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A sufficient condition for the boundedness

of operator-weighted martingale transforms

and Hilbert transform

by

Sandra Pott (Glasgow)

Abstract. Let W be an operator weight taking values almost everywhere in the
bounded positive invertible linear operators on a separable Hilbert space H. We show
that if W and its inverse W−1 both satisfy a matrix reverse Hölder property introduced
by Christ and Goldberg, then the weighted Hilbert transform H : L2

W (R,H) → L2

W (R,H)
and also all weighted dyadic martingale transforms Tσ : L2

W (R,H) → L2

W (R,H) are
bounded.

We also show that this condition is not necessary for the boundedness of the weighted
Hilbert transform.

1. Introduction. The question of finding vector analogues to the cel-
ebrated Hunt–Muckenhoupt–Wheeden theorem [9] has been studied inten-
sively in recent years. S. Treil and A. Volberg showed in [13] that a weight
function W taking values almost everywhere in the positive invertible d× d
matrices satisfies the vector A2 condition

(1) sup
I⊂R interval

‖〈W 〉
1/2
I 〈W−1〉

1/2
I ‖ < C

if and only if the Hilbert transform H defines a bounded linear operator on
the operator-weighted L2-space

L2
W (R, Cd) =

{
f : R → C

d measurable :
\
R

〈W (t)f(t), f(t)〉 dt < ∞
}

or equivalently, if and only if the weighted Hilbert transform

M
−1/2
W HM

1/2
W : L2(R, Cd) → L2(R, Cd)
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defines a bounded linear operator. Here, M
1/2
W denotes the densely defined

multiplication operator with the matrix function W 1/2, and 〈·〉I denotes the
average over the interval I.

There exists also a dyadic version of this theorem [13]: Let D denote the
collection of all dyadic intervals in R. For each σ ∈ {−1, 1}D, let Tσ denote
the dyadic martingale transform on L2(R,H) given by

f 7→
∑

I∈D

σ(I)hIfI .

Then a matrix weight function W taking values almost everywhere in the
positive invertible d × d matrices satisfies the vector Ad

2 condition

(2) sup
I∈D

‖〈W 〉
1/2
I 〈W−1〉

1/2
I ‖ < C

if and only if all weighted dyadic martingale transforms

M
−1/2
W TσM

1/2
W : L2(R, Cd) → L2(R, Cd)

are uniformly bounded.

Characterisations for the boundedness of matrix-weighted Hilbert trans-
forms on Lp(R, Cd) for 1 < p < ∞ were found in [10], [14].

A different approach via a matrix-weighted Hardy–Littlewood maximal
function was suggested more recently by M. Christ and M. Goldberg in [3].
They introduce the matrix reverse Hölder property

(3)
\
I

‖W 1/2(x)〈W−1〉
1/2
I ‖r dx ≤ C|I| (I ⊂ R interval)

and show that this implies the boundedness of a matrix-weighted maximal
function on Lp(R,H) for p < r even in the infinite-dimensional situation,
namely when replacing C

d by a separable Hilbert space H, and considering
a weight W : R → L(H) taking values almost everywhere in the bounded
positive invertible linear operators on H. It was shown in [8] that in the finite-
dimensional situation, the boundedness of the weighted maximal function
in turn implies the boundedness of the weighted Hilbert transform.

In the finite-dimensional situation, the vector A2 condition implies the
matrix reverse Hölder property for some r > 2 [3], so that this approach
provides a new proof of the above mentioned result in [13].

The characterisation of the boundedness of the weighted Hilbert trans-
form and martingale transforms in the infinite-dimensional setting has
proved very difficult, even in the case p = 2. It was shown in [4]–[6] that the
operator versions of (1) and (2) are not sufficient for the boundedness of the
weighted Hilbert transform and the weighted dyadic martingale transforms,
respectively ((1) and (2) were shown to be necessary in [13]).
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In this paper, we show that even in the infinite-dimensional situation, the
matrix reverse Hölder condition (3) for an operator weight W and its inverse
W−1 for some r > 2 implies the uniform boundedness of all weighted dyadic
martingale transforms and the boundedness of the weighted Hilbert trans-
form on L2(R,H). We use a slightly different route from [3], [8]. Instead of
using the weighted maximal function, we show first that the weighted square
function operator is bounded and bounded below by means of a stopping
time argument from [11]. This gives us the uniform boundedness of the
weighted dyadic martingale transforms. The case of the Hilbert transform
then follows from a result in [12].

Using the theory of vector BMO functions, we also show that the reverse
Hölder property is not necessary in the infinite-dimensional case, even with
r = 2.

2. Weights with reverse Hölder property and decaying stopping

time

Definition 2.1 ([3]). We say that an operator weight W : R → L(H)
has the matrix reverse Hölder property if there exist constants C > 0 and
r > 2 such that \

I

‖W 1/2(x)〈W−1〉
1/2
I ‖r dx ≤ C|I|

for all intervals I ⊂ R.

Definition 2.2. We say that an operator weight W : R → L(H) has
the dyadic matrix reverse Hölder property if there exist constants C > 0
and r > 2 such that \

I

‖W 1/2(x)〈W−1〉
1/2
I ‖rdx ≤ C|I|

for all dyadic intervals I ∈ D.

Such weights satisfy in particular the (dyadic) vector A2 condition (1), (2).
Furthermore, for each operator-valued weight and each interval I ⊆ R, one
has the elementary inequality

(4) ‖〈W 〉
−1/2
I 〈W−1〉

−1/2
I ‖ ≤ 1

(see [13], [3]).

For each I ∈ D, let D(I) denote the collection of all J ∈ D with J ⊆ I.

Given I ∈ D and λ > 1, let Jλ,1(I) denote the collection of all maximal
dyadic subintervals Iλ of I such that

(5)

∥∥∥∥
1

|Iλ|

\
Iλ

〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I dx

∥∥∥∥ > λ
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or

(6)

∥∥∥∥
1

|Iλ|

\
Iλ

〈W 〉
1/2
I W−1(x)〈W 〉

1/2
I dx

∥∥∥∥ > λ.

We write Jλ,0(I) = {I}, Jλ,k(I) =
⋃

J∈Jλ,k−1(I) J (J) for k ≥ 1, F(I) =

Fλ,1(I) = D(I)\
⋃

J∈J (I) D(J), and Fλ,k(I) =
⋃

J∈Jλ,k−1(I) F(J) for k ≥ 1.

Note that with this notation, for each I ∈ D, D(I) is the disjoint union
of the Fλ,k(I), k ∈ N. Somewhat loosely, we will write

⋃
J (I) for the set⋃

J∈J (I) J ⊆ I and |J (I)| for |
⋃

J∈J (I) J |.

Lemma 2.3. If W and W−1 both have the dyadic matrix reverse Hölder

property , then for sufficiently large λ, there exists a constant c, 0 < c < 1,
such that

|Jλ,k(I)| ≤ ck|I| for all I ∈ D, k ∈ N

(i.e. Jλ(I) is a decaying stopping time in the sense of [11, Section 3.3]).

Proof. The proof is an adaptation of the proof of the Weight Lemma
3.17 for scalar weights in [11].

We first introduce an auxiliary stopping time G. For I ∈ D, let G(I)
denote the collection of all maximal dyadic subintervals J of I such that (5)
holds. We show that G is a decaying stopping time for sufficiently large λ.

Note that

〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ≤ λ1H

in the sense of an operator inequality almost everywhere on GI = I\
⋃

G(I).
Therefore,\

GI

W (x) dx = 〈W−1〉
−1/2
I

( \
GI

〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I dx

)
〈W−1〉

−1/2
I(7)

≤ λ|GI |〈W−1〉−1
I ≤ λ|GI |〈W 〉I .

by (4).

It is enough to show that there exists a constant α > 0 (indepen-
dent of I) such that |GI | ≥ α|I|. Assume towards a contradiction that
this is false. Then there exists an interval I ∈ D such that |GI | ≤ |I|/2λ
and \

GI

W (x) dx ≤
1

2
〈W 〉I |I|.

Let G(I) = {Iλ,j}j . Then
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(8)
∑

j

\
Iλ,j

W (x) dx = |I|〈W 〉I −
\

GI

W (x) dx ≥
1

2
|I|〈W 〉I .

However, one also has

(9)
∑

j

\
Iλ,j

W (x) dx

= 〈W−1〉
−1/2
I

(∑

j

\
Iλ,j

〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I dx

)
〈W−1〉

−1/2
I

≤ 2λ〈W−1〉−1
I

∑

j

|Iλ,j | ≤ 2λ〈W 〉I
∑

j

|Iλ,j |,

and therefore

(10)
∑

j

|Iλ,j | ≥
1

4λ
|I|.

By the dyadic matrix reverse Hölder property, for some p > 1 we have

C|I| ≥
\
I

‖〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ‖p dx(11)

≥
∑

j

\
Iλ,j

‖〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ‖p dx

≥
∑

j

1

|Iλ,j |p−1

( \
Iλ,j

‖〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ‖ dx

)p
≥
∑

j

|Iλ,j |λ
p.

Thus
∑

j

|Iλ,j | ≤
C

λp
|I|.

Choosing λ ≥ (4C)1/p−1, we obtain a contradiction to (10). This proves that
for λ ≥ (4C)1/p−1, there exists a constant 0 < c′ < 1 such that |G(J)| ≤ c′|J |

for all J ∈ D. It then follows by induction that |Gk(J)| ≤ c′k|J | for k ∈ N

and J ∈ D.

Let us now write Gλ(J) to indicate which λ we are using in the definition
of our stopping time. Notice that for each interval K ∈ G2λ2(J), there exists

K̃ ∈ G2
λ(J) with K ⊆ K̃. To see this, let L ⊂ J be the unique dyadic interval

in Gλ(J) such that K ⊆ L. Writing\
K

〈W−1〉
1/2
J W (x)〈W−1〉

1/2
J dx

= 〈W−1〉
1/2
J 〈W−1〉

−1/2
L

\
K

〈W−1〉
1/2
L W (x)〈W−1〉

1/2
L dx 〈W−1〉

−1/2
L 〈W−1〉

1/2
J ,
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we obtain

2λ2 < ‖〈W−1〉
1/2
J 〈W 〉K〈W−1〉

1/2
J ‖

≤ ‖〈W−1〉
1/2
J 〈W−1〉−1

L 〈W−1〉
1/2
J ‖

∥∥∥∥
1

|K|

\
K

〈W−1〉
1/2
L W (x)〈W−1〉

1/2
L dx

∥∥∥∥

≤ ‖〈W−1〉
1/2
J 〈W 〉L〈W

−1〉
1/2
J ‖

∥∥∥∥
1

|K|

\
K

〈W−1〉
1/2
L W (x)〈W−1〉

1/2
L dx

∥∥∥∥

≤ 2λ

∥∥∥∥
1

|K|

\
K

〈W−1〉
1/2
L W (x)〈W−1〉

1/2
L dx

∥∥∥∥

by (4), which yields
∥∥∥∥

1

|K|

\
K

〈W−1〉
1/2
L W (x)〈W−1〉

1/2
L dx

∥∥∥∥ > λ.

Consequently, there exists K̃ ⊇ K such that K̃ ∈ Jλ(L) ⊂ Jλ,2(J). There-

fore |G2λ2(J)| ≤ |G2
λ(J)| ≤ c′2|J |. By iteration, it follows that by choosing λ

sufficiently large, we can assume that |Gλ(J)| ≤ 1
4 |J | for J ∈ D.

We now define a second auxiliary stopping time G̃. For J ∈ D, let
G̃(J) be the collection of all maximal dyadic subintervals of J such that
(6) holds.

Using now the reverse Hölder property of W−1, we find that also G̃ is a
decaying stopping time for sufficiently large λ. Again, by choosing λ large
enough, we can assume that |G̃λ(J)| ≤ 1

4 |J | for J ∈ D.

This means that for λ large enough,

|Jλ(J)| ≤ |Gλ(J)| + |G̃λ(J)| ≤
1

2
|J | (J ∈ D).

Thus Jλ is a decaying stopping time.

3. The weighted square function

Theorem 3.1. Let W : R → L(H) be an operator weight such that W
and W−1 both have the dyadic matrix reverse Hölder property. Then the

weighted square function operator

SW : L2(R,H) → L2(R,H), f 7→
∑

I∈D

〈W−1〉
1/2
I (W 1/2f)IhI(x),

is bounded and invertible.
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Proof. We will first show that the operator

T : L2(R,H) → L2(R,H), f 7→
∑

I∈D

W 1/2(x)〈W 〉
−1/2
I fIhI(x),

is bounded, following the steps of the proof of Theorem 6.1 in [11].

We choose λ > 1 such that Jλ(I) is a decaying stopping time, and write
just J (I). First note that for almost every x ∈ J\

⋃
J (J),

〈W−1〉
1/2
J W (x)〈W−1〉

1/2
J ≤ λ1H

and

〈W 〉
1/2
J W−1(x)〈W 〉

1/2
J ≤ λ1H,

therefore

(12)
1

λ
1H ≤ 〈W−1〉

1/2
J W (x)〈W−1〉

1/2
J ≤ λ1H

by (4). Let f ∈ L2(R,H) have finite Haar expansion. We can assume without
loss of generality that f is supported in [0, 1] and has mean 0. We write Jk

for Jk([0, 1]), and Fk for Fk([0, 1]). For j ∈ N, write

∆jf =
∑

K∈Fj

hKfK =
∑

I∈Jj−1

∑

J∈F(I)

fJhJ =
∑

I∈Jj−1

∆If,

Mjf =
∑

J∈Fj

〈W 〉
−1/2
J fJhJ =

∑

I∈Jj−1

∑

J∈F(I)

〈W 〉
−1/2
J fJhJ =

∑

I∈Jj−1

MIf

and

Tjf = T∆jf = W 1/2(x)Mjf =
∑

I∈Jj−1

W 1/2(x)
∑

J∈F(I)

〈W 〉
−1/2
J fJhJ

=
∑

I∈Jj−1

W 1/2(x)MIf.

Then
∑∞

j=1 ∆jf = f and
∑∞

j=1 Tjf = Tf . We will show that the Tj satisfy
the conditions of Cotlar’s lemma.

Each MIf has support in I, so Tjf has support on the disjoint intervals
in Jj−1. We write

‖Tjf‖
2 =

\
⋃

Jj−1

‖Tjf‖
2 dx =

\
⋃

Jj−1\
⋃

Jj

‖Tjf‖
2 dx +

\
⋃

Jj

‖Tjf‖
2 dx

and estimate the terms separately.
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First note that

(13)
\

⋃
Jj−1\

⋃
Jj

‖Tjf‖
2 dx =

∑

J∈Jj−1

\
J\
⋃

J (J)

‖Tjf‖
2 dx

=
∑

J∈Jj−1

\
J\
⋃

J (J)

‖W 1/2(x)〈W−1〉
1/2
J 〈W−1〉

−1/2
J MJf‖2 dx

≤
∑

J∈Jj−1

\
J\
⋃

J (J)

‖W 1/2(x)〈W−1〉
1/2
J ‖2‖〈W−1〉

−1/2
J MJf‖2 dx

≤ λ
∑

J∈Jj−1

\
J\
⋃

J (J)

‖〈W−1〉
−1/2
J MJf‖2 dx.

Note that for each J ∈ Jj−1,

‖〈W−1〉
−1/2
J MJf‖2 =

∥∥∥〈W−1〉
−1/2
J

∑

K∈F(J)

〈W 〉
−1/2
K fKhK

∥∥∥
2

(14)

≤C
∑

K∈F(J)

‖〈W 〉
1/2
J 〈W−1〉

1/2
K ‖2‖fK‖2 ≤Cλ‖∆Jf‖2,

since for K ∈ F(J), one has

〈W 〉
1/2
J 〈W−1〉K〈W 〉

1/2
J =

1

|K|

\
K

〈W 〉
1/2
J W−1(x)〈W 〉

1/2
J dx ≤ λ.

Using the disjointness of the J ∈ Jj−1, we obtain

(15)
\

⋃
Jj−1\

⋃
Jj

‖Tjf‖
2 dx ≤ Cλ2‖∆jf‖

2.

Now we consider the other part:

(16)
\

⋃
Jj

‖Tjf‖
2 dx =

∑

J∈Jj−1

∑

I∈J (J)

\
I

∥∥∥W 1/2(x)
∑

K∈F(J)

〈W 〉
−1/2
K fKhK

∥∥∥
2
dx

=
∑

J∈Jj−1

∑

I∈J (J)

\
I

∥∥∥〈W 〉
1/2
I

∑

K∈F(J)

〈W 〉
−1/2
K fKhK

∥∥∥
2
dx

≤
∑

J∈Jj−1

∑

I∈J (J)

‖〈W 〉
1/2
I 〈W 〉

−1/2
J ‖2

\
I

∥∥∥〈W 〉
1/2
J

∑

K∈F(J)

〈W 〉
−1/2
K fKhK

∥∥∥
2
dx

≤ 2λ2
∑

J∈Jj−1

‖∆Jf‖2 = 2λ2‖∆jf‖
2.

Here, we use that for K ∈ F(J), hK is constant on each I ∈ J (J). Alto-
gether, there exists a constant A > 0 such that ‖Tjf‖

2 ≤ A‖∆jf‖
2. We will
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now show that there exist 0 < d < 1 and a constant Ã > 0 such that for
any k > j,

(17)
\

⋃
Jk−1

‖Tjf‖
2 dx ≤ Ãdk−j‖∆jf‖

2.

Note that Mjf is constant on each J ∈ Jj . We write Mjf(J) to indicate
the value of Mjf on such an interval J . Thus\
⋃

Jk−1

‖Tjf‖
2 dx =

∑

J∈Jj

∑

I∈Jk−j−1(J)

\
I

‖W 1/2(x)Mjf(J)‖2 dx

=
∑

J∈Jj

∑

I∈Jk−j−1(J)

\
I

‖〈W 〉
1/2
I Mjf(J)‖2 dx

=
∑

J∈Jj

∑

I∈Jk−j−1(J)

‖〈W 〉
1/2
I Mjf(J)‖2|I|

=
∑

J∈Jj

〈 ∑

I∈Jk−j−1(J)

|I|〈W 〉IMjf(J), Mjf(J)
〉

≤
∑

J̃∈Jj−1

∑

J∈J (J̃)

∥∥∥〈W−1〉
1/2
J

( ∑

I∈Jk−j−1(J)

|I|〈W 〉I

)
〈W−1〉

1/2
J

∥∥∥

× ‖〈W−1〉
−1/2
J 〈W 〉

−1/2

J̃
‖2‖〈W 〉

1/2

J̃
Mjf(J)‖2

≤
∑

J̃∈Jj−1

∑

J∈J (J̃)

∥∥∥
∑

I∈Jk−j−1(J)

〈W−1〉
1/2
J |I|〈W 〉I〈W

−1〉
1/2
J

∥∥∥

× ‖〈W 〉
1/2
J 〈W 〉

−1/2

J̃
‖2‖〈W 〉

1/2

J̃
Mjf(J)‖2

≤2λ
∑

J̃∈Jj−1

∑

J∈J (J̃)

\
⋃

Jk−j−1(J)

‖〈W−1〉
1/2
J W (x)〈W−1〉

1/2
J ‖ dx‖〈W 〉

1/2

J̃
Mjf(J)‖2.

Now we employ first Hölder’s inequality, the reverse Hölder property (2.1)
and Lemma 2.3 to continue with the estimate:\
⋃

Jk−1

‖Tjf‖
2 dx

≤ 2λ
∑

J̃∈Jj−1

∑

J∈J (J̃)

( \
⋃

Jk−j−1(J)

‖〈W−1〉
1/2
J W 1/2(x)‖2p dx

)1/p

× |Jk−j−1(J)|1/p′ ‖〈W 〉
1/2

J̃
Mjf(J)‖2
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≤ 2λ
∑

J̃∈Jj−1

∑

J∈J (J̃)

( \
⋃

Jk−j−1(J)

‖〈W−1〉
1/2
J W 1/2(x)‖2p dx

)1/p

× c(k−j−1)/p′|J |1−1/p ‖〈W 〉
1/2

J̃
Mjf(J)‖2

≤ 2λC1/p(c1/p′)k−j−1
∑

J̃∈Jj−1

∑

J∈J (J̃)

|J | ‖〈W 〉
1/2

J̃
Mjf(J)‖2

= 2λC1/p(c1/p′)k−j−1
∑

J̃∈Jj−1

\
⋃

J (J̃)

‖Tjf‖
2 dx

≤ C1/p4λ3(c1/p′)k−j−1‖∆jf‖
2

by (16). Here, p = r/2 > 1, and 1/p + 1/p′ = 1. Choosing d = c1/p′ , we
obtain the statement.

Boundedness of T now follows from Cotlar’s lemma (see e.g. [11, 2.4]),
since Tkf is supported on

⋃
Jk−1, and the T ∗

k have orthogonal ranges.

It remains to be shown that SW is bounded. Let M
1/2
W be the densely de-

fined multiplication operator with the operator function W 1/2 on L2(R,H),
let DW be the densely defined operator on L2(R,H) which is given by

DW ehI = 〈W 〉
1/2
I ehI for each I ∈ D and e ∈ H, let D−1

W be the densely

defined operator on L2(R,H) given by D−1
W ehI = 〈W 〉

−1/2
I ehI for I ∈ D,

e ∈ H, and let DW−1, D−1
W−1 be defined correspondingly.

With this notation, we have shown that T = M
1/2
W D−1

W extends to a
bounded linear operator on L2(R,H). Since W−1 satisfies the vector A2 con-
dition, DW−1DW defines a bounded invertible linear operator on L2(R,H).

It follows that SW = DW−1M
1/2
W is a bounded linear operator on L2(R,H)

and has a bounded inverse S−1
W = M

1/2
W−1D

−1
W−1 = S∗

W−1D
−1
W D−1

W−1 .

4. Boundedness of the weighted dyadic martingale transforms

and of the weighted Hilbert transform. We can now prove our main
result.

Theorem 4.1. Let W : R → L(H) be an operator weight.

(1) Suppose that W and W−1 both have the dyadic matrix reverse Hölder

property. Then for each σ ∈ {−1, 1}D, the weighted martingale trans-

form M
−1/2
W TσM

1/2
W defines a bounded invertible linear operator on

L2(R,H), and the norms of these operators are uniformly bounded.

(2) Suppose that W and W−1 both have the matrix reverse Hölder prop-

erty. Then the weighted Hilbert transform M
−1/2
W HM

1/2
W defines a

bounded invertible linear operator on L2(R,H).
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Proof. It suffices to show (1), since the case of the Hilbert transform
then follows from [12] together with the fact that the matrix reverse Hölder
property 2.1 implies the dyadic matrix reverse Hölder property 2.2 for all
translations and dilations of W and W−1.

By Theorem 3.1,

M
−1/2
W TσM

1/2
W = M

−1/2
W D−1

W−1TσDW−1M
1/2
W = S−1

W TσSW

extends to a bounded invertible operator on L2(R,H) for each σ∈{−1,1}D.

5. A counterexample to the necessity of the reverse Hölder

property

Theorem 5.1. There exist an infinite-dimensional Hilbert space K and

an operator weight W : R → L(K) such that the weighted Hilbert transform

M
1/2
W HM

−1/2
W : L2(R,K) → L2(R,K) is bounded , but the matrix reverse

Hölder condition 2.1 does not hold for W .

Proof. Let H be an infinite-dimensional separable Hilbert space, and
consider an operator weight of the form

(18) W : R → L(H⊕H), W (t) = V (t)∗V (t), where V (t) =

(
1H B(t)

0 1H

)
,

where B is a weakly integrable L(H)-valued function.
An easy calculation (see [7], [4]) shows that then the Hilbert transform

defines a bounded linear operator L2
W (R,H ⊕ H) → L2

W (R,H ⊕ H) if and
only if the commutator [H, B] defines a bounded linear operator L2(R,H) →
L2(R,H).

Now notice that for each interval I ⊂ R and each x ∈ I,

(19) ‖〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ‖

= ̺(〈W−1〉IW (x)) = ̺(〈V −1V ∗−1〉IV
∗(x)V (x))

= ̺(V (x)〈V −1V ∗−1〉IV
∗(x)) = ‖V (x)〈V −1V ∗−1〉IV

∗(x)‖

and

(20) V (x)〈V −1V ∗−1〉IV
∗(x)

=

(
1H B(x)

0 1H

)(
1H + 〈BB∗〉I −〈B〉I

−〈B∗〉I 1H

)(
1H 0

B∗(x) 1H

)

=

(
∗ B(x) − 〈B〉I

B∗(x) − 〈B∗〉I 1H

)
.

Here, ̺ denotes the spectral radius. In particular, ‖〈W−1〉
1/2
I W (x)〈W−1〉

1/2
I ‖

≥ ‖B(x) − 〈B〉I‖.



110 S. Pott

This means that the matrix reverse Hölder condition 2.1, even with r = 2,
implies the norm BMO condition

(21) sup
I⊂R interval

1

|I|

\
I

‖B(x) − 〈B〉I‖ dx < ∞.

However, it is known that boundedness of the commutator [H, B] on
L2(R,H) does not imply that the norm BMO condition (21) for B holds,
since L(H) is not a UMD space (see [1]).

Remark 5.2. We can give an easy concrete example for an operator-
valued L(H)-valued function B such that [H, B] defines a bounded linear
operator on L2(R,H), but B does not satisfy the norm BMO condition
(21). This can be done by using the known fact that l∞(BMO) (the space
of uniformly bounded sequences of BMO functions) does not coincide with
BMOnorm(l∞), the space of l∞-valued BMO-functions φ in the sense of uni-
form boundedness of the expressions

sup
I⊂R interval

1

|I|

\
I

‖φ(t) − mIφ‖∞ dt

(see also [2, Theorem 2.6] for the dyadic setting). Via (18), this yields a
simple example of an operator weight as in 5.1.

Let (ek), k ∈ N, be an orthonormal basis of the infinite-dimensional
separable Hilbert space H and let ek ⊗ ek be the corresponding rank 1
orthogonal projections.

Let b : R → C, b(t) = χ[−1,1](t) log |t| + 1. For N ∈ N, k ∈ {0, . . . , N},
let bN,k : R → C, bN,k(t) = b(t − k/N).

Let BN = (bN,0, . . . , bN,N ). Then
T2
−1 BN (t) dt = 0 and ‖BN (t)‖∞ ≥

log N for all t ∈ (0, 1), so

(22) ‖BN‖BMOnorm(l∞) ≥
1

3
log N, but ‖BN‖l∞(BMO) = ‖b‖BMO = C

for all N ∈ N and some absolute constant C.

Via the isometric embedding l∞ → L(H), (ak) 7→
∑∞

k=1 akek ⊗ ek, we
can think of the BN as operator-valued functions. In this case, [H, BN ] is
the block diagonal operator with the commutators [H, bN,k] on the diagonal,
so its norm is equivalent to ‖BN‖l∞(BMO). On the other hand, the BMO-
norm of BN in the sense of (21) is just ‖BN‖BMOnorm(l∞). So (22) together
with the formation of suitable infinite direct sums gives us the required
counterexample.
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