa
t. From Proposition 4.2 we have obtainedeasy proofs that the following 
lasses have the 3-spa
e property: E(L) =inje
tive spa
es; applying the method only to separable spa
es one obtainsthe 
lass of separably inje
tive spa
es; E(K) = L∞-spa
es (by [24℄); E(W)= L∞-spa
es with the S
hur property (shown in [2℄). The 
lasses E(U) and
E(J2) seem not to have been 
hara
terized yet.A simple homologi
al duality argument yields:Proposition 5.1. Let A be an inje
tive and surje
tive operator ideal.The 
lass of all Bana
h spa
es E su
h that the fun
tor A(E, ·) is exa
t hasthe 3-spa
e property.If we write ∃(A) for the previous 
lass determined by the ideal A thenthe only nontrivial 
ase identi�ed is ∃(K) = L1-spa
es.
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