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Boundedness of Riesz transforms
on weighted Carleson measure spaces

by

Ming-Yi Lee (Chung-Li)

Abstract. Let w be in the Muckenhoupt A∞ weight class. We show that the Riesz
transforms are bounded on the weighted Carleson measure space CMOp

w, the dual of the
weighted Hardy space Hp

w, 0 < p ≤ 1.

1. Introduction. One of the principal interests of Hp(Rn) theory is to
give a natural extension of the boundedness on Lp, 1 < p <∞, for maximal
functions and singular integrals to the Hardy space Hp(Rn) for p ≤ 1. It is
well known that the Riesz transforms are bounded on Hp(Rn), 0 < p ≤ 1,
and BMO(Rn), the dual of H1. For p < 1, the dual of Hp(Rn) can be iden-
tified with a Campanato space (see [CW], [FS], and [GR]). Moreover, it was
proved that Campanato spaces are equivalent to Lipschitz spaces (see [FS,
Theorem 5.39]). Lemarié [L, Theorem A] proved that Calderón–Zygmund
singular integral operators satisfying certain conditions are bounded on Lip-
schitz spaces (cf. [MC, Chapter 10, §4]). Therefore, these results imply that
the Riesz transforms are bounded on the dual of Hp(Rn).

For the weighted case, Lee et al. [LLY] showed that the Riesz transforms
are bounded on weighted Hardy spaces Hp

w, 0 < p ≤ 1 for w ∈ A1. Recently,
Ding et al. [DHLW] extend the Hp

w-boundedness of the Riesz transforms to
w ∈ A∞. A natural question arises: Are the Riesz transforms bounded on
the dual of the weighted Hardy space Hp

w for 0 < p ≤ 1 and w ∈ A∞? The
purpose of this paper is to give an affirmative answer. In 2001, Garćıa-Cuerva
and Martell [GM] gave a wavelet characterization of weighted Hardy spaces
Hp
w(Rn). In [LLL], Lee et al. introduced the weighted Carleson measure space

CMOp
w(R) and showed that CMOp

w(R) is the dual of the weighted Hardy
spaceHp

w(R). To state the duality result of [LLL], we first recall the definition
of the weighted Carleson measure spaces CMOp

w. Let ψ ∈ S(Rn) satisfy
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(1.1) supp ψ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2}
and

(1.2)
∑
j∈Z
|ψ̂(2−jξ)|2 = 1 for all ξ ∈ Rn \ {0}.

Set ψj(x) = 2jnψ(2jx). Denote by S∞(Rn) the functions f ∈ S(Rn) satisfy-
ing

	
Rn f(x)xα dx = 0 for |α| ≥ 0. We define CMOp

w(Rn) as follows.

Definition 1.1. Let 0 < p ≤ 1 and w ∈ A∞. We say that f ∈
CMOp

w(Rn) if f ∈ (S∞)′(Rn) with the finite norm defined by

‖f‖CMOp
w(Rn) := sup

J

{
1

w(J)2/p−1

∑
j∈Z

∑
I⊂J
|(ψj ∗ f)(xI)|2

|I|2

w(I)

}1/2

,

where J is a dyadic cube in Rn and I is a dyadic cube in Rn with edge-
length 2−j and lower-left corner xI . Note that xI = 2−jk, where j ∈ Z,k =
(k1, . . . , kn) ∈ Zn and I = {(x1, . . . , xn) ∈ Rn : ki ≤ 2jxi < ki + 1, i =
1, . . . , n}. This convention will be used throughout the paper.

By the same argument of [LLL], the dual space of Hp
w(Rn), 0 < p ≤ 1,

can be identified with CMOp
w(Rn) as follows.

Theorem A. Let 0 < p ≤ 1 and w ∈ A∞. The dual of Hp
w is CMOp

w in
the following sense:

(a) For each g ∈ CMOp
w, there is a linear functional `g, initially defined

on Hp
w ∩ L2, which has a continuous extension onto Hp

w and ‖`g‖ ≤
C‖g‖CMOp

w
.

(b) Conversely, every continuous linear functional ` on Hp
w can be real-

ized as ` = `g with g ∈ CMOp
w and ‖g‖CMOp

w
≤ C‖`‖.

In particular for p = 1, CMO1
w(Rn) = BMOw(Rn).

Since CMOp
w is the dual of Hp

w, the definition of CMOp
w is independent

of the choice of the function ψ. However, we would like to show this inde-
pendence by using the following inequality for CMOp

w, which will also be
used for the proof of the main result in this paper.

Theorem 1.2. Let 0 < p ≤ 1, w ∈ A∞ and ψ, φ satisfy (1.1)–(1.2).
Then, for all f ∈ (S∞)′,

sup
J

{
1

w(J)2/p−1

∑
j∈Z

∑
I⊂J
|(ψj ∗ f)(xI)|2

|I|2

w(I)

}1/2

≈ sup
J

{
1

w(J)2/p−1

∑
j∈Z

∑
I⊂J
|(φj ∗ f)(xI)|2

|I|2

w(I)

}1/2

.
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Let Rj , j = 1, . . . , n, denote the Riesz transforms in Rn defined by

Rjf(x) = p.v. (Kj ∗ f)(x), where Kj(x) = π−(n+1)/2Γ

(
n+ 1

2

)
xj
|x|n+1

.

For n = 1, the Riesz transform reduces to the Hilbert transform

Hf(x) = lim
ε→0

1

π

�

|y|≥ε

f(x− y)

y
dy.

Note that by Definition 1.1, CMOp
w ⊂ (S∞)′. In general, Rj may not

be well defined on CMOp
w. Accordingly, to obtain the boundedness of an

operator Rj on CMOp
w, we need first to define Rjf for f ∈ CMOp

w. Indeed,
the same problem appeared even in the study of the boundedness of singular
integral operators on the classical Hardy spaces Hp. The key method used
in the classical case was to consider the dense subspace L2∩Hp of Hp. Thus,
to show the Hp boundedness of singular integral operators, by the density
argument, it suffices to prove the boundedness of operators on L2 ∩ Hp.
However, this method does not work in our case because L2 ∩CMOp

w is not
dense in CMOp

w. But we will prove in Proposition 4.1 below that L2∩CMOp
w

is dense in CMOp
w in the weak topology (Hp

w,CMOp
w). Hence, for f ∈ CMOp

w,
〈Rjf, g〉 is well defined for g ∈ S∞. This means that for f ∈ CMOp

w, Rjf is
well defined as a distribution in (S∞)′. The main result of this paper is the
following

Theorem 1.3. Let w ∈ A∞. Then there exists a constant C such that

‖Rjf‖CMOp
w
≤ C‖f‖CMOp

w
for 0 < p ≤ 1 and j = 1, . . . , n.

Remark. Theorem 1.3 cannot be directly obtained by duality from the
Hp
w-boundedness of Riesz transforms since we do not have ‖f‖CMOp

w
≈

sup‖g‖
H

p
w
≤1 |〈f, g〉|.

Throughout the article the letter C will denote a positive constant that
may vary from line to line but remains independent of the main variables.
We use j ∧ k to denote the minimum of j and k and use a ≈ b to denote
the equivalence of a and b, that is, there exist two positive constants C1, C2

independent of a, b such that C1a ≤ b ≤ C2a.

2. Preliminaries. The class Ap was used by Muckenhoupt [M], Hunt–
Muckenhoupt–Wheeden [HMW], and Coifman–Fefferman [CF] to investi-
gate the weighted Lp boundedness of Hardy–Littlewood maximal functions,
the Hilbert transform and Calderón–Zygmund singular integral operators,
respectively. In this article a weight means an Ap weight. More precisely, let
w be a nonnegative function defined on Rn. We say that w ∈ Ap, 1 < p <∞,
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if (�
I

w(x) dx
)(�

I

w(x)−1/(p−1) dx
)p−1

≤ C|I|p for every cube I ⊆ Rn,

where C is a positive constant independent of I and 0 · ∞ is taken to be 0.
A function w satisfies the condition A∞ if given ε > 0 there exists δ > 0
such that if I is a cube and E ⊆ I with |E| < δ|I|, then�

E

w(x) dx < ε
�

I

w(x) dx.

For the case p = 1, w ∈ A1 if

1

|I|

�

I

w(x) dx ≤ C ess inf
x∈I

w(x) for every cube I ⊆ Rn.

It is well known that a locally integrable function satisfies the condition
A∞ if and only if it satisfies the condition Ap for some p > 1. Also, if w ∈ Ap
with 1 < p <∞, then w ∈ Ar for all r > p and w ∈ Aq for some 1 < q < p.
We thus use qw ≡ inf{q > 1 : w ∈ Aq} to denote the critical index of w and
define the weighted measure of a set E ⊆ I by w(E) =

	
E w(x) dx.

For any cube I and λ > 0, we shall denote by λI the cube concentric
with I each of whose edges is λ times as long as the edges of I. It is known
that for w ∈ Ap, p ≥ 1, w satisfies the doubling condition, that is, there
exists an absolute constant C such that w(2I) ≤ Cw(I).

Closely related to Ap is the reverse Hölder condition. If there exist r > 1
and a fixed constant C > 0 such that(

1

|I|

�

I

w(x)r dx

)1/r

≤ C
(

1

|I|

�

I

w(x) dx

)
for every cube I ⊆ Rn,

we say that w satisfies the reverse Hölder condition of order r and write
w ∈ RHr. It follows from Hölder’s inequality that w ∈ RHr implies w ∈ RHs

for all s < r. It is known that w ∈ A∞ if and only if w ∈ RHr for some
r > 1. Moreover, if w ∈ RHr, r > 1, then w ∈ RHr+ε for some ε > 0. We
thus write rw ≡ sup{r > 1 : w ∈ RHr} to denote the critical index of w for
the reverse Hölder condition.

For the comparison between the Lebesgue measure of a set E and its
weighted measure w(E), we have the following

Theorem B ([GR, GW]). Let w ∈ Ap ∩ RHr with p ≥ 1 and r > 1.
Then there exist constants C1, C2 > 0 such that

C1

(
|E|
|I|

)p
≤ w(E)

w(I)
≤ C2

(
|E|
|I|

)(r−1)/r

for any measurable subset E of a cube I.
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For the integral with respect to the measure w(x)dx, we have the follow-
ing estimate which can be found in [GR, p. 412].

Lemma C. Let w ∈ Aq, q > 1. Then, for all r > 0, there exists a
constant C independent of r such that

�

|x|≥r

w(x)

|x|nq
dx ≤ Cr−nqw(Ir),

where Ir is the cube centered at 0 with edge-length 2r.

For f ∈ (S∞)′, we define the discrete Littlewood–Paley square function
G(f) by

G(f)(x) =
(∑
j∈Z

∑
I

|(ψj ∗ f)(xI)|2χI(x)
)1/2

.

It is known that G is bounded on Lqw, 1 < q < ∞, provided w ∈ Aq. The
following discrete Calderón identity on Rn was proved in [FJ]:

Theorem D. Suppose that ψ satisfies (1.1) and (1.2). Then, for f ∈
L2(Rn), S∞(Rn), or (S∞)′(Rn),

f(x) =
∑
j∈Z

∑
I

2−jn(ψj ∗ f)(xI)ψj(x− xI),

where the series converges in L2(Rn), S∞(Rn), or (S∞)′(Rn), respectively.

3. The proof of Theorem 1.2. For f ∈ (S∞)′, we use Theorem D to
get

(ψj ∗ f)(z) =
∑
j′∈Z

∑
I′

2−j
′n(φI′ ∗ f)(xI′)(ψj ∗ φI′)(z − xI′),

where φI′ := φj′ if `(I ′) = 2−j
′
. Note that φI1 and φI2 represent the same

operator if I1 and I2 have the same edge-length. For L,M > 0, the almost
orthogonality (cf. [HS, Lemma 4.3]) gives

(3.1) |(ψj ∗ φj′)(z − xI′)| ≤ C2−|j−j
′|L 2−(j∧j′)M

(2−(j∧j′) + |z − xI′ |)n+M
.

Hence,

|(ψj ∗ f)(z)|

≤ C
∑
j′

∑
I′

|I ′| 2−|j−j′|L 2−(j∧j′)M

(2−(j∧j′) + |z − xI′ |)n+M
|(φI′ ∗ f)(xI′)|

≤ C
∑
j′

∑
I′

|I ′| 2−|j−j′|L 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|, z ∈ I,
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where xcI , x
c
I′ denote the centers of I, I ′, respectively. Taking the supremum

over z ∈ I, we get

sup
z∈I
|(ψj ∗ f)(z)|

≤ C
∑
j′

∑
I′

|I ′| 2−|j−j′|L 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|.

Schwarz’s inequality gives(
sup
z∈I
|(ψj ∗ f)(z)|

)2

≤ C
(∑

j′

2−|j−j
′|L
{∑

I′

|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M

}1/2

×
{∑

I′

|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

}1/2)2

.

A direct computation yields

(3.2)
∑
I′

|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
≤ C.

By Schwarz’s inequality again,(
sup
z∈I
|(ψj ∗ f)(z)|

)2

≤ C
(∑

j′

2−|j−j
′|L
)(∑

j′

2−|j−j
′|L

×
∑
I′

|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

)
≤ C

∑
j′

∑
I′

2−|j−j
′|L|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2.

Given a dyadic cube P , say `(P ) = 2−j0 , we have

1

w(P )2/p−1

∑
I⊂P

(
sup
z∈I
|(ψj ∗ f)(z)|

)2 |I|2

w(I)

≤ C

w(P )2/p−1

∞∑
j=j0

∑
I⊂P

`(I)=2−j

∞∑
j′=j0

∑
I′

2−|j−j
′|L|I ′|

× 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

|I|2

w(I)
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+
C

w(P )2/p−1

∞∑
j=j0

∑
I⊂P

`(I)=2−j

j0−1∑
j′=−∞

∑
I′

2−|j−j
′|L|I ′|

× 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

|I|2

w(I)

:= A1 +A2.

A1 can be further decomposed as

A1 =
C

w(P )2/p−1

( ∞∑
j=j0

∑
I⊂P

`(I)=2−j

∞∑
j′=j0

∑
I′⊂3P

`(I′)=2−j′

+
∞∑
j=j0

∑
I⊂P

`(I)=2−j

∞∑
j′=j0

∑
I′∩3P=∅
`(I′)=2−j′

)

2−|j−j
′|L|I ′| 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

|I|2

w(I)

:= A11 +A12.

Let w ∈ A∞. There exist q, r > 1 such that w ∈ Aq ∩ RHr. The definition
of Aq and Hölder’s inequality show that

(3.3) |I|q ≈ w(I)(w(I)1−q′)q−1.

Hence, ∑
I⊂P

`(I)=2−j

|I|2

w(I)

2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M
(3.4)

≤
∑
I⊂P

`(I)=2−j

|I|2−q(w(I)1−q′)q−1 2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M

≤ 2−jn(2−q)
( �

P

2
−(j∧j′) M

q−1

(2−(j∧j′) + |xcI − xcI′ |)
n+M
q−1

w(x)1−q′ dx

)q−1

≤ C2−jn(2−q)
(( �

|x−xc
I′ |≤2−j′

+
�

|x−xc
I′ |>2−j′

)
2
−(j∧j′) M

q−1

(2−(j∧j′) + |x− xcI′ |)
n+M
q−1

w(x)1−q′ dx

)q−1

.

Since w ∈ Aq it follows that w1−q′ ∈ Aq′ . If we take M > nq′(q − 1) − n,
Lemma C yields
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�

|x−xc
I′ |>2−j′

2
−(j∧j′) M

q−1

(2−(j∧j′) + |xcI − xcI′ |)
n+M
q−1

w(x)1−q′ dx

≤ C2
−(j∧j′) M

q−1
+j′ n+M

q−1 w(I ′)1−q′ .

Inserting the above estimate into the last term in (3.4) implies∑
I⊂P

`(I)=2−j

|I|2

w(I)

2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M

≤ 2−jn(2−q)(2(j∧j′−j′)n + 2(j′−j∧j′)M )|I ′|−1(w(I ′)1−q′)q−1.

By (3.3) again,

(3.5)
∑
I⊂P

`(I)=2−j

|I|2

w(I)

2−(j∧j′)M

(2−(j∧j′) + |xcI − xcI′ |)n+M

≤ C2−jn(2−q)(2(j∧j′−j′)n + 2(j′−j∧j′)M )|I ′|q−1w(I ′)−1.

Thus,

A11 ≤
C

w(P )2/p−1

∞∑
j=j0

∞∑
j′=j0

∑
I′⊂3P

`(I′)=2−j′

2−|j−j
′|L+(j−j′)n(q−2)(2(j∧j′−j′)n + 2(j′−j∧j′)M )

|I ′|2

w(I ′)
|(φI′ ∗ f)(xI′)|2.

Since there are 3n dyadic cubes in 3P with the same edge-length as P ,∑
I′⊂3P

`(I′)≤`(P )

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
≤ 3n sup

P ′⊂3P
`(P ′)=`(P )

∑
I′⊂P ′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
.

Choosing L > max{M − n(q − 2)− n, n(q − 2)}, we have

A11 ≤
C

w(P )2/p−1

∞∑
j′=j0

∑
I′⊂3P

`(I′)=2−j′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)

×
∞∑
j=j0

2−|j−j
′|L+(j−j′)n(q−2)(2(j∧j′−j′)n + 2(j′−j∧j′)M )

≤ C

w(P )2/p−1
sup
P ′⊂3P

`(P ′)=`(P )

∑
I′⊂P ′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
.



Boundedness of Riesz transforms 177

Next we decompose the set of dyadic cubes {I : I∩3P = ∅ and `(I) = `(P )}
into the disjoint union of {Hi}i∈N according to the distance between each I
and P . Namely, for each i ∈ N,

Hi := {P ′ : P ′ ∩ 3P = ∅, `(P ′) = `(P ), 2i−j0 ≤ |xcP ′ − xcP | < 2i+1−j0},
where xcP and xcP ′ denote the centers of P and P ′, respectively. Thus,

A12 ≤ C
∞∑
i=1

∑
P ′∈Hi

1

w(P )2/p−1

∞∑
j=j0

∑
I⊂P

`(I)=2−j

|I|2

w(I)

∞∑
j′=j0

∑
I′⊂P ′

`(I′)=2−k′

2−|j−j
′|L|I ′|

× 2−(j∧j′)M

(2−(j∧j′) + |xcP − xcP ′ |)n+M
|(φI′ ∗ f)(xI′)|2.

Let Qi be the cube with center xcP and `(Qi) = 2i+2−j0 . Then P ⊂ Qi and
P ′ ⊂ Qi for any P ′ ∈ Hi. Theorem B shows that, for any P ′ ∈ Hi,

w(P ′)

w(P )
≤ C2−i

r−1
r

+iq.

Note that |xcP ′−xcP | ≈ 2i−j0 for P ′ ∈ Hi. By (3.5) for M > 2(nq′(q−1)−n),

A12 ≤ C
∞∑
i=1

∑
P ′∈Hi

1

w(P ′)2/p−1
2(−i+j0)M/2+i(q− r−1

r
)(2/p−1)

×
∞∑

j′=j0

∞∑
j=j0

2−|j−j
′|L−(j∧j′)M/22(j−j′)n(q−2)(2(j∧j′−j′)n + 2(j′−j∧j′)M/2)

×
∑
I′⊂P ′

`(I′)=2−j′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
.

Since there are at most 2(i+2)n cubes P ′ in Hi and for j′ ≥ j0,
∞∑
j=j0

2−|j−j
′|L−(j∧j′)M/22(j−j′)n(q−2)(2(j∧j′−j′)n + 2(j′−j∧j′)M/2) ≤ C2−j0M/2,

we choose M > 2q(2/p− 1) to get

A12 ≤ C sup
P ′

1

w(P ′)2/p−1

∞∑
j′=j0

∑
I′⊂P ′

`(I′)=2−j′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)

×
∞∑
i=1

2−iM/2+i(q− r−1
r

)(2/p−1)

≤ C sup
P ′

1

w(P ′)2/p−1

∑
I′⊂P ′

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
.
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To estimate A2, we use (3.3) to obtain

A2 ≤
C

w(P )2/p−1

∞∑
j=j0

∑
I⊂P

`(I)=2−j

j0−1∑
j′=−∞

∑
I′

|I|2

w(I)
2−(j−j′)L

× |I ′| 2−j
′M

(2−j′ + |xcP − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

≤ C

w(P )2/p−1

∞∑
j=j0

∑
I⊂P

`(I)=2−j

j0−1∑
j′=−∞

∑
I′

2−(j−j′)L2−jn(2−q)(w(I)1−q′)q−1

× |I ′| 2−j
′M

(2−j′ + |xcP − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

=
C

w(P )2/p−1

∞∑
j=j0

j0−1∑
j′=−∞

∑
I′

2−(j−j′)L2−jn(2−q)(w(P )1−q′)q−1

× |I ′| 2−j
′M

(2−j′ + |xcP − xcI′ |)n+M
|(φI′ ∗ f)(xI′)|2

Let E0
k = {I ′ : `(I ′) = 2k`(P ) and |xcP − xcI′ | ≤ `(I ′)} and Eik = {I ′ : `(I ′) =

2k`(P ) and 2i−1`(I ′) < |xcP − xcI′ | ≤ 2i`(I ′)} for i ∈ N. Then the cube Qik
with center xcP and `(Qik) = 2i+k−j0+2 contains P and I ′ for any I ′ ∈ Eik.
By Theorem B,

w(I ′)

w(P )
≤ C2(i+k)(q− r−1

r
) for any I ′ ∈ Eik.

Since w1−q′ ∈ Aq′ , there exists r̄ > 1 such that w1−q′ ∈ RHr̄. Using Theo-
rem B again, we have

w(P )1−q′

w(I ′)1−q′ ≤ C2−(i+k)(q′− r̄−1
r̄

) for any I ′ ∈ Eik.

By the above two inequalities and (3.3),

A2 ≤ C
∞∑
j=j0

∞∑
k=1

∑
{I′ : `(I′)=2k`(P )}

2(i+k)(q− r−1
r

)(2/p−1)

w(I ′)2/p−1
2−(j−j′)L2(j−j′)n(q−2)

× 2−(i+k)(q′− r̄−1
r̄

)(q−1) 2−j
′(M+n)

(2−j′ + |xcP − xcI′ |)n+M

|I ′|2

w(I ′)
|(φI′ ∗ f)(xI′)|2.



Boundedness of Riesz transforms 179

Choosing L = n(q − 2) +M + n, we then have

A2 = C2−j0(M+n)
∞∑
k=1

∑
{I′ : `(I′)=2k`(P )}

2−(i+k)[(q′− r̄−1
r̄

)(q−1)−(q− r−1
r

)(2/p−1)]

w(I ′)2/p−1(`(I ′) + |xcP − xcI′ |)n+M

× |(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)

≤
∞∑
k=1

∞∑
i=0

∑
I′∈Ei

j

2−(i+k)[M+(q′− r̄−1
r̄

)(q−1)−(q− r−1
r

)(2/p−1)]

w(I ′)2/p−1
2−(i+k)(n+M)

× |(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)
.

There are at most 2in dyadic cubes I ′ ∈ Eik for i ∈ N, and at most 3n dyadic
cubes I ′ ∈ E0

k . Thus,

A2 ≤ C
(

sup
P

1

|P |2/p−1

∑
I′⊂P

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)

)

×
∞∑
k=1

2−k[2M+n+(q′− r̄−1
r̄

)(q−1)−(q− r−1
r

)(2/p−1)]

≤ C sup
P

1

|P |2/p−1

∑
I′⊂P

|(φI′ ∗ f)(xI′)|2
|I ′|2

w(I ′)

since M > 2q(2/p− 1). The proof of Theorem 1.2 is complete.

4. Some results on CMOp
w. We now use Theorem D to obtain the

following density statement.

Proposition 4.1. Let 0<p≤1 and w∈A∞. Then L2(Rn)∩CMOp
w(Rn)

is dense in CMOp
w(Rn) in the weak topology (Hp

w,CMOp
w). More precisely,

for any f ∈CMOp
w(Rn), there exists a sequence {fN}⊂L2(Rn)∩CMOp

w(Rn)
satisfying ‖fN‖CMOp

w
≤ C‖f‖CMOp

w
such that, for each g ∈ Hp

w(Rn),
limN→∞〈fN , g〉 = 〈f, g〉, where the constant C is independent of N and f .

Suppose that f ∈ CMOp
w(Rn). Denote

EN = {(j, j) ∈ Z× Zn : |j| ≤ N, |j| ≤ N}.
Set

(4.1) fN (x) =
∑

(j,j)∈EN

2−jn(ψj ∗ f)(xI)ψj(x− xI),

where ψ satisfies (1.1)–(1.2). It is easy to see that fN ∈ L2(Rn).
To show Proposition 4.1, we need the following lemma.
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Lemma 4.2. Let w ∈ A∞. Suppose that f ∈ CMOp
w(Rn) and fN is given

by (4.1). Then fN ∈ CMOp
w(Rn) and ‖fN‖CMOp

w
≤ C‖f‖CMOp

w
, where the

constant C is independent of N .

Proof. It suffices to show

sup
P

{
1

w(P )2/p−1

∑
j∈Z

∑
I⊂P
|(ψj ∗ fN )(xI)|2

|I|2

w(I)

}1/2

≤ C sup
P

{
1

w(P )2/p−1

∑
j∈Z

∑
I⊂P
|(ψj ∗ f)(xI)|2

|I|2

w(I)

}1/2

.

The proof of the above inequality is similar to the proof of Theorem 1.2. We
omit the details.

We use Lemma 4.2 to show Proposition 4.1.

Proof of Proposition 4.1. Without loss of generality, we may choose ψ
to satisfy (1.1)–(1.2) with ψ(x) = ψ(−x). For each h ∈ S∞, by Theorem D
and (4.1),

〈f − fN , h〉 =
〈 ∑

(j,j)∈(EN )c

2−nj(ψj ∗ f)(xI)ψj(· − xI), h
〉

=
〈
f,

∑
(j,j)∈(EN )c

2−nj(ψj ∗ h)(xI)ψj(· − xI)
〉
.

By Theorem D, ∑
(j,j)∈(EN )c

2−nj(ψj ∗ h)(xI)ψj(x− xI)

tends to zero in S∞(Rn) as N → ∞ and hence, for each h ∈ S∞(Rn),
〈f − fN , h〉 tends to zero as N → ∞. Since S∞ is dense in Hp

w, it follows
that for each g ∈ Hp

w, 〈f − fN , g〉 tends to 0 as N → ∞. Indeed, for any
given ε > 0, there exists h ∈ S∞ such that ‖g − h‖Hp

w
≤ ε. It follows from

Lemma 4.2, ‖fN‖CMOp
w
≤ C‖f‖CMOp

w
, and Theorem A that

|〈f − fN , g〉| ≤ |〈f − fN , g − h〉|+ |〈f − fN , h〉|
≤ C‖f − fN‖CMOp

w
‖g − h‖Hp

w
+ |〈f − fN , h〉|

≤ Cε‖f‖CMOp
w

+ |〈f − fN , h〉|.

This implies 〈f − fN , g〉 → 0 as N →∞.

5. The proof of Theorem 1.3. We define Rj on CMOp
w(Rn) as follows.

Given f ∈ CMOp
w(Rn), by Proposition 4.1, there is a sequence {fN} ⊂

L2 ∩CMOp
w such that ‖fN‖CMOp

w
≤ C‖f‖CMOp

w
and, for each g ∈ L2 ∩Hp

w,
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〈fN , g〉 → 〈f, g〉 as N →∞. Thus, for f ∈ CMOp
w, define

〈Rjf, g〉 = lim
N→∞

〈RjfN , g〉 for g ∈ L2 ∩Hp
w.

To see the existence of this limit, we write 〈(Rj(fi− fk), g〉 = 〈fi− fk, R∗j (g)〉
since both fi−fk and g belong to L2, and Rj is bounded on L2. It is known
that Rj is bounded on Hp

w and hence R∗jg ∈ L2 ∩ Hp
w. Consequently, by

Proposition 4.1 again, 〈fi − fk, R∗jg〉 tends to zero as i, k → ∞. It is also
easy to see that the above definition of Rjf is independent of the choice of
the sequence {fN} which satisfies the conditions in Proposition 4.1. We now
show the boundedness of Rj on L2 ∩ CMOp

w.

Theorem 5.1. Suppose that w ∈ A∞. For f ∈ L2(Rn) ∩ CMOp
w(Rn),

‖Rjf‖CMOp
w
≤ C‖f‖CMOp

w
,

where the constant C is independent of f .

To show Theorem 5.1, we need a discrete Calderón-type identity on
L2 ∩ CMOp

w. For this purpose, let φ ∈ S with supp φ ⊂ B(0, 1),

(5.1)
∑
j∈Z
|φ̂(2−jξ)|2 = 1 for all ξ ∈ Rn \ {0},

and

(5.2)
�

Rn

φ(x)xα dx = 0 for all |α| ≤ 10M,

where M is any fixed large positive integer.

The discrete Calderón-type identity on L2 ∩ CMOp
w is given by the fol-

lowing

Lemma 5.2. Let 0 < p ≤ 1, w ∈ A∞ and φ satisfy conditions (5.1)–(5.2)
with a large M depending on p. Then for any f ∈ L2 ∩CMOp

w, there exists
h ∈ L2 ∩ CMOp

w such that, for sufficiently large N ∈ N,

f(x) =
∑
j∈Z

∑(N)

Ĩ

|Ĩ|φj(x− xĨ)(φj ∗ h)(x
Ĩ
),

where the series converges in L2 and, hereafter,
∑(N)

Ĩ
denotes summation

over Ĩ running over dyadic cubes in Rn with edge-lengths 2−j−N and lower-
left corners x

Ĩ
. Moreover,

‖f‖L2 ≈ ‖h‖L2 and ‖f‖CMOp
w
≈ ‖h‖CMOp

w
.

Proof. By taking the Fourier transform, it is easy to see that

f(x) =
∑
j∈Z

(φj ∗ φj ∗ f)(x) for f ∈ L2.
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Applying Coifman’s decomposition of the identity operator, we obtain

f(x) =
∑
j∈Z

∑(N)

Ĩ

|Ĩ|φj(x− xĨ)(φj ∗ f)(x
Ĩ
) +RNf(x)

:= TNf(x) +RNf(x),

where

RNf(x) =
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

[φj(x− u)(φj ∗ f)(u)− φj(x− xĨ)(φj ∗ f)(x
Ĩ
)] du

=
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

[φj(x− u)− φj(x− xĨ)](φj ∗ f)(u) du

+
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

φj(x− xĨ)[(φj ∗ f)(u)− (φj ∗ f)(x
Ĩ
)] du

:= R1
Nf(x) +R2

Nf(x).

We claim that, for f ∈ L2 ∩ CMOp
w,

‖RiNf‖2 ≤ C2−N‖f‖2, i = 1, 2,(5.3)

‖RiNf‖CMOp
w
≤ C2−N‖f‖CMOp

w
, i = 1, 2,(5.4)

where C is a constant independent of f and N .
Assume the claim for the moment. Then, by choosingN sufficiently large,

T−1
N =

∑∞
n=0(RN )n is bounded on both L2 and CMOp

w, which implies

‖T−1
N f‖2 ≈ ‖f‖2 and ‖T−1

N f‖CMOp
w
≈ ‖f‖CMOp

w
.

Moreover, for any f ∈ L2 ∩ CMOp
w, set h = T−1

N f . We obtain

f(x) = TN (T−1
N f)(x) =

∑
j∈Z

∑(N)

Ĩ

|Ĩ|φj(x− xĨ)(φj ∗ h)(x
Ĩ
),

where the series converges in L2.
Now we prove (5.3) and (5.4). Since the proofs for R1

N and R2
N are

similar, we give the proof for R1
N only. Let f ∈ L2∩CMOp

w. By Theorem D,

(5.5) (ψj′ ∗ R1
Nf)(x)

=
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

(ψj′ ∗ [φj(· − u)− φj(· − xĨ)])(x)(φj ∗ f)(u) du

=
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

(ψj′ ∗ [φj(· − u)− φj(· − xĨ)])(x)

×
(
φj ∗

{ ∑
j′′∈Z

∑
I′′

|I ′′|ψj′′(· − xI′′)(ψj′′ ∗ f)(xI′′)
})

(u) du,
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where I ′′ are dyadic cubes in Rn with edge-lengths 2−j
′′

and lower-left cor-
ners xI′′ .

Set φ̃j(z) = φj(z − u)− φj(z − xĨ), where u ∈ Ĩ. Note that φ̃j ∈ S and

|φ̃j(x)| ≤ C2−N2jn(1 + 2j |x − u|)−M for any M ∈ N since, if u ∈ Ĩ, then
|u − x

Ĩ
| ≤ C2−j−N . Thus, by an almost orthogonality argument, for large

positive integers M we obtain

|(ψj′ ∗ φ̃j)(x)| ≤ C2−N2−10M |j−j′| 2n(j∧j′)

(1 + 2j∧j′ |x− u|)n+M

≤ C2−N2−5M |j−j′| 2nj
′

(1 + 2j′ |x− u|)n+M
.

Similarly, for u ∈ Ĩ,

|(φj ∗ ψj′′)(u− xI′′)| ≤ C2−5M |j−j′′| 2nj
′′

(1 + 2j′′ |u− xI′′ |)n+M
.

Substituting these estimates into the last term in (5.5) yields

|(ψj′ ∗ R1
Nf)(x)|

≤ C2−N
∑
j′′∈Z

∑
I′′

|I ′′| |(ψj′′ ∗ f)(xI′′)|
∑
j∈Z

∑(N)

Ĩ

�

Ĩ

2−5M |j−j′|

× 2nj
′

(1 + 2j′ |x− u|)n+M
2−5M |j−j′′| 2nj

′′

(1 + 2j′′ |u− xI′′ |)n+M
du

≤ C2−N
∑
j′′∈Z

∑
I′′

2−5M |j′−j′′||I ′′| 2n(j′∧j′′)

(1 + 2j′∧j′′ |x− xI′′ |)n+M
|(ψj′′ ∗ f)(xI′′)|.

By the equivalence ‖G(f)‖2 ≈ ‖f‖2 and Hölder’s inequality,

‖R1
Nf‖2 ≤ C‖G(R1

Nf)‖2

≤ C2−N
∥∥∥{ ∑

j′′∈Z

∑
I′′

|(ψj′′ ∗ f)(xI′′)|2χI′′
}1/2∥∥∥

2
≤ C2−N‖f‖2.

Similarly, repeating the same proof of Theorem 1.2 yields

‖R1
Nf‖CMOp

w
≤ C2−N‖f‖CMOp

w
.

Thus both (5.3) and (5.4) are proved and Lemma 5.2 follows.

As a consequence of Lemma 5.2, we give an equivalent norm for functions
in L2 ∩ CMOp

w.

Corollary 5.3. Let w ∈ A∞ and 0 < p ≤ 1. Suppose φj’s satisfy the
same conditions as in Lemma 5.2. Then for a fixed large N as in Lemma 5.2
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and f ∈ L2 ∩ CMOp
w,

‖f‖CMOp
w
≈ sup

P

{
1

w(P )2/p−1

∑
j∈Z

∑(N)

Ĩ⊂P

|(φj ∗ f)(x
Ĩ
)|2 |Ĩ|

2

w(Ĩ)

}1/2

.

Proof. Suppose f ∈ L2 ∩ CMOp
w. Let TNf be as in Lemma 5.2. The

boundedness of T−1
N on L2 ∩ CMOp

w gives

‖f‖CMOp
w

= ‖T−1
N TNf‖CMOp

w
≤ C‖TNf‖CMOp

w
.

For any dyadic cube P ⊂ Rn, by the definition of TN ,

(5.6)
∑
j∈Z

∑
I⊂P
|(ψj ∗ TNf)(xI)|2

|I|2

w(I)

=
∑
j∈Z

∑
I⊂P

∣∣∣∑
j′∈Z

∑(N)

Ĩ′

(ψj ∗ φj′)(xI − xĨ′)(φj′ ∗ f)(x
Ĩ′)|Ĩ

′|
∣∣∣2 |I|2
w(I)

,

where ψj and φj′ are as in Theorem 1.2 and Lemma 5.2, respectively.

Applying the classical almost orthogonality estimates, we have

(5.7) |ψj ∗ φj′(x)| ≤ C2−|j−j
′|L 2n(j∧j′)

(1 + 2j∧j′ |x|)n+M
.

This, together with Hölder’s inequality, shows that the right hand side in
(5.6) is dominated by

C
∑
j∈Z

∑
I⊂P

∑
j′∈Z

∑(N)

Ĩ′

2−|j−j
′|L

× 2−(j∧j′)M

(2−(j∧j′) + |xI − xĨ′ |)n+M
|Ĩ ′|(φj′ ∗ f)(x

Ĩ′)
2 |I|2

w(I)
.

Applying a similar argument to the proof of Theorem 1.2, we obtain

‖f‖CMOp
w
≤ C‖TNf‖CMOp

w

≤ C sup
P

(
1

w(P )2/p−1

∑
j′∈Z

∑(N)

Ĩ′⊂P

|(φj′ ∗ f)(x
Ĩ′)|

2 |Ĩ ′|2

w(Ĩ ′)

)1/2

.

On the other hand, applying first the discrete Calderón identity (Lem-
ma 5.2) and then the orthogonality estimates (5.7), we also find that, for
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any dyadic cube P ⊂ Rn,∑
j′∈Z

∑(N)

Ĩ′⊂P

|(φj′ ∗ f)(x
Ĩ′)|

2 |Ĩ ′|2

w(Ĩ ′)

=
∑
j′∈Z

∑(N)

Ĩ′⊂P

∣∣∣∣∑
j

∑
I

(φj′ ∗ ψj)(xĨ′ − xI)(ψj ∗ f)(xI)|I|
∣∣∣∣2 |Ĩ ′|2
w(Ĩ ′)

≤ C
∑
j′∈Z

∑
Ĩ′⊂P

(N)∑
j

∑
I

2−|j−j
′|L

× 2−(j∧j′)M

(2−(j∧j′) + |x
Ĩ′ − xI |)n+M

|I|(ψj ∗ f)(xI)
2 |Ĩ ′|2

w(Ĩ ′)
,

where I and I ′ are as in (5.6).

Using again a similar argument to the proof of Theorem 1.2, we have

sup
P

{
1

w(P )2/p−1

∑(N)

Ĩ⊂P

|(φj ∗ f)(x
Ĩ
)|2 |Ĩ|

2

w(Ĩ)

}1/2

≤ C‖f‖CMOp
w
,

completing the proof.

We are ready to show Theorem 5.1.

Proof of Theorem 5.1. By Corollary 5.3, it suffices to show that for any
dyadic cube P ,(

1

w(P )2/p−1

∑
i∈Z

∑(N)

Ĩ⊂P

|(φi ∗Rjf)(x
Ĩ
)|2 |Ĩ|

2

w(Ĩ)

)1/2

≤ C‖f‖CMOp
w
,

where φi and I satisfy the conditions as in Lemma 5.2 and the constant C
is independent of P and f .

Using the L2 boundedness of Rj and the discrete Carderón-type identity
given in Lemma 5.2, we write∑
i∈Z

∑(N)

Ĩ⊂P

|(φi ∗Rjf)(x
Ĩ
)|2 |Ĩ|

2

w(Ĩ)

=
∑
i∈Z

∑(N)

Ĩ⊂P

∣∣∣∑
i′∈Z

∑(N)

Ĩ′

(φi′ ∗ h)(x
Ĩ′)|Ĩ

′|(Kj ∗ φi ∗ φi′)(xĨ − xĨ′)
∣∣∣2 |Ĩ|2
w(Ĩ)

,

where ‖h‖CMOp
w
≤ C‖f‖CMOp

w
.

We claim that

(5.8) |(Kj ∗ φi)(x)| ≤ C 2in

(1 + 2i|x|)n+M
.
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To show (5.8), we consider the following two cases. For |x| ≤ 21−i, by the
support condition on φi,

|(Kj ∗ φi)(x)| =
∣∣∣ lim
ε1→0

�

ε1≤|x−u|≤3·2−i

Kj(x− u)φi(u) du
∣∣∣

=
∣∣∣ lim
ε1→0

�

ε1≤|x−u|≤3·2−i

Kj(x− u)[φi(u)− φi(x)] du
∣∣∣

≤ C2i(n+1)
�

|x−u|≤3·2−i

|x− u|−n+1 du

≤ C2in ≤ C 2in

(1 + 2i|x|)n+M
.

For |x| > 21−i, by the cancellation condition on φi with order M ,

|(Kj ∗ φi)(x)| =
∣∣∣∣ �

|u|≤2−i

[
Kj(x− u)−

∑
|α|≤M

1

α!
∂αxKj(x)uα

]
φi(u) du

∣∣∣∣
≤ C

�

|u|≤2−i

|u|M+1

|x|n+M+1
|φi(u)| du ≤ C 2in

(1 + 2i|x|)n+M
.

Estimate (5.8) and the classical orthogonality estimate

|(φi ∗ φi′)(x)| ≤ C2−|i−i
′|L 2n(i∧i′)

(1 + 2i∧i′ |x|)n+M

imply

|(Kj ∗ φi ∗ φi′)(x)| ≤ C2−|i−i
′|L 2n(i∧i′)

(1 + 2i∧i′ |x|)n+M
.

Therefore, the same argument as in Theorem 1.2 yields

‖Rjf‖CMOp
w
≤ C‖h‖CMOp

w
≤ C‖f‖CMOp

w

for f ∈ L2 ∩ CMOp
w.

We now prove the main result of this article.

Proof of Theorem 1.3. By the definition of Rjf for f ∈ CMOp
w and the

boundedness of Rj on L2∩CMOp
w, we choose a sequence {fN} ⊂ L2∩CMOp

w

such that ‖fN‖CMOp
w
≤ C‖f‖CMOp

w
and

‖Rjf‖CMOp
w
≤ lim inf

N→∞
‖RjfN‖CMOp

w

≤ C lim inf
N→∞

‖fN‖CMOp
w
≤ C‖f‖CMOp

w
.

This completes the proof.
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intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 175–187.

[LLL] M.-Y. Lee, C.-C. Lin and Y.-C. Lin, A wavelet characterization for the dual of
weighted Hardy spaces, Proc. Amer. Math. Soc. 137 (2009), 4219–4225.

[LLY] M.-Y. Lee, C.-C. Lin and W.-C. Yang, Hp
w boundedness of Riesz transforms,

J. Math. Anal. Appl. 301 (2005), 394–400.
[MC] Y. Meyer and R. R. Coifman, Wavelets. Calderón–Zygmund and Multilinear

Operators, Cambridge Stud. Adv. Math. 48, Cambridge Univ. Press, Cambridge,
1997.

[M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function,
Trans. Amer. Math. Soc. 165 (1972), 207–226.

Ming-Yi Lee
Department of Mathematics
National Central University
Chung-Li 320, Taiwan
E-mail: mylee@math.ncu.edu.tw

Received November 8, 2011
Revised version April 4, 2012 (7350)

http://dx.doi.org/10.1090/S0002-9904-1977-14325-5
http://dx.doi.org/10.1016/0022-1236(90)90137-A
http://dx.doi.org/10.1007/BF02921965
http://dx.doi.org/10.1090/S0002-9947-1973-0312139-8
http://dx.doi.org/10.5802/aif.1033
http://dx.doi.org/10.1090/S0002-9939-09-10044-8
http://dx.doi.org/10.1016/j.jmaa.2004.07.033
http://dx.doi.org/10.1090/S0002-9947-1972-0293384-6



	Introduction
	Preliminaries
	The proof of Theorem 1.2
	Some results on CMOpw
	The proof of Theorem 1.3

