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Isometries between groups of invertible elements
in C∗-algebras

by

Osamu Hatori and Keiichi Watanabe (Niigata)

Abstract. We describe all surjective isometries between open subgroups of the groups
of invertible elements in unital C∗-algebras. As a consequence the two C∗-algebras are
Jordan ∗-isomorphic if and only if the groups of invertible elements in those C∗-algebras
are isometric as metric spaces.

1. Introduction. This paper arises from a desire to study isometries
between groups of invertible elements in unital Banach algebras (cf. [4–7]).
As is proved in [5] a surjective isometry between open subgroups of the
groups of all invertible elements in unital semisimple Banach algebras ex-
tends to a surjective real-linear isometry between the underlying Banach
algebras. In particular, if the given Banach algebras are commutative, then
the extended map is a real isomorphism followed by multiplication by some
element. We might conjecture that the Jordan structure is essentially pre-
served in general. In this paper we give a complete description for the case
of unital C∗-algebras.

Throughout the paper the group of all invertible elements in a unital
C∗-algebra A is denoted by A−1, and the identity in A is denoted by IA.

2. The results. The description of real-linear isometries between C∗-
algebras, given below, might be already known (cf. [2, Corollary 3.3]). Un-
fortunately we could not find it in the literature and we present it with a
sketch of proof for the convenience of the readers.

Proposition 2.1. Let A and B be unital C∗-algebras. Suppose that φ
is a surjective isometry from A onto B with φ(0) = 0. Then φ is real-linear
and there exist a central projection P in B and a complex-linear Jordan
∗-isomorphism J from A onto B such that

(2.1) φ(a) = φ(IA)PJ(a) + φ(IA)(IB − P )J(a)∗, a ∈ A.
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Conversely every operator of this form is a real-linear isometry from A
onto B.

Proof. First applying the celebrated theorem of Mazur and Ulam [8]
(cf. [9]) we see at once that φ is a real-linear map. A C∗-algebra is a real
C∗-algebra in the sense of [1], hence by [1, Theorem 6.4] the equality

(2.2) φ(ab∗c+ cb∗a) = φ(a)φ(b)∗φ(c) + φ(c)φ(b)∗φ(a)

holds for every triple a, b, c ∈ A. Choose b ∈ A so that φ(b∗) is invertible. Let-
ting a = c = IA in (2.2) we find that φ(IA) is invertible. Furthermore substi-
tuting b = IA we see that φ(IA) is unitary. Denoting φ0(·) = (φ(IA))−1φ(·),
an elementary calculation shows that φ0 is a surjective real-linear isometry
from A onto B such that φ0(IA) = IB, and

(2.3) φ0(ab
∗c+ cb∗a) = φ0(a)φ0(b)

∗φ0(c) + φ0(c)φ0(b)
∗φ0(a)

for every triple a, b, c ∈ A. By (2.3) we obtain the equalities φ0(b
∗) = φ0(b)

∗

for every b ∈ A (φ0 is ∗-preserving) and φ0(a
2) = (φ0(a))2 for every a ∈ A

(φ0 is square-preserving).

Put

P =
−iφ0(iIA) + IB

2
.

Define a real-linear operator J : A→ B by

(2.4) J(a) = Pφ0(a) + (IB − P )φ0(a)∗

for every a ∈ A. As φ0 is ∗-preserving and square-preserving, the equalities
(−iφ0(iIA))2 = IB and (−iφ0(iIA))∗ = −iφ0(iIA) follow. We also see that
φ0(ia) = φ0(a)φ0(iIA) = φ0(iIA)φ0(a) for every a ∈ A. Applying these
equalities we observe that these P and J are just as desired. Note that
J is surjective. To prove this let b ∈ B. Then there exists a ∈ A with
φ0(a) = Pb+(IB−P )b∗ as φ0 is surjective. By a simple calculation J(a) = b
as desired.

Conversely, suppose that U is unitary in B, P is a central projection
in B, and J is a complex-linear Jordan ∗-isomorphism from A onto B such
that

φ(a) = UPJ(a) + U(IB − P )J(a)∗

for every a ∈ A. A calculation shows that φ is surjective. We now prove that
φ is an isometry between A and B. Since P is a central projection we see
that

(2.5) ‖Pb+ (IB − P )c‖ = max{‖Pb‖, ‖(IB − P )c‖}

for all b and c in B. Applying (2.5) for b = J(a) and c = J(a)∗ or J(a) we
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can easily check that

‖PJ(a) + (IB − P )J(a)∗‖ = max{‖PJ(a)‖, ‖(IB − P )J(a)∗‖}
= max{‖PJ(a)‖, ‖(IB − P )J(a)‖} = ‖J(a)‖

for every a ∈ A as IB −P is central. Since J is an isometry (cf. [3, Theorem
6.2.5]) and U is unitary, the real-linear map φ is an isometry.

Theorem 2.2. Let A and B be unital C∗-algebras and A and B open
subgroups of A−1 and B−1 respectively. Suppose that T is a bijection from A
onto B. Then T is an isometry if and only if T (IA) is unitary in B and there
are a central projection P in B, and a complex-linear Jordan ∗-isomorphism
J from A onto B such that

(2.6) T (a) = T (IA)PJ(a) + T (IA)(IB − P )J(a)∗, a ∈ A.
Furthermore the operator T (IA)PJ(·) + T (IA)(IB − P )J(·)∗ defines a sur-
jective real-linear isometry from A onto B.

Proof. Suppose that T : A → B is a surjective isometry. By [5, Theorem
3.2], T extends to a real-linear isometry T̃ from A onto B since the radical
rad(B) of B is {0} as B is a C∗-algebra. Applying Proposition 2.1 we see
that (2.6) holds.

Conversely suppose that T is given by (2.6). Then by Proposition 2.1
we see that T (IA)PJ(·) +T (IA)(IB−P )J(·)∗ defines a surjective real-linear
isometry from A onto B.

For a complex Hilbert space H the algebra of all bounded linear oper-
ators on H is denoted by B(H). We describe the structure of all surjec-
tive isometries between open subgroups of B(H)−1. We need the following
notation. Beside the adjoint operation on the algebra B(H) we shall also
need the operation of transposition. It is defined by choosing a complete
orthonormal system in H and for any operator a considering the operator
aT whose matrix in the given basis is the transpose of the corresponding
matrix of a. It can be seen that the map a 7→ aT is a well-defined linear
∗-antiautomorphism of B(H). Then the conjugate a of a ∈ B(H) is defined
by the formula a = (a∗)T . Our result reads as follows.

Corollary 2.3. Let H1 and H2 be complex Hilbert spaces. Suppose that
T is a surjective isometry from A onto B, where A and B are open subgroups
of B(H1)

−1 and B(H2)
−1 respectively. Then T (IB(H1)) is a unitary operator

and there is a unitary operator w (complex-linear isometry) from H1 onto
H2 such that T is of one of the following forms:

(1) T (a) = T (IB(H1))waw
∗ for all a ∈ A,

(2) T (a) = T (IB(H1))wa
∗w∗ for all a ∈ A,

(3) T (a) = T (IB(H1))wa
Tw∗ for all a ∈ A,

(4) T (a) = T (IB(H1))waw
∗ for all a ∈ A.
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Proof. The center of B(H2) consists of the scalar operators, hence P is
a trivial projection (the zero operator or IB(H2)). Then Theorem 2.2 asserts
that there is a Jordan ∗-isomorphism J such that T (a) = T (IB(H1))J(a) for
all a ∈ A or T (a) = T (IB(H1))J(a)∗ for all a ∈ A. A Jordan ∗-isomorphism
from B(H1) onto B(H2) is an algebra isomorphism or an algebra antiiso-
morphism, hence there is a unitary operator w from H1 onto H2 such that
J(b) = wbw∗ for every b ∈ B(H2) or J(b) = wbTw∗ for every b ∈ B(H2).
Thus we have the conclusion.
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