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Distances to convex sets

by

Antonio S. Granero and Marcos Sánchez (Madrid)

Abstract. If X is a Banach space and C a convex subset of X∗, we investigate
whether the distance d̂(cow

∗

(K), C) := sup{inf{‖k − c‖ : c ∈ C} : k ∈ cow
∗

(K)}

from cow
∗

(K) to C is M -controlled by the distance d̂(K, C) (that is, if d̂(cow
∗

(K), C) ≤

Md̂(K, C) for some 1 ≤ M < ∞), when K is any weak∗-compact subset of X∗. We prove,
for example, that: (i) C has 3-control if C contains no copy of the basis of ℓ1(c); (ii) C has
1-control when C ⊂ Y ⊂ X∗ and Y is a subspace with weak∗-angelic closed dual unit ball
B(Y ∗); (iii) if C is a convex subset of X and X is considered canonically embedded into
its bidual X∗∗, then C has 5-control inside X∗∗, in general, and 2-control when K ∩ C is
weak∗-dense in C.

1. Introduction. If X is a Banach space and C a convex subset of X∗,
we investigate in this paper whether the distance d̂(cow∗

(K), C) :=
sup{inf{‖k − c‖ : c ∈ C} : k ∈ cow∗

(K)} from cow∗

(K) to C is controlled

by the distance d̂(K,C), that is, if d̂(cow∗

(K), C) ≤ Md̂(K,C) for some
constant 1 ≤ M < ∞ independent of K, where K is any weak∗-compact
subset of X∗.

When C is a subspace of X, the control of C inside the bidual X∗∗ of X
has been studied in [10]–[13]. Actually the results obtained in those papers
extend the classical Krein–Shmul’yan theorem. This theorem, in terms of
distances, states the following (see [8, p. 29]): if X is a Banach space and

K a weak∗-compact subset of X∗∗ such that d̂(K,X) = 0 (that is, K is a

weak-compact subset of X), then d̂(cow∗

(K), X) = 0, that is, cow∗

(K) ⊂ X
and so cow∗

(K) is a weak-compact subset of X and cow∗

(K) = co(K).
Thus, looking at the Krein–Shmul’yan theorem in terms of distances, it is
natural to ask the following: if K is a weak∗-compact subset of X∗∗, does the

equality d̂(cow∗

(K), X) = d̂(K,X) always hold? The answer to this question
is negative. Actually, in [11] and [12] are constructed two weak∗-compact
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subsets K1,K2 of a bidual Banach space X∗∗ such that: (i) K1∩X is weak∗-

dense in K1, d̂(K1, X) = 1/2 and d̂(cow∗

(K1), X) = 1; (ii) d̂(K2, X) = 1/3

and d̂(cow∗

(K2), X) = 1.

Thus, in general, a Banach space X fails to have 1-control inside its
bidual X∗∗. However, it could be true that every Banach space X has M -
control inside X∗∗, M being a universal constant greater than 1. So, we can
ask the following question: does there exist a universal constant 1 < M <∞
such that d̂(cow∗

(K), X) ≤Md̂(K,X) for every weak∗-compact subset K of
X∗∗ and every Banach space X? The answer to this question is affirmative.
In [11] the following result is proved, which extends the Krein–Shmul’yan
theorem: if K is a weak∗-compact subset of X∗∗ and Z a subspace of X,
then

d̂(cow∗

(K), Z) ≤ 5d̂(K,Z);

moreover, if Z ∩K is weak∗-dense in K, then

d̂(cow∗

(K), Z) ≤ 2d̂(K,Z).

When H is a normal countably compact space and we look at the Ba-
nach space Z = C(H) of continuous real functions on H as a subspace of

ℓ∞(H), then the distances d̂(cow∗

(K), Z) and d̂(K,Z) behave analogously,
K being any weak∗-compact subset of ℓ∞(H) (see [3], [14]). So, in view of
these results we have: (i) the smallest value M0 of the universal constant
of the extension of the Krein–Shmul’yan theorem satisfies 3 ≤ M0 ≤ 5;
(ii) for the category of weak∗-compact subsets K of X∗∗ such that Z ∩ K
is weak∗-dense in K, Z being a subspace of X, the value M = 2 is opti-
mal.

The purpose of this paper is to go a step further and investigate the

control of d̂(cow∗

(K), C) by d̂(K,C) when C is a convex subset of a dual
Banach space X∗ and K is a weak∗-compact subset of X∗. The behavior of
d̂(cow∗

(K), C) with respect to d̂(K,C) varies. If C is a weak∗-closed convex

subset of X∗, it is very easy to see that d̂(cow∗

(K), C) = d̂(K,C). However,
if C ⊂ X∗ is not weak∗-closed, all situations are possible. In any case, as we
will see later, the control of C inside X∗ and the existence in C of a copy of
the basis of ℓ1(c) are closely connected.

The paper is organized as follows. In Section 2 we study the control of
convex subsets C of a Banach space X inside X∗∗. The results and constants
obtained are similar to the ones obtained when C is a subspace of X.

In Section 3 we deal with the relation between the existence in C of a
copy of the basis of ℓ1(c) and the control of C inside a dual Banach spaceX∗.
We prove that every convex subset C ofX∗ has 3-control insideX∗ whenever
C contains no copy of the basis of ℓ1(c). Moreover, cow∗

(K) = co(K) for
every weak∗-compact subset K of X∗ that contains no copy of that basis.
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Section 4 is devoted to the study of the control of a convex subset C
inside a dual Banach space X∗ when C is contained in a subspace Y of
X∗ with weak∗-angelic closed dual unit ball B(Y ∗). This case is particularly

favorable because always d̂(cow∗

(K), C) = d̂(K,C) for every weak∗-compact
subset K of X∗.

Our notation is standard. If A and I are sets, a ∈ AI and i ∈ I then ai

(or a(i)) denotes the ith coordinate of a and πi : AI → A the ith projection
mapping such that πi(a) = ai. |I| is the cardinality of I and c := |R|.
βI denotes the Stone–Čech compactification of I (for I endowed with the
discrete topology) and I∗ := βI \I. If f : I → R is a bounded function, then
f̌ ∈ C(βI) is the Stone–Čech continuous extension of f to βI.

We shall consider only Banach spaces over the real field. If X is a Banach
space, let B(a; r) := {x ∈ X : ‖x− a‖ ≤ r} be the closed ball with center at
a ∈ X and radius r ≥ 0. B(X) and S(X) will be the closed unit ball and unit
sphere of X, respectively, and X∗ its topological dual. If A is a subset of X,
then [A] and [A] denote the linear hull and the closed linear hull of A, respec-
tively. A subset A of the Banach spaceX is said to contain a copy of the basis

of ℓ1(c) if A contains a family of vectors {ai : i < c} which is equivalent to
the canonical basis of ℓ1(c). The weak∗-topology of the dual Banach spaceX∗

is denoted by w∗ and the weak topology of X by w. If C is a convex subset of
X∗, for x∗ ∈ X∗ and A ⊂ X∗, let d(x∗, C) = inf{‖x∗−c‖ : c ∈ C} be the dis-

tance from x∗ to C, and d̂(A,C) = sup{d(a,C) : a ∈ A} the distance from A
to C. co(A) denotes the convex closure of the set A, co(A) is the ‖ · ‖-closure
of co(A) and cow∗

(A) the w∗-closure of co(A). Given 1 ≤ M < ∞, a con-

vex subset C of X∗ is said to have M -control inside X∗ if d̂(cow∗

(K), C) ≤

Md̂(K,C) for every w∗-compact subset K of X∗; and C is said to have con-
trol inside X∗ if C has M -control inside X∗ for some constant 1 ≤M <∞.

If K is a w∗-compact subset of a dual Banach space X∗ and µ a Radon
Borel probability on K, then r(µ) will denote the barycenter of µ (see [6,
p. 115]). Recall that: (i) r(µ) ∈ cow∗

(K); (ii) x∗ ∈ cow∗

(K) if and only
if there exists a Radon Borel probability µ on K such that r(µ) = x∗;
(iii) r(µ)(x) =

T
K
x∗(x) dµ(x∗) for all x ∈ X.

2. The control of convex subsets of X inside X∗∗. Convex subsets
of a bidual Banach space X∗∗, in general, fail to have control inside X∗∗. For
example, if X is a Banach space such that X∗ contains a copy of ℓ1, then
there exists a w∗-compact subset H of X∗∗ such that d̂(cow∗

(H), co(H)) > 0
(see [15]). However, when we restrict ourselves to the convex subsets C of
the Banach space X, we will see in this section that there exists control
inside X∗∗. We begin with the calculation of the distance d(x,C) when C is
a convex subset of a Banach space X and x ∈ X.
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Lemma 2.1. Let X be a Banach space, C a convex subset of X and

x ∈ X. Then

d(x,C) = sup
ϕ∈S(X∗)

inf{|ϕ(x− c)| : c ∈ C}.

Moreover , if x /∈ C, then even d(x,C) = supϕ∈S(X∗) inf ϕ(x− C).

Proof. If we assume that x /∈ C, the proof is a simple application of the
Banach separation theorem. If x ∈ C, then for every ϕ ∈ S(X∗) we have
inf{|ϕ(x− c)| : c ∈ C} = 0, whence

d(x,C) = 0 = sup
ϕ∈S(X∗)

inf{|ϕ(x− c)| : c ∈ C}.

The following lemmas are basic for the proofs of next propositions.

Lemma 2.2. Let X be a Banach space and D a convex subset of X. Then

for every z ∈ D
w∗

⊂ X∗∗ we have

d(z,D) ≤ 2d(z,X).

Proof. Suppose that d(z,D) > 2d(z,X). Then

(i) for some a > 0 we have d(z,D) > 2a > 2d(z,X),
(ii) there exists a vector w ∈ X such that ‖w− z‖ < a (because d(z,X)

< a) and so d(w,D) > a (otherwise, if d(w,D) ≤ a, we would get
d(z,D) ≤ ‖w − z‖ + d(w,D) < 2a, a contradiction).

Since d(w,D) > a, by Lemma 2.1 there exists x∗ ∈ S(X∗) such that

inf{x∗(w − d) : d ∈ D} > a. Let {di}i∈I ⊂ D be a net such that di
w∗

→ z.

Then w − di
w∗

→ w− z and so x∗(w− di) → x∗(w− z). Hence x∗(w− z) > a
and so ‖w − z‖ > a, a contradiction. Thus, we get d(z,D) ≤ 2d(z,X).

Lemma 2.3. Let X be a Banach space, C a convex subset of X∗, K a

w∗-compact subset of X∗ and assume there exist a, b > 0 such that

d̂(K,C) < a < b < d̂(cow∗

(K), C).

Then there exist z0 ∈ cow∗

(K) and ψ ∈ S(X∗∗) with inf ψ(z0 − C) > b
such that , if µ is a Radon probability on K with barycenter r(µ) = z0 and

H = supp(µ), for every w∗-open subset V of X∗ with V ∩H 6= ∅ there exists

ξ ∈ cow∗

(V ∩H) such that inf ψ(ξ − C) > b.

Proof. Without loss of generality, we suppose that K ⊂ B(X∗). Choose
z ∈ cow∗

(K) such that d(z, C) > b. By Lemma 2.1 there exists ψ ∈ S(X∗∗)
such that inf ψ(z − C) > b + ε for some ε > 0, that is, ψ(z) > b + ε +
supψ(C). By the Bishop–Phelps theorem, there exists a vector φ ∈ S(X∗∗)
with ‖ψ − φ‖ ≤ ε/4 such that φ attains its maximum on cow∗

(K) at some
point z0 ∈ cow∗

(K). So
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φ(z0) ≥ φ(z) = ψ(z) + (φ− ψ)(z)(2.1)

> supψ(C) + b+ ε− 1
4ε = supψ(C) + b+ 3

4ε,

whence we get

ψ(z0) = φ(z0) + (ψ − φ)(z0) > supψ(C) + b+ 3
4ε−

1
4ε = supψ(C) + b+ 1

2ε,

that is,

(2.2) inf ψ(z0 − C) > b+ 1
2ε.

Thus d(z0, C) > b+ 1
2ε and so z0 /∈ C and z0 /∈ K (because d̂(K,C) < a < b).

Let µ be a Radon probability on K with r(µ) = z0 and let H := supp(µ).
Assume that there exists a w∗-open subset V ofX∗ with V ∩H 6= ∅ such that
inf ψ(ξ − C) ≤ b (that is, ψ(ξ) ≤ b+ supψ(C)) for every ξ ∈ cow∗

(V ∩H).
Let µ1 = µ↾V ∩ H denote the restriction of µ to V ∩ H, that is, µ1(B) =
µ(B∩V ∩H) for every Borel subset B ⊂ K. Let µ2 := µ−µ1. Observe that
µ1 and µ2 are positive measures such that

(i) µ1 6= 0, because ∅ 6= V ∩H = V ∩ supp(µ),
(ii) µ2 6= 0 because, if we assume µ2 = 0 (that is, µ= µ1 = µ↾V ∩H),

then z0 = r(µ) ∈ cow∗

(V ∩ H) and so inf ψ(z0 − C) ≤ b, a contra-
diction to (2.2).

Thus, we have the decomposition µ = µ1 + µ2 such that 1 = ‖µ‖ = ‖µ1‖ +
‖µ2‖ with ‖µ1‖ 6= 0 6= ‖µ2‖. So, we can write

z0 = r(µ) = ‖µ1‖ · r

(
µ1

‖µ1‖

)
+ ‖µ2‖ · r

(
µ2

‖µ2‖

)
.

Since r(µ1/‖µ1‖) ∈ cow∗

(V ∩H), we have ψ(r(µ1/‖µ1‖)) ≤ b+supψ(C) by
hypothesis. Hence φ(r(µ1/‖µ1‖)) ≤ b + 1

4ε+ supψ(C) (because ‖ψ − φ‖ ≤

ε/4). Thus, taking into account that r(µ2/‖µ2‖) ∈ cow∗

(K), φ(r(µ2/‖µ2‖))
≤ φ(z0) and (2.1), we get

φ(z0) = ‖µ1‖φ

(
r

(
µ1

‖µ1‖

))
+ ‖µ2‖φ

(
r

(
µ2

‖µ2‖

))

≤ ‖µ1‖(b+ 1
4ε+ supψ(C)) + ‖µ2‖φ(z0)

< ‖µ1‖φ(z0) + ‖µ2‖φ(z0) = φ(z0),

a contradiction which completes the proof.

Proposition 2.4. Let X be a Banach space, C a convex subset of X
and K a w∗-compact subset of X∗∗. Then

d̂(cow∗

(K), C) ≤ 5d̂(K,C).

Proof. Without loss of generality, we assume that 0 ∈ C. Suppose that
the statement is not true, so there exists a w∗-compact subset K of X∗∗ and
a, b > 0 such that

d̂(cow∗

(K), C) > b > 5a > 5d̂(K,C).
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From Lemma 2.3 we have the following:

Fact. There exists a functional ψ ∈ S(X∗∗∗) and a w∗-compact subset

∅ 6= H ⊂ K such that for every w∗-open subset V with V ∩ H 6= ∅ there

exists ξ ∈ cow∗

(V ∩H) with inf ψ(ξ − C) > b.

Now we carry out the following construction step by step:

Step 1. Let D0 = {0}. Applying the Fact to the w∗-open subset V0 :=
X∗∗, we choose a vector ξ1 ∈ cow∗

(H) such that inf ψ(ξ1 − C) > b. So,
ψ(ξ1) > b + supψ(D0) = b. As B(X∗) is w∗-dense in B(X∗∗∗), there exists
x∗1 ∈ S(X∗) such that x∗1(ξ1) > b + maxx∗1(D0) = b. Let W1 := {u ∈ X∗∗ :
〈u, x∗1〉 > b + maxx∗1(D0) = b}. Clearly, W1 is a w∗-open halfspace of X∗∗

such that ξ1 ∈W1∩ cow∗

(H). Thus, W1∩H 6= ∅ and so we can find a vector
η1 ∈W1∩H. Since d(η1, C) < a, we have a decomposition η1 = η1

1 +η2
1 such

that η1
1 ∈ C and η2

1 ∈ aB(X∗∗).

Step 2. Let D1 = {η1
1} ∪ D0 ⊂ C and V1 := W1 ∩ V0 = W1. As V1

is a w∗-open subset with V1 ∩ H 6= ∅, by the Fact there exists a vector
ξ2 ∈ cow∗

(V1 ∩ H) such that inf ψ(ξ2 − C) > b, and also inf ψ(ξ2 − D1) ≥
inf ψ(ξ2−C) > b because D1 ⊂ C. Since D1 is finite and minψ(ξ2−D1) > b,
there exists a vector x∗2 ∈ S(X∗) such that minx∗2(ξ2 − D1) > b, that is,
x∗2(ξ2) > b+ maxx∗2(D1). Let W2 := {u ∈ X∗∗ : 〈u, x∗2〉 > b+ maxx∗2(D1)}.
Clearly, W2 is a w∗-open halfspace of X∗∗ such that ξ2 ∈W2∩cow∗

(V1∩H).
Thus W2 ∩ V1 ∩ H 6= ∅ and we can find η2 ∈ W2 ∩ V1 ∩ H. So, x∗2(η2) >
b+maxx∗2(D1), that is, minx∗2(η2−D1) > b. Moreover, minx∗1(η2−D0) > b
because η2 ∈ V1. Since d(η2, C) < a, we have a decomposition η2 = η1

2 + η2
2

such that η1
2 ∈ C and η2

2 ∈ aB(X∗∗).
By iteration, we get sequences {x∗n}n≥1 ⊂ S(X∗), {ηk}k≥1 ⊂ H, Dk =

{η1
k} ∪Dk−1 with ηk = η1

k + η2
k, η

1
k ∈ C and η2

k ∈ aB(X∗∗), k ≥ 1, such that
minx∗i (ηk −Di−1) > b for every k ≥ i.

Let D = co(
⋃

k≥1Dk) ⊂ C and

K1 = {η1
i : i ≥ 1}

w∗

⊂ (K + aB(X∗∗)) ∩D
w∗

.

Let η0 be a w∗-cluster point of {ηk}k≥1.

Claim 1. d(η0, D) < 5a.

Indeed, clearly η0 ∈ H ∩ (K1 + aB(X∗∗)). Observe that:

(i) Since K1 ⊂ K + aB(X∗∗), we get d̂(K1, C) ≤ d̂(K,C) + a < 2a.

(ii) Since K1 ⊂ D
w∗

, by Lemma 2.2 we get d̂(K1, D) ≤ 2d̂(K1, X) ≤

2d̂(K1, C) < 4a.

Thus, as η0 ∈ K1 + aB(X∗∗), we finally get d(η0, D) < 5a.

Claim 2. d(η0, D) ≥ b.
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Indeed, let φ ∈ B(X∗∗∗) be a w∗-cluster point of {x∗n}n≥1. Since we have
minx∗n(ηk−Dn−1) > b for every k ≥ n, it follows that minx∗n(η0−Dn−1) ≥ b
for all n ≥ 1. Hence inf φ(η0 −D) ≥ b and so d(η0, D) ≥ b by Lemma 2.1.

Since b > 5a, we get a contradiction that completes the proof.

Proposition 2.5. Let X be a Banach space, C ⊂ X a convex subset

of X, and K a w∗-compact subset of X∗∗ such that K∩C is w∗-dense in K.

Then d̂(cow∗

(K), C) ≤ 2d̂(K,C).

Proof. Suppose that d̂(cow∗

(K), C) > b > 2a > 2d̂(K,C) for some
a, b > 0. We follow the proof of Proposition 2.4 with the following changes.
As C ∩ K is w∗-dense in K and Vk ∩ H 6= ∅, k ≥ 0, it follows that
Vk∩C∩K 6= ∅ for all k ≥ 0. Thus, we choose ηk ∈ Vk∩K∩C, k ≥ 1, and put

η1
k = ηk and η2

k = 0. Hence, now K1 = {η1
k : k ≥ 1}

w∗

= {ηk : k ≥ 1}
w∗

satis-

fies K1 ⊂ K and so d̂(K1, C) ≤ d̂(K,C) < a, whence d̂(K1, D) < 2a. Finally,
every w∗-cluster point η0 of {ηk : k ≥ 1} satisfies η0 ∈ K1, d(η0, D) < 2a
and d(η0, D) ≥ b, a contradiction.

Remark 2.6. In Proposition 2.4 we have proved that there exists a
constant M such that 1 ≤ M ≤ 5 and d̂(cow∗

(K), C) ≤ Md̂(K,C) for
every Banach space X, every convex subset C of X and every w∗-compact
subset K of X∗∗. It is an open problem what is the best value M0 of this
constant, but 3 ≤M0 ≤ 5 by the results of [12]. Concerning the constant of
Proposition 2.5, the value M = 2 is optimal by [12].

3. Distances to convex subsets of dual Banach spaces. LetX be a
Banach space, C a convex subset of X∗, and W a w∗-compact subset of X∗.
In this section we study whether the distance d̂(cow∗

(W ), C) is controlled

by the distance d̂(W,C). The following proposition is an elementary result.

Proposition 3.1. Let C be a w∗-closed convex subset of the dual Banach

space X∗. Then C has 1-control inside X∗, that is, for every w∗-compact

subset W of X∗ we have d̂(cow∗(W ), C) = d̂(W,C).

Proof. Let W be a w∗-compact subset of X∗ and let d̂(W,C) =: a. Fix
a point w0 ∈ cow∗

(W ) and a number ε > 0; we prove that d(w0, C) ≤ a+ ε.

Let {wα : α ∈ A} ⊂ co(W ) be a net such that wα
w∗

→ w0 for α ∈ A.

Since d̂(co(W ), C) = d̂(W,C), for each α ∈ A we can choose zα ∈ C such
that ‖wα − zα‖ < a + ε. So, the net {wα − zα : α ∈ A} is inside the ball
(a+ ε)B(X∗), which is a w∗-compact subset. Thus, by passing to a subnet

if necessary, we can suppose that wα−zα
w∗

→ u0 for some u0 ∈ (a+ε)B(X∗).

Hence, we get zα = wα − (wα − zα)
w∗

→ w0 − u0 and so w0 − u0 =: z0 ∈ C,
because C is w∗-closed. Therefore, we can write w0 = z0 + u0 with z0 ∈ C
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and u0 ∈ (a+ε)B(X∗), that is, d(w0, C) ≤ a+ε. As ε > 0 is arbitrarily small,

we conclude that d(w0, C) ≤ a = d̂(W,C). So, d̂(cow∗

(W ), C) = d̂(W,C).

The following result is a consequence of Lemma 2.3.

Lemma 3.2. Let X be a Banach space and K a w∗-compact subset of X∗

such that d̂(cow∗

(K), co(K)) > d > 0. Then there exist r0 ∈ R, z0 ∈ cow∗

(K)
and ψ ∈ S(X∗∗) with ψ(z0) > r0 + d and ψ(k) < r0 for all k ∈ K, and

such that , if µ is a Radon probability on K with barycenter r(µ) = z0 and

H = supp(µ), then:

(i) for every w∗-open subset V ⊂ X∗ with V ∩ H 6= ∅, there exist ξ ∈
cow∗

(V ∩H) such that ψ(ξ) > r0 + d,
(ii) there exist a sequence {xn : n ≥ 1} ⊂ B(X) and , for every pair of

disjoint subsets M,N of N, a point ηM,N ∈ H such that

ηM,N (xm) ≥ r0 + d, ∀m ∈M, and ηM,N (xn) ≤ r0, ∀n ∈ N.

Proof. Find ε>0 such that d̂(cow∗

(K), co(K)) > d+ε>0= d̂(K, co(K)).
By Lemma 2.3 there exist z0 ∈ cow∗

(K) and ψ ∈ S(X∗∗) such that
inf ψ(z0 − co(K)) > d+ ε, that is,

ψ(z0) > supψ(co(K)) + d+ ε ≥ supψ(K) + ε+ d.

So, if r0 := supψ(K)+ε, then ψ(z0) > r0+d and ψ(k) < r0 for all k ∈ K. Let
µ be a Radon Borel probability on K with r(µ) = z0 and let H := supp(µ).

Claim. For every w∗-open subset V of X∗ with V ∩H 6= ∅ there exist

ξ ∈ cow∗

(V ∩H) and η ∈ co(V ∩H) ⊂ cow∗

(V ∩H) such that ψ(ξ) > r0 + d
and ψ(η) < r0.

Indeed, by Lemma 2.3 there exists ξ ∈ cow∗

(V ∩H) with inf ψ(ξ − co(K))
> d + ε, that is, ψ(ξ) > r0 + d. On the other hand, as ψ(k) < r0 for all
k ∈ K, we have ψ(η) < r0 for every η ∈ co(V ∩H).

Thus, by the Claim and the proof of [15, Lemma 2] we can find a sequence
{xn : n ≥ 1} ⊂ S(X) such that, if we define

An = {ξ ∈ H : ξ(xn) > r0 + d}, Bn = {η ∈ H : η(xn) < r0}, ∀n ≥ 1,

then, for every pair of disjoint finite subsets M,N of N, the w∗-open subset
V (M,N) := (

⋂
m∈M Am) ∩ (

⋂
n∈N Bn) of H is nonempty. In particular,

∅ 6= V (M,N) ⊂
( ⋂

m∈M

A
w∗

m

)
∩

( ⋂

n∈N

B
w∗

n

)
⊂ H.

Since H is a w∗-compact subset, we conclude that for every pair of disjoint
(finite or infinite) subsets M,N of N ,

∅ 6=
( ⋂

m∈M

A
w∗

m

)
∩

( ⋂

n∈N

B
w∗

n

)
⊂ H.
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Since A
w∗

m ⊂ {ξ ∈ H : ξ(xm) ≥ r0 + d} and B
w∗

n ⊂ {η ∈ H : η(xn) ≤ r0}, we
finally deduce that for every pair of disjoint (finite or infinite) subsets M,N
of N there exists ηM,N ∈ H such that

ηM,N (xm) ≥ r0 + d, ∀m ∈M, and ηM,N (xn) ≤ r0, ∀n ∈ N.

Definition 3.3. If X is a Banach space, a subset F of X∗ is said to be
a w∗-N-family of width d > 0 if F is bounded and has the form

F = {ηM,N : M,N disjoint subsets of N},

so that there exist two sequences {rm : m ≥ 1} ⊂ R and {xm : m ≥ 1} ⊂
B(X) such that for every pair of disjoint subsets M,N of N we have

ηM,N (xm) ≥ rm + d, ∀m ∈M, and ηM,N (xn) ≤ rn, ∀n ∈ N.

Moreover, if rm = r0 for all m ≥ 1, we say that F is a uniform w∗-N-family

in X∗. We say that A ⊂ X∗ has a w∗-N-family if there exists a w∗-N-family
F ⊂ A.

Remark 3.4. (0) If Z is a set, a family (Ai, Bi)i∈I of pairs of nonempty
subsets of Z is said to be an independent family ifAi∩Bi = ∅ for all i ∈ I, and
for every finite nonempty subset F ⊂ I we have

⋂
i∈F εiAi 6=∅, where εi =

±1, (+1)Ai = Ai and (−1)Ai = Bi. In N there exists an independent family
(Mi, Ni)i<c of cardinality c. Indeed, since βN is an extremally disconnected
compact Hausdorff space with weight w(βN) = c (see [21, p. 76]), by the
Balcar–Franěk theorem (see [2], [7, p. 120]) there exists a continuous onto
mapping f : βN → {0, 1}c. Let πi : {0, 1}c → {0, 1}, i < c, be the projection
onto the i-factor {0, 1} and put Mi := (πi ◦ f)−1(1) ∩ N and Ni := (πi ◦
f)−1(0) ∩ N. Clearly, {(Mi, Ni) : i < c} is an independent family in N.

(1) If (Mi, Ni)i<c is an independent family in N of cardinality c and F =
{ηM,N : M,N disjoint subsets of N} is a w∗-N-family in the dual Banach
space X∗, then a standard argument (see [8, p. 206]) proves that the family
{ηMi,Ni

: i < c} is equivalent to the basis of ℓ1(c). Moreover, the same
argument shows that the sequence {xn : n ≥ 1} ⊂ B(X) associated to F is
equivalent to the basis of ℓ1.

(2) So, if a dual Banach space X∗ has a w∗-N-family, then X has an
isomorphic copy of ℓ1. And vice versa, ifX has a copy of ℓ1, thenX∗ contains
a w∗-N-family. Indeed, let i : ℓ1 → X be an isomorphism between ℓ1 and
i(ℓ1), and i∗ : X∗ → ℓ∞ its adjoint operator, which is a quotient mapping
such that B(ℓ∞) ⊂ i∗(‖i−1‖B(X∗)). For each pair M,N of disjoint subsets
of N choose ηM,N ∈ ‖i−1‖B(X∗) such that i∗(ηM,N ) = 1M − 1N . Then
{ηM,N : M,N disjoint subsets of N} is a w∗-N-family in X∗.

(3) Let F = {ηM,N : M,N disjoint subsets of N} be a w∗-N-family
of width δ > 0 in a dual Banach space X∗, associated to the sequences
{rm : m ≥ 1} ⊂ R and {xm : m ≥ 1} ⊂ B(X). Then for every 0 <
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γ < δ there exists an infinite subset Nγ ⊂ N such that Fγ := {ηM,N :
M,N disjoint subsets of Nγ} is a uniform w∗-N-family of width γ > 0 asso-
ciated to the sequence {xm : m ∈ Nγ} ⊂ B(X) and some number r0 ∈ R.
Indeed, since the sequence {rm : m ≥ 1} ⊂ R is bounded, there exists
some r0 ∈ R such that Nγ := {m ∈ N : r0 + η − δ ≤ rm ≤ r0} is infinite.
Now, it is easy to see that Fγ := {ηM,N : M,N disjoint subsets of Nγ} is
a uniform w∗-N-family of width γ > 0 associated to r0 and the sequence
{xm : m ∈ Nγ} ⊂ B(X).

(4) It is worth mentioning (and easy to see) that, if A is a subset of X∗,
then A has a w∗-N-family if and only if A does.

Proposition 3.5. Let X be a Banach space.

(1) If K is a w∗-compact subset of X∗ such that K fails to have a w∗-

N-family (in particular , if K contains no copy of the basis of ℓ1(c)),
then cow∗

(K) = co(K).
(2) If C is a convex subset of X∗ that fails to have a w∗-N-family (in

particular , if C contains no copy of the basis of ℓ1(c)), then C has

3-control inside X∗, that is, for every w∗-compact subset K of X∗

we have d̂(cow∗

(K), C) ≤ 3d̂(K,C).

Proof. (1) Otherwise, there exists d > 0 such that d̂(cow∗

(K), co(K)) >
d > 0. By Lemma 3.2 there exist {xn : n ≥ 1} ⊂ B(X), r0 ∈ R and, for
every pair of disjoint subsets M,N of N, a vector ηM,N ∈ K such that

ηM,N (xm) ≥ r0 + d, ∀m ∈M, and ηM,N (xn) ≤ r0, ∀n ∈ N.

Thus there exists a w∗-N-family in K, a contradiction.
(2) Suppose that C fails to have 3-control inside X∗. Then there exist

a w∗-compact subset K of X∗ and a, b > 0 such that d̂(cow∗

(K), C) > b >

3a > 3d̂(K,C). So, as d̂(co(K), C)= d̂(K,C)<a, we have d̂(cow∗

(K), co(K))
> b − a > 0. By Lemma 3.2 there exist r0 ∈ R, {xn : n ≥ 1} ⊂ B(X) and,
for every pair of disjoint subsets M,N of N, a vector ηM,N ∈ K such that

ηM,N (xm) ≥ r0 + b− a, ∀m ∈M, and ηM,N (xn) ≤ r0, ∀n ∈ N.

As d̂(K,C) < a, for each pair of disjoint subsetsM,N of N there is zM,N ∈ C
so that ‖zM,N − ηM,N‖ < a. Thus, the family {zM,N : M,N disjoint subsets
of N} is bounded and satisfies

zM,N (xm) ≥ r0 + b− 2a, ∀m ∈M, and zM,N (xn) ≤ r0 + a, ∀n ∈ N.

Since r0 + b− 2a = r0 + a+ (b− 3a) > r0 + a, the set {zM,N : M,N disjoint
subsets of N} is a w∗-N-family in C, a contradiction.

Remark 3.6. For a convex subset C of a dual Banach space X∗, the
statements “C has 3-control inside X∗” and “C contains no w∗-N-family”
are not equivalent, in general. For example, if C := B(ℓ∞), then C has a w∗-
N-family (this is trivial), and also C has 1-control (and so 3-control) inside
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ℓ∞ because C is w∗-closed (see Proposition 3.1). Concerning the statement
“C contains no copy of the basis of ℓ1(c)”, it can be characterized as follows.

Proposition 3.7. Let X be a Banach space and C a convex subset

of X∗. The following statements are equivalent :

(i) C contains no copy of the basis of ℓ1(c).
(ii) C has universal 3-control , that is, if [C] is (isomorphic to) a sub-

space of some dual Banach space V ∗, then C has 3-control inside

V ∗.

(iii) C has universal control , that is, if [C] is (isomorphic to) a subspace

of some dual Banach space V ∗, then C has control inside V ∗.

Proof. (i)⇒(ii) follows from Proposition 3.5, and (ii)⇒(iii) is obvious.
(iii)⇒(i). Suppose that C contains a copy K of the basis of ℓ1(c) and

let Z := [C]. By the proof of [13, Prop. 3] there exists a closed subspace
V of Z∗ norming on Z such that K is σ(Z, V )-compact but coσ(Z,V )(K) is
not σ(Z, V )-compact. Let i : Z → V ∗ be the canonical embedding such that
i(z)(v) = 〈v, z〉 for all z ∈ Z and v ∈ V . Clearly, i is a norm-isomorphism
between Z and i(Z). Moreover, i : (Z, σ(Z, V )) → (i(Z), w∗) is also an
isomorphism. Then i(K) is a w∗-compact subset of V ∗ such that i(K) ⊂
i(C). Since coσ(Z,V )(K) is not σ(Z, V )-compact in (Z, σ(Z, V )), necessarily

cow∗

(i(K)) \ i(Z) 6= ∅ and so d̂(cow∗

(i(K)), i(C)) > 0. Thus i(C) does not
have control inside V ∗, a contradiction to (iii).

A result of Talagrand [20] allows us to prove the following corollary:

Corollary 3.8. Let X be a Banach space and A a subset of X∗ that

contains no copy of the basis of ℓ1(c). Then:

(1) For every w∗-compact subset K ⊂ [A] we have cow∗

(K) = co(K).
(2) Every convex subset C ⊂ [A] has 3-control inside X∗.

Proof. First, observe that [A] contains no copy of the basis of ℓ1(c),
because, if τ is a cardinal with cofinality cf(τ) > ℵ0, then Talagrand proved
in [20, Theorem 4] that A contains a copy of the basis of ℓ1(τ) if and only if
[A] has a copy of ℓ1(τ). Now it is enough to apply Proposition 3.5 and the
fact that cf(c) > ℵ0 (see [16, p. 78]).

Corollary 3.9. Let X be a Banach space and let W be a subset of X∗

which is either weakly Lindelöf or is closed , convex and has the property (C)
of Corson. Then

(i) Every convex subset C of [W ] has 3-control inside X∗.

(ii) For every w∗-compact subset K of [W ] we have cow∗

(K) = co(K).

Proof. In both cases W cannot contain a copy of the basis of ℓ1(c) and so
(i) and (ii) follow from Corollary 3.8. Indeed, if W is weakly Lindelöf, then
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W fails to contain a copy of the basis of ℓ1(c) because such a copy would be
a w-closed but non-w-Lindelöf subset.

Suppose now that W is closed, convex and has the property (C) of
Corson. Recall that a closed convex subset F of a Banach space has the
property (C) of Corson if

⋂
i∈I Ci 6= ∅ whenever {Ci : i ∈ I} is a family of

closed convex subsets of F with the countable intersection property, that is,⋂
i∈J Ci 6= ∅ for every countable subset J ⊂ I. If a closed convex subset F

of a Banach space has the property (C) of Corson, then F cannot contain
a copy of the basis of ℓ1(c). Indeed, suppose F := {uσ : σ < c} ⊂ F is
equivalent to the basis of ℓ1(c) and Cσ := co(F \ {uσ}). Clearly, the family
{Cσ : σ < c} has the countable intersection property but

⋂
σ<c

Cσ = ∅.

Remark 3.10. In [19, Problem 4.5] Talagrand asks, among other things,
if cow∗

(K) = co(K) whenever K is a w∗-compact w-Lindelöf subset of a dual
Banach space X∗. Cascales, Namioka and Vera proved in [5, Corollary E]
(see also [4, Theorem 4.5]) that every w∗-compact w-Lindelöf subset of a
dual Banach space X∗ is fragmented by the dual norm. So, applying [18,
Theorem 2.3], they gave an affirmative answer to the question posed by
Talagrand. Clearly, this result is a particular case of Proposition 3.5 because
a w-Lindelöf subset cannot contain a copy of the basis of ℓ1(c), and so it
does not have a w∗-N-family.

4. Convex subsets of Banach spaces with w∗-angelic closed dual

unit ball . If Y is a Banach space, the closed dual unit ball B(Y ∗) is said

to be w∗-angelic if given a subset A of B(Y ∗) and a ∈ A
w∗

, there exists a

sequence {an : n ≥ 1} ⊂ A such that an
w∗

→ a. In this section we consider
a particularly favorable case of the problem of the control of the distance
d̂(cow∗

(K), C) by the distance d̂(K,C), C being a convex subset of X∗ and
K a w∗-compact subset of X∗. This case appears when C is a convex subset
of some subspace Y of X∗ such that the closed dual unit ball (B(Y ∗), w∗)
is angelic. We prove that in this case there is 1-control.

Lemma 4.1. Let K be a compact Hausdorff space with card(K) ≥ 2, µ a

Radon measure on K and f ∈ C(K) a continuous real function on K. Let

µ = µ+ − µ− be the decomposition of µ into its positive and negative parts.

Then there exist distinct points p1, p2 ∈ K such that

‖µ+‖f(p1) − ‖µ−‖f(p2) ≥ µ(f).

Proof. Let p1, p2 be two distinct points of K such that

f(p1) = max{f(p) : p ∈ K} and f(p2) = min{f(p) : p ∈ K}.

With this choice the statement holds because

µ+(f) =
\
K

f(k) dµ+(k) ≤
\
K

f(p1) dµ
+(k) = ‖µ+‖f(p1),
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µ−(f) =
\
K

f(k) dµ−(k) ≥
\
K

f(p2) dµ
−(k) = ‖µ−‖f(p2),

whence ‖µ+‖f(p1) − ‖µ−‖f(p2) ≥ µ+(f) − µ−(f) = µ(f).

If I is an infinite set, let c(I) denote the subspace of ℓ∞(I) = C(βI)
consisting of those elements which are constant on I∗ = βI \ I.

Proposition 4.2. Let I be an infinite set and C a convex subset of c(I).
Then for every w∗-compact subset K of ℓ∞(I) (= ℓ1(I)

∗) we have

d̂(cow∗

(K), C) = d̂(K,C).

Proof. Let K be a w∗-compact subset of ℓ∞(I). Without loss of gener-
ality (after a homothety if necessary), we suppose that K ⊂ B(ℓ∞(I)).

The trivial case. Assume that K ⊂ c(I). Observe that c(I) is Asplund
(see [9, p. 6]) because it is isomorphic to c0(I). So, c(I) fails to contain a
copy of ℓ1(c). Thus, from Proposition 3.5 we get cow∗

(K) = co(K) and so

d̂(cow∗

(K), C) = d̂(co(K), C) = d̂(K,C).

The nontrivial case. Suppose that K \ c(I) 6= ∅. This implies that

d̂(K,C) > 0. Assume that d̂(cow∗

(K), C) > d̂(K,C). Thus, for some a, b > 0
we have

d̂(cow∗

(K), C) > b > a > d̂(K,C).

Therefore, there exist vectors w0 ∈ cow∗

(K) \ C and ϕ ∈ S(ℓ∗∞(I)) (see
Lemma 2.1) such that inf ϕ(w0−C) > b. Let ε > 0 be such that a+ε < b. By
the Riesz representation theorem (see [17, p. 46]) the dual ℓ∗∞(I) = C(βI)∗

can be identified with the space of Radon Borel measures MR(βI) on βI.
On the other hand, if µ ∈MR(βI), we have the decomposition µ = µ1 +µ2,
where:

(i) µ1 = (µ1i)i∈I ∈ ℓ1(I) with µ1i = µ({i}), i ∈ I, and µ2 = µ↾I∗, that
is, µ2 is the restriction of µ to the compact space I∗.

(ii) ‖µ‖ = ‖µ1‖ + ‖µ2‖.

So, ℓ∗∞(I) can be identified with the ℓ1-direct sum ℓ1(I) ⊕1 MR(I∗), where
MR(I∗) is the space of Radon Borel measures on I∗. Thus, we have the
decomposition ϕ = ϕ1 + ϕ2 with ϕ1 ∈ ℓ1(I), ϕ2 ∈ MR(I∗) and 1 = ‖ϕ1‖ +
‖ϕ2‖. Let ϕ2 = ϕ+

2 − ϕ−
2 be the decomposition of ϕ2 into its positive and

negative parts, and put λ1 := ‖ϕ+
2 ‖ and λ2 := ‖ϕ−

2 ‖. Now we apply Lemma
4.1 to the compact space I∗, the Radon Borel measure ϕ2 on I∗ and the
continuous function w̌0, where w̌0 is the Stone–Čech continuous extension
of w0 to βI. So, there exist distinct points p1, p2 ∈ I∗ such that

λ1w̌0(p1) − λ2w̌0(p2) ≥ ϕ2(w̌0).

Since w̌0 is continuous on βI, there exist two infinite disjoint subsets V1, V2

of I such that
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(i) pi ∈ Vi
βI
, i = 1, 2.

(ii) For every vi ∈ Vi
βI
, i = 1, 2,

λ1w̌0(v1) − λ2w̌0(v2) > ϕ2(w̌0) − ε/2.

Since V1, V2 are infinite disjoint subsets of I, we can choose two sequences of
pairwise distinct points {dn : n ≥ 1} ⊂ V1 and {en : n ≥ 1} ⊂ V2. Obviously,

(4.1) λ1w̌0(dn) − λ2w̌0(em) > ϕ2(w̌0) − ε/2, ∀m,n ∈ N.

Let µ be a Radon Borel probability on K with r(µ) = w0. Define the linear
mapping Tn : ℓ∞(I) → R by Tn(f) = ϕ1(f) + λ1f(dn) − λ2f(en) for every
n ∈ N and every f ∈ ℓ∞(I). Clearly, Tn is ‖ · ‖-continuous and w∗-continuous
with ‖Tn‖ ≤ 1. By (4.1) for every n ≥ 1 we have

ϕ(w0) − ε/2 = ϕ1(w0) + ϕ2(w̌0) − ε/2

< ϕ1(w0) + λ1w̌0(dn) − λ2w̌0(en) = Tn(w0),

whence

ϕ(w0) − ε/2 < Tn(w0) = Tn(r(µ)) =
\
K

Tn(f) dµ(f).

Let An := {f ∈ K : Tn(f) > ϕ(w0) − ε} for all n ≥ 1. Observe that An is a
relatively w∗-open subset of K for all n ≥ 1.

Claim 1. µ(An) ≥ ε/2 for all n ≥ 1.

Indeed, for every n ≥ 1 we have

ϕ(w0) − ε/2 < Tn(w0) =
\
K

Tn(f) dµ(f) =
( \

An

+
\

K\An

)
Tn(f) dµ(f)

≤ µ(An) + ϕ(w0) − ε.

Thus µ(An) ≥ ε/2 for all n ≥ 1.
Let Bn :=

⋃
m≥nAm for every n ≥ 1. The sequence {Bn}n≥1 is decreas-

ing and satisfies µ(Bn) ≥ ε/2 for every n ≥ 1. Hence µ(
⋂

n≥1Bn) ≥ ε/2
and so

⋂
n≥1Bn 6= ∅. Choose g ∈

⋂
n≥1Bn and, inductively, the sequence

{Ani
}i≥1, ni < ni+1, such that g ∈ Ani

for every i ≥ 1. Then

ϕ1(g) + λ1g(dni
) − λ2g(eni

) = Tni
(g) > ϕ(w0) − ε, ∀i ≥ 1.

By a compactness argument, we can choose two distinct points q1 ∈

{dni
: i ≥ 1}

βI
\ I ⊂ V1

βI
and q2 ∈ {eni

: i ≥ 1}
βI

\ I ⊂ V2
βI

such that

(4.2) ϕ1(g) + λ1ǧ(q1) − λ2ǧ(q2) ≥ ϕ(w0) − ε.

Let ψ := ϕ1 + (λ1δq1
− λ2δq2

). Observe that ψ belongs to S(ℓ∗∞(I)).

Claim 2. inf ψ(g − C) ≥ b− ε.

Indeed, if c ∈ C then c ∈ c(I) and so č is constant on I∗. Thus

ψ(c) = ϕ1(c) + (λ1δq1
− λ2δq2

)(č) = ϕ1(c) + (λ1 − λ2)č(q1)

= ϕ1(c) + ϕ2(č) = ϕ(c).
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So, taking into account (4.2) and the fact that inf ϕ(w0 − C) > b, for every
c ∈ C we have

〈ψ, g − c〉 = ϕ1(g) + (λ1ǧ(q1) − λ2ǧ(q2)) − ϕ(c)

≥ ϕ(w0) − ε− ϕ(c) = 〈ϕ,w0 − c〉 − ε > b− ε.

Therefore, we get d(g, C) ≥ b− ε. On the other hand, as g ∈ K, we have
d(g, C) < a by hypothesis. So b − ε < a, which contradicts the choice of ε
and completes the proof.

Proposition 4.3. Let X be a Banach space and Y a closed subspace

of X∗ with w∗-angelic closed dual unit ball (B(Y ∗), w∗). If C is a convex

subset of Y , then d̂(cow∗

(K), C) = d̂(K,C) for every w∗-compact subset K
of X∗. Moreover , cow∗

(K) = co(K) for every w∗-compact subset K of Y .

Proof. Let C be a convex subset of Y and suppose that there exist a
w∗-compact subset K ⊂ B(X∗) and 0 < a, b < 1 such that

d̂(cow∗

(K), C) > b > a > d̂(K,C).

Let w0 ∈ cow∗

(K) be such that d(w0, C) > b. By Lemma 2.1 there exists
ϕ0 ∈ S(X∗∗) such that inf ϕ0(w0 − C) > b. Let ε > 0 be such that b+ ε <
inf ϕ0(w0 − C) and define

U := {ϕ ∈ B(X∗∗) : 〈ϕ,w0〉 ≥ 〈ϕ0, w0〉 − ε},

V := {x ∈ B(X) : 〈w0, x〉 ≥ 〈ϕ0, w0〉 − ε}.

Observe that ϕ0 ∈ U and, as 〈ϕ0, w0〉 − ε < 1, also U = V
w∗

. If i : Y → X∗

is the canonical inclusion, then i∗ : X∗∗ → Y ∗ satisfies i∗(ϕ0) ∈ i∗(U) =

i∗(V )
w∗

⊂ B(Y ∗). Since (B(Y ∗), w∗) is angelic, there exists a sequence {xn :

n ≥ 1} ⊂ V such that i∗(xn)
w∗

→ i∗(ϕ0) in the w∗-topology σ(Y ∗, Y ). Let
T : X∗ → ℓ∞ be the continuous linear mapping such that T (u) = (u(xn))n≥1

for all u ∈ X∗. Then:

(1) ‖T‖ ≤ 1 and, moreover, T is w∗-w∗-continuous on bounded subsets
of X∗.

(2) As i∗(xn)
w∗

→ i∗(ϕ0), for every y ∈ Y we have y(xn) = i∗(xn)(y) →
i∗(ϕ0)(y). Hence T (Y ) ⊂ c(N) = {f ∈ ℓ∞ : f̌↾N∗ is constant}.

Let C̃ := T (C), T (K) =: H ⊂ B(ℓ∞) and v0 := T (w0). Clearly, H is a

w∗-compact subset of B(ℓ∞) such that d̂(H, C̃) ≤ d̂(K,C) < a because
‖T‖ ≤ 1, and v0 ∈ cow∗

(H). Let en : ℓ∞ → R, n ≥ 1, be the nth canonical
projection. Then {en : n ≥ 1} ⊂ B(ℓ∗∞) and T ∗(en) = xn, n ≥ 1. Let η0 be
a w∗-cluster point of {en : n ≥ 1} in B(ℓ∗∞). Clearly, η0 ∈ S(ℓ∗∞).

Claim. inf η0(v0 − C̃) ≥ b.

Indeed, first T ∗(η0) is a w∗-cluster point of {xn : n ≥ 1} in B(X∗∗). Thus

(i) T ∗(η0) ∈ U , whence 〈T ∗(η0), w0〉 ≥ 〈ϕ0, w0〉 − ε.
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(ii) If c ∈ C, for every n ≥ 1 we have 〈T ∗(en), c〉 = 〈xn, c〉 → 〈ϕ0, c〉,
whence 〈T ∗(η0), c〉 = 〈ϕ0, c〉. Therefore, for every c ∈ C we have

〈η0, v0 − Tc〉 = 〈η0, Tw0 − Tc〉 = 〈T ∗(η0), w0 − c〉

≥ 〈ϕ0, w0〉 − ε− 〈ϕ0, c〉

= 〈ϕ0, w0 − c〉 − ε > b+ ε− ε = b,

and this proves the Claim.

Therefore we get d(v0, C̃) ≥ b. On the other hand, from Proposition 4.2
we deduce that d(v0, C̃) < a. So, we get a contradiction and this proves that

d̂(cow∗

(K), C) = d̂(K,C). Finally, if K is a w∗-compact subset of Y , taking
C = co(K) in the above argument, we deduce that cow∗

(K) = co(K).

Corollary 4.4. LetX be a Banach space andW a w∗-closed w-Lindelöf

subset of X∗. Then C has 1-control inside X∗ whenever C is a convex subset

of [W ].

Proof. Let Wn := {z ∈ W : ‖z‖ ≤ n} for all n ≥ 1. Then Wn is a
w∗-compact w-Lindelöf subset of X∗ and [Wn] is WLD (weakly Lindelöf

determined) by [4, Corollary 6.4]. Therefore [W ] is WLD because [W ] =
⋃

n≥1 [Wn] (for instance, apply [1, Theorem 1.6]) and so the closed unit ball

of [W ]
∗

is w∗-angelic. Now apply Proposition 4.3.
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