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Spaces of generalized smoothness on h-sets
and related Dirichlet forms

by

V. KNOoPOVA and M. ZAHLE (Jena)

Abstract. The paper is devoted to spaces of generalized smoothness on so-called
h-sets. First we find quarkonial representations of isotropic spaces of generalized
smoothness on R™ and on an h-set. Then we investigate representations of such spaces via
differences, which are very helpful when we want to find an explicit representation of the
domain of a Dirichlet form on h-sets. We prove that both representations are equivalent,
and also find the domain of some time-changed Dirichlet form on an h-set.

1. Introduction. The paper is devoted to Besov-type spaces on h-sets.
Such sets were defined and studied in Edmunds and Triebel [5], [6]; see also
Bricchi [3] and [4]. Our goal is to study more general spaces on such sets,
and show how these results can be applied when we look for the domain of
Dirichlet forms on an h-set, associated with restrictions of certain symmetric
Lévy processes to this set.

Let h : (0,1] — R be a given continuous positive non-decreasing function.
Such functions are sometimes called gauge functions. A compact set I is
called an h-set if there exists a finite Radon measure p such that

(1) suppp =T,
(2) c1h(r) < w(B(y,1)) < eoh(r),ye I, 0 <r <1,

where ¢ and ¢y are positive constants, and B(~,r) is the ball centered at
with radius r. Then p is called an h-measure, and the gauge function, for
which there exists an h-set, is called the measure function. For example, the
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functions
h(r) =11, 0<d<n,
h(r) = r¥logr|®, 0<d<mn,beR,
h(r) = rexplbllogr®], 0<d<n,beR,0<k<1,

are measure functions (in order to have gauge functions, the last two exam-
ples are defined for small r, and then extended to (0, 1]). For more examples
see [4].

For h(r) = r¢ such I" are called d-sets (see Jonsson [19], Jonsson and
Wallin [20], and Triebel [30], [31]), and these are in turn a generalization of
self-similar sets with the open set condition. For representation of norms in
spaces of Lipschitz type on metric measure spaces cf. also [32].

In Section 3.2 we assume that h satisfies the following condition: there
exist 0 < d < s < n such that

(1) Cl)\s < % < Cg)\d
forall 0 <t, A < 1.

We are interested in the representation of some isotropic spaces of gener-
alized smoothness on R" via differences. Similar questions were considered
in Haroske and Moura [13] and Moura [25]; see also Triebel [29] for ordinary
Besov and Triebel-Lizorkin spaces. Such an approach is very helpful when
we need to obtain an explicit representation of the domain of some Dirichlet
forms, and also when we need to find explicitly the trace space on a set of
lower dimension. In such a way the traces of some classical Besov spaces on
d-sets were constructed in [20], and on a generalized version of h-sets in [19],
and it was proved that there exists a continuous restriction to such trace
spaces, with corresponding continuous extension. The methods used in [19]
and [20] are not directly applicable in our situation, since in our case the
kernel in the representation of the Dirichlet form considered is more general
than the Bessel kernel, and it is harder to get estimates for it. In order to
employ Tauberian-type theorems for so-called extended regularly varying
functions (see [2]) for this problem, we consider kernels of some special type
(see below).

Another approach is to obtain the representation of spaces of general-
ized smoothness on h-sets using quarkonial decompositions; see [30] and
[31]. To find such decompositions we use the methods developed in [30] and
[31], as well as in [3]. The advantage of this approach is that we can obtain
the representation of the trace of a function u on I' just by index shifting
in the quarkonial representation of u on R™. While it is easier to find the
representation of the trace space using quarkonial decompositions, the rep-
resentation via differences is very helpful when we want to study Dirichlet
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forms on I'. In Section 3.3 we will show that both methods of tracing give
the same trace space.

In Section 2 we define generalized quarks on R™ and on an h-set. Then
we find the quarkonial representation of the Besov-type space of general-
ized smoothness Bg&N(R") on R™. Here 0 = (0j)j>0 and N = (NN});>0 are
respectively an admissible sequence and a strongly increasing sequence (see
Definition 1 below). We show that such a definition of a space of general-
ized smoothness is equivalent to that via atoms. Then we prove the trace
theorem, i.e. under some general condition on the sequences o and N, the
Bernstein function f and the gauge function h we find the representation of
the trace space on an h-set, and show that there exist continuous restriction
and extension.

In Section 3 we find the representation of the Triebel-Lizorkin-type space
of generalized smoothness ng’N(R") via differences. Here the sequence N =
(Nj)j>0 is defined in the following way. Let f be a Bernstein function, i.e.
f € C®0,00), f >0, and (—1)"f™ < 0 for all n > 1. In our paper we
assume that there exists x € [1, 00) such that

(2) F(t)t71/" is increasing as t — oc.
Then put N; = /f~1(2%7), j > 0. For such N; the inequality
(3) Nji1 < 2°N;

holds (see [9]). This inequality will play a significant role when we look for
the trace space of some space of generalized smoothness on I'.

Starting with a representation of By (R™) (= Fg" (R™)) via differences,
we derive another representation of the trace of Bg;)N(R”) on an h-set. In
the end we prove that the method used in [19] (or [20]) gives in our case
the same result as the method described in Section 2. We put the detailed
proofs in Appendices II and III.

In Section 3.2 we will need an additional assumption on a Bernstein
function f, i.e. we assume that

w Lo

= fN)
This condition is sufficient for the proof of the continuity of the restriction
by Jonsson and Wallin’s method.

For example, condition (4) is satisfied for Bernstein functions f(A) = A%,
FOA) = A%In(1+ X*), A >0, 0 < a < 1. Note that for § = 1 equation (4)
holds for any Bernstein function (see [15]).

Dirichlet forms and related stable-like jump processes on d-sets were
studied in [26], [21], [22], [12], etc. In Section 4 we give the representation of a
Dirichlet form which is equivalent to the Dirichlet form (£, D(€)) associated
with a symmetric Lévy process with exponent f(|¢|?), where f is a Bernstein

<c¢ forall A>0,c>1, and some 0 < § < 1.
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function. Applying the results from Sections 2 and 3, we find the domain of
the trace of the Dirichlet form (€, D(£)) on an h-set. For the general theory
of Dirichlet forms see, for example, [11]. Here we only indicate that if ¢ is a
continuous negative-definite function, then

E(u,v) = | w(Qu(©)() dg
R
is the Dirichlet form associated with . Then D(€) = H;b 1(R"), where

H}"*(R™) is the 1-Bessel potential space of order s (see [16] and [8]). We
are especially interested in the case when

¥(E) = f€17),

where f is a Bernstein function.

Since Hg("F)’S(R") = F;E’N(R"), where o = (27%) >0, and N = (N;);>o0,
N; = /f71(2%) (see [9] for the proof), we can apply the tools from the
theory of function spaces developed in Sections 2 and 3 to get the rep-
resentation of the domain of the time-changed Dirichlet form (&, D(£)),
which corresponds to a Markov process on an h-set. This domain is just the
trace of H/(I")1(R") = D(E) on this h-set. Therefore the domain of the
time-changed Dirichlet form (€, D(£)) is

D(&) = {u € Ly(T) :

e
N e ) ~ ) e i) < }

2. Quarkonial representations. Trace theorem I

2.1. Quarkonial representations on R™. This section is devoted to the
quarkonial representation of spaces of generalized smoothness on R™ and on
an h-set I'. We will prove some technical results, which allow us to find the
trace space of a Besov-type space of generalized smoothness (see Definition 3
below) on an h-set.

NOTATION. @ is the Fourier transform
) = | e u(a) da,
]Rn
and (u(-))" is the inverse Fourier transform. S(R™) and S'(R") are the
Schwartz space and the dual Schwartz space respectively.

We will use several definitions of spaces of generalized smoothness, which
in the end appear to be equivalent. To give the first definition, we need
admissible and strongly increasing sequences, and the related decomposition
of unity. We will follow the presentation given in [9] (see also [7]).
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DEFINITION 1. A sequence 7 = (7;)jen, of positive real numbers is
called

(i) almost increasing if there exists dyp > 0 such that doy; < v, for all
4,k such that 0 < j < k;
(ii) strongly increasing if it is almost increasing, and in addition there
exists a natural number kg such that
27; <~ forall j and k and j + ko < k;

(iii) of bounded growth if there are positive constants d; and Jy € Ny
such that
Yj+1 < diy; forall j > Jo.
Let (0j)jen, be a sequence which satisfies for some do,d; > 0 the in-
equality
(5) doO’j < 0541 < d10’j for all 7 €N
This means that both (0;);en, and (aj_l)jeNO are of bounded growth. We

will call the sequences which satisfy (5) admissible.
For simplicity we will assume below that kg = Jy = 1.

DEFINITION 2. Let (Nj)r>0 be a strongly increasing sequence. Define
2 = {€€R": ¢ < No},
2F ={¢€R": N;_1 <[¢| < Njja}, j=12,....
Let &V be the collection of all function systems (cpév )j>0 such that g@;-v €
C(R™), @f({) >0, £ € R", for any j > 0, supp (pév C _Q]N, and

o0
d el (©) =1 forall{ €R"
Jj=>0
DEFINITION 3. Let N = (Nj)jen, be a strongly increasing sequence,
(¢} )j=0 € @V, and (0;)jen, be an admissible sequence.

(i) Let 1 < p < 00, 1 < ¢ < 0. Then the Besov space of generalized
smoothness is

6)  Bp"(R")={ge'R"):
lg | Bz (R™)I| = [|(055 (D)g)jen | la(Lp)ll < 00}

(ii) Let 1 < p < 00, 1 < ¢ < o0. Then the Triebel-Lizorkin space of
generalized smoothness is

(M) EGNERY ={ge SRY:
lg EgN @) = (o5 (D)g)ens | Lyl < o0}

Here and in the following for ¢ € S(R") (or ¢ € C§°(R"™)) we will
understand ¢(D)u as ¢(D)u(z) = (o(-)u)Y (z).
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REMARK 4. For the classical Besov and Triebel-Lizorkin spaces B, (R")
and F3 (R") put o; = 25 and N; = 27, j > 0.

We need the following auxiliary sequence spaces: Let k € Ny, and let

1gm () be the characteristic function on Q. For 0 < p < oo put 1,&2(@ =

NP1 ().
DEFINITION 5. Let 0 < p < 00, 0 < ¢ < 0o. Then:
(i) bpq is the collection of all sequences A = {Ag, € C: k € Ng, m € Z™}

such that .
Al = (3 al?) ™)™

k=0 mezZ"

(ii) f;\qf is the collection of all sequences A = { Ay, € C: k € Ng, m € Z"}
such that

= [(X X Pent@em) | Lyt

k=0 mezZn

Sometimes we will also need atomic representations of spaces of gener-
alized smoothness.

DEFINITION 6. Let Qg be a cube in R™ centered at N,;lm = (m1/Ng,. ..
...,my/Ng), which has sides parallel to the axes and side length 1/Ny, and
denote by cQr.,, the cube concentric with Qg,,, with side length enlarged
by the factor c. Let (o%)r>0 be an admissible sequence, 1 < p < oo, K > 0,
¢ > 0. A function ag, : R”™ — C such that D%ay,, exists for all |o| < K is
called an (o, p) x-N-atom if

Supp agm C Qrm  for some k € Ng, m € Z",
| D% ag (z)] < o 'NTPHL o) < K

The atomic decomposition theorem states that g € S’(R™) belongs to
FZZI’N (R™) (respectively, Bg;]N (R™)) if and only if it can be represented as

9= Z Z Ak @lm

k=0 mezZ"

which is convergent in S’(R™), where ag,, are (o, p)x-N-atoms, and A € IV
(respectively, Ak € b ). For a more general statement we refer to [9].

Next we need the definitions of quarks and quarkonial decompositions.
We need to adapt the construction introduced in [31, §2 and §9] for ordinary
Besov and Triebel-Lizorkin spaces to spaces of generalized smoothness. We
will show later that quarkonial decomposition of a function is more conve-
nient when we want to restrict this function to an h-set.
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DEFINITION 7. Let k € Ng, and {z*™ : m € Z"} C R" be an approxi-
mate lattice such that there exist ¢1,co > 0 for which

(8) |ghm — kM2 > ¢ /Ny, k € No, my # ma,

and
R"= | J B("",ea/Ny), k€N, ca =cN,,
mezm™

for some fixed r, and a constant c¢. Here B(z,d) is the ball centered at x
with radius d.

Let {6*™ : m € Z"} be the subordinate resolution of unity, i.e. ¥
are non-negative C>®-functions in R”, supp 0*™ C B(x*™, cy/Ny.), k € Ny,
m € Z", and

9) Z Fm(z) =1, x€R™ keNp.
mezn
Since {6*™} is a resolution of unity, we have
(10) N (@ = aFm)P0Rm ()] < PINP,
where 3 € N, and 2° = x? o xﬁ". In addition we assume that
(11) |DegF™| < caN‘O", |a| < K for some large K.
DEFINITION 8. Let § € Njj, 1 < p < co. Then we will call the function
(12) (ﬂqu)znjj(x) = Uk—lN:/p-Hﬁ\@ — gFm)Behm (), z e R™,
a generalized (N, o, p, 3)-quark.

To shorten the notation we will call the quarks from Definition 8 simply
(N, 0)-quarks.

DEFINITION 9. Let 1 < p < 00, 1 < ¢ < 00, (0});>0 be an admissible

sequence, and (N;);>o be a strongly increasing sequence. Let (ﬁqu)(,;flv be
(N, o)-quarks according to Definition 8. We put

A={N:8eNs), M={\ eC:keNy,meZ"}.
Let o > r, where r is from Definition 7, A € bpq, and
(13) IM bpglle = sup NN byl < oo,
BeNg

Then BZQJN(R") is the collection of all g € S’(R™) which can be represented as

(14) g(z) =" fj > X (Bauw) T (x),

BEN k=0 meZn
where )\ satisfies (13). Furthermore,

(15) lg | BZ;Y (R™) .o = inf [[A ] byl
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where the infimum is taken over all admissible representations. Similarly,
(16) lg | E7Y (R™)lo.p = inf [IX| fpglle,  where
IX] fpg

o= Sup Ngﬁ‘H)\ﬁ\flﬁgH < 0.
BeENT

The spaces defined in Definitions 9 and 3 are equivalent as normed
spaces:

THEOREM 10. Let 1 < p < 00, 1 < g < 00, (0j);>0 be an increasing

admissible sequence, and (N;)j>o be a strongly increasing sequence. Let g €
S'(R™). Then

(17) g | N R™)[| ~ llg |F5Y (R™)lo,o
and
(18) g | BEN(R™)[| ~ [lg | BSN (R™)]|g,o-

For the proof see Appendix I.

2.2. Quarkonial representations on an h-set. Now we switch to the frac-
tal case. We need to modify our generalized lattice in order to have conve-
nient representations of the trace of a function which is initially defined
on R".

DEFINITION 11. Let I' be a compact set in R™ and let
I.={zeR":dist(z,I') <e}, &>0,
be the e-neighborhood of I'. Let k € Ny and
(Y m=1,...,M,}c I, {*:m=1,...,M}

be an approzimate lattice and the subordinate resolution of unity with the
following properties: there exist ¢y, c1, co with

(19) [yfm — AP | > e [Ny, k€ No, my # mo,
and
M,
I, c |J BO™™, ca/Ni), k€N,
m=1

where g, = coNkfl. Further, let {#*™} be non-negative C*°-functions in R",
supp 0™ € B(y*™, ¢/ Ny), keNg,m=1,..., My,
and
| DO (2)] < caN,‘f", ke Ng,m=1,..., M,
for all &« € Nj and suitable constants c,, and
My,
(20) d (@) =1, zeli, keN.

m=1
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We always assume that the approximate lattice {y*™} and the decompo-
sition of unity {#*™} can be extended to R" so that one gets the approximate
lattice {#*™} and the decomposition of unity {#*™} from Definition 7 (see
also [31, §9.24]).

Later on we will obtain the quarkonial representation of a function on I"
from its quarkonial representation on R™ by index shifting in (o%)r>0 (see
(12)). In other words, we want to know the sequence (o})r>o to which
(0k)k>0 will reduce when we switch from R™ to I'.

Let u be an h-measure, i.e. (B, ) ~ h(1/N). Then from Zi\fil 1(Bim)
~ 1 we get My ~ 1/h(1/Ny), k> 1.

Next we define the generalized quarks on I.

DEFINITION 12. Let I" be an h-set, {#¥™} be a resolution of unity in-
troduced in Definition 11, 1 < p < oo, (07);>0 be an admissible sequence,
and (N;)j>o0 be a strongly increasing sequence. Then the function

@1 Baw)N () = (o7) " h(L/NR) TNy — BRIy, 5 e N,

where k € Ng and m = 1,..., My, is called a generalized (N, o™, p, 3)-quark
on ['.

To shorten the notation, we will call a generalized (N,o*,p, 5)-quark
n (N, o*)-quark on I.
Analogously to by, from Definition 5, define for 1 < p < 00, 1 < g < o0
the sequence space

x U a/p\1/a
(22) by = {2 Bl = (3 (X wnl?)) T < oo}

DEFINITION 13. Let I" be an h-set, (a}‘)jzo be an admissible sequence,
(N-)]>0 be a strongly increasing sequence, 0 < ¢ < 00, 1 < p < oo, and let
(ﬁqu)o N he (N, 0*)-quarks on I', according to Definition 12. We put
A={M:8eN}, N={\ eC:veNy,m=1,..., M}

Let o > r, where r is such that ca = ¢N,, 0 < ¢ < 1 (see Definition 11),
r

A e bl and

(23) X bpglle = o NN byl < oo

Then Bg; N (I'), is the collection of all functions g € Ly(I") which can be
represented as

[e.e] Mk

(24) g@) =33 N Baw N ()

BeNG k=0m=1



286 V. Knopova and M. Zihle

with (23). Furthermore,
(25) lg | Bg ™ (D)elle,o = inf [[A | bygllo,
where the infimum is taken over all admissible representations.

To prove the trace theorem we need first to show that under some con-
dition on (0});>0 the space Bpq ’N(F)g is embedded in Li(I"). The following
lemma is a generalization of Proposition 9.31 from [31].

LEMMA 14. Let the space Bg;’N(F)Q be as in Definition 12, and
((6%)™Y)j>0 € ly. Then the series (24) converges in L1(I"), and

J
ng*’N(F)Q C Li(I')  continuously.
Proof. Let 1 <p < oo, 1< q<o00, 0>r. Then, since
Ny = AFmP8Em ()] < NP,

we have
Vlg(n)] uldy)
I
< ST N TR/ N YN [y — AR P0E ()] ()
B,km r
< S (07) T (/N TP NI (B ) A
B,km
18] 8 s —1 -1/ ’ M N4 /P'\1/d
< 3 NP (S (o /N (S B )
BEN" k=0 m=1
N 1/d
< sup Nwwau(D o))
BeN

j=>0
where we used the fact that (fogl (1( By WV ~ M,;l/p ~ hYP(1/N). u

We can now define the trace operator. Let ¢ € S(R™); then we denote
the pointwise trace of ¢ on I' by trp . If there is a constant C' > 0 such
that for some 7 > 1,

(26) lbrr ¢ | L (D) < Clle | B, (RM)]|

for all € S(R™), then we call the continuous extension trp of this mapping
to BY;Y (R™) the trace operator.
Write

(27)  trp BN (R™) = {u € Ly(I") : there exists g € B (R"), trp g = u}
with the norm
(28) lu| trr Bgg¥ (R™)|| = inf ||g | By, (R™)]],

where the infimum is taken over all g € Bag" (R™) with trp g = u.
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We arrive at the main theorem of this section:

THEOREM 15. Let I" be an h-set, 1 < p < 00, 0 < g < 00, (N;)j>0 be
a strongly increasing sequence, and o = (0j)j>0 be an admissible sequence
such that
(29) > (N, PR/ Ny ) T < o
J€No

Consider the sequence o} = Uij_n/ph(l/Nj)*l/p, j € Ng. Then the spaces

ng*’N(F)g are independent of all allowed resolutions of unity and all allowed
numbers o, and will be denoted by By ™ (I'), and

(30) trp BN (R™) = Bg, V(D).

Proof. Consider g € Bg;]N(R”). By Theorem 10, g admits a general-
ized quarkonial representation. Assume that the resolution of unity (9) is
adapted to I', as described in Definition 11. If we take a finite sum of this
representation, which is a smooth function ¢, its restriction to I' admits a
quarkonial representation (24). Therefore, by Lemma 14, Theorem 10 and
(26) for our ¢ and 7 = 1, by continuous extension, try g exists and

lber g | By ™ (1)l < Cllg| By (RM]].

On the other hand, let u € BZ;’N(F)Q. By shifting we interpret it as a
function on R™. Then, denoting by g = extu the extension from I" to R"”,
we obtain

lg | By R™)lp < llul By ™ (I),l-
By equivalence of the norms || - ||, for all ¢ > r, we obtain the statement of
the theorem. m

3. Representation via differences. Trace theorem II

3.1. Representation via differences on R™. In this part we find a different
representation of spaces of generalized smoothness, and of their trace spaces
on h-sets. To do this we need a theorem similar to Theorem 2.4.1 from [29]
for spaces of generalized smoothness. For this we specify the sequence o and
assume some additional conditions on the Bernstein function f (compare
with the introduction). For an analogous result see also [13] and [25].

THEOREM 16. Let ¢ be a complez-valued C* function on R"™\ {0} such
that |o(x)| > 0 forc™t < |z| < ¢, ¢ > 0. Let 0 = (279) >0, and N = (N;);>o0,

N; = /f712%). Let a > n/min(p, q), apk < a < aik, where K is from
condition (3) for (N;);>0, and suppose that

(31) S (M)v@)\(l £yl dy < o0

[+
R
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and
3 oz § (o5 YH0) )0+ ey < o

J R j
where M, H € S(R™) are such that

suppM C{y e R": [y[ <2}, M(z)=1 if|z[<1,

and
suppH C {y e R": 27" L < |y| <2FP1Y 0 H(z) =1 df 277 < |y| < 2~
Put pj(z) = @(N]flx), x € R"\ {0}, j € Ng. Then for 1 < p,q < oo,

o0

(33) | (3 215 0urr)” | Lyt
=0
and ]
3 il [ EOLTTARONAY R ) g

0
are equivalent (quasi-)norms in Fpaq’N(]R”).

For the proof see Appendix II.
For convenience we rewrite (34), making the necessary variable change.
We obtain

(35)  flul Lp(R™)]]

F (/s 0(s - Dyu() " f(1/s%) , \ M
d L,(R™)]|.
y (§ ; 2ra ) |
Since for Bernstein functions the inequality

k!
1B ()] < fk(t)’

holds (see [15]), and f’ > 0, we see that (34) is equivalent to the norm
|f 1/[s*)*/2p(s - (')|qd >l/q
s

S

(36)  flul L(RY)| + H( L&)

By the same arguments as in Theorem 2.6.1 and Remark 2.6.1/2 of [29] we
deduce that for p = ¢ the norm (36) is equivalent to

1/p
(37) |U|Lp(R")|+( [ rays?yer?) aka ||p’ ’n) ;
ls|<1

where AF is the kth order difference, and k > a.
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For example, let p = 2 and 0 < o < 1 (if there exists € > 0 such that
f(x) < 2'7¢ as x — oo, we can allow a = 1); then we can take k = 1.
Under such restrictions the norm in Bgj (R”), where o = (2%7),>0, and
N = (Nj)j>0, N; =/ f71(2%), is equ1valent to

, dxdy )1/2
lz—yl”)

<%>nuwmwm+< i fQ !

2
:E fe—
lz—y|<1 y|

) lut) — u(w)

We would like to remark that in [17] an expression equivalent to (38) was
obtained by completely different methods.

3.2. Trace theorem II. Our next aim will be to find, using (38), the
representation for the norm in the trace space on an h-set. For classical
Besov spaces and a generalized version of h-sets such a result was presented
n [19].

Let u be an h-measure, « be as in Theorem 18 (see below),

(39) | (D)
f 221/ ap/22 vn

1/p
(2) [ fute) — u)P lde) )
l[z—y|<27
and consider the space Bz};f(F) ={ue S (R"):
in the next section that this space is equivalent to the trace space Bg;’N(F),
defined in (13).

We need some notations; see [19] and [20] for details.

Let {Q;} be a collection of closed cubes with disjoint interiors, with
sides parallel to the axes, and such that for the complement I'° of I" we
have I'° = | @;. Denote by z; the center of Q;, and by [; and s; its diameter
and side length. Let 0 < ¢ < 1/4, and put Q} = (1+4¢)Q;. We associate with
this decomposition a partition of unity {y;} such that ¢;(z) =0 if z ¢ QF,
Y wi(z)=1for xz € I'°, and

show

DY gi(x)] < ait; .
Let ¢; = p(B(w;,60;))71. On B;,’Z;f(F) define the extension operator
(40) Eu(z) = Zapi(x)ci S u(t)du(t), zel*,
i€l \t—zi\gﬁli

where I = {i:s; <1}.
Next we give another definition of the trace operator.

DEFINITION 17. Let u be a locally integrable function defined on R",
and m be the Lebesgue measure on R™. The strictly defined function corre-
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sponding to u is

(41) u(x) = lim

r—0 m(B(z, 7)) S u(y)dy, = €R",

B(z,r)
if this limit exists. Then define the restriction operator

(42) Ru = mp

Now we show that restriction and extension between Bg};f (I") and

BN (R™) are continuous, and correspond to each other. The continuity of
the extension operator E follows by the same arguments as in [19] and [20],
but to prove the continuity of the restriction R we need condition (4) on f.

THEOREM 18. Let p>1, let f be a Bernstein function such that f(t)t='/%
increases for some k € [1,00) as t — oo, and

1 t

gg ];((Ct)) <c forallt >0,c>1 and some 0 < < 1.
Assume in addition that o is such that
(43) x(n—d)/p < fa/Z(xQ) < x(n—s)/p—i—l

for large x and suitable 0 < d < s < n, and for § we have 0 < dav < 1. Let
I' be an h-set, where h satisfies, for all 0 < t, X <1,

h(\t
(44) a) < % < e\ for some c1,co > 0.
Then the restriction operator R, defined in (42), is continuous from
BEY(R™), 1 < p < o0, N = (Nj);20, Nj = /F71(2%), 0 = (2%9) 0,

to Bgﬁf(F), and there exists a continuous extension E from Bgz’,f(F) to
B3N (R™), which can be defined by (40).

The proof is given in Appendix III.

REMARK 19. The representation (39) is the discrete version of

(45)  ful Lp(D)]

fla =yl 22 e wian)
+(|zSyS|<l T e g7 1) — )] u(d)u(dy)) ,

see Proposition 2 in [19].

REMARK 20. For the classical case, i.e. when f®/2(22) = 2%, condition
(43) coincides with the condition given in [19]: (n — d)/p<a <(n —s)/p+1,
where s and d have the same meaning as in Theorem 18.
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3.3. Equivalence theorem. In this subsection we show the equivalence of
the trace spaces B, (I') and B/ (I').

Let 0 = 0% = (2/%);50, @ > 0. To show that u = @ p-a.e. for u €
Bg&N(R") and u as defined in (41), we need the notions of (r, p)-y-capacity
of a set (see [16] and [18]), where ¥ is a continuous negative-definite function.
Let G be an open set in L,(R™), and r > 0. The set function

Cap}?,p(G) = inf{||u| HI’)Z”’"(R”)H cu>1ae on G}
is called the (7, p)-1-capacity of an open set G.
For an arbitrary set A C R" the capacity is defined as
Cap}fp(A) = inf{Cap}fp(G) :ACG,GCR" open}.
PROPOSITION 21. Let (0;)j>0 satisfy (29). Then g = g p-a.e. for g €
By (R™).
Proof. Since (0;);>0 satisfies (29), the operator trp is continuous from

BgéN(R") to L,(I"), p > 1. By the same arguments as in §2.3.2 of [28], and
§2.3.3 of [27], for all 0 < ¢ < 0o and o > 0 we get

o% n 0.04787N n UaiE,N n 2 a— n
B MR € BS, “N®R") c Fg V(R = HTeme®m),
for p>2,0 < ¢ < oo, and
UOé n Uafs n o.afs,N n 2 a—e n
Bo N®R™ € Bg, MR € B ON(RY) = HI ) eme (R

for p<2. Since by Theorem 3.1.47 of [16] any function from Hg}’r_s(R") ad-
mits an (r—e, p)-1-quasi-continuous modification, any function u EBz; ’N(]R")
can be strictly defined up to a set of (o — ¢, p)-f(| - |?)-capacity zero for all
e>0.Let Iy C T, o € S(R"), ¢ > 1 on Iy and |l¢| BRY (R™)|| < & for

some 9 > 0. Then
1/p 12Y
w(mo) < (§lePdu) ™ < ellp| B2 ®")| <.
r
Therefore a set of (a — &, p)-f(| - |?)-capacity zero also has u-measure zero.
Thus g =g p-a.e. m
REMARK 22. From the proof of Proposition 21 we get: if a set has («, 2)-

1-capacity zero, then it has u-measure zero.

The following statements are modifications of Lemma 3.4.14 and Theo-
rem 3.4.15 from [3].

LEMMA 23. Suppose that (0;) ;>0 satisfies (29). Consider a family {am,}
of (ajh(l/Nj)_l/pNj_"/p,p)K—atoms located at cQjm, from Definition 6, and
a sequence X = (Ajm)j>0,mezr € bpq. For k, M € N with k > M define the
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function

(gm)k(v) = ‘m | YD Aimajm(@) de

B(y,Ny 1) J=M+1meLr

Then there exist ¢c1 and € > 0 such that

V(gan)e () dy < 27 M=,
r

From Lemma 23 we get
THEOREM 24. Let (0});>0 satisfy (29). Then

(46) trrg=Rg for every g € B;gIN(R”).
The proofs are completely analogous to those given in [3], we only need
to use (44).

Now we can state the equivalence theorem.

THEOREM 25. Let 1 < p < oo, I' be an h-set, h satisfy (44), and f be
a Bernstein function satisfying (4), (2), and (43). Then the spaces Bgﬁf(F)
and Bp,N(I), with N = (Nj)jz0, Nj = /J71(2%), and o* = (0});0,

o = th(c/Nj)_l/pN;n/p, are equivalent as normed spaces.

Proof. This follows from Theorems 15, 18 and 24. =

4. Application: Domain of the time-changed Dirichlet form. In
this part we show that the space Bglsf (I') is the domain of some time-changed
Dirichlet form, which corresponds to a Markov process on an h-set.

We start with a general definition of a Dirichlet form (see [11]).

Let (X, B, m) be a o-finite measurable space. A Dirichlet form (€, D(E)),
where D(E) is the domain of £, is a symmetric form on Ly(X, m) which is
closed and Markovian. The latter means that

ueD(E),v=(0Vu)Al imply ve D(E), and E(v,v) < E(u,u).

There is a one-to-one correspondence between symmetric Dirichlet forms and
symmetric Markov processes, i.e. with a symmetric Dirichlet form £(-, -) one
can associate a self-adjoint operator —A such that

E(u,v) = (V=Au,vV—Av)s,

where (-, )2 is the scalar product in Ly(R™). Then —A is the generator of
an Lo-sub-Markovian semigroup (73)¢>0, which is associated with a Markov
process (X¢)i>0 as follows:

Tiu(x) = Exp(u(Xy)).

Sometimes it is more convenient to study a Markov process using tools from
functional analysis, i.e. Dirichlet forms.
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Let ¥ be a continuous negative-definite function; then it is an exponent
of a Lévy process (X)i>0, i.e. if Xo =0, then

Fg Xt = S e py(z) de = e O,
RTL
On the other hand, let A be an operator with symbol 1, i.e. for u € S(R™)
we have Au(§) = ¥ (§)u(€). Then

E(u,v) = | Y(E)(&)DE) dé
Rn
is the Dirichlet form associated with 1. Its domain can be defined in terms
of 1-Bessel potential spaces.
Let p > 1, s > 0; the 1-Bessel potential space H;,b’s(R") is defined as
(see [16])

Hy*(R") = {u € S'(R™) : [|((1 +(€))*/%a(€))" () | Ly(R™)[| < oo}

Then D(£) = HY''(R™) =: HVL(R™).

Let I" be an h-set, and p be some fixed h-measure on I'. We want to
describe the Markov process on I" which is obtained by restriction of (X;);>0
to I', i.e. we consider (X;):>0 at the random times when (X;)¢>o hits I
The resulting process (Xt)tzo is called the time-changed random process.
We will describe the Dirichlet form which is associated with this process,
and for this we apply the tools from function space theory, developed in the
previous sections. For d-sets and stable-like jump processes such problems
were studied in [26], [21], [22], [12].

First we need to find a condition under which it is possible to construct
such a time-changed process.

Let o and N be such that B3 (R™) = H¥(R™). For example, if ¢(¢) =
f(€]%), we take o; = 27 and N; = /f~1(2%), j > 1.

We claim: if H%'!(R") admits the trace space on I, then Cap}f”p(F) > 0.

Indeed, let K C R"™ be a compact set such that I' C K. Then there
exists a function u € H¥"!(R™) with u > 1 on K. Suppose that there exists
the trace space of H¥"'(R™) on I". Then trru > 1 on I

Let

Lr={ue H"Y(R"):u>1on I}

By Lemma 3.1.1 from [10] (or by Theorem 3.1.31 from [16]) there exists a
unique element ey € L such that 0 < er <1 p-a.e., er =1 p-a.e. on I,
and

Cap?y(I) = [lep | HY(R™)]],

which leads to Caquz(F) > 0; otherwise er = 0 a.e.
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By Remark 22, i charges no set of (1, 2)-t)-capacity zero. Since Cap’f’g(f‘ )
> 0, there exists (see [11, §5.1]) a positive continuous additive functional
(PCAF) (Lt)¢>0 which is in the Revuz correspondence with pu.

Take t(7) := inf{t : Ly > 7}, i.e. the right inverse of L;. Then (¢(7))r>0
is an increasing process, and we put

(Xr)r>0 = (Xy(r))r>o0-
Another way of constructing the time-changed process on a compact d-set I,
using approximation by time-changed Markov processes on e-parallel sets I,
is described in [12].
Let I" be the support of (L¢)¢>0, and denote by o the first moment
when (X;)¢>0 hits I". Note that o < oo a.s., since CaplﬁQ(f) > 0.
Define Hpu(r) = Ex(u(Xs.))-

~ REMARK 26. The time-changed Dirichlet form (€, F) associated with
(X¢t)t>0 can be obtained as follows:

F={pecLo(lp): ¢ =trru p-a.e. on I" for some u € H¥(R™)},

E(p,p) = E(Hpu, Hpu), ¢ €F, ¢ =trru p-ae on I, ue€ HH(R).
(See [11] for the general theory.)
By the Dirichlet principle (see [10]),

E(p, ) = inf{E(u,u) : u= ¢ p-a.e. on I, u € H(R")},

we obtain D(E) = trp HY''(R™).
For our case it is possible to define the domain of this time-changed
Dirichlet form in terms of function spaces on I'. Let (&) = f(|€]?), and

(47) E(u,v) = | fEP)u(€)u(E) de.

Rn
Due to the equivalence theorem (Theorem 25), we get not only the inclusion
B%’Qf (I') € F, but even B;’zf (I') = F. Thus, we arrive at the theorem which
connects the theory of function spaces and the theory of Dirichlet forms:

THEOREM 27. Let (€, HI'"")1(R™)) be a Dirichlet form defined by (47),
f be a Bernstein function such that f(t)t=Y/* increases for some k € [1,00)
ast — oo, and

1 ften

= f(t)
Assume in addition that \/f(x?) > "=D/P for large x and suitable 0 < d
<n. Let I" be an h-set, where h satisfies, for all 0 < t, A\ < 1,

s h(At) d
< ——2= <
aN® < W) = CoA

<c forallt>0,c>1and some0 < <1.
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for some 0 <d < s <mn, and let p be a fized h-measure. Then there exists a
time-changed Dirichlet form (€, F) with

(48) F =By (I = {u € Ly(I) :

e
et 140~ ) ) < }.

REMARK 28. Suppose there exists ¢ > 0 such that f(z) < z'7¢ as
2 — 0o. The Dirichlet form (&, Hf(I*):2(R™)), where

T — —2
) o= || LT ) uy) o) - o) dedy,

_ n
o<1 |z — |

is equivalent to (&, H():1(R™)), but cannot be obtained from it by some
time change. Analogously, the Dirichlet form

(50)  &(u,v)

= f(]x—y]*Q) ur) —u v\r)—v X
_mile—yrwwx—mv<() () (v(2) = v(y) () p(dy)

is equivalent to £(-,-), but cannot be obtained from £(-,-) by some time
change. See [21] for a similar discussion.

Appendix I: Proof of Theorem 10. To prove the equivalence of
Definitions 9 and 3 we need some technical statements. Now we will use a
modification of the definition of (o, p)x-N-atoms, namely, we assume that
they are located at B(z*™, ca/Ny), ca = cN;.

LEMMA 29. The series g = zﬁeNn g°, where

k=0 meZn
converges in Ly(R™) for 1 < p < oco.

Proof. For an increasing admissible sequence (o;);>0 there exists a small

6 > 0 such that
O';l < 299,
Then from (10) we have

DTS S N2 N ),

BEND k=0 meZn
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where 1y, () is now the characteristic function of the ball centered at z*™
with radius ca/Nj. Then

STELD SD 3P DRIV (Ko R REVIIE
BEND k=0 meZn Tte
By the Holder inequality we obtain
191 Lp(R™)][ < Crl[A | bppll
for some x > r, and since b,q C by, we have
g Lp(R™)|| < Cal[A| byl m

LEMMA 30. Let (ﬁqu)zg be as in Definition 8. Then there exists a

constant C > 0 such that Cil(ﬂqu)zg are (o,p)k-N-atoms located at
B(x*™ ca/Ny), and

C < Ci(1+|8)EN/,

where C7 > 0 does not depend on (B, and r is from Definition 7, that is,
co = cN;.

Proof. Let K > 0 and |a| < K. Then, assuming that DY(z — zF™)8 =0
if || > |ﬂ|, we have

|D%(z — aF™)Pokm ()] < S |DY(z — 2P D0 ()]
<o
NP N, 18—l
<cg Y, (Nk> DV(x—ka)ﬁ<W) N
T

[vI<|ex|
LN
< csN; <Fk) ,  where cg < Co(1 + [B])

Then we have the statement of our lemma with C' < C;(1 + |ﬁ|)KN7|nm. ]
Now we are ready to prove the equivalence theorem.

Proof of Theorem 10. We will follow the proof of Theorem 2.9 from [31].

Let
=> Z 3 AL (Bqu)gy () in S'(RY),

BENy k=0 meZ"

and
N
IN fulle = sup NN | £l < oo
BeENE
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Let g(z) = ZﬁeNg g% (x), where

ZZA (Bau)7y ().

k=0 meZ™
By Lemma 29, this Fourier series converges in L,(R™). Let now

a) (z) = C7H(Bqu)7N (),

where C~! is from Lemma 30. Then {afm} are (0,p)x-N-atoms for some

large K, and thus
Z D N Wi (@
k=0 mezZ"

By the atomic decomposition theorem we have
N N
l9” | Ega™ ®™)IF < CIIN | fgll,
and by the triangle inequality and Lemma 30 we obtain

gl Fpg™ RN < > Nl g™ R
BeNy

Bl
<e Y (48] (—) NN N < N L 7Y
BeNy
where ¢ > r. Thus g € qu’ (R™).

Conversely, let g € F[,Tq’N (R™), and consider the resolution of unity {y}
as in Definition 2. Then

9(6) =D _¢r(9)3(e), ¢eRr",
=0

where the convergence is in S'(R"™).

Let Qp be the cube in R™ centered at the origin and with side length
27 N}, For simplicity we assume (because due to condition (3) the sequence
(Ni)ken is admissible) that Niiq < 27 Ng. Then supp ¢ C Q. We expand
©kg in Qk by
(51) (r9) (&) = D brme ™k € tequ

mez"
with
b = N | N (015) (€) dE = ¢ N (01) (m/ N,
Qk

Let now A = {Agm}, k € No, m € Z,

A = 0x NP (015) (m )/ N).
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Then (see [30], [31], and [3])
lg | Fgg™ R ~ [1A] £l
Let ¢ € S(R™) be a function such that, for k € No, ¢ = ¢(§/Ng) = 1 if

& € supp g and supp ¢ C Qp. Multiplying (51) by ¢ and extending by
zero from Qg to R”, we get

(0(2k9) " () = Y brmy, (33 - —> =N D by (N — m)
mezn meZL™
=C Z AkmalglN,ZL/quZ(ka —m), x€R"
mezZ™

By the Paley—Wiener—Schwartz Theorem we have, for some b > 0,
(52) DY ()] < (1 + |2])7°,  a € R™
see [31, §2.9].

Let {#*™} be as in Definition 7. We decompose the function ¢ (Nyz—m)
with respect to the points xk’l/N o>

18] k.l kN B
N b b
O (New —m) = 3 =i Dﬂqﬁx(x Nk—m) <x_L) |
BeZn NQ NQ
Therefore
(Gr(02)" () = D 3 S o NN Ny — 2R (N )

mezZn 1eZn BENE
N, 18l ZHI N
Ag, D —
S (T )

= D> > D (Baw (New)y,,

meZn l€Z BENY

and from (52) we have
kIN c 1
DY [Tk )< 2 .
‘ ¢k( N, )= B! (1+ 2Ny, /Ny — m])®
Due to the structure of the approximate lattice (condition (8), the points z
are “close” to the point [ € Z") there is C; > 0 such that [z5!Ny /N, —m| >
C1|l — m|. Then

k,l |
BV Nk_ <i
’D ¢k< N, m)‘-aw—mw’

k.l

which leads to

Apm Apntt
M <N ST T oy la §T D
P < CN 2 gy < ON 2 iy
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and thus

1+ |m|®
e < e 3 (T JIALYI < collsl FZ @)
mezZm™

Appendix II: Proof of Theorem 16

Proof. This is a modification of the proof of Theorem 2.4.1 of [29], so
we just give a short outline, and refer for details to [29].

Let u € S(R™). Since ¢;(£)u(§) is not necessarily in S(R"), we need
functions M and H to justify the convergence near and far from zero.

Let {ox} be a resolution of unity from Definition 2, and let g, = 0 if
[ <0. Put

0j(x) = [N "z[*g;(x), j € No.
Then by (31) and the inequality
(53) Nl-‘rj < 2lan7 l,jeN,
which follows from (3), we get

K
|3 2 pa()" @)

l=—

K
< Z 21(a1n7a)

l=—00

(9%'_(2) 2a<j+l>5j+l(z)ﬁ('>> (@))-

’Nj_lz‘al

Since supp 041 C {§ € R" : Nj 1 < |€] < Njyiq1}, we can replace ¢;(z)
with ¢;(2)M(cz/N;), where ¢ < 1/2¢0+1), Using (31) we obtain

K K
|3 2o @] < Y 22 g, w(a),

l=—0o0 l=—00

where (9 f)q is a maximal function:

. - lok(D)u(z —y)| .
(0ru)a(z) = ye[[gl (1+ NylyDe

see [29] for details. Since aijk > o we obtain

ShS j 1/q
H(z > |2“<%@z+ﬁ)v(-)|q) (Lp(R”)

7j=0Il=—00

<o (S 2n@uae)’) | Lo

J=0
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Analogously, putting ¢}(z) = |Nj_1:U|°‘0 o0j(x) we get

o0

> Qja(%é)wﬁ)v(ﬂ?)‘

I=K+1
oo
< Z 2l(a0/<7a)
I=K+1

Replacing ¢;(z) with @j(z)H(Nj;llz) we obtain, using (32), (53) and
a > agk, the inequality

6 (X% 2o om | Le

§=01=K+1

(R 20 ) ) @)
J

< Co2R oy | FRN(R™)).

Now we need to show the reverse inequality. Let f € FZZJ’N(R”). We show
that || f | Fﬁq’N(R”)H can be estimated from above by the quasi-norm (33),
which we will denote by || - [|,.

Let ¢ € S(R™) with suppy € {z : || < 2}, and ¢¥(z) = 1 for |z| < 1.
Let R > 1, and put

o0 [e.¢]
wrj=1-— Z (Vj41 — Yjt1-1) =1 — Z 0j+1
I=R+1 I=R+1

with ;(z) = ¥(N; 'z). Note that {6;} is a decomposition of unity from
Definition 2, and suppwg,; C B(0, Nr4;).
We obtain

|(0;0)" ()| = |(gjwr )" (x)| < Cs | |(05/5) (W) (jwr )" (x — )| dy.
o

Then, analogously to step 5 in Theorem 2.4.1 from [29], we obtain, with
r <1,

[(08)" ()" < (Njr/Nj)" I M|(pjwp ) ()]
where M (-) is a Hardy—Littlewood maximal function. Since for the maximal
functions for all u € L,(l;), u = (ug)ken,, the inequality

[Mu| Ly(lg)|| < Callu| Lp(lg)|l, 1 <p<oo,1<q< o0,
holds (See [29, Theorem 2.2.2]), we see that

H( > e OF) | La(e)

< QRnn (1-r)

(Zw (eren, @ O) | L@
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<ot (|[( S et o)
=1

T

| Zy(R")

(S 5 romron)

j=11=K+1

)
< 2Rnn(1—r)||u||¢ + Ng(lfr)fr(afnao)nu ’ FZZI’N(Rn)Hv

where in the last step we used (54).

Choose r such that n(1 —r) —r(a — kag) < 0; then we may choose large
R so that the second term is less than 1/2|u | FIZI’N(R”)H. Thus we arrive at
| Fp™ (R™)I] < Csllull.

The equivalence of norms (33) and (34) follows by the same arguments
as in the proof of Theorem 2.4.1 from [29]. =

Appendix III: Proof of Theorem 18

Proof. As in [19], one can show, using (44), (29), the generalized Hardy—
Littlewood inequality from [23], and replacing 2*® by f(2%)%/2 in the ex-
tension theorem from [19], that the extension operator E given by (40) is
continuous from B (I') to B (R™), where for the former space we use
the equivalent norm (38).

Now we show that RE = I.

Let A, denote a set of cubes with side length 27¥. As in [19] and [20],

we have

t) —u(to)|?
| 1B —upde <2 | Do g
te |t—t —v 'U'<B(t72 ))
v o|<r+c2
Let 7 be such that 277 < 7/y/n < 2~(""1. Then

1 p
(55) m(Blio.r) |tt§)|<r|EU(t) — u(to)[" dt

< h(277)gr(to) = h(277)27 g (80)2777,
where
| |u(t) — u(to)]
m(B(to,277))m(B(t,27"))

gT(to) = /L(dt).

[t—to|<c2—T

By the definition of the space B%' (I) we have

D F@2)er27T g (t) p(dto) < oo,

7=0
and then
V gr(to) n(dto) < fF(2°7)ow/22m.
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Thus
S a2 )27 g, (t0) u(dio) < 3 F(227)oP22m (27T,
=0 7=0

which is convergent if (29) holds. Then h(277)27¢g,(%o) is uniformly bounded
in 7, and letting 7 — oo in (55), we obtain

1
- Fu(z) —u(t))Pdr — 0 asr — 0.
B, ) E o)

Thus RE = 1.

For the case of ordinary Besov spaces the proof of the continuity of the
restriction relies essentially on the estimates for the Bessel kernel

We will try to get similar estimates for the kernel

1 v
Kf) = ) (@)
(L4 f(]- %))/
then the proof from [19] will apply with necessary modifications.

Let f satisfy (4). Then (see Remarks 34 and 35 in Appendix IV) we get

C f / Cy
N TV D MR AR Py Ve Ty e

(56) |Kl(x)

for all 0 < 7 < n and = € B(0, R), where C1,Cy are some constants, de-
pending on n and «.

Now we indicate the changes in the restriction theorem from [19].

Let p be an h-measure, and L(z) = f~*/2(1/z), where f is a Bernstein
function satisfying (4) with ¢ such that 0 < a§ < 1. Let 6 > 0; if 29+¢ <
(27 /L(2?))? < 57 for some small € > 0 and for all z > 1, then

it —y|™” o w(dr) Cs 0
o7 |t_§<r (L(l/‘t - y!2)) wu(B(y,r)) = (WL(I/r)> )
=yl \*  uldr) o 6
. r<|t§y|<1 (L(l/lt—y!2)> n(B(y,r)) = <T’YL(1/7~)> ’

forteR", r<l,and 0 <d<s<n.
Let @ > 0; then by the same arguments as in Lemma 4 from [19] we
deduce from (56) that

|Ki(z — t) — K{(y — 1)|° p(dz) p(dy) 1 ’
eI R )
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if 27/ fo/2(2?) <2*/9=¢ for all z>1 and some £ >0, and G = {(z,y) € (R")? :
lz—y| < r, |y—t| < 2r}. The same estimate holds if z4/0=1+e <gn/ fo/2(32)
forallz > 1and somee >0, and G ={z,y e R" : |z —y| <7, [y —1t| > 2r}.
Analogously,

P
SR —IGOR S R

where D = {t € R" : |[t| < 2|h|} or D = {t € R™ : [t| > 2|h|}. Then for
u= K} *w, w € L,(R™), we get

(59) ( 0§ Jule) — ul)p

lz—y|<r

pldz) u(dy) >”P< ¢ Jel LR
p(B(x,r)) p(By,r)) rfel2(1/r2)’
and also
(60) [ | Lp(D)| < Crllw | Lp(R™)][;
see [19] for the detailed proof in the case f*/2(z%) = z*. Note that
lw | Lp(R™) | ~ [l | B, (R™)]|-
Let A and B be some Banach spaces, and define

() = {€: €= (&)20, & € 4,
> , 1/
Il = (3 @y 1 A1) " < oo

Jj=0
and

o o N jap p e
2(B) = {€: €= (&), & € B, €151 = (X 27lig|BIP) " < oo},
j=0
with the appropriate modification for p = oco.

Let 0 <ap<a<am, 0<0<1l, a=(1-0)a+0ar,and 1 <p <
oco. Taking the sequence (f(2%)/2);50 instead of (27);>0 in the proof of
Theorem 1.18.2 from [27], we get

(1597 (A), 1827 (A))o p = 137 (A),
which for the case A = L,(I" x I, u(dzx) x p(dy)) can be reformulated as
(BRGL(1), BRL(I))op = By (1),
Here (X0, X1)g,p is the space obtained by real interpolation of the spaces X
and X7i; see [27].

Analogously, for B = L,(R") and & = gpé-V(D)u, where g0§V is from

Definition 3, Theorem 1.18.2 from [27] implies
(ngN(Rn)’ Bg;’N(Rn))G,p — Bgl,)N(Rn)’

where oy = (2790) >0, 01 = (27*1) >0, 0 = (279) j>0.
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Let

B I S A
e = (e ase ) <

and 0 otherwise. From (59) we derive that the operator T" = (7},),>0 is
bounded from Bg" (R™) to 1% (A), where A = L,(I' x I, u(dx) x pu(dy)).
By interpolation arguments 7" is bounded from ngN (R™) to I o (A), and

1Rul|* < cllu| BY(R™)]. =

Appendix IV: Kernel estimates. We will derive (56) using a Taube-
rian type theorem. We prove a lemma for so-called extended regularly varying
functions L (see [2]), and show how it applies in our situation.

Let

w1 L(tX) LX)
L*(\) = h?if)lolp R L.(\) = htrgéglfT, A> 0.

DEFINITION 31. A function L is called extended reqularly varying (ER)
if it is positive, measurable, and
(61) M < L,(A) <L*(\) <X forall A>1,

for some constants ¢ and d.

The function is called O-regularly varying (OR) if it is positive, measur-
able, and

(62) 0<Li(\)<L*(A\) <oo forall A>1.

We also quote some notions relevant to representations of radial positive-
definite functions; see [14] and [24].

Let B(§) be a positive-definite function, B(0) < co. Then by the Bochner—
Khinchin theorem there exists a finite measure F'(dz) on R™ such that

(63) B(¢) = | 4" F(dz) and F(R")=B(0).

R’I’L
(We note here that probabilists define the Fourier transform of a function
u as U(€) = (g, €% u(x) dz, and in this section we will use this notation.) If

B(¢) is radial, i.e. B(§) =: By (|¢]), then it admits the following representa-
tion:
(64) By(r) = | Yu(rX) G(dN),
0
where
Gt)= | F@\ with G(R})=F(R")=B(0) < oo,

{0 I\<t}
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and
(65) Ya(t) = 207220 (/2) ) o (£)E /2
is the spherical Bessel function, with
Jo(t) =D (=1)™ (/2> (mIT(m + v + 1))~
m=0

being the Bessel function of the first kind of order v (see [1]). Now we state
a Tauberian type theorem for B, (7).

LEMMA 32. Let L be an ER function which satisfies

1 L(tA) 5
66 — < —= <t
(66) T
for all A > 0,t > 1 and for some 0 < o < (n—3)/2, n >4, 0 < dor < 1.
The following statements are equivalent:

(a) GIN\) ~ L(1/X) as A — 0;

(b) Bp(r) ~ L(r) as r — 0.

Proof. (a)=(b). Let r be large. We use the representation (64) of B, (r).
Integrating (64) by parts, we get

B, (r) = 2"2/21(n/2) OSO Jnja(O) T 2LG(t/r) dt.
0

Using (66) we get, for 0 < o < (n—3)/2,0 < ad < 1,

1 o]
BTL(T) —n/2+1—ad —n/2+14+a
< pr—
T < cml(an/z(t)t dt + § T2 (1)t dt) Cno
and
1 [e'e)
BN(T) —n/2+1+a —n/2+1—ad
> p—
o) 2 Cn’g(gjn/g(t)t dt + § T2 (1)t dt) Cnds

where we used the fact that
Tp(OHT 17 ast =0, Ty (t)t2T = (D2 ag 00

(see [1]). Thus BnA(r) ~ L(r) as r — oo.
(b)=(a). Let G(y) = {;” ¥ dG()). Then (see [24, Lemma 1.4.11])

n—1

~ e u
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Hence, for large y and for 0 < a < (n — 3)/2, 0 < ad < 1 we obtain

Gliy) _, [ Bulty)
L(y) 5 (14 2)(n+1)/2 [(y)
L n—14as 00 n—l-a
zcnﬁ(éw t—|—§ 1+t2 TS dt>:cn,7
On the other hand,
G 1 n—l-a o n—ltad
Ly (é 1+ £2)(nt1)/ dt + § 1+ )02 dt) = Cn.9

ie. @(zy) ~ L(y) as y — oo. Considering G(zy) as the Laplace—Stieltjes
transform of G(A), from [2, Theorem 2.10.2] we deduce that G(\) ~ L(1/))
as A — 0. m

REMARK 33. The proof of (b)=-(a) holds for all n > 1 and 0 < a < m.

Assume that F(dz) admits the spectral density ¢(x); then it is easy to
see that ¢(x) is also radial, and we put ¢, (|z|) := ¢(x). Making the variable

change, we get
A

G\ = [Spa (V|77 gn(r) dr

0
where |S,—1(r)| is the surface area of the sphere S,_1(r) of radius r in R”,

27rn/2

n—11)| = ——=5,

and thus
G’

67 n(A) = ——————.
(67) 63 = g
Let G be twice continuously differentiable, and
(68) IGEN)| < BIGON) /AR, k=12
Then for some constant ¢ > 0 we have
(69) (M) < cG(A) /A",

Now we apply Lemma 32 to get estimate (56).
REMARK 34. Let 0 < aw < n, and f be a Bernstein function satisfying

1 fleh)
70 — < <c
(70 & =T
for all A > 0, ¢ > 1, and some ¢ such that 0 < «d < 1. Let
1
B(¢) =

(L+ fUIgP)/2
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Define B, (|¢]) := B(€). Then L(\) = 1/£%/2()\?) is an ER function satisfying
(66), and Bp(A) ~ L(XA) as A — oo. Since Byp(A\) € C*(R4), also G())
belongs to C*°(Ry). By Lemma 32 and Theorem 2.10.2 from [2] we get
G'(A) ~ ATLL(1/)\) and G”(N\) ~ A72L(1/)) as A — 0.

Then from (69) we derive for K (z) = ¢n(|z|) = B(| - |)V(z), # € Bg(0)
(the ball of radius R with center in 0), the estimate

Ch
i K2 < G gara(a ey

REMARK 35. From (67) we get

1 G"(|z]) zi | G'(|z])
Kl = b (Tl €U 2
Ba)e @) = 15—\ Jal =t o] ¥ el Tl
and in view of (68) we obtain
Co
72 K/ 1,...,n.
( ) ’( Oc).z‘z( )’ — ’x’n+1fa/2 1/‘:1;’ ) ) . m
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