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Spaces of generalized smoothness on h-sets

and related Dirichlet forms

by

V. Knopova and M. Zähle (Jena)

Abstract. The paper is devoted to spaces of generalized smoothness on so-called
h-sets. First we find quarkonial representations of isotropic spaces of generalized
smoothness on R

n and on an h-set. Then we investigate representations of such spaces via
differences, which are very helpful when we want to find an explicit representation of the
domain of a Dirichlet form on h-sets. We prove that both representations are equivalent,
and also find the domain of some time-changed Dirichlet form on an h-set.

1. Introduction. The paper is devoted to Besov-type spaces on h-sets.
Such sets were defined and studied in Edmunds and Triebel [5], [6]; see also
Bricchi [3] and [4]. Our goal is to study more general spaces on such sets,
and show how these results can be applied when we look for the domain of
Dirichlet forms on an h-set, associated with restrictions of certain symmetric
Lévy processes to this set.

Let h : (0, 1] → R be a given continuous positive non-decreasing function.
Such functions are sometimes called gauge functions. A compact set Γ is
called an h-set if there exists a finite Radon measure µ such that

(1) suppµ = Γ ,

(2) c1h(r) ≤ µ(B(γ, r)) ≤ c2h(r), γ ∈ Γ , 0 < r ≤ 1,

where c1 and c2 are positive constants, and B(γ, r) is the ball centered at γ
with radius r. Then µ is called an h-measure, and the gauge function, for
which there exists an h-set, is called the measure function. For example, the
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functions

h(r) = rd, 0 ≤ d ≤ n,

h(r) = rd|log r|b, 0 < d < n, b ∈ R,

h(r) = rd exp[b|log r|κ], 0 ≤ d ≤ n, b ∈ R, 0 < κ < 1,

are measure functions (in order to have gauge functions, the last two exam-
ples are defined for small r, and then extended to (0, 1]). For more examples
see [4].

For h(r) = rd such Γ are called d-sets (see Jonsson [19], Jonsson and
Wallin [20], and Triebel [30], [31]), and these are in turn a generalization of
self-similar sets with the open set condition. For representation of norms in
spaces of Lipschitz type on metric measure spaces cf. also [32].

In Section 3.2 we assume that h satisfies the following condition: there
exist 0 < d ≤ s ≤ n such that

(1) c1λ
s <

h(λt)

h(t)
< c2λ

d

for all 0 < t, λ < 1.
We are interested in the representation of some isotropic spaces of gener-

alized smoothness on R
n via differences. Similar questions were considered

in Haroske and Moura [13] and Moura [25]; see also Triebel [29] for ordinary
Besov and Triebel–Lizorkin spaces. Such an approach is very helpful when
we need to obtain an explicit representation of the domain of some Dirichlet
forms, and also when we need to find explicitly the trace space on a set of
lower dimension. In such a way the traces of some classical Besov spaces on
d-sets were constructed in [20], and on a generalized version of h-sets in [19],
and it was proved that there exists a continuous restriction to such trace
spaces, with corresponding continuous extension. The methods used in [19]
and [20] are not directly applicable in our situation, since in our case the
kernel in the representation of the Dirichlet form considered is more general
than the Bessel kernel, and it is harder to get estimates for it. In order to
employ Tauberian-type theorems for so-called extended regularly varying
functions (see [2]) for this problem, we consider kernels of some special type
(see below).

Another approach is to obtain the representation of spaces of general-
ized smoothness on h-sets using quarkonial decompositions; see [30] and
[31]. To find such decompositions we use the methods developed in [30] and
[31], as well as in [3]. The advantage of this approach is that we can obtain
the representation of the trace of a function u on Γ just by index shifting
in the quarkonial representation of u on R

n. While it is easier to find the
representation of the trace space using quarkonial decompositions, the rep-
resentation via differences is very helpful when we want to study Dirichlet
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forms on Γ . In Section 3.3 we will show that both methods of tracing give
the same trace space.

In Section 2 we define generalized quarks on R
n and on an h-set. Then

we find the quarkonial representation of the Besov-type space of general-
ized smoothness Bσ,N

pq (Rn) on R
n. Here σ = (σj)j≥0 and N = (Nj)j≥0 are

respectively an admissible sequence and a strongly increasing sequence (see
Definition 1 below). We show that such a definition of a space of general-
ized smoothness is equivalent to that via atoms. Then we prove the trace
theorem, i.e. under some general condition on the sequences σ and N , the
Bernstein function f and the gauge function h we find the representation of
the trace space on an h-set, and show that there exist continuous restriction
and extension.

In Section 3 we find the representation of the Triebel–Lizorkin-type space
of generalized smoothness F σ,Npq (Rn) via differences. Here the sequence N =
(Nj)j≥0 is defined in the following way. Let f be a Bernstein function, i.e.
f ∈ C∞(0,∞), f ≥ 0, and (−1)nf (n) ≤ 0 for all n ≥ 1. In our paper we
assume that there exists κ ∈ [1,∞) such that

(2) f(t)t−1/κ is increasing as t→ ∞.

Then put Nj =
√
f−1(22j), j ≥ 0. For such Nj the inequality

(3) Nj+1 ≤ 2κNj

holds (see [9]). This inequality will play a significant role when we look for
the trace space of some space of generalized smoothness on Γ .

Starting with a representation of Bσ,N
pp (Rn) (= F σ,Npp (Rn)) via differences,

we derive another representation of the trace of Bσ,N
pp (Rn) on an h-set. In

the end we prove that the method used in [19] (or [20]) gives in our case
the same result as the method described in Section 2. We put the detailed
proofs in Appendices II and III.

In Section 3.2 we will need an additional assumption on a Bernstein
function f , i.e. we assume that

(4)
1

cδ
≤ f(cλ)

f(λ)
≤ c for all λ > 0, c ≥ 1, and some 0 < δ < 1.

This condition is sufficient for the proof of the continuity of the restriction
by Jonsson and Wallin’s method.

For example, condition (4) is satisfied for Bernstein functions f(λ) = λα,
f(λ) = λα ln(1 + λα), λ > 0, 0 < α < 1. Note that for δ = 1 equation (4)
holds for any Bernstein function (see [15]).

Dirichlet forms and related stable-like jump processes on d-sets were
studied in [26], [21], [22], [12], etc. In Section 4 we give the representation of a
Dirichlet form which is equivalent to the Dirichlet form (E , D(E)) associated
with a symmetric Lévy process with exponent f(|ξ|2), where f is a Bernstein
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function. Applying the results from Sections 2 and 3, we find the domain of
the trace of the Dirichlet form (E , D(E)) on an h-set. For the general theory
of Dirichlet forms see, for example, [11]. Here we only indicate that if ψ is a
continuous negative-definite function, then

E(u, v) =
\

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ

is the Dirichlet form associated with ψ. Then D(E) = Hψ,1
2 (Rn), where

Hψ,s
p (Rn) is the ψ-Bessel potential space of order s (see [16] and [8]). We

are especially interested in the case when

ψ(ξ) = f(|ξ|2),
where f is a Bernstein function.

Since H
f(|·|2),s
p (Rn) = F σ,Np2 (Rn), where σ = (2js)j≥0, and N = (Nj)j≥0,

Nj =
√
f−1(22j) (see [9] for the proof), we can apply the tools from the

theory of function spaces developed in Sections 2 and 3 to get the rep-
resentation of the domain of the time-changed Dirichlet form (Ě, D(Ě)),
which corresponds to a Markov process on an h-set. This domain is just the
trace of Hf(|·|2),1(Rn) = D(E) on this h-set. Therefore the domain of the
time-changed Dirichlet form (Ě, D(Ě)) is

D(Ě) =

{
u ∈ L2(Γ ) :\\

|x−y|<1

f(|x− y|−2)

|x− y|−nh(|x− y|)2 |u(x) − u(y)|2 µ(dx)µ(dy) <∞
}
.

2. Quarkonial representations. Trace theorem I

2.1. Quarkonial representations on R
n. This section is devoted to the

quarkonial representation of spaces of generalized smoothness on R
n and on

an h-set Γ . We will prove some technical results, which allow us to find the
trace space of a Besov-type space of generalized smoothness (see Definition 3
below) on an h-set.

Notation. û is the Fourier transform

û(ξ) =
\

Rn

e−iξxu(x) dx,

and (u(·))∨ is the inverse Fourier transform. S(Rn) and S′(Rn) are the
Schwartz space and the dual Schwartz space respectively.

We will use several definitions of spaces of generalized smoothness, which
in the end appear to be equivalent. To give the first definition, we need
admissible and strongly increasing sequences, and the related decomposition
of unity. We will follow the presentation given in [9] (see also [7]).
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Definition 1. A sequence γ = (γj)j∈N0
of positive real numbers is

called

(i) almost increasing if there exists d0 > 0 such that d0γj ≤ γk for all
j, k such that 0 ≤ j ≤ k;

(ii) strongly increasing if it is almost increasing, and in addition there
exists a natural number κ0 such that

2γj ≤ γk for all j and k and j + κ0 ≤ k;

(iii) of bounded growth if there are positive constants d1 and J0 ∈ N0

such that
γj+1 ≤ d1γj for all j ≥ J0.

Let (σj)j∈N0
be a sequence which satisfies for some d0, d1 > 0 the in-

equality

(5) d0σj ≤ σj+1 ≤ d1σj for all j ∈ N.

This means that both (σj)j∈N0
and (σ−1

j )j∈N0
are of bounded growth. We

will call the sequences which satisfy (5) admissible.
For simplicity we will assume below that κ0 = J0 = 1.

Definition 2. Let (Nk)k≥0 be a strongly increasing sequence. Define

ΩN
0 = {ξ ∈ R

n : |ξ| ≤ N0},
ΩN
j = {ξ ∈ R

n : Nj−1 ≤ |ξ| ≤ Nj+1}, j = 1, 2, . . . .

Let ΦN be the collection of all function systems (ϕNj )j≥0 such that ϕNj ∈
C∞

0 (Rn), ϕNj (ξ) ≥ 0, ξ ∈ R
n, for any j ≥ 0, suppϕNj ⊂ ΩN

j , and

∞∑

j≥0

ϕNj (ξ) = 1 for all ξ ∈ R
n.

Definition 3. Let N = (Nj)j∈N0
be a strongly increasing sequence,

(ϕNj )j≥0 ∈ ΦN , and (σj)j∈N0
be an admissible sequence.

(i) Let 1 < p < ∞, 1 ≤ q ≤ ∞. Then the Besov space of generalized

smoothness is

(6) Bσ,N
pq (Rn) = {g ∈ S′(Rn) :

‖g |Bσ,N
pq (Rn)‖ = ‖(σjϕNj (D)g)j∈N0

| lq(Lp)‖ <∞}.
(ii) Let 1 < p < ∞, 1 < q < ∞. Then the Triebel–Lizorkin space of

generalized smoothness is

(7) F σ,Npq (Rn) = {g ∈ S′(Rn) :

‖g |F σ,Npq (Rn)‖ = ‖(σjϕNj (D)g)j∈N0
|Lp(lq)‖ <∞}.

Here and in the following for ϕ ∈ S(Rn) (or ϕ ∈ C∞
0 (Rn)) we will

understand ϕ(D)u as ϕ(D)u(x) = (ϕ(·)û)∨(x).
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Remark 4. For the classical Besov and Triebel–Lizorkin spaces Bs
pq(R

n)

and F spq(R
n) put σj = 2js and Nj = 2j , j ≥ 0.

We need the following auxiliary sequence spaces: Let k ∈ N0, and let

1km(x) be the characteristic function on Qkm. For 0 < p ≤ ∞ put 1
(p)
km(x) =

N
n/p
k 1km(x).

Definition 5. Let 0 < p ≤ ∞, 0 < q ≤ ∞. Then:

(i) bpq is the collection of all sequences λ = {λkm ∈ C: k ∈ N0, m ∈ Z
n}

such that

‖λ | bpq‖ =
( ∞∑

k=0

( ∑

m∈Zn

|λkm|p
)q/p)1/q

.

(ii) fNpq is the collection of all sequences λ = {λkm ∈ C: k ∈ N0, m ∈ Z
n}

such that

‖λ | fNpq‖ =
∥∥∥
( ∞∑

k=0

∑

m∈Zn

|λkm1
(p)
km(·)|q

)1/q ∣∣∣Lp(Rn)
∥∥∥.

Sometimes we will also need atomic representations of spaces of gener-
alized smoothness.

Definition 6. LetQkm be a cube in R
n centered atN−1

k m= (m1/Nk, . . .
. . . ,mn/Nk), which has sides parallel to the axes and side length 1/Nk, and
denote by cQkm the cube concentric with Qkm, with side length enlarged
by the factor c. Let (σk)k≥0 be an admissible sequence, 1 < p ≤ ∞, K ≥ 0,
c > 0. A function akm : R

n → C such that Dαakm exists for all |α| ≤ K is
called an (σ, p)K-N-atom if

supp akm ⊂ Qkm for some k ∈ N0, m ∈ Z
n,

|Dαakm(x)| ≤ σ−1
k N

n/p+|α|
k , |α| ≤ K.

The atomic decomposition theorem states that g ∈ S′(Rn) belongs to

F σ,Npq (Rn) (respectively, Bσ,N
pq (Rn)) if and only if it can be represented as

g =
∞∑

k=0

∑

m∈Zn

λkmakm,

which is convergent in S′(Rn), where akm are (σ, p)K-N -atoms, and λ ∈ fNkm
(respectively, λkm ∈ bkm). For a more general statement we refer to [9].

Next we need the definitions of quarks and quarkonial decompositions.
We need to adapt the construction introduced in [31, §2 and §9] for ordinary
Besov and Triebel–Lizorkin spaces to spaces of generalized smoothness. We
will show later that quarkonial decomposition of a function is more conve-
nient when we want to restrict this function to an h-set.
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Definition 7. Let k ∈ N0, and {xkm : m ∈ Z
n} ⊂ R

n be an approxi-
mate lattice such that there exist c1, c2 ≥ 0 for which

(8) |xkm1 − xkm2 | ≥ c1/Nk, k ∈ N0, m1 6= m2,

and
R
n =

⋃

m∈Zn

B(xkm, c2/Nk), k ∈ N0, c2 = cNr,

for some fixed r, and a constant c. Here B(x, d) is the ball centered at x
with radius d.

Let {θkm : m ∈ Z
n} be the subordinate resolution of unity, i.e. θkm

are non-negative C∞-functions in R
n, supp θkm ⊂ B(xkm, c2/Nk), k ∈ N0,

m ∈ Z
n, and

(9)
∑

m∈Zn

θkm(x) = 1, x ∈ R
n, k ∈ N0.

Since {θkm} is a resolution of unity, we have

(10) |N |β|
k (x− xkm)βθkm(x)| ≤ c|β|N |β|

r ,

where β ∈ N
n
0 , and xβ = xβ1

1 · · ·xβn
n . In addition we assume that

(11) |Dαθkm| ≤ cαN
|α|
k , |α| ≤ K for some large K.

Definition 8. Let β ∈ N
n
0 , 1 < p ≤ ∞. Then we will call the function

(12) (βqu)σ,Nkm (x) = σ−1
k N

n/p+|β|
k (x− xkm)βθkm(x), x ∈ R

n,

a generalized (N, σ, p, β)-quark.

To shorten the notation we will call the quarks from Definition 8 simply
(N, σ)-quarks.

Definition 9. Let 1 < p ≤ ∞, 1 < q ≤ ∞, (σj)j≥0 be an admissible

sequence, and (Nj)j≥0 be a strongly increasing sequence. Let (βqu)σ,Nkm be
(N, σ)-quarks according to Definition 8. We put

λ = {λβ : β ∈ N
n
0}, λβ = {λβkm ∈ C : k ∈ N0, m ∈ Z

n}.
Let ̺ > r, where r is from Definition 7, λβ ∈ bpq, and

(13) ‖λ | bpq‖̺ = sup
β∈Nn

0

N |β|
̺ ‖λβ | bpq‖ <∞.

Then B
σ,N
pq (Rn) is the collection of all g ∈ S′(Rn) which can be represented as

(14) g(x) =
∑

β∈Nn
0

∞∑

k=0

∑

m∈Zn

λβkm(βqu)σ,Nkm (x),

where λ satisfies (13). Furthermore,

(15) ‖g |Bσ,N
pq (Rn)‖θ,̺ = inf ‖λ | bpq‖̺,
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where the infimum is taken over all admissible representations. Similarly,

‖g |Fσ,Npq (Rn)‖θ,̺ = inf ‖λ | fNpq‖̺, where(16)

‖λ | fNpq‖̺ = sup
β∈Nn

0

N |β|
̺ ‖λβ | fNpq‖ <∞.

The spaces defined in Definitions 9 and 3 are equivalent as normed
spaces:

Theorem 10. Let 1 < p < ∞, 1 < q < ∞, (σj)j≥0 be an increasing

admissible sequence, and (Nj)j≥0 be a strongly increasing sequence. Let g ∈
S′(Rn). Then

‖g |F σ,Npq (Rn)‖ ∼ ‖g |Fσ,Npq (Rn)‖θ,̺(17)

and

‖g |Bσ,N
pq (Rn)‖ ∼ ‖g |Bσ,N

pq (Rn)‖θ,̺.(18)

For the proof see Appendix I.

2.2. Quarkonial representations on an h-set. Now we switch to the frac-
tal case. We need to modify our generalized lattice in order to have conve-
nient representations of the trace of a function which is initially defined
on R

n.

Definition 11. Let Γ be a compact set in R
n and let

Γε = {x ∈ R
n : dist(x, Γ ) < ε}, ε > 0,

be the ε-neighborhood of Γ . Let k ∈ N0 and

{γkm : m = 1, . . . ,Mk} ⊂ Γ, {θkm : m = 1, . . . ,Mk}
be an approximate lattice and the subordinate resolution of unity with the
following properties: there exist c0, c1, c2 with

(19) |γkm1 − γkm2 | ≥ c1/Nk, k ∈ N0, m1 6= m2,

and

Γεk
⊂

Mk⋃

m=1

B(γkm, c2/Nk), k ∈ N0,

where εk = c0N
−1
k . Further, let {θkm} be non-negative C∞-functions in R

n,

supp θkm ⊂ B(γkm, c2/Nk), k ∈ N0, m = 1, . . . ,Mk,

and
|Dαθkm(x)| ≤ cαN

|α|
k , k ∈ N0, m = 1, . . . ,Mk,

for all α ∈ N
n
0 and suitable constants cα, and

(20)

Mk∑

m=1

θkm(x) = 1, x ∈ Γεk
, k ∈ N0.
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We always assume that the approximate lattice {γkm} and the decompo-
sition of unity {θkm} can be extended to R

n so that one gets the approximate
lattice {xkm} and the decomposition of unity {θkm} from Definition 7 (see
also [31, §9.24]).

Later on we will obtain the quarkonial representation of a function on Γ
from its quarkonial representation on R

n by index shifting in (σk)k≥0 (see
(12)). In other words, we want to know the sequence (σ∗k)k≥0 to which
(σk)k≥0 will reduce when we switch from R

n to Γ .

Let µ be an h-measure, i.e. µ(Bkm) ∼ h(1/Nk). Then from
∑Mk

m=1 µ(Bkm)
∼ 1 we get Mk ∼ 1/h(1/Nk), k ≥ 1.

Next we define the generalized quarks on Γ .

Definition 12. Let Γ be an h-set, {θkm} be a resolution of unity in-
troduced in Definition 11, 1 < p ≤ ∞, (σ∗j )j≥0 be an admissible sequence,
and (Nj)j≥0 be a strongly increasing sequence. Then the function

(21) (βqu)σ
∗,N
km (γ) = (σ∗k)

−1h(1/Nk)
−1/pN

|β|
k (γ − γkm)βθk,l(γ), β ∈ N

n
0 ,

where k ∈ N0 and m = 1, . . . ,Mk, is called a generalized (N, σ∗, p, β)-quark

on Γ .

To shorten the notation, we will call a generalized (N, σ∗, p, β)-quark
an (N, σ∗)-quark on Γ .

Analogously to bpq from Definition 5, define for 1 < p < ∞, 1 < q ≤ ∞
the sequence space

(22) bΓpq =
{
λ : ‖λ|bΓpq‖ =

( ∞∑

k=0

( Mk∑

m=1

|λkm|p
)q/p)1/q

<∞
}
.

Definition 13. Let Γ be an h-set, (σ∗j )j≥0 be an admissible sequence,
(Nj)j≥0 be a strongly increasing sequence, 0 < q ≤ ∞, 1 < p < ∞, and let

(βqu)σ
∗,N
km be (N, σ∗)-quarks on Γ , according to Definition 12. We put

λ = {λβ : β ∈ N
n
0}, λβ = {λβkm ∈ C : ν ∈ N0, m = 1, . . . ,Mk}.

Let ̺ > r, where r is such that c2 = cNr, 0 < c < 1 (see Definition 11),
λβ ∈ bΓpq, and

(23) ‖λ | bΓpq‖̺ = sup
β∈Nn

0

N |β|
̺ ‖λβ | bΓpq‖ <∞.

Then Bσ∗,N
pq (Γ )̺ is the collection of all functions g ∈ L1(Γ ) which can be

represented as

(24) g(x) =
∑

β∈Nn
0

∞∑

k=0

Mk∑

m=1

λβkm(βqu)σ
∗,N
km (γ)
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with (23). Furthermore,

(25) ‖g |Bσ∗,N
pq (Γ )̺‖θ,̺ = inf ‖λ | bΓpq‖̺,

where the infimum is taken over all admissible representations.

To prove the trace theorem we need first to show that under some con-
dition on (σ∗j )j≥0 the space Bσ∗,N

pq (Γ )̺ is embedded in L1(Γ ). The following
lemma is a generalization of Proposition 9.31 from [31].

Lemma 14. Let the space Bσ∗,N
pq (Γ )̺ be as in Definition 12, and

((σ∗j )
−1)j≥0 ∈ lq′. Then the series (24) converges in L1(Γ ), and

Bσ∗,N
pq (Γ )̺ ⊂ L1(Γ ) continuously.

Proof. Let 1 < p <∞, 1 < q ≤ ∞, ̺ > r. Then, since

|N |β|
k (γ − γkm)βθkm(γ)| ≤ N |β|

r ,
we have\
Γ

|g(γ)|µ(dγ)

≤
∑

β,k,m

|λβkm|(σ∗k)−1h(1/Nk)
−1/pN

|β|
k

\
Γ

|(γ − γkm)βθkm(γ)|µ(dγ)

≤
∑

β,k,m

(σ∗k)
−1h(1/Nk)

−1/pN |β|
r µ(Bkm)|λβkm|

≤
∑

β∈Nn
0

N |β|
r ‖λβ | bΓpq‖

( ∞∑

k=0

((σ∗k)
−1h(1/Nk)

−1/p)q
′

( Mk∑

m=1

µ(Bkm)p
′

)q′/p′)1/q′

≤ sup
β∈Nn

0

N |β|
̺ ‖λβ | bΓpq‖

( ∑

j≥0

(σ∗j )
−q′

)1/q′

,

where we used the fact that (
∑Mk

m=1 µ(Bkm)p
′

)1/p
′ ∼M

−1/p
k ∼ h1/p(1/Nk).

We can now define the trace operator. Let ϕ ∈ S(Rn); then we denote
the pointwise trace of ϕ on Γ by trΓ ϕ. If there is a constant C > 0 such
that for some τ ≥ 1,

(26) ‖trΓ ϕ |Lτ (Γ )‖ ≤ C‖ϕ |Bσ,N
pq (Rn)‖

for all ϕ ∈ S(Rn), then we call the continuous extension trΓ of this mapping

to Bσ,N
pq (Rn) the trace operator.

Write

(27) trΓ B
σ,N
pq (Rn) = {u ∈ L1(Γ ) : there exists g ∈ Bσ,N

pq (Rn), trΓ g = u}
with the norm

(28) ‖u | trΓ B
σ,N
pq (Rn)‖ = inf ‖g |Bσ,N

pq (Rn)‖,
where the infimum is taken over all g ∈ Bσ,N

pq (Rn) with trΓ g = u.
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We arrive at the main theorem of this section:

Theorem 15. Let Γ be an h-set , 1 < p < ∞, 0 < q ≤ ∞, (Nj)j≥0 be

a strongly increasing sequence, and σ = (σj)j≥0 be an admissible sequence

such that

(29)
∑

j∈N0

(σjN
−n/p
j h(1/Nj)

−1/p
)−q′

<∞.

Consider the sequence σ∗j = σjN
−n/p
j h(1/Nj)

−1/p, j ∈ N0. Then the spaces

Bσ∗,N
pq (Γ )̺ are independent of all allowed resolutions of unity and all allowed

numbers ̺, and will be denoted by Bσ∗,N
pq (Γ ), and

(30) trΓ B
σ,N
pq (Rn) = Bσ∗,N

pq (Γ ).

Proof. Consider g ∈ Bσ,N
pq (Rn). By Theorem 10, g admits a general-

ized quarkonial representation. Assume that the resolution of unity (9) is
adapted to Γ , as described in Definition 11. If we take a finite sum of this
representation, which is a smooth function ϕ, its restriction to Γ admits a
quarkonial representation (24). Therefore, by Lemma 14, Theorem 10 and
(26) for our ϕ and τ = 1, by continuous extension, trΓ g exists and

‖trΓ g |Bσ∗,N
pq (Γ )̺‖ ≤ C‖g |Bσ,N

pq (Rn)‖.
On the other hand, let u ∈ Bσ∗,N

pq (Γ )̺. By shifting we interpret it as a
function on R

n. Then, denoting by g = extu the extension from Γ to R
n,

we obtain
‖g |Bσ,N

pq (Rn)‖̺ ≤ ‖u |Bσ∗,N
pq (Γ )̺‖.

By equivalence of the norms ‖ · ‖̺ for all ̺ > r, we obtain the statement of
the theorem.

3. Representation via differences. Trace theorem II

3.1. Representation via differences on R
n. In this part we find a different

representation of spaces of generalized smoothness, and of their trace spaces
on h-sets. To do this we need a theorem similar to Theorem 2.4.1 from [29]
for spaces of generalized smoothness. For this we specify the sequence σ and
assume some additional conditions on the Bernstein function f (compare
with the introduction). For an analogous result see also [13] and [25].

Theorem 16. Let ϕ be a complex-valued C∞ function on R
n \ {0} such

that |ϕ(x)| > 0 for c−1 < |x| < c, c > 0. Let σ = (2jα)j≥0, and N = (Nj)j≥0,

Nj =
√
f−1(22j). Let a > n/min(p, q), α0κ < α < α1κ, where κ is from

condition (3) for (Nj)j≥0, and suppose that

(31)
\

Rn

∣∣∣∣
(
ϕ(·)M(·)
| · |α1

)∨

(y)

∣∣∣∣(1 + |y|)a dy <∞
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and

(32) sup
l

sup
j

2−lκα0

\
Rn

(
ϕ

(
Nj+l

Nj
·
)
H(·)

)∨

(y)(1 + |y|)a dy <∞,

where M,H ∈ S(Rn) are such that

suppM ⊂ {y ∈ R
n : |y| ≤ 2}, M(x) = 1 if |x| ≤ 1,

and

suppH ⊂ {y ∈ R
n : 2−κ−1 ≤ |y| ≤ 2κ+1}, H(x) = 1 if 2−κ ≤ |y| ≤ 2κ.

Put ϕj(x) = ϕ(N−1
j x), x ∈ R

n \ {0}, j ∈ N0. Then for 1 < p, q <∞,

(33)
∥∥∥
( ∞∑

j=0

2jαq|ϕj(D)u(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥

and

(34) ‖u |Lp‖ +

∥∥∥∥
( 1\

0

|ϕ(D/
√
f−1(1/t2))u(·)|q dt
t1+αq

)1/q ∣∣∣∣Lp(Rn)

∥∥∥∥

are equivalent (quasi-)norms in F σ,Npq (Rn).

For the proof see Appendix II.

For convenience we rewrite (34), making the necessary variable change.
We obtain

(35) ‖u |Lp(Rn)‖

+

∥∥∥∥
( 1\

0

|f(1/|s|2)α/2ϕ(s ·D)u(·)
∣∣q

s

f ′(1/s2)

s2f(1/s2)
ds

)1/q ∣∣∣∣Lp(Rn)

∥∥∥∥.

Since for Bernstein functions the inequality

|f (k)(t)| ≤ k!f(t)

tk
,

holds (see [15]), and f ′ ≥ 0, we see that (34) is equivalent to the norm

(36) ‖u |Lp(Rn)‖ +

∥∥∥∥
( 1\

0

|f(1/|s|2)α/2ϕ(s ·D)u(·)
∣∣q

s
ds

)1/q ∣∣∣∣Lp(Rn)

∥∥∥∥.

By the same arguments as in Theorem 2.6.1 and Remark 2.6.1/2 of [29] we
deduce that for p = q the norm (36) is equivalent to

(37) ‖u |Lp(Rn)‖ +

( \
|s|≤1

f(1/|s|2)αp/2‖△k
su‖pp

ds

|s|n
)1/p

,

where △k
s is the kth order difference, and k > α.
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For example, let p = 2 and 0 < α < 1 (if there exists ε > 0 such that
f(x) < x1−ε as x → ∞, we can allow α = 1); then we can take k = 1.

Under such restrictions the norm in Bσ,N
22 (Rn), where σ = (2αj)j≥0, and

N = (Nj)j≥0, Nj =
√
f−1(22j), is equivalent to

(38) ‖u |L2(R
n)‖ +

( \\
|x−y|<1

f

(
1

|x− y|2
)α

|u(y) − u(x)|2 dx dy

|x− y|n
)1/2

.

We would like to remark that in [17] an expression equivalent to (38) was
obtained by completely different methods.

3.2. Trace theorem II. Our next aim will be to find, using (38), the
representation for the norm in the trace space on an h-set. For classical
Besov spaces and a generalized version of h-sets such a result was presented
in [19].

Let µ be an h-measure, α be as in Theorem 18 (see below),

(39) ‖u‖α,f := ‖u |Lp(Γ )‖

+

( ∞∑

ν=0

f(22ν)αp/22−νn

h(2−ν)2

\\
|x−y|≤2−ν

|u(x) − u(y)|p µ(dx)µ(dy)

)1/p

,

and consider the space Bα,fpp (Γ ) = {u ∈ S′(Rn) : ‖u‖α,f <∞}. We will show

in the next section that this space is equivalent to the trace space Bσ∗,N
pp (Γ ),

defined in (13).

We need some notations; see [19] and [20] for details.

Let {Qi} be a collection of closed cubes with disjoint interiors, with
sides parallel to the axes, and such that for the complement Γ c of Γ we
have Γ c =

⋃
Qi. Denote by xi the center of Qi, and by li and si its diameter

and side length. Let 0 < ε < 1/4, and put Q∗
i = (1+ε)Qi. We associate with

this decomposition a partition of unity {ϕi} such that ϕi(x) = 0 if x /∈ Q∗
i ,∑

ϕi(x) = 1 for x ∈ Γ c, and

|Djϕi(x)| ≤ ail
−|j|
i .

Let ci = µ(B(xi, 6li))
−1. On Bα,fpp (Γ ) define the extension operator

(40) Eu(x) =
∑

i∈I

ϕi(x)ci
\

|t−xi|≤6li

u(t) dµ(t), x ∈ Γ c,

where I = {i : si ≤ 1}.
Next we give another definition of the trace operator.

Definition 17. Let u be a locally integrable function defined on R
n,

and m be the Lebesgue measure on R
n. The strictly defined function corre-
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sponding to u is

(41) ũ(x) = lim
r→0

1

m(B(x, r))

\
B(x,r)

u(y) dy, x ∈ R
n,

if this limit exists. Then define the restriction operator

(42) Ru = ũ|Γ .

Now we show that restriction and extension between Bα,fpp (Γ ) and

Bσ,N
pp (Rn) are continuous, and correspond to each other. The continuity of

the extension operator E follows by the same arguments as in [19] and [20],
but to prove the continuity of the restriction R we need condition (4) on f .

Theorem 18. Let p>1, let f be a Bernstein function such that f(t)t−1/κ

increases for some κ ∈ [1,∞) as t→ ∞, and

1

cδ
≤ f(ct)

f(t)
≤ c for all t > 0, c ≥ 1 and some 0 < δ < 1.

Assume in addition that α is such that

(43) x(n−d)/p < fα/2(x2) < x(n−s)/p+1

for large x and suitable 0 < d ≤ s ≤ n, and for δ we have 0 < δα < 1. Let

Γ be an h-set , where h satisfies, for all 0 < t, λ < 1,

(44) c1λ
s ≤ h(λt)

h(t)
≤ c2λ

d for some c1, c2 > 0.

Then the restriction operator R, defined in (42), is continuous from

Bσ,N
pp (Rn), 1 < p < ∞, N = (Nj)j≥0, Nj =

√
f−1(22j), σ = (2αj)j≥0,

to Bα,fpp (Γ ), and there exists a continuous extension E from Bα,fpp (Γ ) to

Bσ,N
pp (Rn), which can be defined by (40).

The proof is given in Appendix III.

Remark 19. The representation (39) is the discrete version of

(45) ‖u |Lp(Γ )‖

+

( \\
|x−y|<1

f(|x− y|−2)αp/2

|x− y|−nh(|x− y|)2 |u(x) − u(y)|p µ(dx)µ(dy)

)1/p

;

see Proposition 2 in [19].

Remark 20. For the classical case, i.e. when fα/2(x2) = xα, condition
(43) coincides with the condition given in [19]: (n− d)/p<α< (n− s)/p+1,
where s and d have the same meaning as in Theorem 18.
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3.3. Equivalence theorem. In this subsection we show the equivalence of
the trace spaces Bσ∗,N

pp (Γ ) and Bα,fpp (Γ ).

Let σ = σα = (2jα)j≥0, α > 0. To show that u = ũ µ-a.e. for u ∈
Bσ,N
pq (Rn) and ũ as defined in (41), we need the notions of (r, p)-ψ-capacity

of a set (see [16] and [18]), where ψ is a continuous negative-definite function.
Let G be an open set in Lp(R

n), and r > 0. The set function

Capψr,p(G) = inf{‖u |Hψ,r
p (Rn)‖ : u ≥ 1 a.e. on G}

is called the (r, p)-ψ-capacity of an open set G.

For an arbitrary set A ⊂ R
n the capacity is defined as

Capψr,p(A) := inf{Capψr,p(G) : A ⊂ G, G ⊂ R
n open}.

Proposition 21. Let (σj)j≥0 satisfy (29). Then g = g̃ µ-a.e. for g ∈
Bσ,N
pq (Rn).

Proof. Since (σj)j≥0 satisfies (29), the operator trΓ is continuous from

Bσ,N
pq (Rn) to Lp(Γ ), p ≥ 1. By the same arguments as in §2.3.2 of [28], and

§2.3.3 of [27], for all 0 < q ≤ ∞ and α > 0 we get

Bσα,N
pq (Rn) ⊂ Bσα−ε,N

p2 (Rn) ⊂ F σ
α−ε,N

p2 (Rn) = Hf(|·|2),α−ε
p (Rn),

for p ≥ 2, 0 < q ≤ ∞, and

Bσα,N
pq (Rn) ⊂ Bσα−ε,N

pp (Rn) ⊂ F σ
α−ε,N

p2 (Rn) = Hf(|·|2),α−ε
p (Rn)

for p<2. Since by Theorem 3.1.47 of [16] any function from Hψ,r−ε
p (Rn) ad-

mits an (r−ε, p)-ψ-quasi-continuous modification, any function u∈Bσα,N
pq (Rn)

can be strictly defined up to a set of (α− ε, p)-f(| · |2)-capacity zero for all

ε > 0. Let Γ0 ⊂ Γ , ϕ ∈ S(Rn), ϕ ≥ 1 on Γ0 and ‖ϕ |Bσ,N
pq (Rn)‖ < δ for

some δ > 0. Then

µ(Γ0) ≤
(\
Γ

|ϕ(γ)|p dµ
)1/p

≤ c‖ϕ |Hf(|·|2),α−ε
p (Rn)‖ < δ.

Therefore a set of (α − ε, p)-f(| · |2)-capacity zero also has µ-measure zero.
Thus g = g̃ µ-a.e.

Remark 22. From the proof of Proposition 21 we get: if a set has (α, 2)-
ψ-capacity zero, then it has µ-measure zero.

The following statements are modifications of Lemma 3.4.14 and Theo-
rem 3.4.15 from [3].

Lemma 23. Suppose that (σj)j≥0 satisfies (29). Consider a family {ajm}
of (σjh(1/Nj)

−1/pN
−n/p
j , p)K-atoms located at cQjm from Definition 6, and

a sequence λ = (λjm)j≥0,m∈Zn ∈ bpq. For k,M ∈ N with k > M define the
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function

(gM )k(γ) =

∣∣∣∣
1

m(B(γ,N−1
k ))

\
B(γ,N−1

k
)

∞∑

j=M+1

∑

m∈Zn

λjmajm(x) dx

∣∣∣∣
p

.

Then there exist c1 and ε > 0 such that\
Γ

(gM )k(γ) dγ ≤ c12
−Mε.

From Lemma 23 we get

Theorem 24. Let (σj)j≥0 satisfy (29). Then

(46) trΓ g = Rg for every g ∈ Bσ,N
pq (Rn).

The proofs are completely analogous to those given in [3], we only need
to use (44).

Now we can state the equivalence theorem.

Theorem 25. Let 1 < p < ∞, Γ be an h-set , h satisfy (44), and f be

a Bernstein function satisfying (4), (2), and (43). Then the spaces Bα,fpp (Γ )

and Bσ∗,N
pp (Γ ), with N = (Nj)j≥0, Nj =

√
f−1(22j), and σ∗ = (σ∗j )j≥0,

σ∗j = σjh(c/Nj)
−1/pN

−n/p
j , are equivalent as normed spaces.

Proof. This follows from Theorems 15, 18 and 24.

4. Application: Domain of the time-changed Dirichlet form. In
this part we show that the space Bα,fpp (Γ ) is the domain of some time-changed

Dirichlet form, which corresponds to a Markov process on an h-set.
We start with a general definition of a Dirichlet form (see [11]).
Let (X,B,m) be a σ-finite measurable space. A Dirichlet form (E , D(E)),

where D(E) is the domain of E , is a symmetric form on L2(X,m) which is
closed and Markovian. The latter means that

u ∈ D(E), v = (0 ∨ u) ∧ 1 imply v ∈ D(E), and E(v, v) ≤ E(u, u).

There is a one-to-one correspondence between symmetric Dirichlet forms and
symmetric Markov processes, i.e. with a symmetric Dirichlet form E(·, ·) one
can associate a self-adjoint operator −A such that

E(u, v) = (
√
−Au,

√
−Av)2,

where (·, ·)2 is the scalar product in L2(R
n). Then −A is the generator of

an L2-sub-Markovian semigroup (Tt)t≥0, which is associated with a Markov
process (Xt)t≥0 as follows:

Ttu(x) = Ex(u(Xt)).

Sometimes it is more convenient to study a Markov process using tools from
functional analysis, i.e. Dirichlet forms.
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Let ψ be a continuous negative-definite function; then it is an exponent
of a Lévy process (Xt)t≥0, i.e. if X0 = 0, then

E0 e
iξXt =

\
Rn

eiξxpt(x) dx = e−tψ(ξ).

On the other hand, let A be an operator with symbol ψ, i.e. for u ∈ S(Rn)

we have Â u(ξ) = ψ(ξ)û(ξ). Then

E(u, v) =
\

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ

is the Dirichlet form associated with ψ. Its domain can be defined in terms
of ψ-Bessel potential spaces.

Let p > 1, s > 0; the ψ-Bessel potential space Hψ,s
p (Rn) is defined as

(see [16])

Hψ,s
p (Rn) = {u ∈ S′(Rn) : ‖((1 + ψ(ξ))s/2û(ξ))∨(·) |Lp(Rn)‖ <∞}.

Then D(E) = Hψ,1
2 (Rn) =: Hψ,1(Rn).

Let Γ be an h-set, and µ be some fixed h-measure on Γ . We want to
describe the Markov process on Γ which is obtained by restriction of (Xt)t≥0

to Γ , i.e. we consider (Xt)t≥0 at the random times when (Xt)t≥0 hits Γ .
The resulting process (X̌t)t≥0 is called the time-changed random process.
We will describe the Dirichlet form which is associated with this process,
and for this we apply the tools from function space theory, developed in the
previous sections. For d-sets and stable-like jump processes such problems
were studied in [26], [21], [22], [12].

First we need to find a condition under which it is possible to construct
such a time-changed process.

Let σ and N be such that Bσ,N
22 (Rn) = Hψ,1(Rn). For example, if ψ(ξ) =

f(|ξ|2), we take σj = 2j and Nj =
√
f−1(22j), j ≥ 1.

We claim: if Hψ,1(Rn) admits the trace space on Γ , then Capψr,p(Γ ) > 0.

Indeed, let K ⊂ R
n be a compact set such that Γ ⊂ K. Then there

exists a function u ∈ Hψ,1(Rn) with u ≥ 1 on K. Suppose that there exists
the trace space of Hψ,1(Rn) on Γ . Then trΓ u ≥ 1 on Γ .

Let

LΓ = {u ∈ Hψ,1(Rn) : u ≥ 1 on Γ}.
By Lemma 3.1.1 from [10] (or by Theorem 3.1.31 from [16]) there exists a
unique element eΓ ∈ LΓ such that 0 ≤ eΓ ≤ 1 µ-a.e., eΓ = 1 µ-a.e. on Γ ,
and

Capψ1,2(Γ ) = ‖eΓ |Hψ,1(Rn)‖,

which leads to Capψ1,2(Γ ) > 0; otherwise eΓ = 0 a.e.
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By Remark 22, µ charges no set of (1, 2)-ψ-capacity zero. Since Capψ1,2(Γ )
> 0, there exists (see [11, §5.1]) a positive continuous additive functional

(PCAF) (Lt)t≥0 which is in the Revuz correspondence with µ.
Take t(τ) := inf{t : Lt > τ}, i.e. the right inverse of Lt. Then (t(τ))τ≥0

is an increasing process, and we put

(X̌τ )τ≥0 = (Xt(τ))τ≥0.

Another way of constructing the time-changed process on a compact d-set Γ ,
using approximation by time-changed Markov processes on ε-parallel sets Γ ,
is described in [12].

Let Γ̌ be the support of (Lt)t≥0, and denote by σΓ̌ the first moment

when (Xt)t≥0 hits Γ̌ . Note that σΓ̌ <∞ a.s., since Capψ1,2(Γ̌ ) > 0.
Define HΓ̌u(x) = Ex(u(XσΓ̌

)).

Remark 26. The time-changed Dirichlet form (Ě , F̌) associated with
(X̌t)t≥0 can be obtained as follows:

F̌ = {ϕ ∈ L2(Γ, µ) : ϕ = trΓ u µ-a.e. on Γ for some u ∈ Hψ,1(Rn)},
Ě(ϕ,ϕ) = E(HΓ̌u,HΓ̌u), ϕ ∈ F̌ , ϕ = trΓ u µ-a.e. on Γ, u ∈ Hψ,1(Rn).

(See [11] for the general theory.)

By the Dirichlet principle (see [10]),

Ě(ϕ,ϕ) = inf{E(u, u) : u = ϕ µ-a.e. on Γ, u ∈ Hψ,1(Rn)},
we obtain D(Ě) = trΓH

ψ,1(Rn).
For our case it is possible to define the domain of this time-changed

Dirichlet form in terms of function spaces on Γ . Let ψ(ξ) = f(|ξ|2), and

(47) E(u, v) =
\

Rn

f(|ξ|2)û(ξ)v̂(ξ) dξ.

Due to the equivalence theorem (Theorem 25), we get not only the inclusion

B1,f
22 (Γ ) ⊂ F̌ , but even B1,f

22 (Γ ) = F̌ . Thus, we arrive at the theorem which
connects the theory of function spaces and the theory of Dirichlet forms:

Theorem 27. Let (E , Hf(|·|2),1(Rn)) be a Dirichlet form defined by (47),
f be a Bernstein function such that f(t)t−1/κ increases for some κ ∈ [1,∞)
as t→ ∞, and

1

cδ
≤ f(ct)

f(t)
≤ c for all t > 0, c ≥ 1 and some 0 < δ < 1.

Assume in addition that
√
f(x2) > x(n−d)/p for large x and suitable 0 < d

≤ n. Let Γ be an h-set , where h satisfies, for all 0 < t, λ < 1,

c1λ
s ≤ h(λt)

h(t)
≤ c2λ

d
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for some 0 < d ≤ s ≤ n, and let µ be a fixed h-measure. Then there exists a

time-changed Dirichlet form (Ě , F̌) with

(48) F̌ = B1,f
22 (Γ ) =

{
u ∈ L2(Γ ) :\\

|x−y|<1

f(|x− y|−2)

|x− y|−nh(|x− y|)2 |u(x) − u(y)|2 µ(dx)µ(dy) <∞
}
.

Remark 28. Suppose there exists ε > 0 such that f(x) ≤ x1−ε as

x→ ∞. The Dirichlet form (E ′, Hf(|·|2),1(Rn)), where

(49) E ′(u, v) =
\\

|x−y|<1

f(|x− y|−2)

|x− y|n (u(x) − u(y))(v(x) − v(y)) dx dy,

is equivalent to (E , Hf(|·|2),1(Rn)), but cannot be obtained from it by some
time change. Analogously, the Dirichlet form

(50) Ẽ(u, v)

=
\\

|x−y|<1

f(|x− y|−2)

|x− y|−nh(|x− y|)2 (u(x) − u(y))(v(x) − v(y))µ(dx)µ(dy)

is equivalent to Ě(·, ·), but cannot be obtained from Ẽ(·, ·) by some time
change. See [21] for a similar discussion.

Appendix I: Proof of Theorem 10. To prove the equivalence of
Definitions 9 and 3 we need some technical statements. Now we will use a
modification of the definition of (σ, p)K-N -atoms, namely, we assume that
they are located at B(xkm, c2/Nk), c2 = cNr.

Lemma 29. The series g =
∑

β∈Nn
0

gβ, where

gβ(x) =
∞∑

k=0

∑

m∈Zn

λβkm(βqu)σ,Nkm (x),

converges in Lp(R
n) for 1 ≤ p <∞.

Proof. For an increasing admissible sequence (σj)j≥0 there exists a small
δ > 0 such that

σ−1
j ≤ 2−jδ.

Then from (10) we have

|g(x)| ≤ C
∑

β∈Nn
0

∞∑

k=0

∑

m∈Zn

N |β|
r |λβkm|2−δkN

n/p
k 1km(x),
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where 1km(x) is now the characteristic function of the ball centered at xkm

with radius c2/Nk. Then

|g(x)|p ≤ C
∑

β∈Nn
0

∞∑

k=0

∑

m∈Zn

N
|β|p
r+ε |λβkm|p

(
Nr

Nr+ε

)|β|p

2−δkNn
k 1km(x).

By the Hölder inequality we obtain

‖g |Lp(Rn)‖ ≤ C1‖λ | bpp‖κ
for some κ > r, and since bpq ⊂ bpp, we have

‖g |Lp(Rn)‖ ≤ C2‖λ | bpq‖κ.

Lemma 30. Let (βqu)σ,Nkm be as in Definition 8. Then there exists a

constant C > 0 such that C−1(βqu)σ,Nkm are (σ, p)K-N-atoms located at

B(xkm, c2/Nk), and

C < C1(1 + |β|)KN |β|
r ,

where C1 > 0 does not depend on β, and r is from Definition 7, that is,
c2 = cNr.

Proof. Let K > 0 and |α| ≤ K. Then, assuming that Dγ(x− xkm)β = 0
if |γ| > |β|, we have

|Dα(x− xkm)βθkm(x)| ≤
∑

|γ|≤|α|

|Dγ(x− xkm)βDγθkm(x)|

≤ cβ
∑

|γ|≤|α|

(
cNr

Nk

)|β−γ|∣∣∣∣Dγ(x−xkm)β
(
Nk

cNr

)|β−γ|∣∣∣∣N
|γ|
k

≤ cβN
|α|
k

(
Nr

Nk

)|β|

, where cβ ≤ C0(1 + |β|)α.

Then we have the statement of our lemma with C ≤ C1(1 + |β|)KN |β|
r .

Now we are ready to prove the equivalence theorem.

Proof of Theorem 10. We will follow the proof of Theorem 2.9 from [31].
Let

g(x) =
∑

β∈Nn
0

∞∑

k=0

∑

m∈Zn

λβkm(βqu)σ,Nkm (x) in S′(Rn),

and

‖λ | fNpq‖̺ = sup
β∈Nn

0

N |β|
̺ ‖λβ | fpq‖ <∞.
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Let g(x) =
∑

β∈Nn
0

gβ(x), where

gβ(x) =
∞∑

k=0

∑

m∈Zn

λβkm(βqu)σ,Nkm (x).

By Lemma 29, this Fourier series converges in Lp(R
n). Let now

aβkm(x) = C−1(βqu)σ,Nkm (x),

where C−1 is from Lemma 30. Then {aβkm} are (σ, p)K-N -atoms for some
large K, and thus

gβ(x) =

∞∑

k=0

∑

m∈Zn

λβkma
β
km(x).

By the atomic decomposition theorem we have

‖gβ |F σ,Npq (Rn)‖ ≤ C‖λβ | fNpq‖,
and by the triangle inequality and Lemma 30 we obtain

‖g |F σ,Npq (Rn)‖ ≤
∑

β∈Nn
0

‖gβ |F σ,Npq (Rn)‖

≤ c
∑

β∈Nn
0

(1 + |β|)K
(
Nr

N̺

)|β|

N |β|
̺ ‖λβ | fNpq‖ ≤ c′‖λβ | fNpq‖̺,

where ̺ > r. Thus g ∈ F σ,Npq (Rn).

Conversely, let g ∈ F σ,Npq (Rn), and consider the resolution of unity {ϕk}
as in Definition 2. Then

ĝ(ξ) =
∞∑

k=0

ϕk(ξ)ĝ(ξ), ξ ∈ R
n,

where the convergence is in S′(Rn).
Let Qk be the cube in R

n centered at the origin and with side length
2πNk. For simplicity we assume (because due to condition (3) the sequence
(Nk)k∈N is admissible) that Nk+1 ≤ 2πNk. Then suppϕk ⊂ Qk. We expand
ϕkĝ in Qk by

(51) (ϕkĝ)(ξ) =
∑

m∈Zn

bkme
−imN−1

k
ξ, ξ ∈ Qk,

with

bkm = cN−n
k

\
Qk

eimN
−1

k
ξ(ϕkĝ)(ξ) dξ = c′N−n

k (ϕkĝ)(m/Nk).

Let now Λ = {Λkm}, k ∈ N0, m ∈ Z
n,

Λkm = σkN
−n/p
k (ϕkĝ)(m/Nk).
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Then (see [30], [31], and [3])

‖g |F σ,Npq (Rn)‖ ∼ ‖Λ | fNpq‖.
Let φ ∈ S(Rn) be a function such that, for k ∈ N0, φk = φ(ξ/Nk) = 1 if
ξ ∈ suppϕk and suppφk ⊂ Qk. Multiplying (51) by φk and extending by
zero from Qk to R

n, we get

(φk(ϕkĝ))
∨(x) =

∑

m∈Zn

bkmφ
∨
k

(
x− m

Nk

)
= Nn

k

∑

m∈Zn

bkmφ
∨
k (Nkx−m)

= C
∑

m∈Zn

Λkmσ
−1
k N

n/p
k φ∨k (Nkx−m), x ∈ R

n.

By the Paley–Wiener–Schwartz Theorem we have, for some b > 0,

(52) |Dαφ∨k (x)| ≤ cbα!(1 + |x|)−b, x ∈ R
n;

see [31, §2.9].
Let {θkm} be as in Definition 7. We decompose the function φ∨k (Nkx−m)

with respect to the points xk,l/N̺, ̺ > r:

φ∨k (Nkx−m) =
∑

β∈Zn

N
|β|
k

β!
Dβφ∨k

(
xk,lNk

N̺
−m

)(
x− xk,l

N̺

)β

.

Therefore

(φk(ϕkĝ))
∨(x) =

∑

m∈Zn

∑

l∈Zn

∑

β∈Nn
0

σ−1
k N

n/p+|β|
k (N̺x− xk,l)βθk,l(N̺x)

× N
−|β|
̺

β!
ΛkmD

βφ∨k

(
xk,lNk

N̺
−m

)

=
∑

m∈Zn

∑

l∈Zn

∑

β∈Nn
0

(βqu)σ,Nk,l (N̺x)λ
β
k,l,

and from (52) we have
∣∣∣∣Dβφ∨k

(
xk,lNk

N̺
−m

)∣∣∣∣ ≤
cb
β!

1

(1 + |xk,lNk/N̺ −m|)b .

Due to the structure of the approximate lattice (condition (8), the points xk,l

are “close” to the point l ∈ Z
n) there is C1 > 0 such that |xk,lNk/N̺−m| ≥

C1|l −m|. Then
∣∣∣∣Dβφ∨k

(
xk,lNk

N̺
−m

)∣∣∣∣ ≤
C2β!

(1 + |l −m|)b ,

which leads to

|λβk,l| ≤ C2N
−|β|
̺

∑

m∈Zn

Λkm
(1 + |l −m|)b ≤ C3N

−|β|
̺

∑

m∈Zn

Λkm+l

(1 + |m|)b ,
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and thus

‖λβ | fNpq‖̺ ≤ c̺
∑

m∈Zn

(
1 + |m|a
1 + |m|b

)
‖Λ | fNpq‖ ≤ c̺‖g |F σ,Npq (Rn)‖.

Appendix II: Proof of Theorem 16

Proof. This is a modification of the proof of Theorem 2.4.1 of [29], so
we just give a short outline, and refer for details to [29].

Let u ∈ S(Rn). Since ϕj(ξ)û(ξ) is not necessarily in S(Rn), we need
functions M and H to justify the convergence near and far from zero.

Let {̺k} be a resolution of unity from Definition 2, and let ̺l = 0 if
l < 0. Put

˜̺j(x) = |N−1
j x|α1̺j(x), j ∈ N0.

Then by (31) and the inequality

(53) Nl+j ≤ 2lκNj , l, j ∈ N,

which follows from (3), we get

∣∣∣
K∑

l=−∞

2jα(ϕj̺l+j û(·))∨(x)
∣∣∣

≤
K∑

l=−∞

2l(α1κ−α)

∣∣∣∣
(

ϕj(z)

|N−1
j z|α1

2α(j+l) ˜̺j+l(z)û(·)
)∨

(x)

∣∣∣∣.

Since supp ˜̺j+l ⊂ {ξ ∈ R
n : Nj+l−1 ≤ |ξ| ≤ Nj+l+1}, we can replace ϕj(z)

with ϕj(z)M(cz/Nj), where c < 1/2κ(l+1). Using (31) we obtain

∣∣∣
K∑

l=−∞

2jα(ϕj̺l+j û)
∨(x)

∣∣∣ ≤
K∑

l=−∞

2l(α1κ−α)2α(j+l)(˜̺∗j+lu)a(x),

where (̺∗kf)a is a maximal function:

(̺∗ku)a(x) = sup
y∈Rn

|̺k(D)u(x− y)|
(1 +Nk|y|)a

;

see [29] for details. Since α1κ > α we obtain

∥∥∥
( ∞∑

j=0

K∑

l=−∞

|2jα(ϕj̺l+jû)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ C1

∥∥∥
( ∞∑

j=0

2jαq(˜̺∗ju)qa(·)
)q)1/q ∣∣∣Lp(Rn)

∥∥∥.
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Analogously, putting ̺′j(x) = |N−1
j x|α0̺j(x) we get

∣∣∣
∞∑

l=K+1

2jα(ϕj̺l+j û)
∨(x)

∣∣∣

≤
∞∑

l=K+1

2l(α0κ−α)

∣∣∣∣
(

ϕj(z)

|N−1
j z|α0

2α(j+l)̺′j+l(z)û(z)

)∨

(x)

∣∣∣∣.

Replacing ϕj(z) with ϕj(z)H(N−1
j+lz) we obtain, using (32), (53) and

α > α0κ, the inequality

(54)
∥∥∥
( ∞∑

j=0

∞∑

l=K+1

|2jα(ϕj̺l+jû)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ C22
K(α0κ−α)‖u |F σ,Npq (Rn)‖.

Now we need to show the reverse inequality. Let f ∈ F σ,Npq (Rn). We show

that ‖f |F σ,Npq (Rn)‖ can be estimated from above by the quasi-norm (33),
which we will denote by ‖ · ‖ϕ.

Let ψ ∈ S(Rn) with suppψ ∈ {x : |x| ≤ 2}, and ψ(x) = 1 for |x| ≤ 1.
Let R > 1, and put

wR,j = 1 −
∞∑

l=R+1

(ψj+l − ψj+l−1) = 1 −
∞∑

l=R+1

θj+l

with ψl(x) = ψ(N−1
l x). Note that {θl} is a decomposition of unity from

Definition 2, and suppwR,j ⊂ B(0, NR+j).

We obtain

|(̺jû)∨(x)| = |(̺jwR,j û)∨(x)| ≤ C3

\
Rn

|(̺j/ϕj)(y)(ϕjwR,j û)∨(x− y)
∣∣ dy.

Then, analogously to step 5 in Theorem 2.4.1 from [29], we obtain, with
r < 1,

|(̺j û)∨(x)|r ≤ (Nj+R/Nj)
n(1−r)M |(ϕjwR,j û)∨(x)|r,

where M(·) is a Hardy–Littlewood maximal function. Since for the maximal
functions for all u ∈ Lp(lq), u = (uk)k∈N0

, the inequality

‖Mu |Lp(lq)‖ ≤ C4‖u |Lp(lq)‖, 1 < p <∞, 1 < q <∞,

holds (see [29, Theorem 2.2.2]), we see that

∥∥∥
( ∞∑

j=1

|2jα(̺j û)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

≤ 2Rκn(1−r)
∥∥∥
( ∞∑

j=1

|2jα(ϕjwR,j û)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r
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≤ 2Rκn(1−r)
(∥∥∥

( ∞∑

j=1

|2jα(ϕjû)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

+
∥∥∥
( ∞∑

j=1

∞∑

l=K+1

|2jα(ϕjθj+lû)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r)

≤ 2Rκn(1−r)‖u‖ϕ +N
n(1−r)−r(α−κα0)
R ‖u |F σ,Npq (Rn)‖,

where in the last step we used (54).
Choose r such that n(1− r)− r(α−κα0) < 0; then we may choose large

R so that the second term is less than 1/2‖u |F σ,Npq (Rn)‖. Thus we arrive at

‖u |F σ,Npq (Rn)‖ ≤ C5‖u‖ϕ.
The equivalence of norms (33) and (34) follows by the same arguments

as in the proof of Theorem 2.4.1 from [29].

Appendix III: Proof of Theorem 18

Proof. As in [19], one can show, using (44), (29), the generalized Hardy–
Littlewood inequality from [23], and replacing 2να by f(22j)α/2 in the ex-
tension theorem from [19], that the extension operator E given by (40) is

continuous from Bα,fpp (Γ ) to Bσ,N
pp (Rn), where for the former space we use

the equivalent norm (38).
Now we show that RE = I.
Let △ν denote a set of cubes with side length 2−ν . As in [19] and [20],

we have\
t∈△ν

|Eu(t) − u(t0)|p dx ≤ 2−νn
\

|t−t0|<r+c2−ν

|u(t) − u(t0)|p
µ(B(t, 2−ν))

µ(dt).

Let τ be such that 2−τ < r/
√
n < 2−(τ−1). Then

(55)
1

m(B(t0, r))

\
|t−t0|<r

|Eu(t) − u(t0)|p dt

≤ h(2−τ )gτ (t0) = h(2−τ )2τεgτ (t0)2
−τε,

where

gτ (t0) =
\

|t−t0|<c2−τ

|u(t) − u(t0)|
m(B(t0, 2−τ ))m(B(t, 2−ν))

µ(dt).

By the definition of the space Bα,fpp (Γ ) we have
∞∑

τ=0

f(22τ )αp/22−nτ
\
gτ (t0)µ(dt0) <∞,

and then \
gτ (t0)µ(dt0) < f(22τ )−αp/22nτ .
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Thus
∞∑

τ=0

\
h(2−τ )2τεgτ (t0)µ(dt0) <

∞∑

τ=0

f(22τ )−αp/22τ(n+ε)h(2−τ ),

which is convergent if (29) holds. Then h(2−τ )2τεgτ (t0) is uniformly bounded
in τ , and letting τ → ∞ in (55), we obtain

1

m(B(t0, r))

\
|t−t0|<r

|Eu(x) − u(t0)|p dx→ 0 as r → 0.

Thus RE = I.

For the case of ordinary Besov spaces the proof of the continuity of the
restriction relies essentially on the estimates for the Bessel kernel

Gα(x) =

(
1

(1 + | · |2)α/2
)∨

(x).

We will try to get similar estimates for the kernel

Kf
α(x) =

(
1

(1 + f(| · |2))α/2
)∨

(x);

then the proof from [19] will apply with necessary modifications.

Let f satisfy (4). Then (see Remarks 34 and 35 in Appendix IV) we get

(56) |Kf
α(x)| ≤ C1

|x|nfα/2(1/|x|2) , |(Kf
α(x))′xj

| ≤ C2

|x|n+1fα/2(1/|x|2)
for all 0 < j < n and x ∈ B(0, R), where C1, C2 are some constants, de-
pending on n and α.

Now we indicate the changes in the restriction theorem from [19].

Let µ be an h-measure, and L(x) = f−α/2(1/x), where f is a Bernstein
function satisfying (4) with δ such that 0 < αδ < 1. Let θ > 0; if xd+ε <
(xγ/L(x2))θ < xs−ε for some small ε > 0 and for all x ≥ 1, then\

|t−y|<r

( |t− y|−γ
L(1/|t− y|2)

)θ µ(dr)

µ(B(y, r))
≤

(
C3

rγL(1/r)

)θ

,(57) \
r≤|t−y|<1

( |t− y|−γ
L(1/|t− y|2)

)θ µ(dr)

µ(B(y, r))
≤

(
C4

rγL(1/r)

)θ

,(58)

for t ∈ R
n, r ≤ 1, and 0 < d ≤ s ≤ n.

Let θ > 0; then by the same arguments as in Lemma 4 from [19] we
deduce from (56) that\\

G

|Kf
α(x− t) −Kf

α(y − t)|θ µ(dx)µ(dy)

µ(B(x, r))µ(B(y, r))
≤ C5

(
1

rnfα/2(1/r2)

)θ
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if xn/fα/2(x2)≤xs/θ−ε for all x≥1 and some ε>0, and G = {(x, y)∈(Rn)2 :
|x−y| < r, |y− t| < 2r}. The same estimate holds if xd/θ−1+ε≤xn/fα/2(x2)
for all x ≥ 1 and some ε > 0, and G = {x, y ∈ R

n : |x−y| < r, |y− t| > 2r}.
Analogously, \

D

|Kf
α(t+ h) −Kf

α(t)|θ dt ≤ |h|n
(|h|nfα/2(1/|h|2))θ ,

where D = {t ∈ R
n : |t| < 2|h|} or D = {t ∈ R

n : |t| > 2|h|}. Then for

u = Kf
α ∗ ω, ω ∈ Lp(R

n), we get

(59)

( \\
|x−y|<r

|u(x) − u(y)|p µ(dx)µ(dy)

µ(B(x, r))µ(B(y, r))

)1/p

≤C6
‖ω |Lp(Rn)‖
rnfα/2(1/r2)

,

and also

(60) ‖u |Lp(Γ )‖ ≤ C7‖ω |Lp(Rn)‖;
see [19] for the detailed proof in the case fα/2(x2) = xα. Note that

‖ω |Lp(Rn)‖ ∼ ‖u |Bσ,N
pp (Rn)‖.

Let A and B be some Banach spaces, and define

lα,fp (A) =
{
ξ : ξ = (ξj)j≥0, ξj ∈ A,

‖ξ | lα,fp ‖ =
( ∞∑

j=0

f(22j)αp/2‖ξj |A‖p
)1/p

<∞
}

and

lαp (B) =
{
ξ : ξ = (ξj)j≥0, ξj ∈ B, ‖ξ | lαp ‖ =

( ∞∑

j=0

2jαp‖ξj |B‖p
)1/p

<∞
}
,

with the appropriate modification for p = ∞.
Let 0 < α0 < α < α1, 0 < θ < 1, α = (1 − θ)α0 + θα1, and 1 < p <

∞. Taking the sequence (f(22j)1/2)j≥0 instead of (2j)j≥0 in the proof of
Theorem 1.18.2 from [27], we get

(lα0,f
∞ (A), lα1,f

∞ (A))θ,p = lα,fp (A),

which for the case A = Lp(Γ × Γ, µ(dx) × µ(dy)) can be reformulated as

(Bα0,f
∞∞(Γ ),Bα1,f

∞∞(Γ ))θ,p = Bα,fpp (Γ ).

Here (X0, X1)θ,p is the space obtained by real interpolation of the spaces X0

and X1; see [27].
Analogously, for B = Lp(R

n) and ξj = ϕNj (D)u, where ϕNj is from
Definition 3, Theorem 1.18.2 from [27] implies

(Bσ0,N
pp (Rn), Bσ1,N

pp (Rn))θ,p = Bσ,N
pp (Rn),

where σ0 = (2jα0)j≥0, σ1 = (2jα1)j≥0, σ = (2jα)j≥0.
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Let

(Tνu)(x, y) =

( |u(x) − u(y)|
µ(B(x, 2−ν))µ(B(x, 2−ν))

)1/p

if |x− y| < 2−ν ,

and 0 otherwise. From (59) we derive that the operator T = (Tν)ν≥0 is

bounded from Bσ,N
pp (Rn) to lα,f∞ (A), where A = Lp(Γ × Γ, µ(dx) × µ(dy)).

By interpolation arguments T is bounded from Bσ,N
pp (Rn) to lα,fp (A), and

‖Ru‖α,f ≤ c‖u |Bσ,N
pp (Rn)‖.

Appendix IV: Kernel estimates. We will derive (56) using a Taube-
rian type theorem. We prove a lemma for so-called extended regularly varying

functions L (see [2]), and show how it applies in our situation.

Let

L∗(λ) = lim sup
t→∞

L(tλ)

L(λ)
, L∗(λ) = lim inf

t→∞

L(tλ)

L(λ)
, λ > 0.

Definition 31. A function L is called extended regularly varying (ER)
if it is positive, measurable, and

(61) λd ≤ L∗(λ) ≤ L∗(λ) ≤ λc for all λ ≥ 1,

for some constants c and d.

The function is called O-regularly varying (OR) if it is positive, measur-
able, and

(62) 0 < L∗(λ) ≤ L∗(λ) <∞ for all λ ≥ 1.

We also quote some notions relevant to representations of radial positive-
definite functions; see [14] and [24].

LetB(ξ) be a positive-definite function,B(0)<∞. Then by the Bochner–
Khinchin theorem there exists a finite measure F (dx) on R

n such that

(63) B(ξ) =
\

Rn

eiξx F (dx) and F (Rn) = B(0).

(We note here that probabilists define the Fourier transform of a function
u as û(ξ) =

T
Rn e

iξxu(x) dx, and in this section we will use this notation.) If
B(ξ) is radial, i.e. B(ξ) =: Bn(|ξ|), then it admits the following representa-
tion:

(64) Bn(r) =

∞\
0

Yn(rλ)G(dλ),

where

G(t) =
\

{λ: |λ|<t}

F (dλ) with G(R1
+) = F (Rn) = B(0) <∞,



Spaces of generalized smoothness 305

and

(65) Yn(t) = 2(n−2)/2Γ (n/2)J(n−2)/2(t)t
(2−n)/2

is the spherical Bessel function, with

Jν(t) =
∞∑

m=0

(−1)m(t/2)2m+ν(m!Γ (m+ ν + 1))−1

being the Bessel function of the first kind of order ν (see [1]). Now we state
a Tauberian type theorem for Bn(r).

Lemma 32. Let L be an ER function which satisfies

(66)
1

tα
<
L(tλ)

L(λ)
< tαδ

for all λ > 0, t > 1 and for some 0 < α < (n− 3)/2, n ≥ 4, 0 < δα < 1.
The following statements are equivalent :

(a) G(λ) ∼ L (1/λ) as λ→ 0;

(b) Bn(r) ∼ L(r) as r → ∞.

Proof. (a)⇒(b). Let r be large. We use the representation (64) of Bn(r).
Integrating (64) by parts, we get

Bn(r) = 2(n−2)/2Γ (n/2)

∞\
0

Jn/2(t)t
−n/2+1G(t/r) dt.

Using (66) we get, for 0 < α < (n− 3)/2, 0 < αδ < 1,

Bn(r)

L(r)
≤ cn,1

( 1\
0

Jn/2(t)t
−n/2+1−αδ dt+

∞\
1

Jn/2(t)t
−n/2+1+α dt

)
= cn,2

and

Bn(r)

L(r)
≥ cn,3

( 1\
0

Jn/2(t)t
−n/2+1+α dt+

∞\
1

Jn/2(t)t
−n/2+1−αδ dt

)
= cn,4,

where we used the fact that

Jn/2(t)t
−n/2+σ ∼ tσ as t→ 0, Jn/2(t)t

−n/2+σ ∼ t−(n+1)/2+σ as t→ ∞

(see [1]). Thus Bn(r) ∼ L(r) as r → ∞.

(b)⇒(a). Let Ĝ(y) =
T∞
0 eiλy dG(λ). Then (see [24, Lemma 1.4.11])

Ĝ(iy) = A(n)y

∞\
0

un−1

(u2 + y2)(n+1)/2
Bn(u) du.
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Hence, for large y and for 0 < α < (n− 3)/2, 0 < αδ < 1 we obtain

Ĝ(iy)

L(y)
= cn,5

∞\
0

tn−1

(1 + t2)(n+1)/2

Bn(ty)

L(y)
dt

≥ cn,6

( 1\
0

tn−1+αδ

(1 + t2)(n+1)/2
dt+

∞\
1

tn−1−α

(1 + t2)(n+1)/2
dt

)
= cn,7.

On the other hand,

Ĝ(iy)

L(y)
≤ cn,8

( 1\
0

tn−1−α

(1 + t2)(n+1)/2
dt+

∞\
1

tn−1+αδ

(1 + t2)(n+1)/2
dt

)
= cn,9,

i.e. Ĝ(iy) ∼ L(y) as y → ∞. Considering Ĝ(iy) as the Laplace–Stieltjes
transform of G(λ), from [2, Theorem 2.10.2] we deduce that G(λ) ∼ L(1/λ)
as λ→ 0.

Remark 33. The proof of (b)⇒(a) holds for all n ≥ 1 and 0 < α < n.

Assume that F (dx) admits the spectral density φ(x); then it is easy to
see that φ(x) is also radial, and we put φn(|x|) := φ(x). Making the variable
change, we get

G(λ) = |Sn−1(1)|
λ\
0

τn−1φn(τ) dτ,

where |Sn−1(r)| is the surface area of the sphere Sn−1(r) of radius r in R
n,

|Sn−1(1)| =
2πn/2

nΓ (n/2)
,

and thus

(67) φn(λ) =
G′(λ)

|Sn−1(1)|λn−1
.

Let G be twice continuously differentiable, and

(68) |G(k)(λ)| ≤ k!G(λ)/λk, k = 1, 2.

Then for some constant c > 0 we have

(69) |φn(λ)| ≤ cG(λ)/λn.

Now we apply Lemma 32 to get estimate (56).

Remark 34. Let 0 < α < n, and f be a Bernstein function satisfying

(70)
1

cδ
≤ f(cλ)

f(λ)
≤ c

for all λ > 0, c ≥ 1, and some δ such that 0 < αδ < 1. Let

B(ξ) =
1

(1 + f(|ξ|2))α/2 .
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DefineBn(|ξ|) := B(ξ). Then L(λ) = 1/fα/2(λ2) is an ER function satisfying
(66), and Bn(λ) ∼ L(λ) as λ → ∞. Since Bn(λ) ∈ C∞(R+), also G(λ)
belongs to C∞(R+). By Lemma 32 and Theorem 2.10.2 from [2] we get
G′(λ) ∼ λ−1L(1/λ) and G′′(λ) ∼ λ−2L(1/λ) as λ→ 0.

Then from (69) we derive for Kf
α(x) = φn(|x|) = B(| · |)∨(x), x ∈ BR(0)

(the ball of radius R with center in 0), the estimate

(71) |Kf
α(x)| ≤ C1

|x|nfα/2(1/|x|2) .

Remark 35. From (67) we get

(Kf
α)′xi

(x) =
1

|Sn−1(1)|

(
G′′(|x|)
|x|n−1

xi
|x| +

G′(|x|)
|x|n+1

xi
|x|

)
,

and in view of (68) we obtain

(72) |(Kf
α)′xi

(x)| ≤ C2

|x|n+1fα/2(1/|x|2) , i = 1, . . . , n.
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