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Positive bases in ordered subspaces

with the Riesz decomposition property

by

Vasilios Katsikis and Ioannis A. Polyrakis (Athens)

Abstract. In this article we suppose that E is an ordered Banach space whose pos-
itive cone is defined by a countable family F = {fi | i ∈ N} of positive continuous linear
functionals on E, i.e. E+ = {x ∈ E | fi(x) ≥ 0 for each i}, and we study the existence
of positive (Schauder) bases in ordered subspaces X of E with the Riesz decomposition
property. We consider the elements x of E as sequences x = (fi(x)) and we develop a
process of successive decompositions of a quasi-interior point of X+ which at each step
gives elements with smaller support. As a result we obtain elements of X+ with minimal
support and we prove that they define a positive basis of X which is also unconditional. In
the first section we study ordered normed spaces with the Riesz decomposition property.

1. Introduction and notations. The most typical examples of ordered
Banach spaces E with a rich class of ordered subspaces are the universal
spaces C[0, 1] and ℓ∞. As shown in [8, Theorem 4.1] (1) each separable or-
dered Banach space with closed and normal positive cone is order-isomorphic
to an ordered subspace of C[0, 1], therefore the study of positive bases in
separable ordered Banach spaces is equivalent to the study of such bases in
closed ordered subspaces of C[0, 1].

In this article we study the general problem of existence of positive bases
in ordered subspaces X of E, as formulated in the abstract, by developing
a method of decomposition of a quasi-interior point of X. To develop this
method we study the subspaces X of E with the maximum support property .
In such X the quasi-interior points of X and of its closed principal solid
subspaces are characterized as the positive vectors of those subspaces with
maximum support. We show that in such subspaces the extremal points of
X+ are the nonzero elements of X+ with minimal support; this property
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(1) This result is shown by a slight modification of the classical proof of the universality
of C[0, 1].
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turns out to be important for the study of positive bases. Also, this class of
subspaces is large. Indeed, as shown in [7, Lemma 5.1], each Banach lattice
with a positive basis is order isomorphic to a closed, ordered subspace of ℓ∞
with the maximum support property with respect to the family F of the
Dirac measures δi supported at the natural numbers i, and a similar result
is also true for the space C[0, 1] (see [8, Theorem 5.1]). Therefore the class
of ordered subspaces of ℓ∞ or C[0, 1] with the maximum support property
is large and contains, in the sense of order isomorphism, the class of Banach
lattices with a positive basis.

To develop our method of decompositions we also study the ordered
subspaces X of E with the following property which we call the ws-property :
for any x ∈ X+ and any fi ∈ F the set K = {y ∈ X+ | y ≤ x and fi(y) = 0}
has at least one maximal element. According to the terminology of vector
optimization, X has the ws-property if and only if the set K has Pareto
efficient points with respect to X+. If E is a Banach lattice with order
continuous norm or if E is a dual space, we show, in Corollaries 20 and 21,
that the ordered subspaces of E have the ws-property. In the main result of
this article, Theorem 32, we prove that the maximum support property and
the ws-property are sufficient conditions for the existence of positive bases
in the ordered subspaces of E with the Riesz decomposition property. As
an application we show (Theorem 36) that the maximum support property
and the ws-property are necessary and sufficient for a positive biorthogonal
system of an ordered Banach space E with the Riesz decomposition property
to define a positive basis of E.

This article is a generalization of [7] where the same problem is studied
in lattice-subspaces of E. In the first section of this paper we study or-
dered normed spaces with the Riesz decomposition property and we prove
some results necessary for our method of decompositions. Specifically we
study quasi-interior points and we generalize the results existing for normed
lattices to ordered normed spaces with the Riesz decomposition property
(Theorems 4 and 6).

Finally, note that each Banach space with an unconditional basis, or-
dered by the positive cone of the basis, is a Banach lattice with respect to an
equivalent norm. The problem of existence of unconditional basic sequences
in Banach spaces, known as the unconditional basic sequence problem, was
solved in the negative in 1993 by W. T. Gowers and B. Maurey [3]. Our
results give necessary conditions for the existence of unconditional basic
sequences in ordered Banach spaces.

Let Y be a (partially) ordered normed space with positive cone Y+.
If Y = Y+ − Y+ then the cone Y+ is generating or reproducing , and if
there exists a real number a > 0 so that x, y ∈ Y+ with x ≤ y implies
that ‖x‖ ≤ a‖y‖, the cone Y+ is normal . Recall that a convex set P in
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a linear space is a cone if λx ∈ P for any real λ ≥ 0 and any x ∈ P , and
P∩(−P ) = {0}. For x, y ∈ Y with x ≤ y, the set [x, y] = {z ∈ Y | x ≤ z ≤ y}
is the order interval xy. A point x ∈ Y+, x 6= 0, is an extremal point of Y+

if for any y ∈ Y with 0 < y < x there exists λ ∈ R+ such that y = λx.
The space Y has the Riesz decomposition property (RDP) if for any

x, y1, y2 ∈ Y+ with x ≤ y1 +y2 there exist x1, x2 ∈ Y+ such that x = x1 +x2

and 0 ≤ x1 ≤ y1, 0 ≤ x2 ≤ y2. A subspace Z of Y is solid if for any x, y ∈ Z
with x ≤ y, the order interval [x, y] is contained in Z. We say that the
cone Y+ gives an open decomposition of Y or that Y+ is nonflat if U+ −U+

is a neighborhood of zero, where U+ = U ∩ Y+ is the positive part of the
closed unit ball U of Y , or equivalently, if any x ∈ Y has a representation
x = x1−x2 with x1, x2 ∈ Y+ and ‖x1‖, ‖x2‖ ≤ M‖x‖, where M is a constant
real number.

A linear functional f on Y is positive if f(x) ≥ 0 for each x ∈ Y+, and
strictly positive if f(x) > 0 for each x ∈ Y+, x 6= 0. Denote by Y ∗ the set of
continuous linear functionals of Y and by Y ∗

+ the set of positive ones.
Suppose that Y is an ordered Banach space. A sequence {en} in Y is a

(Schauder) basis of Y if each x ∈ Y has a unique expansion x =
∑∞

n=1 λnen

with λn ∈ R for each n. If moreover Y+ = {x =
∑∞

n=1 λnen | λn ≥ 0
for each n}, then {en} is a positive basis of Y . A positive basis is unique
in the sense that if {bn} is another positive basis of Y , then each element
of {bn} is a positive multiple of an element of {en}. If {en} is a positive
basis of Y then, by [9, Theorem 16.3] and [4, Theorems 3.5.2 and 4.1.5], the
following statements are equivalent:

(i) the basis {en} is unconditional,
(ii) the cone Y+ is generating and normal,
(iii) Y is a Banach lattice with respect to an equivalent norm.

A linear operator T from Y onto an ordered normed space Z is an order-

isomorphism of Y onto Z if T is one-to-one, T and T−1 are continuous and
for each x ∈ Y we have: x ∈ Y+ if and only if T (x) ∈ Z+. For undefined
notions and terminology regarding ordered spaces we refer to [4], [5], [1], [6]
and [10]. For Schauder bases we refer to [9].

2. Quasi-interior points in spaces with the Riesz decomposition

property. In this section we denote by Y an ordered normed space with
the Riesz decomposition property whose positive cone Y+ is closed, normal
and gives an open decomposition of Y . Then, by the Riesz–Kantorovich
theorem, the set Y b of order bounded linear functionals on Y is an order
complete linear lattice. For any x ∈ Y+,

Ix =
⋃

n∈N

[−nx, nx]
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is the solid subspace of Y generated by x, and the closure of Ix is the closed

solid subspace of Y generated by x. We prove below that the closure of Ix

is again solid. Recall the following properties of an ordered Banach space
W which we use in this article: (i) If W+ is closed and generating, then W+

gives an open decomposition of W (Krein–Šmulian) and any order bounded
linear functional on W is continuous and (ii) the cone W+ is normal if and
only if W ∗ = W ∗

+ − W ∗
+ (M. Krein); see for example [4, Theorems 3.5.2,

3.5.6 and 3.4.8]. We start with the following obvious result.

Proposition 1. Any solid subspace of Y has the Riesz decomposition

property.

Proposition 2. Suppose that x ∈ Y+, x 6= 0 and I is the closure of Ix.

Then:

(i) for any y ∈ I+, there exists an increasing sequence {yn} in Ix which

converges to y, with 0 ≤ yn ≤ y for each n,
(ii) I is a solid subspace of Y ,
(iii) the positive cone I+

x on Ix is generating ,
(iv) if we suppose moreover that Y is a Banach space then each positive,

continuous, linear functional on I has a positive, continuous, linear

extension onto Y .

Proof. Let y ∈ I+, y 6= 0. First we shall show that there exists a sequence
{y′n} in Ix∩ [0, y] convergent to y. Since y ∈ I, we have y = limn→∞ tn where
tn ∈ [−κnx, κnx] and {κn} is an increasing sequence of natural numbers.
Hence tn−y → 0, therefore by [4, Theorem 3.3.5], there exist sequences {wn},
{vn} in Y+ with tn−y = wn−vn and wn, vn → 0. Then tn+vn−y = wn ≥ 0,
and therefore

(1) y ≤ tn + vn ≤ κnx + vn.

By the RDP we know that y = y′n+y′′n where 0 ≤ y′n ≤ κnx and 0 ≤ y′′n ≤ vn.
Since the cone Y+ is normal and the sequence vn converges to zero, the
sequence y′′n also converges to zero, hence y′n → y, as desired. So for any
positive real number ε, we have ‖y − y′n‖ < ε/2 for a proper n. We put
r1 = y′n. Similarly there exists r2 ∈ Ix ∩ [0, y − r1] with ‖y − r1 − r2‖ < ε/22

and continuing this process we find a sequence {rn} in Ix with rn ∈ [0, y −∑n−1
i=1 ri] and ‖y −

∑n
i=1 ri‖ < ε/2n for each n. Then yn =

∑n
i=1 ri is an

increasing sequence in [0, y] which converges to y, proving (i).

For the proof of (ii) it is enough to show that [0, y] ⊆ I+ for any y ∈ I+.
So let y ∈ I+ and z ∈ [0, y]. As in the proof of (i) we find again that y
satisfies (1) and by the RDP we have z = z′n + z′′n where 0 ≤ z′n ≤ κnx,
0 ≤ z′′n ≤ vn and as before z′′n → 0. Hence z′n → z, therefore z ∈ I and
statement (ii) follows.
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Statement (iii) is obvious because for any y ∈ [−nx, nx] we have 0 ≤
y+nx ≤ 2nx, therefore y+nx = a+b where a, b ∈ Y+ with a ≤ nx, b ≤ nx,
and hence y = a − (nx − b).

Finally, suppose that f is a positive, continuous linear functional on I.
For any y ∈ Y+ we put Ly = {z ∈ I+

x | z ≤ y}. Then Ly is bounded because
the cone Y+ is normal. For any y ∈ Y+ we put g(y) = sup{f(z) | z ∈ Ly}.
By the RDP and by the fact that Ix is solid we have Ly + Lw = Ly+w.
Therefore g is positively homogeneous and additive on Y+. Hence g has
a linear and positive extension onto Y which we denote again by g, i.e.
g(x) = g(x1) − g(x2) for any x = x1 − x2 ∈ Y with x1, x2 ∈ Y+. By [4,
Corollary 3.5.6], g is continuous. By the definition of g and by the fact
that Ix is solid, we have g(y) = f(y) for any y ∈ I+

x , therefore g coincides
with f on Ix because Ix = I+

x − I+
x . Since Ix is dense in I we conclude

that g is also equal to f on I, therefore g is an extension of f from I
to Y .

Definition 3. An element u ∈ Z+ of an ordered topological linear space
Z is a quasi-interior point of Z+ (or a quasi-interior positive element of Z)
if the solid subspace

⋃
n∈N

[−nu, nu] of Z generated by u is dense in Z.

The above definition extends the notion of the quasi-interior point (see
[1, p. 259]) from normed lattices to ordered topological linear spaces. It is
clear that if u is a quasi-interior point of Z+ then f(u) > 0 for any positive,
continuous, and nonzero linear functional f on Z. In [5, p. 24], the points u
of an ordered Banach space Z with f(u) > 0 for any positive, continuous,
nonzero linear functional f on Z are called quasi-interior points of Z+. In
Theorem 6 we show that in ordered Banach spaces with the RDP, these two
definitions are equivalent. By Proposition 2 we get the following result:

Theorem 4. An element u ∈ Y+ is a quasi-interior point of Y+ if and

only if for each x ∈ Y+ there exists an increasing sequence {xn} in Iu which

converges to x with 0 ≤ xn ≤ x for each n.

Proposition 5. If u is a quasi-interior point of Y+, then [0, x] ∩ [0, u]
6= {0} for each x ∈ Y+, x 6= 0.

Proof. By the above theorem there exists an increasing sequence {xn}
in Iu with 0 < xn ≤ x which converges to x, therefore the proposition is
true.

Theorem 6. If moreover Y is a Banach space and u ∈ Y+, then the

following statements are equivalent :

(i) u is a quasi-interior point of Y+,
(ii) f(u) > 0 for each f ∈ Y ∗

+, f 6= 0.
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Proof. (i)⇒(ii) is obvious because f(u) = 0 implies that f = 0 on Y . For
the converse suppose that (ii) holds and that the closure I of Iu is a proper
subspace of Y . So there exists g ∈ Y ∗, g 6= 0, which is identically zero on I.
Then |g| ∈ Y ∗ because Y is a Banach space and |g| is positive. It is known
that |g|(y) = sup g([−y, y]) for any y ∈ Y+. Since g 6= 0 and the positive cone
of Y is generating we see that g(y) 6= 0 for at least one y ∈ Y+, which implies
that |g| 6= 0. Therefore |g|(u) > 0. Since |g|(u) = sup g([−u, u]) it follows
that g is not identically zero on the interval [−u, u], a contradiction because
g is identically zero on I and [−u, u] ⊆ I. Therefore u is a quasi-interior
point of Y+ and (ii)⇒(i) is proved.

Proposition 7. Let Z be an ordered normed space and suppose that its

positive cone Z+ is complete. Then the following statements are equivalent :

(i) every y ∈ Z+, y 6= 0, is a quasi-interior point of Z+,
(ii) dimZ = 1.

Proof. Suppose that (i) is true. First we show that the boundary ϑZ+

of Z+ is equal to {0}. By the Bishop–Phelps theorem (see for example [4,
Theorem 3.8.14]) the support points of Z+ are dense in ϑZ+. Suppose that
r is a support point of Z+ which is supported by the functional x∗ ∈ Z∗,
x∗ 6= 0, i.e. x∗(r) = min{x∗(t) | t ∈ Z+}. Then x∗(r) ≤ 0 because 0 ∈ Z+.
If we suppose that x∗ is not positive, there exists a ∈ Z+ with x∗(a) < 0.
Then x∗, restricted to the halfline defined by a, takes any negative real value,
therefore x∗(r) = −∞, a contradiction. Hence x∗ is positive. If we suppose
that r 6= 0, then r is a quasi-interior point of Z+, therefore x∗(r) > 0, a
contradiction, because we have found before that x∗(r) ≤ 0, hence r = 0
and ϑZ+ = {0}.

We now show that Z = Z+ ∪ (−Z+). So suppose that w ∈ Z \ Z+ and
y ∈ Z+, y 6= 0. Suppose also that z is a point of the line segment [y, w]
with z ∈ ϑZ+. Then z = 0, therefore w ∈ −Z+, hence Z = Z+ ∪ (−Z+).
Suppose now that w is a fixed point of Z \ Z+. As shown before, for any
point y ∈ Z+, y 6= 0, the line segment [y, w] contains 0, therefore y belongs
to the line defined by w and 0, hence Z+ is a halfline and dimZ = 1. So (i)
implies (ii). The converse is clear.

Definition 8. Let Z be an ordered space and x, y ∈ Z+ with
x, y 6= 0. If [0, x] ∩ [0, y] = {0}, we say that x, y are disjoint in Z+ and
write infZ+

{x, y} = 0.

The next result will be used later for the study of positive bases. State-
ment (i) is an easy consequence of the Riesz decomposition property.

Proposition 9. Let Z be an ordered normed space with the Riesz de-

composition property. Then the following statements are true:
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(i) If the vectors y1, . . . , yn are pairwise disjoint in Z+ and x ∈ Z+ with

x ≤ y1 + · · · + yn, then:

(a) x has a unique decomposition x = x1 + · · ·+ xn with 0 ≤ xi ≤ yi

for each i = 1, . . . , n,
(b) if x ≥ yi for each i = 1, . . . , n, then x = y1 + · · · + yn,
(c) if Φ1, Φ2 are subsets of {1, . . . , n}, yΦ1

=
∑

i∈Φ1
λiyi, yΦ2

=∑
i∈Φ2

µiyi, where λi, µi are positive real numbers and h ≤ yΦ1
,

h ≤ yΦ2
then h has a unique decomposition h =

∑
i∈Φ1∩Φ2

hi

where 0 ≤ hi ≤ min{λi, µi}yi for each i ∈ Φ1∩Φ2. If Φ1∩Φ2 = ∅
then yΦ1

, yΦ2
are disjoint in Z+.

(ii) If the positive cone Z+ of Z is normal and the vectors yi, i ∈ N, are

pairwise disjoint in Z+, and the sum
∑∞

i=1 yi exists, then

(a) infZ+
{
∑n

i=1 yi,
∑∞

i=n+1 yi} = 0 for each n,
(b) each element x of Z+ with 0 ≤ x ≤

∑∞
i=1 yi has a unique expan-

sion x =
∑∞

i=1 xi with 0 ≤ xi ≤ yi for each i.

Proof. The proof of (i) is the following: By the RDP we have x =
x1 + · · ·+xn with 0 ≤ xi ≤ yi for each i. Suppose that also x = x′

1 + · · ·+x′
n

with 0 ≤ x′
i ≤ yi for each i. Then 0 ≤ x′

j ≤ x1 + · · · + xn, therefore
x′

j = x′′
1 + · · · + x′′

n with 0 ≤ x′′
i ≤ xi ≤ yi for each i, and hence x′′

i = 0 for
each i 6= j because yi and yj are disjoint. So x′

j ≤ xj and similarly xj ≤ x′
j ,

therefore xj = x′
j for each j, and the expansion of x is unique.

If yj ≤ x for each j, then yj = yj1 +yj2 + · · ·+yjn with 0 ≤ yji ≤ xi ≤ yi

for each i. But 0 ≤ yji ≤ yj , hence yji = 0 for each i 6= j. So yj = yjj ≤
xj ≤ yj , therefore yj = xj for each j and (b) is proved.

To prove (c) we remark that 0 ≤ h ≤ yΦ1
implies that h =

∑
i∈Φ1

hi with

0 ≤ hi ≤ λiyi for each i ∈ Φ1. Since h ≤ yΦ2
we have hi =

∑
j∈Φ2

hj
i with

0 ≤ hj
i ≤ µjyj for any j ∈ Φ2. Since the vectors yi are disjoint we infer that

hj
i = 0 for each j 6= i, therefore hi = hi

i ≤ min{λi, µi}yi and (c) is proved.
To prove statement (a) of (ii) we suppose that 0≤h≤

∑n
i=1 yi,

∑∞
i=n+1 yi.

Then h =
∑n

i=1 hi with 0 ≤ hi ≤ yi for each i = 1, . . . , n. Also hi ≤
yn+1 +

∑∞
i=n+2 yi, therefore hi = hn+1 + h′

n+1 where 0 ≤ hn+1 ≤ yn+1

and 0 ≤ h′
n+1 ≤

∑∞
i=n+2 yi. Since yi and yn+1 are disjoint we deduce that

hn+1 = 0, therefore 0 ≤ hi = h′
n+1 ≤

∑∞
i=n+2 yi and by induction 0 ≤

hi ≤
∑∞

i=n+m yi for each m ∈ N. Since the cone is normal and the sequence∑∞
i=n+m yi converges to zero, we have hi = 0 for each i = 1, . . . , n. Therefore

h = 0 and (a) is proved.
To prove (b) suppose that 0 ≤ x ≤

∑n
i=1 yi +

∑∞
i=n+1 yi. Then x has a

unique decomposition x =
∑n

i=1 xi+x′
n with 0 ≤ xi ≤ yi for each i = 1, . . . , n

and 0 ≤ x′
n ≤

∑∞
i=n+1 yi. If we suppose that m > n and x =

∑m
i=1 vi + v′m

with 0 ≤ vi ≤ yi for i = 1, . . . , m and 0 ≤ v′m ≤
∑∞

i=m+1 yi, then x =
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∑n
i=1 vi+(

∑m
i=n+1 vi+v′m), therefore xi = vi for each i = 1, . . . , n. Hence the

vectors xi, i ∈ N, are uniquely determined and the expansion x =
∑∞

i=1 xi

with 0 ≤ xi ≤ yi for each i is unique.

For a further study of the Riesz decomposition property on the space of
operators between Banach lattices we refer to [2] and the references therein.

3. Ordered subspaces. In this section we denote by E an infinite-
dimensional ordered Banach space whose positive cone E+ is defined by a
countable family F = {fi | i ∈ N} of positive, continuous linear functionals
on E, i.e. E+ = {x ∈ E | fi(x) ≥ 0 for each i}. Also we denote by X an
ordered subspace of E, i.e. X is a subspace of E ordered by the induced
ordering. It is clear that E+ is closed and that X+ = X ∩E+ is the positive
cone of X. For any x, y ∈ X, denote by supX{x, y} the supremum and by
infX{x, y} the infimum of {x, y} in X whenever they exist. If supX{x, y}
and infX{x, y} exist for any x, y ∈ X, we say that X is a lattice-subspace

of E. According to our notations, for any x, y ∈ X with x ≤ y the set
[x, y]X = {z ∈ X | x ≤ z ≤ y} is the order interval xy in X; if x, y ∈ X+

with [0, x]X ∩ [0, y]X = {0}, we say that x, y are disjoint in X+ and we
write infX+

{x, y} = 0. Also for any x ∈ X+, x 6= 0, we denote by Ix(X) =⋃∞
n=1[−nx, nx]X the solid subspace of X generated by x. The closure Ix(X)

of Ix(X) in X is the closed solid subspace of X generated by x. If Ix(X) = X,
then x is a quasi-interior point of X+.

3.1. The minimal and maximum support properties. The minimal and
maximum support properties have been introduced in [7]. For any point
x ∈ E we denote by x(i) the real number fi(x) and by supp(x) = {i ∈ N |
x(i) 6= 0} the support of x (with respect to F). The set supp(X+) =⋃

x∈X+
supp(x) is the support of X+ (with respect to F ). An element x 6= 0

of X+ has minimal support in X+ (with respect to F) if for any y ∈ X+,
supp(y) ( supp(x) implies y = 0.

Definition 10. The ordered subspace X of E has the minimal support

property (with respect to F) if for each x ∈ X+ \ {0} we have: x is an
extremal point of X+ if and only if x has minimal support in X+.

Proposition 11. Suppose I is the closed solid subspace of X generated

by a nonzero, positive element x of X+. Then supp(u) = supp(I+) for any

quasi-interior point u of I+. (The converse is not always true.)

Proof. It is clear that supp(u) ⊆ supp(I+). If fi(u) = 0 for some i ∈
supp(I+), then fi is identically zero on Iu(X) and therefore also on I, a
contradiction because we have supposed that i ∈ supp(I+). Hence fi(u) > 0
and supp(u) = supp(I+). By Example 15(ii) below, the converse is not
always true.
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Definition 12. The ordered subspace X of E has the maximum support

property (with respect to F) if each subspace F of X which is either X or
a closed solid subspace of X generated by a nonzero element of X+ has the
property: an element x ∈ F+ is a quasi-interior point of F+ if and only if
supp(x) = supp(F+).

Proposition 13. If X+ is closed and X has the maximum support

property , then X+ has quasi-interior points.

Proof. For each i ∈ supp(X+) there exists xi ∈ X+ with fi(xi) > 0. So

u =
∑

i∈supp(X+)

xi

2i‖xi‖

is a quasi-interior point of X+ because X has the maximum support property
and supp(u) = supp(X+).

The proof of the next proposition is the same as that of Proposition 3.4
of [7]. The extra assumption here that X+ is closed is made in order to be
able to use Proposition 7.

Proposition 14. If X+ is closed and X has the maximum support

property , then X has the minimal support property.

Example 15. (i) The sequence spaces c0 and ℓp for 1 ≤ p < ∞ have the
maximum support property with respect to the family F = {δi} of Dirac
measures δi(x) = x(i) supported at the natural numbers i. The space ℓ∞ of
bounded real sequences does not have the maximum support property with
respect to F . Indeed, the vector x with x(i) = 1/i for any i has maximum
support and the closed solid subspace generated by x is c0. On the other
hand, ℓ∞ has the minimal support property because the extremal points
of ℓ+

∞, being positive multiples of the vectors ei, have minimal support.

(ii) The family {δri
| i ∈ N} of Dirac measures supported at the rational

numbers ri in [0, 1] and also the family G = {µi | i ∈ N} of Lebesgue
measures µi restricted to Ii, where {Ii} is a sequence of subintervals of [0, 1]
so that each interval (a, b) of [0, 1] contains at least one Ii, define the positive
cone of the space E = C[0, 1] of continuous, real-valued functions defined
on [0, 1]. The space E does not have the maximum support property with
respect to these families. Indeed, if x ∈ E+ with x(t0) = 0 for some irrational
number t0 and x(t) > 0 for each t 6= t0, then supp(x) = N but x is not a
quasi-interior point of E+.

Theorem 16 ([8, Proposition 2.5]). If X is closed and X has a positive

basis {bn}, the following statements are equivalent :

(i) X has the maximum support property with respect to F ,
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(ii) there exists a sequence {in} in N such that fin(bn) > 0 and fin(bm)=0
for any m 6= n, i.e. the coefficient functionals of the basis {bn} can

be extended onto E to positive multiples of elements of F .

Here is an example of an ordered subspace with a positive basis, but
without the maximum support property.

Example 17. Let {bn} be a sequence in ℓ∞ so that b1(4n) = 1/2n,
b1(4n + 1) = 1/3n and b1(i) = 0 in the other cases, b2(4n) = 1/3n,
b2(4n + 1) = 1/2n and b2(i) = 0 in the other cases, and bn = e4n+2 for
n ≥ 3. Then {bn} is a positive basis of the closed subspace X of ℓ∞ gener-
ated by it. The subspace X does not have the maximum support property
with respect to the family F of Dirac measures δi supported at the natural
numbers i. Indeed, supp(b1) = supp(b2), therefore δi(b1) > 0 if and only
if δi(b2) > 0, and by Theorem 16, X does not have the maximum support
property.

3.2. The ws-property. The notion of the s-property (supremum prop-
erty) has been introduced in [7]. We define here a weaker property, which
we call the ws-property (weak s-property), as follows:

Definition 18. An ordered subspace X of E has the ws-property (with
respect to F) if for each x ∈ X+, x 6= 0, and for each i ∈ supp(X+) the set
{y ∈ [0, x]X | y(i) = 0} has at least one maximal element.

If in the above definition the set {y ∈ [0, x]X | y(i) = 0} has a maximum
element, then X has the s-property. If X has the ws-property, each solid
subspace Z of X has this property. In the theory of vector optimization
the maximal elements of a subset K of a normed space Z with respect to
an ordering cone P of Z are the Pareto efficient points of K. In our case,
the ws-property ensures the existence of Pareto efficient points with respect
to X+. We start with the following easy result.

Theorem 19. Suppose that τ is a linear topology on E and

(i) X+ is τ -closed ,
(ii) each increasing net in X+, order bounded in X, has a τ -convergent

subnet ,
(iii) for each i the positive part K+

i = {y ∈ X+ | fi(y) = 0} of the kernel

of fi in X is τ -closed.

Then X has the ws-property.

Proof. Suppose that x ∈ X+ and that A is a totally ordered subset of
the τ -closed set [0, x]X ∩ K+

i . For each finite subset Φ of A denote by xΦ

the maximum of Φ. Then {xΦ}, being an increasing, order bounded net in
[0, x]X ∩ K+

i , is convergent to x0 ∈ [0, x]X ∩ K+
i which is an upper bound

of A, and by Zorn’s lemma the set [0, x]X ∩ K+
i has maximal elements.
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Corollary 20. If E is a Banach lattice with order continuous norm

and X+ is closed , then X has the ws-property.

Proof. Each order interval in E is weakly compact. Since X+ is weakly
closed, each order interval in X is weakly compact, hence X has the ws-
property.

Corollary 21. If E is a dual space, the functionals fi are weak-star

continuous and X+ is weak-star closed and normal , then X has the ws-

property.

Proof. For each x ∈ X+ the order interval [0, x]X is weak-star closed
and bounded because X+ is normal, therefore [0, x]X is weak-star compact.
Hence X has the ws-property.

Corollary 22. If X is closed with a positive basis, then X has the

ws-property.

Proof. By [11, Theorem 5], each order interval of X is compact.

Example 23. (i) The spaces c0 and ℓp with 1 ≤ p < ∞ and also the
spaces L+

p (µ), 1 ≤ p < ∞, being Banach lattices with order continuous
norm, have the ws-property with respect to any countable family which
defines their positive cone. Also all their closed ordered subspaces have the
ws-property.

(ii) By Corollary 21, ℓ∞ and its weak-star closed ordered subspaces have
the ws-property with respect to the family of Dirac measures supported at
natural numbers.

(iii) C[0, 1] does not have the ws-property with respect to the family of
Dirac measures supported at rational numbers in [0, 1]. It is easy to show
that the set {y ∈ C[0, 1] | 0 ≤ y ≤ x and y(1/2) = 0}, where x ∈ C+[0, 1]
with x(1/2) > 0, does not have maximal elements.

If P, Q, R are subcones of X+ with R = P + Q and P ∩Q = {0}, we say
that R is the direct sum of P, Q and write P ⊕ Q = R.

Proposition 24. Suppose that X is closed , X+ is generating and nor-

mal , and X has the Riesz decomposition property and the ws-property with

respect to F . Let x ∈ X+, x 6= 0, i ∈ supp(X+) and denote by zi a maximal

element of {y ∈ [0, x]X | y(i) = 0}. Then z′i = x − zi is a minimal element

of {y ∈ [0, x]X | y(i) = x(i)}. If I, J, W are the closed solid subspaces of X
generated respectively by x, zi, z

′
i, then:

(i) infX+
{zi, z

′
i} = 0.

(ii) The functional fi is identically zero on J . If fi(x) > 0 then fi

is strictly positive on W . If fi(x) = 0, then zi = x, and if fi is
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strictly positive on I, then z′i = x. If fi is not identically zero and

non-strictly positive on I then 0 < zi < x and 0 < z′i < x.

(iii) If fi(x) > 0, then I+
zi

(X) ⊕ I+
z′
i

(X) = I+
x (X) and J+ ⊕ W+ = I+.

Proof. Suppose that z ∈ A = {y ∈ [0, x]X | y(i) = x(i)} with z′i > z.
Then x − z > zi and fi(x − z) = 0, which contradicts the definition of zi.
Therefore z′i is a minimal element of A.

(i) Let h ∈ X with 0 < h ≤ zi, z
′
i. Then 0 ≤ h(i) ≤ zi(i) = 0, hence

h(i) = 0. So h + zi ≤ x and (h + zi)(i) = 0, a contradiction. It follows that
infX+

{zi, z
′
i} = 0.

(ii) Since zi(i) = 0, fi is identically zero on Izi
and therefore also on J .

Suppose that fi(x) > 0. Then zi < x, hence z′i > 0 and W+ 6= {0}. Suppose
that w ∈ W+, w > 0 and w(i) = 0. Then by Theorem 4, w is the limit
of an increasing sequence of elements of I+

z′
i

(X), therefore y(i) = 0 for at

least one y ∈ X with 0 < y ≤ z′i. Then y + zi ≤ x and (y + zi)(i) = 0,
a contradiction, therefore fi is strictly positive on W . If we suppose that
fi(x) = 0, then by the definition of zi we have zi = x and if fi is strictly
positive on I then zi = 0, therefore z′i = x. Suppose now that fi is nonzero
and also non-strictly positive on I. Then x(i) > 0 and also v(i) = 0 for at
least one nonzero point v of I+. Since v is the limit of an increasing sequence
of elements of I+

x (X), we have y(i) = 0 for at least one nonzero y ∈ [0, x]X .
This implies that zi > 0 because if zi = 0 then zi < y, which contradicts the
definition of zi. Also zi < x because x(i) > 0. So 0 < zi < x and 0 < z′i < x.

(iii) Let fi(x) > 0. Suppose that h ∈ J+ ∩ W+. Then h ∈ J+ and
therefore h(i) = 0. Since fi is strictly positive on W we have h = 0, therefore
J+ ∩W+ = {0}. Suppose that y ∈ [0, x]X . Then y ≤ zi + z′i and by the RDP
we have y = y1 + y2 with y1 ∈ [0, zi]X and y2 ∈ [0, z′i]X . By the above
remarks the first assertion of (iii) is proved.

Suppose now that y ∈ I+. By Theorem 4, y is the limit of an increasing
sequence yn in I+

x (X) with yn ≤ y for each n. Hence yn+1 − yn ∈ I+
x (X),

therefore yn+1−yn ≤ knx = kn(zi+z′i), and by the RDP we have yn+1−yn =
an+1 + bn+1 with an+1 ∈ I+

zi
(X) and bn+1 ∈ I+

z′
i

(X). If y1 = a1 + b1 with

a1 ∈ I+
zi

(X) and b1 ∈ I+
z′
i

(X), then

yn = (a1 + · · · + an) + (b1 + · · · + bn).

If sn = a1+· · ·+an and rn = b1+· · ·+bn, then sn+1−sn = an+1 ≤ yn+1−yn,
therefore the sequence {sn} is convergent, because {yn} is convergent and
the cone X+ is normal. Similarly, {rn} is convergent and therefore y = y′+y′′

with y′ ∈ J+ and y′′ ∈ W+. Hence I+ = J+ ⊕ W+.

Definition 25. Let X be a closed ordered subspace of E as in the
previous proposition, and suppose that x is a nonzero element of X+ and
fi ∈ F . If fi is not identically zero and non-strictly positive on Ix(X) and
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x = x1+x2 where x1 is a maximal element of the set {y ∈ [0, x]X | y(i) = 0},
then we say that x = x1 + x2 is a decomposition of x with respect to fi

(or with respect to i) and also that x is decomposable into x1, x2 with respect

to fi. If fi is identically zero on Ix(X) or if fi is strictly positive on Ix(X),
we say that x is indecomposable with respect to fi (or with respect to i).

3.3. Existence of positive bases. In what follows we will denote by X a
closed, ordered subspace of E so that:

(i) X has the Riesz decomposition property,
(ii) the positive cone X+ of X is closed, normal and generating,
(iii) X has the maximum support property and the ws-property with

respect to F .

As noted at the beginning of the previous section, (i) and (ii) imply that
X+ gives an open decomposition of X and that X∗ is an order complete
linear lattice. We will also denote by M the following subset of N:

M = {i ∈ supp(X+) | fi is non-strictly positive on X}.

Therefore for each x ∈ X+, x 6= 0, we have x(i) > 0 for each i ∈
supp(X+) \ M . Also M 6= ∅ because M = ∅ implies supp(x) = supp(X+)
for each x ∈ X+, x 6= 0, therefore dimX = 1 by Proposition 7. In order
to prove the existence of extremal points of X+ we develop a process of
successive decompositions of a quasi-interior point of X+. So suppose that
u is a quasi-interior point of X+ (such a point exists by Proposition 13); we
decompose u as follows:

Step 1. We put i1 = minM and we decompose u into x1, x2 with respect
to i1. Then u = x1 + x2 and infX+

{x1, x2} = 0. Also fi1 is identically zero
on I1 and strictly positive on I2 where I1, I2 are the closed solid subspaces
of X generated by x1, x2 respectively. The set m1 = {x1, x2} is the front

and the natural number i1 is the index of the first decomposition.

Step ν + 1. Suppose that we have accomplished the νth step and that
mν is the front and iν the index of the νth decomposition. Then at least one
of the elements of mν is decomposable with respect to an i ∈ M . Indeed, if
no element x of mν is decomposable with respect to any i ∈ M then for any
i ∈ M , fi is strictly positive or identically zero on the closed solid subspace
I of X generated by x and it is easy to show that supp(y) = supp(I+) for
any y ∈ I+, y 6= 0, so y is a quasi-interior point of I. Hence dim I = 1
and X is finite-dimensional because mν is finite. Put iν+1 = min{i ∈ M |
at least one element of mν is decomposable with respect to i}. Then iν+1 > iν
and we decompose with respect to iν+1 the elements of mν which allow such
a decomposition. We denote by mν+1 the set which contains the elements of
mν which are indecomposable with respect to iν+1 and also the elements that
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arise from the decomposition of the elements of mν with respect to iν+1. The
set mν+1 is the front and iν+1 is the index of the (ν + 1)th decomposition.
The set

δ(u) =
∞⋃

ν=0

mν ,

where m0 = {u}, is the tree of decompositions of u.

Proposition 26. In the above process of decompositions of u we have:

(i) the sequence {iν} of indices of decompositions is strictly increasing ,
(ii) for each i ∈ M with i ≤ iν and for each x ∈ mν , x is indecompos-

able with respect to i, so fi is strictly positive or identically zero on

I = Ix(X),
(iii) the elements of mν are nonzero with sum u. Also infX+

{x, y} = 0
for any x, y ∈ mν with x 6= y,

(iv) infX+
{x, u − x} = 0 for each x ∈ δ(u).

Proof. Statements (i)–(iii) are obvious. To prove (iv) we suppose that
x ∈ mν for some ν and that mν = {x, y1, . . . , yk}. Since the elements of mν

are pairwise disjoint in X+ with sum u we have u− x =
∑k

i=1 yi and (iv) is
true by Proposition 9.

For any x ∈ mν with ν ≥ 1 it is easy to show that there exists a unique
vector y ∈ mν−1 with y ≥ x. Also for any x ∈ mν there exists at least one
y ∈ mν+1 with x ≥ y. If x, y ∈ δ(u) with x ∈ mν , y ∈ mν+µ and y ≤ x, we
say that x is the presuccessor of y in mν , or that y is a successor of x in
mν+µ. If moreover y ∈ mν+1 we say that x is the first presuccessor of y or
that y is a first successor of x.

Proposition 27. The following are true:

(i) for any x ∈ mν the sum of the successors of x in mν+µ is equal

to x,
(ii) if y is a successor of x with x > y and I is the closed solid subspace

of X generated by x, then infX+
{y, x−y} = 0 and y is not a quasi-

interior point of I+,
(iii) for each x ∈ δ(u) and each i ∈ M ∩supp(x), there exists a successor

y of x such that the functional fi is strictly positive on the closed

solid subspace I of X generated by y.

Proof. (i) Any element of δ(u) is the sum of its first successors, therefore
the proposition is true for µ = 1 and continuing, we deduce it for any µ.

(ii) Since x− y ≤ u− y and infX+
{y, u− y} = 0 we have infX+

{y, x− y}
= 0, therefore y is not a quasi-interior point of I+ by Proposition 5.

(iii) Let x ∈ mκ. Since the sequence {iν} is strictly increasing, there
exists ν ∈ N with ν > κ and i ≤ iν . Then fi is strictly positive or identically
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zero on any closed solid subspace of X generated by an element of mν . But
x =

∑r
j=1 xj where x1, . . . , xr are the successors of x in mν and fi(x) > 0

because i ∈ supp(x), therefore fi is strictly positive on at least one of the
closed solid subspaces of X generated by x1, . . . , xr, which proves (iii).

If x ∈ δ(u) and x ∈ mν for each ν ≥ ν0, then we will say that the process

of decomposition stops at x. In other words, the process of decomposition
stops at x if there exists ν0 ∈ N so that x ∈ mν0

and for each i ∈ M with
i > iν0

, the functional fi is strictly positive or identically zero on the closed
solid subspace I of X generated by x. Then for each i ∈ M with i ≤ iν0

,
fi is strictly positive or identically zero on I (Proposition 26), therefore
supp(z) = supp(I+) for any z ∈ I+, z 6= 0, hence any nonzero vector of I+ is
a quasi-interior point of I, which implies that dim I = 1. So x is an extremal
point of X+ and we have proved the following:

Proposition 28. If the process of decompositions of u stops at an ele-

ment x0 ∈ δ(u) then x0 is an extremal point of X+.

A sequence {xν} in δ(u) is a branch of δ(u) if xν > xν+1 for each ν ∈ N.

Proposition 29. Each branch of δ(u) converges to zero.

Proof. It is enough to show that any branch {xν} of δ(u) with x0 = u
converges to zero. Let zν = xν−1 − xν for all ν ≥ 1. Then for all ν, µ, we
have

(2) u = z1 + · · · + zν + xν and xν = zν+1 + · · · + zν+µ + xν+µ.

The vectors z1, . . . , zν , xν are pairwise disjoint in X+. Indeed, we have
infX+

{xν , u−xν} = 0, hence infX+
{xν ,

∑ν
i=1 zi} = 0, therefore infX+

{xν , zi}
= 0 for each i ≤ ν, because zi ≤

∑ν
j=1 zj. Suppose that j > i. Then zj ≤ xi

and infX+
{zi, xi} = 0, therefore infX+

{zj , zi} = 0. Hence infX+
{zj , zi} = 0

for any i 6= j.
Let u0 =

∑∞
ν=1 zν/2ν . We shall show that supp(u0) = supp(X+). For

each i ∈ supp(X+) \ M we have x(i) > 0 for each x ∈ X+, x 6= 0, hence
i ∈ supp(u0). Suppose that i ∈ M and that xν is decomposed at the κνth
decomposition. Since {iκν

} is strictly increasing, there exists µ ∈ N with
i < iκµ

. By Proposition 26(ii), fi is strictly positive or identically zero on

I = Ixµ
(X). We shall show that in both cases i ∈ supp(u0). If fi is strictly

positive on I we have zµ+1(i) > 0 because 0 < zµ+1 < xµ, and therefore
i ∈ supp(u0). If fi is identically zero on I then xµ(i) = 0, therefore

fi(z1 + · · · + zµ) = fi(z1 + · · · + zµ + xµ) = fi(u) > 0,

hence fi(zj) > 0 for at least one j, so i ∈ supp(u0). Therefore supp(X+) =
supp(u0) and u0 is a quasi-interior point of X.

By Theorem 4, there is an increasing sequence φn ∈ [0, u]X ∩ [0, rnu0]X ,
where {rn} is a strictly increasing sequence of natural numbers with
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limn→∞ φn = u. Let

hν =
∞∑

µ=1

rν

zrν+µ

2rν+µ
.

Since 0 ≤ φn ≤ rnu0 we have 0 ≤ φn ≤ rnz1 + · · · + rnzrn
+ hn and by

Proposition 9, φn has a unique decomposition φn = φ1
n + · · ·+φrn

n +Hn with
0 ≤ φi

n ≤ rnzi for each i and 0 ≤ Hn ≤ hn. The last inequality implies that
limn→∞ Hn = 0, because limn→∞ hn = 0 and the cone X+ is normal. Also we
have 0 ≤ φi

n ≤ u, rnzi for i = 1, . . . , rn, therefore φi
n = a1+· · ·+arn

+bn with
0 ≤ aj ≤ zj for each j and 0 ≤ bn ≤ xrn

. Since the vectors z1, . . . , zrn
, xrn

are pairwise disjoint in X+ we have φi
n = ai, therefore 0 ≤ φi

n ≤ zi for
each i = 1, . . . , rn. Since Hn ≤ u, we have Hn = γ1 + · · · + γrn

+ cn with
0 ≤ γj ≤ zj for each j = 1, . . . , rn and 0 ≤ cn ≤ xrn

. Since Hn ≤ hn we
also have γj ≤ hn for each j. Since the vectors zj , j = 1, . . . , rn, and hn

are pairwise disjoint in X+ we have γj = 0 for each j = 1, . . . , rn, hence
Hn = cn, therefore Hn ≤ xrn

. So limn→∞(u − (φ1
n + · · · + φrn

n + Hn)) = 0,
therefore

lim
n→∞

[(z1 − φ1
n) + · · · + (zrn

− φrn
n ) + (xrn

− Hn)] = 0.

Since the members in the above limit are positive and the cone of X+ is
normal we infer that limn→∞(xrn

− Hn) = 0. We have shown above that
limHn = 0, therefore limxrn

= 0. Since the sequence {xn} is decreasing it
converges to zero and the proposition is proved.

Proposition 30. For each x ∈ δ(u) at least one successor of x is an

extremal point of X+.

Proof. Let x ∈ δ(u). If at least one successor x′ of x does not belong to a
branch of δ(u), then the process of decomposition stops after a finite number
of steps at any successor of x′, therefore any successor of x′ is an extremal
point of X+ dominated by x and the assertion is proved. So suppose that
any successor of x belongs to a branch of δ(u). Also we may suppose that
x < u because in the case where x = u, it is enough to show the assertion
for one of its successors.

Let I be the closed solid subspace of X generated by x and set

L = {i ∈ supp(x) | fi is not strictly positive on Ix(X)}.

Then L ⊆ M . Also supp(x) = supp(I+). If L is finite, then after a finite
number of steps the decomposition stops at any successor of x and the
assertion holds. So suppose that L is infinite. Let j1 = minL. Then by
Proposition 27(iii), there exists x1 ∈ δ(u) such that x1 ≤ x and fj1 is strictly

positive on Ix1
(X). Since x1 is an element of a branch of δ(u) dominated

by x, and any such branch of δ(u) converges to zero, we may suppose that
there exists y1 ∈ δ(u) such that y1 < x1 ≤ x and ‖y1‖ ≤ 2−1ε, where ε
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is a constant real number with 0 < ε < ‖x‖. Note also that fj1 is strictly

positive on Iy1
(X) because it is strictly positive on Ix1

(X) and 0 < y1 < x1.
By Proposition 27 we know that infX+

{y1, x − y1} = 0, hence y1 is not a
quasi-interior point of I. Therefore supp(y1) 6= supp(I+), hence there exists
i ∈ supp(I+) with i 6∈ supp(y1), so there exists i ∈ L with y1(i) = 0. We put
j2 = min{i ∈ L | y1(i) = 0}. Then j1 < j2 and as before we can find a vector
y2 ∈ δ(u) so that y2 < x, ‖y2‖ ≤ 2−2ε and fj2 is strictly positive on Iy2

(X).
Then infX+

{y1, y2} = 0, because for any h ∈ X with 0 ≤ h ≤ y1, y2 we have
0 ≤ h(j2) ≤ y1(j2) = 0, therefore h = 0 because fj2 is strictly positive on

Iy2
(X). In view of the method of selecting y2 (as a sufficiently small member

of a branch which converges to zero) we may also suppose that y1 ∈ mν1

and y2 ∈ mν2
with ν1 < ν2. We may moreover suppose that ν2 is sufficiently

large so that mν2
, besides the successors of x and the element y2, contains

at least one extra element so that

mν2
= {y2, a1, . . . , ak, b1, . . . , br, c1, . . . , cl},

where a1, . . . , ak are the successors of y1 and y2, a1, . . . , ak, b1, . . . , br are
the successors of x. We put s1 = y1 and s2 = y1 + y2. Then s1 < x and
s2 < x. The first inequality is obvious and the second holds because x is
the sum of its successors in mν2

. Also s1(j1) > 0 and by the definition
of j2, we have s2(i) > 0 for each i ∈ L with i ≤ j2. By Proposition 9,
infX+

{si, x − si} = 0 for each i = 1, 2, because the successors of x in mν2

are pairwise disjoint. Since infX+
{s2, x − s2} = 0 we deduce that s2 is

not a quasi-interior point of I+, hence there exists i ∈ L with s2(i) = 0.
Let j3 = min{i ∈ L | s2(i) = 0}. Then j2 < j3 and as before we can
find y3 ∈ mν3

such that ν2 < ν3, ‖y3‖ ≤ 2−3ε, fj3 is strictly positive

on Iy3
(X) and the set of successors of x in mν3

contains the successors
of y1, the successors of y2, the element y3 and at least one extra element.
As before we can show that infX+

{y1, y3} = infX+
{y2, y3} = 0. We put

s3 = s2 + y3.

Continuing this process we obtain a sequence {jν} in L and sequences
{yν}, {sν} in X+ such that s1 = y1, sν = sν−1 + yν for each ν = 2, 3, . . . ,
with the following properties:

(i) 0 < sν < sν+1 < x,
(ii) ‖sν+1 − sν‖ = ‖yν+1‖ ≤ 2−ν−1ε and yν ∈ mkν

with kν < kν+1 for
each ν,

(iii) infX+
{sν , x − sν} = 0 for each ν,

(iv) {jν} is a strictly increasing sequence in L and for each i ∈ L with
i < jν+1 we have sν(i) > 0.

By (ii), {sν} is a Cauchy sequence; set s = limν→∞ sν . Then 0 ≤ sν ≤ s ≤ x
for each ν. Since ‖sν‖ ≤

∑ν
i=1 ‖yi‖ ≤ ε < ‖x‖, we have s < x. Also by (iv)
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and the fact that {sν} is increasing we see that s(i) > 0 for each i ∈ L,
therefore supp(s) = supp(I+). Hence s is a quasi-interior point of I+.

We will show that infX+
{s, x − s} = 0. To this end we suppose that

0 ≤ h ≤ s, x−s. Since s = sν +(s−sν) we have h = hν +h′
ν with 0 ≤ hν ≤ sν

and 0 ≤ h′
ν ≤ (s − sν). Since the cone is normal and lim(s − sν) = 0 we

have limh′
ν = 0, therefore h = limhν . Since 0 ≤ hν ≤ sν and hν ≤ x − s ≤

x − sν we infer that hν = 0 for each ν, by (iii). Therefore h = 0, hence
infX+

{s, x−s} = 0. Since I is solid we also obtain infI+{s, x−s} = 0, which
contradicts the fact that s is a quasi-interior point of I+ (Proposition 5).
Hence at least one successor x′ of x does not belong to a branch of δ(u),
therefore at least one successor x0 of x is an extremal point of X+ and the
proposition is proved.

Proposition 31. Any extremal point x0 of X+ is a positive multiple

of a unique element of δ(u).

Proof. By Proposition 5, since x0 is an extremal point of X+, there exists
a real number r > 0 with rx0 ≤ u. Hence r ≤ a‖u‖/‖x0‖, where a is the
constant of the normal cone X+. Therefore sup{r ∈ R+ | rx0 ≤ u} = λ > 0.
Let z0 = λx0. Then 0 < z0 ≤ u. Since u =

∑
z∈mν

z and the elements of mν

are pairwise disjoint, there exists a unique yν ∈ mν so that z0 ≤ yν . Then
infX+

{z0, x} = 0 for each x ∈ mν , x 6= yν . Also yν ≥ yν+1 ≥ z0 for each ν.
Since each branch of δ(u) converges to zero, the process of decomposition
stops at a point yµ which is an extremal point of X+ with z0 ≤ yµ. Hence
yµ = λ′x0. Also yµ ≤ u and by the definition of λ we have λ′ ≤ λ, therefore
yµ ≤ z0, which implies that yµ = z0 and z0 ∈ δ(u). If z′0 = kx0 ∈ δ(u),
then kx0 ≤ u, therefore k ≤ λ and z′0 ≤ z0. Hence z′0 is a successor of z0. If
z′0 < z0 we get a contradiction because z0, being an extremal point of X+,
is indecomposable. Therefore z′0 = z0 and the proposition is proved.

In our main result below we prove that X has a positive basis. This basis
is also unconditional because X+ is generating and normal. For convenience
we repeat the standing assumptions on E and X.

Theorem 32. Let E be an ordered Banach space and suppose that E+

is defined by the family F = {fi | i ∈ N} ⊂ E∗
+. Let X be a closed ordered

subspace of E with the Riesz decomposition property and suppose that X+

is normal and generating. If X has the maximum support property and the

ws-property with respect to F , then X has a positive basis.

Proof. Let B be the set of extremal points of X+ with norm 1. By Propo-
sition 30, B 6= ∅, and by the previous proposition the map T : B → δ(u)
so that T (x) = λx ∈ δ(u) is one-to-one. Since δ(u) is countable, so is B,
say B = {ui : i ∈ N} and bi = λiui ∈ δ(u). Let u0 =

∑∞
i=1 bi/2i. For each
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i ∈ M there exists z ∈ δ(u) so that fi is strictly positive on I = Iz(X).
By Proposition 30, z ≥ bj for at least one j, therefore bj(i) > 0. Hence
supp(u0) = supp(X+) and u0 is a quasi-interior point of X+.

Let x ∈ X+. Then there exists an increasing sequence xn ∈ [0, x] ∩
[0, knu0] where the sequence kn is strictly increasing and limn→∞ xn = x.
Since 0 ≤ xn ≤ knu0, each xn has a unique expansion xn =

∑∞
i=1 σniui

with σni ∈ R+, by Proposition 9. The sequence {σni | n ∈ N} is in-
creasing. Indeed, for m > n we take again the expansion xm − xn =∑∞

i=1 aiui and we have σmi = σni + ai ≥ σni. Set σi = limn→∞ σni. Then
0 ≤ σiui ≤ x, because 0 ≤ σniui ≤ x for each i. For each m ∈ N we
have

∑m
i=1 σniui ≤ xn ≤ x and by taking limits as n → ∞ we see that∑m

i=1 σiui ≤ x. Since {xn} converges to x there exists a strictly increasing
sequence mn of natural numbers so that the sequence yn =

∑mn

i=1 σniui con-
verges to x. Then

∑mn

i=1 σniui ≤
∑mn

i=1 σiui ≤ x, which yields x =
∑∞

i=1 σiui.

Let uj =
∑

i6=j bi/2i. Then uj is not a quasi-interior point of X+, because

infX+
{bj , uj} = 0 by Proposition 9. Therefore supp(uj) is a proper subset

of supp(X+), hence there exists kj ∈ M with fkj
(uj) = 0. Hence fkj

(ui) = 0
for each i 6= j. Also fkj

(uj) > 0 because fkj
(u0) > 0. Let gj = fkj

/fkj
(uj).

Then for each x ∈ X+ we have gj(x) = σj , therefore x =
∑∞

i=1 gi(x)ui.

Since the cone X+ is generating we conclude that x =
∑∞

i=1 gi(x)ui for
each x ∈ X and this expansion is unique. Therefore {un} is a positive basis
of X.

By the previous result and Corollaries 20 and 21 we have:

Corollary 33. Let E be a Banach lattice with order continuous norm

and suppose that E+ is defined by a countable family F ⊂ E∗
+. Let X be

a closed ordered subspace of E with the Riesz decomposition property and

generating positive cone X+. If X has the maximum support property with

respect to F , then X has a positive basis.

Corollary 34. Let E be an ordered Banach space whose positive cone

is defined by a family F = {fi | i ∈ N} ⊂ E∗
+. Suppose also that E is a dual

space and that the functionals fi are weak-star continuous. If X is a closed

ordered subspace of E with the Riesz decomposition property , and X+ is

weak-star closed , normal and generating , and X has the maximum support

property with respect to F , then X has a positive basis.

Remark 35. In the special case where E = ℓ∞ and X is a weak-star
closed ordered subspace of ℓ∞ with the RDP and generating positive cone
X+ we have: If X has the maximum support property with respect to the
family of Dirac measures supported at natural numbers, then X has a pos-
itive basis.
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4. Biorthogonal systems. The results of the previous section can be
applied to the problem: under what conditions does a biorthogonal system

define a positive basis? So in this section we suppose that E is an ordered
Banach space with a positive biorthogonal system {(ei, fi) | i ∈ N}, i.e.
ei ∈ E and fi ∈ E∗

+ for each i, fi(ei) = 1, fi(ej) = 0 for all j 6= i, and the
family F = {fi | i ∈ N} defines the positive cone of E. In the next results
the positive basis of E is also unconditional.

Theorem 36. Let E be an ordered Banach space with a positive biorthog-

onal system {(ei, fi) | i ∈ N}. If E+ is normal and generating and E has the

Riesz decomposition property , then the following statements are equivalent :

(i) The sequence {ei} of the biorthogonal system is a positive basis of E,
(ii) E has the maximum support property and the ws-property with re-

spect to the family F = {fi | i ∈ N}.

Proof. Suppose that {ei} is a positive basis of E. Since {(ei, fi)} is a
positive biorthogonal system of E we know that fi(ei) = 1 and fi(ej) = 0
for all j 6= i; therefore, by Theorem 16, E has the maximum support property
with respect to F . Since {ei} is a positive basis of E, by Corollary 22, E
has the ws-property, so (i) implies (ii). Suppose now that (ii) holds. Then E
has a positive basis {bn}. Since E has the maximum support property with
respect to F , E has the minimal support property, therefore an element x0

of E+ is an extremal point of E+ if and only if x0 has minimal support
in E+. Therefore the extremal points of E+ are the positive multiples of
the elements en (supp(en) = {n}). Since the elements of the positive basis
define the extremal rays of E+ it follows that the basis {bn} coincides, up
to a scalar multiple and proper enumeration, with the sequence {en}.

Corollary 37. Let E be an ordered Banach space with a positive

biorthogonal system {(ei, fi) | i ∈ N} and suppose that E has the Riesz

decomposition property and either

(a) E is a Banach lattice with order continuous norm, or

(b) E is a dual space, the positive cone E+ of E is weak-star closed , nor-

mal and generating , and the functionals fi are weak-star continuous.

Then the following statements are equivalent :

(i) the sequence {ei} of the biorthogonal system is a positive basis of E,
(ii) E has the maximum support property with respect to the family

{fi | i ∈ N}.

Remark 38. According to Corollary 37, the sequence {ei} of the usual
biorthogonal system {ei, δi} of ℓ∞ is not a positive basis of ℓ∞ because it
does not have the maximum support property with respect to the family {δi}
(Example 15).
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