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Distances to convex sets
by

ANTONIO S. GRANERO and MARCOS SANCHEZ (Madrid)

Abstract. If X is a Banach space and C a convex subset of X*, we investigate
whether the distance d(c6” (K),C) := sup{inf{||[k —¢| : ¢ € C} : k € " (K)}
from @6 (K) to C' is M-controlled by the distance d(K,C) (that is, if d(co®” (K),C) <

-~

Md(K,C) for some 1 < M < o), when K is any weak*-compact subset of X*. We prove,
for example, that: (i) C has 3-control if C' contains no copy of the basis of ¢1(c); (ii) C has
1-control when C C Y C X™ and Y is a subspace with weak™-angelic closed dual unit ball
B(Y™); (iii) if C is a convex subset of X and X is considered canonically embedded into
its bidual X**, then C has 5-control inside X ™, in general, and 2-control when K N C' is
weak”-dense in C.

1. Introduction. If X is a Banach space and C' a convex subset of X*,
we investigate in this paper whether the distance d(co¥ (K),C) :=
sup{inf{||k —¢|| : c € C} : k € @* (K)} from &" (K) to C is controlled
by the distance c/l\(K, C), that is, if c?(@w* (K),C) < Mc/l\(K, C) for some
constant 1 < M < oo independent of K, where K is any weak*-compact
subset of X™.

When C' is a subspace of X, the control of C inside the bidual X** of X
has been studied in [10]-[13]. Actually the results obtained in those papers
extend the classical Krein-Shmul’yan theorem. This theorem, in terms of
distances, states the following (see [8, p. 29]): if X is a Banach space and
K a weak*-compact subset of X** such that E(K,X) = 0 (that is, K is a
weak-compact subset of X), then d(co®” (K), X) = 0, that is, co*" (K) C X
and so @" (K) is a weak-compact subset of X and co® (K) = co(K).
Thus, looking at the Krein—Shmul’yan theorem in terms of distances, it is
natural to ask the following: if K is a weak*-compact subset of X**, does the
equality c?(@“’* (K),X)= A(K , X ) always hold? The answer to this question
is negative. Actually, in [11] and [12] are constructed two weak*-compact

2000 Mathematics Subject Classification: 46B20, 46B26.

Key words and phrases: convex sets, distances, Krein-Shmul’yan theorem.

Supported in part by grant DGICYT MTM2005-00082, grant UCM-910346 and grant
UCM-BSCH PR27/05-14045.

[165] © Instytut Matematyczny PAN, 2007



166 A. S. Granero and M. Sénchez

subsets K, K of a bidual Banach space X™** such that: (i) K1NX is weak*-
dense in K1, d(K1,X) =1/2 and d(co®" (K1), X) = 1; (i) d(K2, X) = 1/3
and d(co “(K),X)=1.

Thus, in general, a Banach space X fails to have 1-control inside its
bidual X**. However, it could be true that every Banach space X has M-
control inside X**, M being a universal constant greater than 1. So, we can
ask the following question: does there exist a universal constant 1 < M < oo
such that d(co”" (K), X) < Md(K, X) for every weak*-compact subset K of
X** and every Banach space X7 The answer to this question is affirmative.
In [11] the following result is proved, which extends the Krein-Shmul’yan
theorem: if K is a weak*-compact subset of X** and Z a subspace of X,
then

d(@" (K), Z) < 5d(K, Z);

moreover, if Z N K is weak*-dense in K, then
d(@” (K),Z) < 2d(K, Z).

When H is a normal countably compact space and we look at the Ba-
nach space Z = C(H) of continuous real functions on H as a subspace of
ls(H), then the distances g(ﬁw*(K), Z) and C/l\(K, Z) behave analogously,
K being any weak*-compact subset of (o (H) (see [3], [14]). So, in view of
these results we have: (i) the smallest value My of the universal constant
of the extension of the Krein—-Shmul’yan theorem satisfies 3 < My < 5;
(ii) for the category of weak*-compact subsets K of X** such that Z N K
is weak*-dense in K, Z being a subspace of X, the value M = 2 is opti-
mal.

The purpose of this paper is to go a step further and investigate the
control of c?(_“’(K ),C) by c/i\(K C) when C is a convex subset of a dual
Banach space X* and K is a weak*-compact subset of X*. The behavior of
d(co "(K),C) with respect to d(K () varies. If C' is a weak*-closed convex
subset of X*, it is very easy to see that d(co (K),C) = d(K, C). However,
if C C X* is not weak*-closed, all situations are possible. In any case, as we
will see later, the control of C' inside X* and the existence in C of a copy of
the basis of ¢1(c) are closely connected.

The paper is organized as follows. In Section 2 we study the control of
convex subsets C' of a Banach space X inside X**. The results and constants
obtained are similar to the ones obtained when C' is a subspace of X.

In Section 3 we deal with the relation between the existence in C of a
copy of the basis of #1(¢) and the control of C' inside a dual Banach space X*.
We prove that every convex subset C' of X* has 3-control inside X* whenever
C contains no copy of the basis of #1(c). Moreover, co¥ (K) = co(K) for
every weak*-compact subset K of X* that contains no copy of that basis.
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Section 4 is devoted to the study of the control of a convex subset C
inside a dual Banach space X* when C' is contained in a subspace Y of
X* with weak*-angelic closed dual unit ball B(Y™*). This case is particularly

favorable because always d(co® (K),C) = d(K, C) for every weak*-compact
subset K of X*.

Our notation is standard. If A and I are sets, a € A! and i € I then q;
(or a(i)) denotes the ith coordinate of a and m; : A’ — A the ith projection
mapping such that m;(a) = a;. || is the cardinality of I and ¢ := |R|.
BI denotes the Stone-Cech compactification of I (for I endowed with the
discrete topology) and I* := BI\I.If f : I — R is a bounded function, then

f € C(BI) is the Stone-Cech continuous extension of f to 31.

We shall consider only Banach spaces over the real field. If X is a Banach
space, let B(a;r) :={z € X : ||z —a|| < r} be the closed ball with center at
a € X and radius r > 0. B(X) and S(X) will be the closed unit ball and unit
sphere of X, respectively, and X™* its topological dual. If A is a subset of X,
then [A] and [A] denote the linear hull and the closed linear hull of A, respec-
tively. A subset A of the Banach space X is said to contain a copy of the basis
of £1(c) if A contains a family of vectors {a; : i < ¢} which is equivalent to
the canonical basis of ¢ (¢). The weak*-topology of the dual Banach space X*
is denoted by w* and the weak topology of X by w. If C'is a convex subset of
X*, forz* € X* and A C X*, let d(z*,C) = inf{||z*—c|| : ¢ € C} be the dis-
tance from z* to C, and d(A, C) = sup{d(a,C) : a € A} the distance from A
to C. co(A) denotes the convex closure of the set A, €o(A) is the || - ||-closure
of co(A) and ©" (A) the w*-closure of co(A). Given 1 < M < oo, a con-
vex subset C' of X* is said to have M-control inside X* if c?(@“’*(K), C) <

Md(K,C) for every w*-compact subset K of X*; and C is said to have con-
trol inside X ™ if C' has M-control inside X™* for some constant 1 < M < oo.

If K is a w*-compact subset of a dual Banach space X* and u a Radon
Borel probability on K, then r(u) will denote the barycenter of u (see [6,
p. 115)). Recall that: (i) r(u) € ¥ (K); (i) z* € co® (K) if and only

if there exists a Radon Borel probability x4 on K such that r(u) = z¥;
(i) r(p)(z) = § 2™ (2) dp(x*) for all z € X.

2. The control of convex subsets of X inside X**. Convex subsets
of a bidual Banach space X**, in general, fail to have control inside X**. For
example, if X is a Banach space such that X™ contains a copy of ¢, then
there exists a w*-compact subset H of X** such that d(co® (H),co(H)) > 0
(see [15]). However, when we restrict ourselves to the convex subsets C' of
the Banach space X, we will see in this section that there exists control
inside X**. We begin with the calculation of the distance d(z, C') when C'is
a convex subset of a Banach space X and x € X.
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LEMMA 2.1. Let X be a Banach space, C a convexr subset of X and
x € X. Then

d(z,C) = sup inf{|p(z—c)|:ceC}.
PES(X™)

Moreover, if x ¢ C, then even d(z,C) = SUP,es(x+) inf p(z — C).

Proof. If we assume that x ¢ C, the proof is a simple application of the
Banach separation theorem. If x € C, then for every ¢ € S(X*) we have
inf{|o(x —¢)| : ¢ € C} = 0, whence

d(z,C)=0= sup inf{lp(z—c)|:ceC}. n
peS(X™)

The following lemmas are basic for the proofs of next propositions.

LEMMA 2.2. Let X be a Banach space and D a convex subset of X. Then
for every z € DY C X** we have

d(z,D) <2d(z, X).
Proof. Suppose that d(z, D) > 2d(z, X). Then

(i) for some a > 0 we have d(z, D) > 2a > 2d(z, X),

(ii) there exists a vector w € X such that ||w — z|| < a (because d(z, X)
< a) and so d(w, D) > a (otherwise, if d(w, D) < a, we would get
d(z,D) < ||lw = z|| + d(w, D) < 2a, a contradiction).

Since d(w, D) > a, by Lemma 2.1 there exists z* € S(X*) such that
inf{z*(w — d) : d € D} > a. Let {d;};er C D be a net such that d; = 2.

Then w — d; > w — z and so z*(w—d;) = 2*(w — z). Hence z*(w — 2) > a
and so ||lw — z|| > a, a contradiction. Thus, we get d(z,D) < 2d(z,X). m

LEMMA 2.3. Let X be a Banach space, C a convex subset of X*, K a
w*-compact subset of X* and assume there exist a,b > 0 such that

d(K,C) < a<b<d@” (K),C).
Then there exist z9 € 0¥ (K) and v € S(X**) with inf(zg — C) > b
such that, if p is a Radon probability on K with barycenter r(u) = zo and
H = supp(p), for every w*-open subset V' of X* with VN H # () there exists
¢ e (VN H) such that inf (& — C) > b.

Proof. Without loss of generality, we suppose that K C B(X™*). Choose
z € " (K) such that d(z,C) > b. By Lemma 2.1 there exists ¢ € S(X**)
such that infy(z — C) > b+ ¢ for some ¢ > 0, that is, ¥(z) > b+ ¢ +
sup ¢(C). By the Bishop—Phelps theorem, there exists a vector ¢ € S(X**)
with || — ¢|| < /4 such that ¢ attains its maximum on co®” (K) at some
point zy € co®" (K). So
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(2.1) ¢(20) = ¢(2) = ¥(2) + (¢ — ¥)(2)
>supy(C)+b+e— %s =supy(C) + b+ %5,
whence we get
¥(20) = ¢(20) + (¥ — d)(20) > sup¥(C) + b+ e — 3& = supp(C) + b+ 3¢,
that is,
(2.2) inf (20 — C) > b+ e

Thus d(20,C) > b+3e and so 29 ¢ C and 2z ¢ K (because &\(K, C)<a<hb).
Let 11 be a Radon probability on K with r(u) = 29 and let H := supp(u).
Assume that there exists a w*-open subset V' of X* with VN H # () such that
inf (& — C) < b (that is, 1¥(€) < b+ supy(C)) for every € € &% (V N H).
Let py = p|V N H denote the restriction of u to VN H, that is, pi(B) =
uw(BNV N H) for every Borel subset B C K. Let pg := pu— p1. Observe that
p1 and po are positive measures such that

(i) p1 # 0, because 0 # VN H =V Nsupp(p),

(ii) pg # 0 because, if we assume g = 0 (that is, p=pu1 =ulV N H),
then zp = r(u) € @Y (VN H) and so inf (29 — C) < b, a contra-
diction to (2.2).

Thus, we have the decomposition p = pj + po such that 1 = ||u|| = ||p1]] +
lpe2]| with ||ge1]] # 0 # [|p2||- So, we can write

20 = (1) = |l "°<|m ,) * llkell (Hﬁw

Since r(ju1/ ) € €% (V 1 ), we have (r(jut /1)) < b+sup$(C) b

hypothesis. Hence ¢(r(u1/[|p1]])) < b+ +e +supyp(C) (because |1 — ¢|| <
£/4). Thus, taking into account that r(usa/||uzl|) € @% (K), ¢(r(u2/|lp2l]))
< ¢(2p) and (2.1), we get

o(z0) = o (H 1)) e (7))

< lmall(d+ fe +sup(C)) + [|u2llé(20)
< lpallé(z0) + [[u2ll¢(20) = ¢(20),

a contradiction which completes the proof. =

PRroOPOSITION 2.4. Let X be a Banach space, C' a convexr subset of X
and K a w*-compact subset of X**. Then

d(@®" (K),C) < 5d(K, C).

Proof. Without loss of generality, we assume that 0 € C'. Suppose that
the statement is not true, so there exists a w*-compact subset K of X** and
a,b > 0 such that

~

d(@" (K),C) > b > 5a > 5d(K, C).
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From Lemma 2.3 we have the following;:

FAact. There exists a functional ¢ € S(X***) and a w*-compact subset
) # H C K such that for every w*-open subset V. with V.0 H # () there
exists £ € c0¥ (V N H) with inf (¢ — C) > b.

Now we carry out the following construction step by step:

STEP 1. Let Dy = {0}. Applying the Fact to the w*-open subset V :=
X** we choose a vector £ € co¥ (H) such that infvy(& — C) > b. So,
P(&1) > b+supyp(Dy) = b. As B(X*) is w*-dense in B(X***), there exists
xy € S(X*) such that z7(&1) > b+ maxai(Dy) = b. Let Wy := {u € X**:
(u,z7) > b+ maxazi(Dg) = b}. Clearly, W; is a w*-open halfspace of X**
such that & € Wy NeoY” (H). Thus, W1 N H # () and so we can find a vector
m € WinH. Since d(m1,C) < a, we have a decomposition 11 = ni +7? such
that n{ € C and n} € aB(X**).

STEP 2. Let D = {n%} UDg Cc Cand Vi :=W1NVyg=Wi. As W
is a w*-open subset with Vi N H # (), by the Fact there exists a vector
& € @™ (Vi N H) such that inf(& — C) > b, and also inf (&, — Dy) >
inf (& —C) > b because D; C C. Since D; is finite and min¢(§&a — D1) > b,
there exists a vector 23 € S(X*) such that minz}({2 — Dy) > b, that is,
x5(&2) > b+ maxa(Dq). Let Wy := {u € X*™* : (u,25) > b+ maxz3(D;)}.
Clearly, Wy is a w*-open halfspace of X** such that & € Woneo® (ViNH).
Thus Wo N Vi N H # () and we can find 7o € Wo N Vi N H. So, x5(n2) >
b+ max x5(D1), that is, min x5 (n2 — D1) > b. Moreover, min x7(n2 — Do) > b
because 72 € V1. Since d(n2, C) < a, we have a decomposition 7y = 73 + 73
such that n3 € C and n3 € aB(X**).

By iteration, we get sequences {x}}n>1 C S(X¥), {mp}r>1 C H, Dy =
{ni} U Dg_q with ng = ni +n2, ni € C and 5} € aB(X**), k > 1, such that
min x} (n; — D;—1) > b for every k > i.

Let D =@o(Jysq Di) C C and

w*

K= :i>1)" c(K+aB(X*)ND
Let 19 be a w*-cluster point of {ny }r>1.
Cram 1. d(no, D) < ba.
Indeed, clearly ng € H N (K1 4+ aB(X™**)). Observe that:

~ ~

(i) Since K1 C K + aB(X™), we get d(K1,C) < d(K,C)+a < 2a.

~ ~

(ii) Since K1 ¢ D" , by Lemma 2.2 we get d(K;,D) < 2d(K;,X) <

~

Qd(Kl,C) < 4a.
Thus, as n9 € K1 4+ aB(X™*), we finally get d(n, D) < ba.
CrLam 2. d(no, D) > b.
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Indeed, let ¢ € B(X***) be a w*-cluster point of {7} },,>1. Since we have
min z}, (nx —Dp—1) > b for every k > n, it follows that min =} (no—Dp—1) > b
for all n > 1. Hence inf ¢(ny — D) > b and so d(no, D) > b by Lemma 2.1.

Since b > 5a, we get a contradiction that completes the proof. m

PROPOSITION 2.5. Let X be a Banach space, C C X a convexr subset
of X, and K a w*-compact subset of X™* such that KNC' is w*-dense in K.
Then d(co™ (K),C) < 2d(K, C).

~ ~

Proof. Suppose that d(co¥ (K),C) > b > 2a > 2d(K,C) for some
a,b > 0. We follow the proof of Proposition 2.4 with the following changes.
As CN K is w*dense in K and V, N H # (), k > 0, it follows that
ViNCNK #  for all k > 0. Thus, we choose 7, € V;iﬂKﬂC, k > 1, and put

1_ 2 _ 1. W : wh s
n, = Nk and i = 0. Hence,now Ky = {n, : k> 1} ={m:k>1} satis-
fies K1 C K and so d(K1,C) < d(K,C) < a, whence d(K1, D) < 2a. Finally,
every w*-cluster point ng of {ny : k > 1} satisfies n9 € K1, d(no, D) < 2a

and d(ng, D) > b, a contradiction. =

REMARK 2.6. In Proposition 2.4 we have proved that there exists a
constant M such that 1 < M < 5 and d(co% (K),C) < Md(K,C) for
every Banach space X, every convex subset C of X and every w*-compact
subset K of X™**. It is an open problem what is the best value My of this
constant, but 3 < My < 5 by the results of [12]. Concerning the constant of
Proposition 2.5, the value M = 2 is optimal by [12].

3. Distances to convex subsets of dual Banach spaces. Let X be a
Banach space, C' a convex subset of X*, and W a w*-compact subset of X*.
In this section we study whether the distance d(co”" (W), C) is controlled

~

by the distance d(W, C'). The following proposition is an elementary result.

PROPOSITION 3.1. Let C be a w*-closed convex subset of the dual Banach
space X*. Then C has 1-control inside X*, that is, for every w*-compact
subset W of X* we have d(co®*(W),C) = d(W,C).

Proof. Let W be a w*-compact subset of X* and let c/l\(I/V, C) =:a. Fix
a point wy € €6¥ (W) and a number € > 0; we prove that d(wp,C) < a+¢.

Let {wy : a € A} C co(W) be a net such that wq Yowp for a € A
Since d(co(W),C) = d(W,C), for each a € A we can choose z, € C such
that ||we — 2ol < a + €. So, the net {w, — 2 : @ € A} is inside the ball

(a + &)B(X™), which is a w*-compact subset. Thus, by passing to a subnet
if necessary, we can suppose that we — 2o — ug for some ug € (a+¢)B(X*).

w*
Hence, we get zq = wo — (Wo — 24) — wo — up and so wy — ug =: 2o € C,
because C is w*-closed. Therefore, we can write wg = 29 + ug with zg € C
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and ug € (a+¢e)B(X™), that is, d(wg, C) < a+e. Ase > 0 is arbitrarily small,
we conclude that d(wg,C) < a = d(W,C). So, d(co®” (W), C) = d(W,C). =

The following result is a consequence of Lemma 2.3.

LEMMA 3.2. Let X be a Banach space and K a w*-compact subset of X*
such that d(c6”” (K),co(K)) > d > 0. Then there exist rg € R, 2y € @0 (K)
and ¥ € S(X**) with 1(z0) > 1o + d and Y(k) < ro for all k € K, and
such that, if p is a Radon probability on K with barycenter r(u) = zo and
H = supp(p), then:

(i) for every w*-open subset V.C X* with V. N H # (), there exist £ €
o (V. N H) such that (€) > ro +d,
(ii) there exist a sequence {x, : n > 1} C B(X) and, for every pair of
disjoint subsets M, N of N, a point ny n € H such that
nuN(Tm) >10+d, YmeM, and nyun(xzn) <rg, ¥Yne N.
Proof. Find &>0 such that d(c”" (K),(K)) > d+&>0=d(K,w(K)).
By Lemma 2.3 there exist zyp € co® (K) and ¢ € S(X**) such that
inf (29 —Co(K)) > d + ¢, that is,
¥(z0) > supy(co(K)) +d+e > supyp(K) + e+ d.
So, if rg := sup (K )+e, then ¢(z9) > ro+d and (k) < ro for all k € K. Let
w be a Radon Borel probability on K with r(u) = zp and let H := supp(u).

CLAIM. For every w*-open subset V of X* with V N H # () there ewist
(e (VNH) andneco(VNH) CeV (VNH) such that (&) > ro+d
and ¥(n) < rop.

Indeed, by Lemma 2.3 there exists ¢ € co” (VNH) with inf ¢(¢ — co(K))
> d + ¢, that is, ¥(§) > ro + d. On the other hand, as (k) < 7o for all
k € K, we have 9)(n) < r¢ for every n € co(V N H).

Thus, by the Claim and the proof of [15, Lemma 2] we can find a sequence
{zn :n > 1} C S(X) such that, if we define
A, ={{€H: &, >ro+d}, Bp={neH:n(z,) <ro}, Vn>1,
then, for every pair of disjoint finite subsets M, N of N, the w*-open subset
V(M,N) := (Mmerr Am) N (Npen Bn) of H is nonempty. In particular,

0+ V(MN)C (ﬂ 1 )m(ﬂE}j*)cH

Since H is a w*-compact subset, we conclude that for every pair of disjoint
(finite or infinite) subsets M, N of N |

7é( N Z%")m(ﬂ?}j*)cﬂ
meM neN
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Since E:; c{¢eH:&xm)>ro+d} and E:* C{ne€H:n(x,) <ro}, we
finally deduce that for every pair of disjoint (finite or infinite) subsets M, N
of N there exists ny, v € H such that

nvuN(Tm) >10+d, Yme M, and nyn(zn) <719, VRnEN.m

DEFINITION 3.3. If X is a Banach space, a subset F of X* is said to be
a w*-N-family of width d > 0 if F is bounded and has the form

F ={nmn : M, N disjoint subsets of N},

so that there exist two sequences {r,, : m > 1} C R and {z,, : m > 1} C
B(X) such that for every pair of disjoint subsets M, N of N we have

NN (xm) > rm+d, VYmeM, and nyn(zn) <rp, VneN.
Moreover, if r,,, = 1 for all m > 1, we say that F is a uniform w*-N-family

in X*. We say that A C X* has a w*-N-family if there exists a w*-N-family
FCA.

REMARK 3.4. (0) If Z is a set, a family (A;, B;)ier of pairs of nonempty
subsets of Z is said to be an independent family if A;NB; = () for alli € I, and
for every finite nonempty subset F' C I we have (), €iA; #0, where ¢; =
+1, (+1)A; = A; and (—1)A; = B;. In N there exists an independent family
(M;, N;)i<. of cardinality ¢. Indeed, since SN is an extremally disconnected
compact Hausdorff space with weight w(SN) = ¢ (see [21, p. 76]), by the
Balcar-Franék theorem (see [2], [7, p. 120]) there exists a continuous onto
mapping f : SN — {0,1}¢. Let m; : {0,1}¢ — {0,1}, i < ¢, be the projection
onto the i-factor {0,1} and put M; := (m; 0 )~ (1) NN and N; := (m; o
f)710) NN. Clearly, {(M;, N;) : i < ¢} is an independent family in N.

(1) If (M;, Ni)i<c is an independent family in N of cardinality ¢ and F =
{nm,n : M, N disjoint subsets of N} is a w*-N-family in the dual Banach
space X*, then a standard argument (see [8, p. 206]) proves that the family
{nm,,N, © 1 < ¢} is equivalent to the basis of ¢;(c). Moreover, the same
argument shows that the sequence {z, : n > 1} C B(X) associated to F is
equivalent to the basis of /5.

(2) So, if a dual Banach space X* has a w*-N-family, then X has an
isomorphic copy of £1. And vice versa, if X has a copy of /1, then X* contains
a w*-N-family. Indeed, let 7 : /1 — X be an isomorphism between ¢; and
i(£1), and i* : X* — l its adjoint operator, which is a quotient mapping
such that B(fs) C i*(||li~Y|B(X*)). For each pair M, N of disjoint subsets
of N choose nyn € [[i~Y|B(X*) such that i*(nayn) = 1a — 1y. Then
{nm,n : M, N disjoint subsets of N} is a w*-N-family in X*.

(3) Let F = {nun : M,N disjoint subsets of N} be a w*-N-family
of width 6 > 0 in a dual Banach space X™, associated to the sequences
{rm : m > 1} ¢ R and {x, : m > 1} C B(X). Then for every 0 <
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v < 0 there exists an infinite subset N, C N such that F, := {nn :
M, N disjoint subsets of N, } is a uniform w*-N-family of width v > 0 asso-
ciated to the sequence {z,, : m € N,} C B(X) and some number 9 € R.
Indeed, since the sequence {r,, : m > 1} C R is bounded, there exists
some 79 € R such that Ny := {m e N:rg+n—0 <r, <o} is infinite.
Now, it is easy to see that F, := {ny,n : M, N disjoint subsets of N,} is
a uniform w*-N-family of width v > 0 associated to ry and the sequence
{xm :m eN,} C B(X).

(4) It is worth mentioning (and easy to see) that, if A is a subset of X*,
then A has a w*-N-family if and only if A does.

PROPOSITION 3.5. Let X be a Banach space.

(1) If K is a w*-compact subset of X* such that K fails to have a w*-
N-family (in particular, if K contains no copy of the basis of £1(c)),
then ¥ (K) = co(K).

(2) If C is a convex subset of X* that fails to have a w*-N-family (in
particular, if C' contains no copy of the basis of ¢1(c)), then C' has
3-control inside X*, that is, for every w*-compact subset K of X*
we have d(co®" (K),C) < 3d(K, C).

Proof. (1) Otherwise, there exists d > 0 such that c?(ﬁw* (K),co(K)) >
d > 0. By Lemma 3.2 there exist {z, : n > 1} C B(X), ro € R and, for
every pair of disjoint subsets M, N of N, a vector ny;,ny € K such that

nuN(@m) >1o+d, YmeM, and nun(zn) <709, Yn€eN.

Thus there exists a w*-N-family in K, a contradiction.

(2) Suppose that C fails to have 3-control inside X*. Then there exist
a w*-compact subset K of X* and a,b > 0 such that d(co®” (K),C) > b >
3a > 3d(K,C). So, as d(to(K ), C) =d(K, C) < a, we have d(co®”” (K),co(K))
> b—a > 0. By Lemma 3.2 there exist ro € R, {z,, : n > 1} C B(X) and,
for every pair of disjoint subsets M, N of N, a vector ny; v € K such that

NMN(Tm) >10+b—a, Vme M, and nyn(zn) <rg, VneN.

As d(K,C) < a, for each pair of disjoint subsets M, N of N there is zp; y € C
so that ||z, v —nar,n || < a. Thus, the family {zp n : M, N disjoint subsets
of N} is bounded and satisfies
2N (Tm) >ro+b—2a, Vme M, and zyn(zn) <ro+a, YneN.
Since ro+b—2a =rg+a+ (b—3a) > ro +a, the set {zp; n : M, N disjoint
subsets of N} is a w*-N-family in C, a contradiction. m

REMARK 3.6. For a convex subset C' of a dual Banach space X*, the
statements “C' has 3-control inside X*” and “C' contains no w*-N-family”
are not equivalent, in general. For example, if C' := B({), then C has a w*-
N-family (this is trivial), and also C' has 1-control (and so 3-control) inside
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l~ because C' is w*-closed (see Proposition 3.1). Concerning the statement
“C' contains no copy of the basis of ¢1(c)”, it can be characterized as follows.

PROPOSITION 3.7. Let X be a Banach space and C a convex subset
of X*. The following statements are equivalent:

(i) C contains no copy of the basis of £1(c).
(ii) C has universal 3-control, that is, if [C] is (isomorphic to) a sub-
space of some dual Banach space V*, then C' has 3-control inside
V.
(iii) C has universal control, that is, if [C] is (isomorphic to) a subspace
of some dual Banach space V*, then C' has control inside V*.

Proof. (i)=(ii) follows from Proposition 3.5, and (ii)=-(iii) is obvious.

(ili)=(i). Suppose that C' contains a copy K of the basis of ¢(c) and
let Z := [C]. By the proof of [13, Prop. 3] there exists a closed subspace
V of Z* norming on Z such that K is ¢(Z, V)-compact but c”%")(K) is
not o(Z,V)-compact. Let ¢ : Z — V* be the canonical embedding such that
i(2)(v) = (v,2) for all z € Z and v € V. Clearly, i is a norm-isomorphism
between Z and i(Z). Moreover, i : (Z,0(Z,V)) — (i(Z),w*) is also an
isomorphism. Then i(K) is a w*-compact subset of V* such that i(K) C
i(C). Since @7 %" (K) is not o(Z, V)-compact in (Z,(Z,V)), necessarily
v (i(K))\i(Z) # 0 and so c?(@w* (i(K)),i(C)) > 0. Thus i(C) does not
have control inside V*, a contradiction to (iii). m

A result of Talagrand [20] allows us to prove the following corollary:

COROLLARY 3.8. Let X be a Banach space and A a subset of X* that
contains no copy of the basis of £1(c). Then:

(1) For every w*-compact subset K C [A] we have " (K) = o(K).

(2) Every convex subset C C [A] has 3-control inside X*.

Proof. First, observe that [I] contains no copy of the basis of ¢1(c),
because, if 7 is a cardinal with cofinality cf(7) > Ng, then Talagrand proved
in [20, Theorem 4] that A contains a copy of the basis of ¢1(7) if and only if
[A] has a copy of £1(7). Now it is enough to apply Proposition 3.5 and the
fact that cf(c) > Rg (see [16, p. 78]). m

COROLLARY 3.9. Let X be a Banach space and let W be a subset of X*

which is either weakly Lindeldf or is closed, convex and has the property (C)
of Corson. Then

(i) Every convex subset C of [W] has 3-control inside X*.
(ii) For every w*-compact subset K of [W] we have c6¥ (K) = co(K).

Proof. In both cases W cannot contain a copy of the basis of ¢;(¢) and so
(i) and (ii) follow from Corollary 3.8. Indeed, if W is weakly Lindel6f, then
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W fails to contain a copy of the basis of ¢1(c) because such a copy would be
a w-closed but non-w-Lindel6f subset.

Suppose now that W is closed, convex and has the property (C) of
Corson. Recall that a closed convex subset F' of a Banach space has the
property (C) of Corson if (;c; C; # 0 whenever {C; : i € I} is a family of
closed convex subsets of F' with the countable intersection property, that is,
Nics Ci # 0 for every countable subset J C I. If a closed convex subset F
of a Banach space has the property (C) of Corson, then F' cannot contain
a copy of the basis of £;(c). Indeed, suppose F := {u, : 0 < ¢} C F is
equivalent to the basis of ¢1(c) and Cy := T0(F \ {us}). Clearly, the family
{C, : 0 < ¢} has the countable intersection property but (), _.Co = 0. =

REMARK 3.10. In [19, Problem 4.5] Talagrand asks, among other things,
if ©6%" (K) = to(K) whenever K is a w*-compact w-Lindelf subset of a dual
Banach space X*. Cascales, Namioka and Vera proved in [5, Corollary E]
(see also [4, Theorem 4.5]) that every w*-compact w-Lindel6f subset of a
dual Banach space X* is fragmented by the dual norm. So, applying [18,
Theorem 2.3], they gave an affirmative answer to the question posed by
Talagrand. Clearly, this result is a particular case of Proposition 3.5 because
a w-Lindeldf subset cannot contain a copy of the basis of ¢1(c), and so it
does not have a w*-N-family.

o<c¢

4. Convex subsets of Banach spaces with w*-angelic closed dual
unit ball . If Y is a Banach space, the closed dual unit ball B(Y™*) is said

to be w*-angelic if given a subset A of B(Y*) and a € Zw*, there exists a

sequence {a, : n > 1} C A such that a, % 4. Tn this section we consider
a particularly favorable case of the problem of the control of the distance
d(co¥" (K), C) by the distance d(K, C), C being a convex subset of X* and
K a w*-compact subset of X*. This case appears when C' is a convex subset
of some subspace Y of X* such that the closed dual unit ball (B(Y™),w*)
is angelic. We prove that in this case there is 1-control.

LEMMA 4.1. Let K be a compact Hausdorff space with card(K) > 2, i a
Radon measure on K and f € C(K) a continuous real function on K. Let
= pt —p~ be the decomposition of i into its positive and negative parts.
Then there exist distinct points p1,ps € K such that

e (1Lf (1) = [l 1 f (p2) = w(f)-
Proof. Let p1,p2 be two distinct points of K such that

f(p1) =max{f(p) :p€ K} and f(p2) =min{f(p):pe€ K}.
With this choice the statement holds because

pt () =\ )t (k) < § £o1) du® (k) = [l 1 £ (o),
K K
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po(f) =\ F) dp (k) =\ f(p2) dp (k) = [l || (p2),

K K
whence ||| f(p1) — le” [l f(p2) = 0 (f) — = (f) = p(f). =

If I is an infinite set, let c(I) denote the subspace of (o (1) = C(BI)
consisting of those elements which are constant on I* = I\ I.

PROPOSITION 4.2. Let I be an infinite set and C' a convex subset of c(I).
Then for every w*-compact subset K of boo(I) (= ¢1(1)*) we have

d(@” (K),C) = d(K, C).
Proof. Let K be a w*-compact subset of £ (I). Without loss of gener-
ality (after a homothety if necessary), we suppose that K C B({o(1)).

The trivial case. Assume that K C c(I). Observe that c(I) is Asplund
(see [9, p. 6]) because it is isomorphic to co(I). So, c(I) fails to contain a
copy of £1(c). Thus, from Proposition 3.5 we get c6% (K) = co(K) and so

o~ ~

d(e"” (K), C) = d(co(K), C) = d(K, C).
The nontrivial case. Suppose that K \ c(I) # (. This implies that

C/i\(K, C) > 0. Assume that d(co¥ (K),C) > E(K, (). Thus, for some a,b > 0
we have ~ R
d(@® (K),C) >b>a>d(K,C).

Therefore, there exist vectors wy € €% (K) \ C and ¢ € S(£i(I)) (see
Lemma 2.1) such that inf ¢(wo—C') > b. Let € > 0 be such that a+¢ < b. By
the Riesz representation theorem (see [17, p. 46]) the dual ¢} (1) = C(8I)*
can be identified with the space of Radon Borel measures Mgi(5I) on SI.
On the other hand, if u € Mg (8I), we have the decomposition u = p1 + 2,

where:

() g1 = (mi)ier € G(I) with pn; = p({i}), i € I, and py = plI*, that
is, po is the restriction of p to the compact space I*.

() el = Ml + Mgzl

So, 5 (I) can be identified with the ¢1-direct sum ¢1(1) &1 Mg (I*), where
Mg (I*) is the space of Radon Borel measures on I*. Thus, we have the
decomposition ¢ = p1 + @9 with p1 € £1(I), @2 € Mg(I*) and 1 = ||¢1]|| +
2l Let w2 = 3 — @5 be the decomposition of s into its positive and
negative parts, and put A\; := ||¢3 || and Ay := ||¢; ||. Now we apply Lemma
4.1 to the compact space I*, the Radon Borel measure ¢y on I* and the
continuous function g, where wyg is the Stone—Cech continuous extension
of wy to BI. So, there exist distinct points p1, pe € I* such that

Ao (p1) — A2t (p2) > p2(to).

Since g is continuous on I, there exist two infinite disjoint subsets V7, V5
of I such that
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() pieVi, i=1.2
(ii) For every v; € Vim, i=1,2,
)\1@0(1)1) — AQQIJ()(UQ) > (pg(ﬂ}o) — 6/2.
Since V7, V5 are infinite disjoint subsets of I, we can choose two sequences of
pairwise distinct points {d,, : n > 1} C V4 and {e,, : n > 1} C V5. Obviously,
(4.1) Alwo(dn) — )\Q’Lf)o(em) > @2(11)0) — 8/2, VYm,n € N.
Let p be a Radon Borel probability on K with 7(x) = wg. Define the linear
mapping T, : loo(I) — R by T,(f) = w1(f) + M f(dyn) — Aaf(ep) for every
n € Nand every f € ¢ (I). Clearly, T}, is || - ||-continuous and w*-continuous
with || T,,|| < 1. By (4.1) for every n > 1 we have
p(wo) — /2 = p1(wo) + p2(io) — &/2
< p1(wo) + Mo (dn) — Aao(en) = Tn(wo),
whence

p(wo) — /2 < Tn(wo) = Tu(r(p)) = | Tu(f) dp(f).
K

Let Ay, :={f € K :T,(f) > ¢p(wg) — €} for all n > 1. Observe that A, is a
relatively w*-open subset of K for all n > 1.
Cram 1. p(Ay) > ¢/2 for all n > 1.

Indeed, for every n > 1 we have

plwo) = /2 < To(wo) = { Tu(dp(H) = (§ + § ) Tulf) dulf)
K An  K\A,
< (An) + plw) — &.
Thus p(Ay) > /2 for all n > 1.
Let By, :=,,,>, Am for every n > 1. The sequence {B,},>1 is decreas-
ing and satisfies p(B,,) > /2 for every n > 1. Hence u((),>; Bn) > /2
and so (),,~; Bn # 0. Choose g € (,,>; Bn and, inductively, the sequence

{A;, }i>1, ni < mnit1, such that g € A, for every i > 1. Then
©1(9) + Mg(dn;) — Aag(en;) = Tni(g9) > o(wo) —e,  Vi>1.

By a compactness argument, we can choose two distinct points ¢ €
{dni:—izl}m \IC Vlﬁl and ¢z € {eni:—iZI}M \IC ng such that
(4.2) ©1(9) + Mg(q1) — A2g(g2) > p(wo) — &

Let ¢ := @1 + (Mg — A2dg,). Observe that 1 belongs to S(€5, (1)).

Cram 2. infy(g—C) >b—e.

Indeed, if ¢ € C then ¢ € ¢(I) and so ¢ is constant on I*. Thus

P(c) = p1(c) + (Mdg — A2y, )(€) = @1(c) + (A1 — A2)é(q1)
= p1(c) + ¢2(€) = p(c).
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So, taking into account (4.2) and the fact that inf (wy — C) > b, for every
¢ € C we have
(¥, 9 —c) = ¢1(g9) + (Mg(ar) — A29(a2)) — ¢(c)
> p(wo) —e — (c) = (p,wg —c) —e >b—e.
Therefore, we get d(g,C) > b—e. On the other hand, as g € K, we have
d(g,C) < a by hypothesis. So b — ¢ < a, which contradicts the choice of ¢
and completes the proof. =

PROPOSITION 4.3. Let X be a Banach space and 'Y a closed subspace
of X* with w*-angelic closed dual unit ball (B(Y™*),w*). If C is a convex
subset of Y, then d(co¥” (K),C) = d(K,C) for every w*-compact subset K
of X*. Moreover, ©o" (K) = co(K) for every w*-compact subset K of Y.

Proof. Let C be a convex subset of Y and suppose that there exist a
w*-compact subset K C B(X*) and 0 < a,b < 1 such that

d(@® (K),C) > b>a> d(K,C).

Let wg € ¥ (K) be such that d(wg,C) > b. By Lemma 2.1 there exists
o € S(X**) such that inf pg(wg — C) > b. Let € > 0 be such that b+ ¢ <
inf po(wo — C') and define

U:={p e B(X™): (p,wo) = (po, wo) — €},

V= {ZE € B(X) : <w07 > = (QO(),U)()> _5}‘
Observe that ¢ € U and, as (g, wp) —e < 1, also U = VY I Y — X*
is the canonical inclusion, then i* : X** — Y™ satisfies i*(¢g) € i*(U) =
#*(V)" < B(Y™). Since (B(Y*), w*) is angelic, there exists a sequence {zy, :
n > 1} C V such that i*(z,) = i*(gp) in the w*-topology o(Y*,Y). Let
T : X* — [ be the continuous linear mapping such that T'(u) = (u(xy))n>1
for all w € X*. Then:

(1) ||T]| <1 and, moreover, T is w*-w*-continuous on bounded subsets

of X*.
(2) As i*(x,) S5 i*(po), for every y € Y we have y(x,) = i*(zn)(y) —
i*(v0)(y)- Hence T(Y) C ¢(N) = {f € ls : fIN* is constant}.
Let C := T(C), T(K) =: H C B(ls) and vy := T(wo). Clearly, H is a
w*-compact subset of B({) such that d(H C) < d(K C) < a because
IT|| <1, and vy € @™ (H). Let ey, : £oo — R, n > 1, be the nth canonical
projection. Then {ey, : n > 1} C B(¢%,) and T*(e,) = xpn, n > 1. Let 1o be
a w*-cluster point of {e, : n > 1} in B(£,). Clearly, ng € S(£%,).
CLAIM. infry(vg — C) > b.
Indeed, first T*(np) is a w*-cluster point of {z,, : n > 1} in B(X™**). Thus

(i) T*(no) € U, whence (T™(np), wo) > (w0, wo) —
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(ii) If ¢ € C, for every n > 1 we have (T™(e,),c) = (zn,c) — (o, ),
whence (T™(np), c) = (o, ¢). Therefore, for every ¢ € C' we have
{no,vo —Te) = (no, Two — Tc) = (T" (o), wo — ¢)
> (o, wo) — € = (0, €)
= (po,wp —c) —e >b+ec—e=b,

and this proves the Claim.

Therefore we get d(vg,C') > b. On the other hand, from Proposition 4.2
we deduce that d(vg, C’) < a. So, we get a contradiction and this proves that
c?(@“’*(K), C)= A(K, C). Finally, if K is a w*-compact subset of Y, taking
C =©o6(K) in the above argument, we deduce that co¥ (K) = co(K). =

COROLLARY 4.4. Let X be a Banach space and W a w*-closed w-Lindeldf
subset of X*. Then C' has 1-control inside X™* whenever C' is a convex subset

of [W].

Proof. Let W, := {z € W : ||z|| < n} for all n > 1. Then W, is a
w*-compact w-Lindeldf subset of X* and [W,] is WLD (weakly Lindelof
determined) by [4, Corollary 6.4]. Therefore [W] is WLD because [W] =

U,>1 [Wa] (for instance, apply [1, Theorem 1.6]) and so the closed unit ball

of [IW] is w*-angelic. Now apply Proposition 4.3. =
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