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Abstract. It is shown that there is no closed convex bounded non-dentable subset K
of C(ωω

k

) such that on subsets ofK the PCP and the RNP are equivalent properties. Then
applying the Schachermayer–Rosenthal theorem, we conclude that every non-dentable K
contains a non-dentable subset L so that on L the weak topology coincides with the norm
topology. It follows from known results that the RNP and the KMP are equivalent on
subsets of C(ωω

k

).

Introduction. The study of subsets of Banach spaces with the RNP
flourished in the 70’s and 80’s. For the history of the subject and results
until 1977 one can see [14]. For more recent results (until 1983), in the form
of a book, see [13]. Important results can be found in [9]. See also [5] for a
concise exposition of RNP.

Numerous mathematicians worked on the Radon–Nikodym property, in-
cluding: R. Phelps, R. C. James, J. Diestel, J. J. Uhl, Jr., M. Talagrand,
C. Stegall, J. Bourgain, H. Rosenthal, W. Schachermayer, N. Ghoussoub,
B. Maurey, G. Godefroy, S. Argyros.

Important papers in the field are: [7], [9], [10], [24], [15], [22], [19].
The cornerstone of our considerations in this paper is the paper [2] which

can be considered as a localization of the results in [7] and a unification of
Bourgain’s and Schachermayer’s theorems ([7], [22]).

Also [4] played an important role in the constructions of bushes in some
of our theorems.

According to [19] the study of the structure of non-dentable sets of a
Banach space is central in the geometry of Banach spaces.
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The Diestel conjecture has remained open since 1973 both globally and
locally: Is the KMP equivalent to the RNP?

The most significant results related to this problem are the following:

Theorem (Schachermayer, [22, Th. 2.1]). If a convex, bounded, closed
subset D ⊂ X is strongly regular and fails to be an RN-set, then there is a
closed, bounded, convex and separable subset C of D which does not have an
extreme point.

Theorem (Rosenthal, [19, Th. 2]). Let K be a closed bounded non-empty
convex subset of X such that K is non-dentable and has SCS. Then there
exists a closed convex non-empty subset W of K such that

(∗) W is non-dentable and the weak and norm topologies on W coincide.

Moreover there exists a subspace Y of X such that Y has an FDD and a
closed bounded convex non-empty subset W satisfying (∗).

It is known that for certain classes of spaces (or sets) the RNP is equiva-
lent to the KMP: dual spaces (Huff–Morris [16], based on the work of Stegall
[24]), subsets of the positive cone of L1 (Argyros–Deliyanni [2]), spaces which
can be embedded in a space with an unconditional FDD (James [17]), spaces
withX ≡ X⊕X (Schachermayer [23]), Banach lattices (Bourgain–Talagrand
[12]).

It is shown in [2] that in many of the above cases any convex, closed,
bounded non-dentable set contains a subset with the Pal representation.

We believe that a positive answer to the problem of equivalence of the
RNP and KMP on closed convex bounded (c.c.b.) subsets of C(a), where a is
a countable ordinal, and a similar positive answer on c.c.b. subsets of L1, are
a strong indication that the RNP and KMP are equivalent on c.c.b. subsets
of a general Banach space X.

In this paper we show that the RNP and KMP are equivalent on closed
convex bounded subsets of C(a) for ordinals a < ωω

ω
.

The main results in our paper are:

Theorem 3.2. Let X be a separable Banach space that contains no copy
of l1(N), and Qn : X → C(ωω

k
), n ∈ N, be bounded linear operators. Suppose

K is a closed, convex, bounded, non-PCP subset of X such that the PCP
and RNP are equivalent on subsets of K. Then there exists a closed, convex,
bounded, non-dentable subset L of K such that on Qn(L) the norm and weak
topologies coincide for all n ∈ N.

Theorem 3.3. Let K be a closed, convex, bounded, non-dentable subset
of C(ωω

k
). Then there exists a convex closed subset L of K such that L has

the PCP and fails the RNP. Therefore the KMP and RNP are equivalent on
subsets of C(ωω

k
).
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The set L mentioned in Theorem 3.2 is constructed as the closed con-
vex hull of a δ-approximate bush which has a Convex Finite-Dimensional
Schauder Decomposition (CFDSD) ([7], [2], [21]), and is given by the closed
convex hull of the average back bush of a δ-approximate bush.

The result of Theorem 3.3 is best possible for spaces C(ωω
a
), for a ordi-

nal, since E. Odell [18] has proved, in unpublished work, that C(ωω
ω
) con-

tains a convex, closed, bounded non-dentable subset L on which the PCP is
equivalent to the RNP.

Preliminaries

RNP and related properties. Let K a closed, convex, bounded subset of
a Banach space X. The set K has the Radon–Nikodym property (RNP) if
for every probability space (Ω,B, µ) and every X-valued measure m on B
which is absolutely continuous with respect to µ and whose average range is
contained in K, there exists an f ∈ L1

X(Ω,B, µ) such that m(A) =
	
A f dµ

(Bochner integral) for each A ∈ B. The setK has theKrein–Milman Property
(KMP) if each closed, convex, bounded subset of K is the closed convex hull
of its extreme points.

The slice S(f, a,K) of K determined by f ∈ X∗ and a > 0 is the set
S(f, a,K) = {x ∈ K : f(x) ≥ sup f(K)− a}.

The set K is said to be strongly regular if for every non-empty subset L of
K and any ε > 0, there exist positive scalars a1, . . . , an with

∑n
i=1 ai = 1 and

slices S1, . . . , Sn of L such that the diameter of
∑n

i=1 aiSi is less than ε. The
set K has the Point of Continuity Property (PCP) if for every weakly closed
non-empty subset L of K the identity map i : (L,w)→ (L, ‖ · ‖) has a point
of continuity. The set K has the Convex PCP (CPCP) if for every closed
convex non-empty subset L of K the identity map i : (L,w)→ (L, ‖ · ‖) has
a point of continuity ([15]).

If K is non-PCP then there are L ⊆ K and δ > 0 such that L is δ-non-
PCP (i.e. for every weak open subset W of L we have diamW > δ [7]). Of
course if K is δ-non-PCP, then K is non-PCP.

It is well known that if K has the PCP then K is strongly regular ([9]).

Operators on L1 and RNP. Let

P(µ) =
{
f ∈ L1(µ) : f ≥ 0 and

�
f dµ = 1

}
be the probability densities in L1(µ).

It is well known that K has the RNP if and only if every bounded linear
operator T : L1(µ) → X such that Tf ∈ K for every f ∈ P(µ) is repre-
sentable. An operator T : L1(µ) → X is said to be representable if there is
a function g ∈ L∞X (µ) such that Tf =

	
fg dµ (Bochner integral) for every

f ∈ L1(µ) ([14]).
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The set K is strongly regular if and only if every bounded linear operator
T : L1(µ) → X with T (P) ⊆ K is strongly regular (which means that if a

net (fi)i∈I ⊆ P converges weakly to f ∈ P then Tfi
‖·‖−−→ Tf [15]).

A bounded linear operator T from L1 to a Banach space X is said to be
a Dunford–Pettis operator if T maps every weakly compact subset of L1 into
a norm compact subset of X ([14]).

Indices, trees and bushes. In the notation we follow [2]. The set of all
finite sequences of natural numbers of the form a = (0, a1, . . . , an) is denoted
by N(N). Using the notion of length (|0| = 0, |(0, a1, . . . , an)| = n) and the
notion of restriction (a/n = |(0, a1, . . . , an)| if |a| ≥ n) we can define a
partial order in N(N) by a ≤ β if and only if |a| ≤ |β| and β/|a| = a, when
a, β ∈ N(N). We also make use of the lexicographic total order of N(N) and
denote it by <lex. A subset A of N(N) is called a finitely branching tree if
the set {a ∈ A : |a| = n} is finite for every n ∈ N. The set of immediate
successors of a ∈ A is denoted by Sa = {β : a < β, |β| = |a| + 1} and is
finite when A is a finitely branching tree.

Let (εn)n ⊂ (0, 1) be such that
∑∞

n=0 εn < δ/4. A bounded subset
(xa)a∈A of a Banach space X is called a δ-approximate bush with δ > 0
if A is a finitely branching tree, for every a, β ∈ A with β ∈ Sa we have
‖xa − xβ‖ > δ, and there exists {λβ : β ∈ Sa} with λβ ≥ 0,

∑
β∈Sa λβ = 1

and ‖xa−
∑

β∈Sa λβxβ‖ < ε|a|. The vectors yβ = xβ −xa, where β ∈ Sa, are
called the nodes of the approximate bush.

We have the identity
∑
|β|=m λβxβ =

∑m
n=0

∑
|a|=n µaya where µa = λa

for |a| = m, and µa =
∑

β∈Sa µβ if m > |a|.
We can then define the notion of the average back bush (x̃a)a∈A corre-

sponding to the approximate bush. Set xma =
∑
|β|=m λ

(a)
β xβ for a ∈ A and

m > |a|, a convex combination, where the numbers λ(a)
β are defined induc-

tively. Ifm = |a|+1 then xma =
∑

β∈Sa λβxβ with the numbers λβ those in the

definition of the δ-approximate bush, and if the numbers λ(a)
β with |β| = n

are defined for some n, then set λ(a)
γ = λ

(a)
β λγ for |γ| = n+ 1 with the num-

bers λγ those in the definition of the δ-approximate bush. It can be shown
that the sequence {xma }m>|a| is norm Cauchy. Define x̃a = limm→∞ x

m
a ; then

for a ∈ A, β ∈ Sa we have ‖x̃a− x̃β‖ > δ/2, x̃a =
∑

β∈Sa λβx̃β and every x̃a
belongs to co (xa)a∈A.

Let (ya)a∈A and (ỹa)a∈A be the nodes of the δ-approximate bush (xa)a∈A
and of the corresponding regular bush (x̃a)a∈A respectively, when the
family (µa)a∈A of real numbers is a normalized conditionally determined
family (which means that µ0 = 1, µa ≥ 0, and µa =

∑
β∈Sa µβ , [21]). Then∑∞

n=0

∑
|a|=n µaya =

∑∞
n=0

∑
|a|=n µaỹa whenever either series converges.
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The spaces C(ωω
k
). Let ω be the first infinite ordinal number corre-

sponding to N, and let k ∈ N∗.
Then ωω

k
=
∑∞

n=0 ω
ωk−1·n and if C(K) is the space of continuous real

functions defined on the set K, we have

C(ωω
k
) =

( ∞∑
n=0

⊕C(ωω
k−1·n)

)
0
.

This can be proved by using the result due to Bessaga and Pełczyński [6].

Theorem (Bessaga–Pełczyński). If a < β are countable ordinals, then
C(a) and C(β) are isomorphic Banach spaces if and only if β < aω.

Moreover, C(ω) is isomorphic to c0, and C(ωω
k
) is isomorphic to C(ωω

k·n)
for n ∈ N.

Finally it is known that C(ωω), and hence C(a) with a > ωω, can-
not be embedded in a Banach space with an unconditional basis (in fact
C(ωω) cannot be embedded in a Banach space with an unconditional FDD)
(Pełczyński’s thesis). See also [1, Theorem 4.5.2]. Of course, that means that
no C(ωω

k
) can be embedded in a Banach space with an unconditional basis

since C(ωω) is a subspace of C(ωω
k
) for every k ∈ N∗.

The fundamental example. In [4] one can find two examples of closed
bounded convex subsets of c0. The first example has the CPCP but fails the
PCP. The second is strongly regular but fails the CPCP.

These examples are the prototype for the following simplified example
which is fundamental for our work.

We denote by D the dyadic tree (i.e. the family of all finite sequences
consisting of 0’s and 1’s), ordered by the initial segment partial order, and
we endow c00(D) with the supremum norm. Clearly its completion is c0(D).
For a ∈ D , we define by xa =

∑
γ≤a eγ , where (ea)a∈D is the natural basis

of c00(D). We also set

x̃a = xa +
∞∑
k=1

∑
|b|=|a|+k
b>a

1
2k
eb.

Then on the set K = co (x̃a)a∈D the weak and norm topologies coincide.

1. “Large” operators on L1 with “small” projections

Proposition 1.1. Let X, Xn, n ∈ N, be Banach spaces. Suppose that
X =

∑∞
n=1⊕Xn and there exists a non-strongly regular operator T : L1(0, 1)

→ X such that the operators PnT : L1(0, 1) → Xn are strongly regular for
every n ∈ N where Pn denotes the projection Pn : X → Xn. Then there
exists an operator D : L1(0, 1) → L1(0, 1) such that TD : L1(0, 1) → X is
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non-representable and the operators PnTD : L1(0, 1)→ Xn are representable
for every n ∈ N.

Proof. Since T is non-strongly regular, there exists a Borel set U ⊂ (0, 1)
and δ > 0 such that for every weak open subset W of PU we have

(1) diam(T (W )) > 2δ ([15, Theorem IV.10])

(where PU = {f ∈ L1(0, 1) : f ≥ 0,
	
f = 1, supp f ⊂ U} are the densities

supported in U). Since PnT are strongly regular operators, for every n ∈ N,
we get

(2) the maps PnT : PU → Xn are weak-to-norm continuous.

Inductively we define (fa)a∈A in PU with the following properties:

(i) For every a ∈ A and β ∈ Sa, ‖Tfa − Tfβ‖ > δ.
(ii) For all a ∈ A there exists (λβ)β∈Sa with λβ ≥ 0,

∑
β∈Sa λβ = 1 and

‖fa −
∑

β∈Sa λβxβ‖ < 1/2n.
(iii) For all n ∈ N and a ∈ A with |a| ≥ n, and all β ∈ Sa, we have

‖PnTfa − PnTfβ‖ < 1/2n.

The construction goes as follows. Assume that (fa)|a|≤n have been chosen
satisfying the inductive assumptions. Then setting An = {a : |a| = n}, for
every a ∈ An we choose a net (fa,i)i∈Ia ⊂ PU such that fa,i

w−→ fa and
‖Tfa,i − Tfa‖ > δ.

Since for k = 1, . . . , n + 1, PkTfa,i
‖·‖−−→ PkTfa, we may assume that the

net (fa,i)i∈Ia satisfies ‖PkTfa,i − PkTfa‖ < 1/2n+1.
By Mazur’s theorem there exists a finite subset Fa of Ia and (λi)i∈Fa

with λi ≥ 0 and
∑

i∈Fa λi = 1 such that ‖fa −
∑

i∈Fa λifa,i‖ < 1/2n+1.
We can write the finite set of immediate successors of a as Sa = {β : β =

(a, i), i ∈ Fa} and the family (fβ)β∈Sa , |a| = n, is as desired.
Let us point out that if we do not require the fβ , β ∈ Sa, to be different,

we may assume limn→∞max{λa : |a| = n} = 0. Let (ξn)n∈N be the quasi-
martingale which is determined by this bush. Then σ(

⋃
n∈N σ(ξn)) = B(0, 1)

(the Borel measurable sets).
For a

⋃
n∈N σ(ξn)-simple function ϕ the limit Dϕ = limn→∞

	
ξn(t)ϕ(t) dt

exists. By density we extend the operator D on L1(0, 1). Then the operator
TD : L1(0, 1) → X is non-representable, since for all a and β ∈ Sa we
have ‖Tfβ − Tfa‖ > δ, while the operators PnTD : L1(0, 1) → Xn are
representable for every n ∈ N, since for n ∈ N and |γ| = m + k > m = |a|,
γ > a, we have

‖PnTfγ − PnTfa‖ ≤
1

2m
+

1
2m+1

+ · · ·+ 1
2m+k−1

<
1

2m−1
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and so �
‖PnTfγ − PnTfa‖ dt <

1
2m−1

.

Taking m large enough implies that the bush (PnTfa)a∈A is Cauchy in the
Bochner norm in Xn, for every n ∈ N, and therefore the operators PnTD
are representable [14].

Of related interest is the following:

Proposition 1.2. Let X,Xn, n ∈ N, be Banach spaces. Suppose that
X =

∑∞
n=1⊕Xn and let T : L1(0, 1)→ X be a non-Dunford–Pettis operator

such that the operators PnT : L1(0, 1) → Xn are Dunford–Pettis. Then the
conclusion of Proposition 1.1 is true.

Proof. It is shown in [8] that if T : L1(0, 1) → X is non-Dunford–Pettis
then there exists a dyadic tree {ψn,k : n = 0, 1, . . . , 1 ≤ k ≤ 2n} in L1(0, 1)
such that (Tψn,k) is a δ-tree inX. The nodes dn,k = ψn+1,2k−1−ψn+1,2k of the
tree (ψn,k) can be taken to be of the form 2ψn,krn,k, where rn,k are elements
of a weakly null sequence (rn)n∈N in L1(0, 1) such that infn ‖Trn‖ > δ′ for
some δ′ > 0. Since PiT are Dunford–Pettis for every i ∈ N, we may choose
the {rn,k : n = 0, 1, . . . , 1 ≤ k ≤ 2n} so that for every i ∈ N there exists an
ni ∈ N such that

∑2n

k=1 ‖PiTdn,k‖ < 1/2n for n > ni.

Let D : L1(0, 1)→ L1(0, 1) be the operator defined by the tree (ψn,k). It
follows that the operators PiTD : L1(0, 1) → X are representable for every
i ∈ N (in fact can be taken to be compact).

2. Convex sets on which the norm and weak topologies coin-
cide. In this section we show that under certain conditions there exist closed
bounded convex sets on which the norm topology coincides with the weak
topology.

Definition 2.1. Let (xa)a∈A be a δ-approximate bush with (ya)a∈A the
corresponding nodes. Let also (x̃a)a∈A be the regular averaging back bush
resulting from (xa)a∈A. We say that the closed convex set K = co (x̃a)a∈A
has the non-atomic martingale coordinatization property if every x ∈ K

can be represented as x =
∑∞

k=0

∑
|a|=k λ

(x)
a ya with λ

(x)
∅ = 1, λ(x)

a ≥ 0,

λ
(x)
a =

∑
b∈Sa λ

(x)
b for all a ∈ A and if we set λ(x)

k = max{λ(x)
a : |a| = k},

then limk→∞ λ
(x)
k = 0.

Notation. In what follows, for a Banach space X admitting a (not
necessarily finite) Schauder decomposition (Xn)n∈N (i.e. X =

∑∞
k=1⊕Xn)

and x ∈ X, we say that I ⊂ N is the support of x, written I = suppx, if
I is minimal such that x ∈

∑
n∈I ⊕Xn. Also for X =

∑∞
k=1⊕Xn, a family
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(ya)a∈A is said to be block if its elements have pairwise disjoint supports with
respect to (Xn)n∈N.

Definition 2.2. Let X be a Banach space with a Schauder decom-
position (Xn)n∈N. A δ-approximate bush (xa)a∈A is said to be a block δ-
approximate bush if there exists a family (Ia)a∈A of disjoint intervals of N
such that if a <lex b, then Ia < Ib, and for every a ∈ A, supp ya ⊂ Ia.

Lemma 2.3. Let X be a Banach space with a Schauder decomposition
(Xn)n∈N and (xa)a∈A be a block δ-approximate bush in X. Then for every
x ∈ co (x̃a)a∈A there exists a unique non-atomic martingale coordinatization.

Proof. By definition, x̃a has a martingale coordinatization for all a ∈ A,
hence so does every x ∈ co (x̃a)a∈A.

Let x ∈ co (x̃a)a∈A, and let (xn)n∈N ⊂ co (x̃a)a∈A be such that xn
‖·‖−−→ x.

Assume that xn =
∑∞

k=0

∑
|a|=k λ

n
aya for each n and (y∗a)a∈A are the biortho-

gonal functionals of (ya)a∈A, defined on 〈(ya)a∈A〉. Then y∗a(xn)→ y∗a(x) for
all a ∈ A. Therefore for each a ∈ A, there exists λ(x)

a such that λna → λ
(x)
a .

Then x =
∑∞

k=0

∑
|a|=k λ

(x)
a ya and this coordinatization is unique.

Also, it is non-atomic, since if x =
∑∞

k=0

∑
|a|=k λ

(x)
a ya and ε > 0, then

there exists n0 ∈ N such that ‖
∑∞

k=n

∑
|a|=k λ

(x)
a ya‖ < ε for all n ≥ n0, thus

if |a| = n ≥ n0, then

λ(x)
a ‖ya‖ ≤ C

∥∥∥ ∞∑
k=n

∑
|a|=k

λ(x)
a ya

∥∥∥ ≤ Cε.
This yields λ(x)

a ≤ Cε/δ and hence λ(x)
k = max{λ(x)

a : |a| = k} → 0.

Lemma 2.4. Let X be a Banach space with a Schauder decomposition
(Xn)n∈N and (xa)a∈A be a δ-approximate bush in X. Assume moreover that
there exists a block δ′-approximate bush (x′a)a∈A such that if we denote by
(ya)a∈A, (y′a)a∈A the corresponding families of nodes, we have ‖ya − y′a‖
< δa and

∑
a∈A δa < ∞. Then the set K = co (x̃a)a∈A has the non-atomic

martingale coordinatization property.

Proof. Let x ∈ K, and let (xn)n∈N ⊂ co (x̃a)a∈A with xn
‖·‖−−→ x. If

xn =
∞∑
k=0

∑
|a|=k

λnaya,

then since the set A is countable and (λna)n∈N is bounded for all a ∈ A, by
passing to a subsequence we may assume that λna → λ

(x)
a for all a ∈ A.

Define x′n =
∑∞

k=0

∑
|a|=k λ

n
ay
′
a. As

∑
a∈A ‖ya − y′a‖ < ∞, x′n is well

defined and x′n ∈ co (x̃′a)a∈A. It will be shown that (x′n)n∈N is a Cauchy
sequence.
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Let ε > 0. There exists n0 ∈ N such that ‖xn − xm‖ < ε/3 for all
n,m ≥ n0. There also exists `0 ∈ N such that

∑
|a|>`0 ‖ya − y′a‖ < ε/6.

Moreover, there exists n1 ≥ n0 such that for all n,m ≥ n1, and all a ∈ A
with |a| ≤ `0, we have

|λna − λma | <
ε

3M
, where M =

∑
a∈A
‖ya − y′a‖.

Then, for n,m ≥ n1,

‖x′n − x′m‖ =
∥∥∥ ∞∑
k=0

∑
|a|=k

(λna − λma )y′a
∥∥∥

=
∥∥∥ ∞∑
k=0

∑
|a|=k

(λna − λma )(y′a − ya) + xn − xm
∥∥∥

≤
∥∥∥ `0∑
k=0

∑
|a|=k

(λna − λma )(y′a − ya)
∥∥∥

+
∥∥∥ ∞∑
k=`0+1

∑
|a|=k

(λna − λma )(y′a − ya)
∥∥∥+ ‖xn − xm‖

≤ max{|λna − λma | : |a| ≤ `0}
`0∑
k=0

∑
|a|=k

‖y′a − ya‖

+ sup{|λna − λma | : |a| > `0}
∞∑

k=`0+1

∑
|a|=k

‖y′a − ya‖+ ‖xn − xm‖

≤ ε

3M
M + 2

ε

6
+
ε

3
= ε.

Hence (x′n)n∈N is converging to some x′ ∈ co (x̃′a)a∈A. As in the previous
proof, if we let (y′∗a )a∈A be the biorthogonal functionals to (y′a)a∈A defined
on the space 〈(y′a)a∈A〉, then y′∗a (x′n) → y′∗a (x′) for all a ∈ A. Thus x′ =∑∞

k=0

∑
|a|=k λ

(x)
a y′a and by virtue of Lemma 2.3, (λ(x)

a )a∈A is a non-atomic
martingale coordinatization.

As before, y =
∑∞

k=0

∑
|a|=k λ

(x)
a ya is well defined and y ∈ K. It remains

to show that y = x.
Towards a contradiction, suppose that xn 9 y. By passing to an appro-

priate subsequence, there exists ε > 0 such that ‖xn − y‖ > ε for all n ∈ N.
There also exists `0 ∈ N such that

∑
|a|≥`0 ‖ya−y

′
a‖ < ε/10, and there exists

n1 ∈ N such that ‖
∑

k≤`0
∑
|a|=k(λ

n
a −λ

(x)
a )ya‖ < ε/10 for all n ≥ n1. Hence

for n ≥ n1 we have
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k>`0

∑
|a|=k

(λna − λ(x)
a )ya

∥∥∥ =
∥∥∥xn − y −∑

k≤`0

∑
|a|=k

(λna − λ(x)
a )ya

∥∥∥
≥ ‖xn − y‖ −

∥∥∥ ∑
k≤`0

∑
|a|=k

(λna − λ(x)
a )ya

∥∥∥
> ε− ε

10
=

9ε
10
.

Also,∥∥∥∑
k>`0

∑
|a|=k

(λna − λ(x)
a )ya

∥∥∥
=
∥∥∥∑
k>`0

∑
|a|=k

(λna − λ(x)
a )(ya − y′a) +

∑
k>`0

∑
|a|=k

(λna − λ(x)
a )y′a

∥∥∥
≤
∥∥∥∑
k>`0

∑
|a|=k

(λna − λ(x)
a )(ya − y′a)

∥∥∥+ ‖P|a|>`0(x
′
n − x′)‖

≤ 2
ε

10
+ 2C‖x′n − x′‖.

Here P|a|>`0(x) = x −
∑
|a|≤`0 P̃α(x), where P̃a(x) =

∑
i∈Ia Pi(x), Pi :

X → Xi are the natural projections of the decomposition, and C is the
constant of the decomposition.

By choosing n sufficiently large, we have ‖
∑

k>`0

∑
|a|=k(λ

n
a − λ

(x)
a )ya‖

< 9ε/10, a contradiction that concludes our proof.

Lemma 2.5. Let X be a Banach space, A a finitely branching tree,
(ya)a∈A, (y′a)a∈A subsets of X, and (εn)∞n=0 a sequence of positive reals with∑∞

n=0 εn <∞ and ‖ya − y′a‖ < ε|a| for all a ∈ A. Define

K=
{
x ∈ X : x =

∞∑
k=0

∑
|a|=k

λ(x)
a ya, λ

(x)
∅ = 1, λ(x)

a ≥ 0, λ(x)
a =

∑
b∈Sa

λ
(x)
b , a ∈ A

}
.

Suppose L is a subset of K and that on the set

L′ =
{
x ∈ X : x =

∞∑
k=0

∑
|a|=k

λ(x)
a y′a with

∞∑
k=0

∑
|a|=k

λ(x)
a ya ∈ L

}
the weak and norm topologies coincide. Then on L the weak and norm topolo-
gies also coincide.

Proof. Define (ra)a∈A by ra =
∑

γ≤a(yγ − y′γ). It will be shown that the
set (ra)a∈A is totally bounded.

Let ε > 0. There exists n0 ∈ N such that
∑

n≥n0
εn < ε. Let γ ∈ A with

|γ| ≥ n0. Then there exists a ∈ A with |a| = n0 and a ≤ γ. We have
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‖rγ − ra‖ =
∥∥∥ ∑
a<δ≤γ

(rδ − rδ−)
∥∥∥ =

∥∥∥ ∑
a<δ≤γ

(yδ − y′δ)
∥∥∥ ≤ ∑

a<δ≤γ
‖yδ − y′δ‖ < ε.

Thus the set (ra)a∈A is totally bounded and this means that co (ra)a∈A is
norm compact.

Let x ∈ L, x =
∑∞

k=0

∑
|a|=k λ

(x)
a ya. Since ‖ya − y′a‖ < ε|a|, we con-

clude that
∑∞

k=0

∑
|a|=k λ

(x)
a y′a ∈ L′ and x =

∑∞
k=0

∑
|a|=k λ

(x)
a (ya − y′a) +∑∞

k=0

∑
|a|=k λ

(x)
a y′a. Then

∞∑
k=0

∑
|a|=k

λ(x)
a (ya − y′a) = lim

n→∞

n∑
k=0

∑
|a|=k

λ(x)
a (ya − y′a)

= lim
n→∞

∑
|a|=n

λ(x)
a

(∑
γ≤a

(yγ − y′γ)
)

= lim
n→∞

∑
|a|=n

λ(x)
a ra ∈ co (ra)a∈A.

This means that L ⊂ co (ra)a∈A + L′. Since co (ra)a∈A is norm compact
and on L′ the weak and norm topologies coincide, it can be easily seen that
on co (ra)a∈A + L′ the weak and norm topologies coincide, which of course
means that the same is true for L.

Definition 2.6. Let X be a Banach space with a Schauder decomposi-
tion (Xn)n∈N, A a finitely branching tree and (ya)a∈A a subset of X. Then
(ya)a∈A is called eventually block if there exists n0 ∈ N and a family (Ia)|a|≥n0

of disjoint intervals of N such that if a <lex b, then Ia < Ib, and for every
a ∈ A, supp ya ⊂ Ia.

Remark. For some a ∈ A with |a| ≥ n0 it may occur that ya = 0.

Lemma 2.7. Let X, Xk, k ∈ N, be Banach spaces with X=(
∑∞

k=1⊕Xk)0
= {(xk)k∈N : xk ∈ Xk, and limk→∞ ‖xk‖ = 0}, and let (ya)a∈A be bounded
and eventually block. Set

L =
{
x ∈ X : x =

∞∑
k=0

∑
|a|=k

λ(x)
a ya with λ(x)

∅ = 1, λ(x)
a ≥ 0, λ(x)

a =
∑
b∈Sa

λ
(x)
b

for all a ∈ A and lim
k→∞

max{λ(x)
a : |a| = k} = 0

}
.

Then on L the weak and norm topologies coincide.

Proof. We shall first prove the lemma with the additional assumption
that each ya 6= 0. Let x ∈ L, x =

∑∞
k=0

∑
|a|=k λ

(x)
a ya, ε > 0. It will be

shown that there exists a relative weak neighbourhood U of x in L such that
diam(U) < ε, hence x will be a point of continuity.
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Since 〈{ya : |a| < n0}〉 is finite-dimensional, there exists n1 ≥ n0 such
that 〈{ya : |a| < n0}〉 ∩ 〈{ya : |a| ≥ n1}〉 = {0}.

Indeed, if {x1, . . . , xj} is a Hamel basis of

〈{ya : |a| < n0}〉 ∩ 〈{ya : |a| ≥ n0}〉

then xi =
∑∞

k=n0

∑
|a|=k µ

i
aya for i = 1, . . . , j. Pick a1, . . . , aj ∈ A with

|ai| ≥ n0 and µiai 6= 0 for i = 1, . . . , j. Set n1 = max{|ai| : i = 1, . . . , j}+ 1.

If M = sup{‖ya‖ : a ∈ A}, there exists n2 ≥ n1 such that max{λ(x)
a :

|a| = k} < ε/16M for all k ≥ n2. Then

x = x1 + x2, where x1 =
n2−1∑
k=0

∑
|a|=k

λ(x)
a ya, x2 =

∞∑
k=n2

∑
|a|=k

λ(x)
a ya.

Set

` = #{a ∈ A : |a| ≤ n2}, ε′ =
ε

8(`2M + 2M)
.

Define the biorthogonal functionals (y∗a)|a|=n2
on 〈{ya : a ∈ A}〉 by

y∗a(yγ) =
{

1 if a = γ,

0 otherwise.

This is possible since n2 ≥ n1 and since we assume that ya 6= 0 for all a ∈ A.
Define U = {y ∈ L : |y∗a(y − x)| < ε′, |a| = n2} and let y ∈ U be such

that y =
∑∞

k=0

∑
|a|=k λ

(y)
a ya. Then

y = y1 + y2, where y1 =
n2−1∑
k=0

∑
|a|=k

λ(y)
a ya, y2 =

∞∑
k=n2

∑
|a|=k

λ(y)
a ya.

For a ∈ A with |a| = n2, we have |λ(y)
a − λ(x)

a | = |y∗a(y − x)| < ε′, so
λ

(y)
a < ε′ + ε/16M for all a ∈ A with |a| ≥ n2.
For a ∈ A with |a| < n2, we have

|λ(y)
a − λ(x)

a | =
∣∣∣ ∑
|b|=n2

a<b

(λ(y)
b − λ

(x)
b )
∣∣∣ < ε′`,

so

‖y1 − x1‖ =
∥∥∥ n2−1∑
k=0

∑
|a|=k

(λ(y)
a − λ(x)

a )ya
∥∥∥ ≤ ε′`2M.
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Also we have

‖y2 − x2‖ =
∥∥∥ ∞∑
k=n2

∑
|a|=k

(λ(y)
a − λ(x)

a )ya
∥∥∥ = sup{‖(λ(y)

a − λ(x)
a )ya‖ : |a| ≥ n2}

≤ sup{(|λ(y)
a |+ |λ(x)

a |)M : |a| ≥ n2}

≤
(

ε

16M
+ ε′ +

ε

16M

)
M =

(
ε′ +

ε

8M

)
M.

Then

‖y − x‖ ≤ ‖y1 − x1‖+ ‖y2 − x2‖ ≤ ε′`2M + ε′M +
ε

8
=

ε

8(`2M + 2M)
(`2M + 2M) +

ε

8
=
ε

4
.

Thus diam(U) ≤ ε/2 < ε.
This completes the proof if each ya 6= 0. For the general case, we re-

duce the proof to the previous one as follows. Choose a sequence (εn)∞n=0 of
positive reals with

∑∞
n=0 εn <∞ and define (y′a)a∈A by

y′a =
{
ya if ya 6= 0,
y′′a otherwise,

where supp y′′a ⊂ Ia and 0 < ‖y′′a‖ ≤ ε|a|. We observe that ‖ya − y′a‖ ≤ ε|a|,
and by the previous case and Lemma 2.5 the result follows.

3. The main theorems. This section contains the main results of the
paper. Among other things we show that the KMP is equivalent to the RNP
on subsets of C(ωω

k
). In fact we show something stronger: every non-dentable

subset of C(ωω
k
) contains a convex closed subset L such that L has the PCP

and fails the RNP.

Proposition 3.1. Let Y, Yk, X, Z, Zn, Zn,k, n, k ∈ N, be Banach spaces
such that Y =

∑∞
k=1⊕Yk, Zn = (

∑∞
k=1⊕Zn,k)0, X ↪→ Y and X contains

no copy of `1(N). Let Qn : X → Zn, n ∈ N, be bounded linear operators,
K a closed, convex, bounded, non-PCP subset of X, and suppose that on
Pk(K) and Rn,kQn(K) the weak and norm topologies coincide for all n, k ∈ N
(where Pk : Y → Yk and Rn,k : Zn → Zn,k denote the projections). Then
there exists a closed, convex, non-dentable subset L of K such that on Qn(L)
the weak and norm topologies coincide for all n ∈ N.

Proof. Since K is non-PCP there exists a 2δ-non-PCP subset W of K,
for some δ > 0. We will inductively construct:

(a) a δ-bush (xa)a∈A ⊂W ,
(b) a family (Ia)a∈A of disjoint intervals of N such that if a <lex b, then

Ia < Ib,
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such that:

(1) if x′a =
∑

γ≤a PIγ (yγ), then (x′a)a∈A is a block δ/2-approximate bush
in Y and

∑
a∈A ‖ya − y′a‖ <∞,

(2) if Rn,IaQn(ya) = yna , then (yna )a∈A is eventually block and∑
a∈A
‖Qn(ya)− yna‖ <∞ for all n ∈ N.

Granting this construction, it will now be shown that L := co (x̃a)a∈A is as
desired.

By (1) and Lemma 2.4, L has the non-atomic martingale coordinatization
property. Set

L′n =
{
x ∈ Zn : x =

∞∑
k=0

∑
|a|=k

λ(x)
a yna , λ

(x)
∅ = 1, λ(x)

a ≥ 0, λ(x)
a =

∑
b∈Sa

λ
(x)
b

for all a ∈ A, lim
k→∞

max{λ(x)
a : |a| = k} = 0

}
.

Then by (2) and Lemma 2.4, on L′n the weak and norm topologies coincide.
Now define

Ln =
{
x ∈ Zn : x =

∞∑
k=0

∑
|a|=k

λ(x)
a Qn(ya), λ

(x)
∅ = 1, λ(x)

a ≥ 0, λ(x)
a =

∑
b∈Sa

λ
(x)
b

for all a ∈ A, lim
k→∞

max{λ(x)
a : |a| = k} = 0

}
.

By (2) and Lemma 2.5, on Ln the weak and norm topologies coincide. But L
has the non-atomic martingale coordinatization property, thus Qn(L) ⊂ Ln,
hence on Qn(L) the weak and norm topologies coincide, for all n ∈ N.

In order to complete the proof, we shall now proceed to the previously
mentioned construction.

An important ingredient is the following fact: If X contains no copy of
`1, K is a bounded subset of X and x ∈ Kw, then there exists a sequence
(xn)n∈N in K such that w-limn→∞ xn = x (see [11], [20]).

Choose x∅ = x ∈ W . Since X contains no copy of `1(N) and W is
2δ-non-PCP, there exists a sequence (xm)m∈N ⊂ W such that xm

w→ x and
‖xm − x‖ > δ for all m ∈ N.

For ε0 > 0, there exists k0 ∈ N such that

‖P[1,k0](x)− x‖ < ε0.

Define I∅ = [1, k0].
For ε1 > 0, since ‖Pk(xm−x)‖, ‖R1,kQ1(xm−x)‖

m→∞−−−−→ 0 for all k ∈ N,
there existsm1 ∈ N such that ‖P[1,k0](xm1−x)‖, ‖R1,[1,k0]Q1(xm1−x)‖ < ε1

2·2 .
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There exists k1 > k0 such that

‖P[1,k1](xm1 −x)− (xm1 −x)‖, ‖R1,[1,k1]Q1(xm1 −x)−Q1(xm1 −x)‖ <
ε1

2 · 2
.

Then

‖P(k0,k1](xm1 −x)− (xm1 −x)‖, ‖R1,(k0,k1]Q1(xm1 −x)−Q1(xm1 −x)‖ <
ε1
2
.

Define I1
1 = (k0, k1].

Inductively choose a subsequence (xmi)i∈N of (xm)m∈N and successive
intervals (I1

i )i∈N of N such that

‖PI1i (xmi − x)− (xmi − x)‖, ‖R1,I1i
Q1(xmi − x)−Q1(xmi − x)‖ <

ε1
2i
.

For δ0 > 0, by Mazur’s theorem, there exists a finite set (xb)b∈S∅ ⊂ (xmi)i∈N
and positive reals (λb)b∈S∅ with

∑
b∈S∅ λb = 1 such that∥∥∥x∅ −∑

b∈S∅

λbxb

∥∥∥ < δ0.

Denote by (Ib)b∈Sa the corresponding intervals. Then∑
b∈S∅

‖PIb(yb)− yb‖,
∑
b∈S∅

‖R1,IbQ1(yb)−Q1(yb)‖ <
∞∑
i=1

ε1
2i

= ε1.

Suppose that (xa)|a|≤j and (Ia)|a|≤j have been chosen such that if |a|, |b| ≤ j
and a <lex b, then Ia < Ib, ‖xa −

∑
b∈Sa λbxb‖ < δ|a|, ‖xa − xb‖ > δ for

|a| < j, b ∈ Sa, and also∑
|a|=i

‖PIa(ya)− ya‖,
∑
|a|=i

‖R`,IaQ`(ya)−Q`(ya)‖ < εi for 1 ≤ ` ≤ i ≤ j.

Enumerate the set {a : |a| = j} in lexicographic order and for a1, if N =
#{a : |a| = j}, for εj+1, δj as before choose (xb)b∈Sa1 , (Ib)b∈Sa1 such that
(Ib)|b|≤j < (Ib)b∈Sa1 , ‖xa1 − xb‖ > δ, ‖xa1 −

∑
b∈Sa1

λbxb‖ < δj and∑
b∈Sa1

‖PIb(yb)− yb‖,
∑
b∈Sa1

‖R`,IbQ`(yb)−Q`(yb)‖ <
εj+1

N
for 1 ≤ ` ≤ j + 1.

Continue in the same manner for the rest of the set {a : |a| = j}. Then∑
|a|=j+1

‖PIa(ya)−ya‖,
∑
|a|=j+1

‖R`,IaQ`(ya)−Q`(ya)‖ < εj+1 for 1 ≤ ` ≤ j+1.

The inductive construction is complete. If the sequences (εj)∞j=0

and (δj)∞j=0 have been suitably chosen, then the conclusion of the theorem
holds. In fact they need to be chosen in such a way that

∑∞
j=0 εj ,

∑∞
j=0 δj

< δ/16.
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Then it is easy to see that:

(i) (xa)a∈A is a δ-approximate bush,
(ii) (x′a)a∈A is a block δ/2-approximate bush and

∑
a∈A ‖ya−y′a‖ <∞,

(iii) (yna )|a|≥n is block and
∑

a∈A ‖yna −Qn(ya)‖ <∞ for all n ∈ N.

Remark. The proof of Proposition 3.1 shows that if X contains no copy
of `1 and X fails the PCP then there exists a δ-approximate bush (xa)a∈A
whose nodes form a basic sequence. Therefore X contains a subspace with a
basis that fails the RNP. This result is known to experts but we have been
unable to trace a reference. In [3] a Banach space X is constructed such that
X∗ is separable and the PCP is equivalent to the RNP on subsets of X. It
follows that if a subspace Y of X fails the RNP then Y contains a space Z
with a basis that fails the RNP.

Theorem 3.2. Let X be a separable Banach space that contains no copy
of `1(N) and Qn : X → C(ωω

k
), n ∈ N, be bounded linear operators. Suppose

K is a closed, convex, bounded, non-PCP subset of X such that the PCP
and RNP are equivalent on subsets of K. Then there exists a closed, convex,
bounded, non-dentable subset L of K such that on Qn(L) the weak and norm
topologies coincide for all n ∈ N.

Proof. We prove the theorem by induction. For k = 0 we have C(ωω
0
) =

C(ω) ∼= c0(N).
In Proposition 3.1, consider Y = C[0, 1], Yk = 〈ek〉, Zn = c0(N), Zn,k

= R, where (ek)k∈N is a Schauder basis of C[0, 1]. Since Yk and Zn,k are
finite-dimensional, the requirements of Proposition 3.1 are fulfilled, and thus
the desired set L exists.

Suppose that this is true for k = m ≥ 0; it will be shown that it is true
for k = m+ 1.

It is well known that C(ωω
m+1

) = (
∑∞

k=1⊕(C(ωω
m

), ‖·‖k))0, where ‖·‖k
is an equivalent norm on C(ωω

m
). Then the family Rn,kQn : X → C(ωω

m
)

is countable and by the inductive assumption, there exists a closed, convex,
non-dentable subset L′ of K such that on Rn,kQn(L′) the weak and norm
topologies coincide. Since the PCP and RNP are equivalent on subsets of K,
L′ is non-PCP. Applying once more Proposition 3.1 for the set L′ and the
family of operators (Qn)n∈N, we conclude that there exists a closed, convex,
bounded, non-dentable subset L of L′ such that on Qn(L) the weak and
norm topologies coincide for all n ∈ N.

Theorem 3.3. Let K be a closed, convex, bounded, non-dentable subset
of C(ωω

k
). Then there exists a convex closed subset L of K such that L has

the PCP and fails the RNP. Therefore the KMP and RNP are equivalent on
subsets of C(ωω

k
).
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Proof. Towards a contradiction, suppose that K is a closed, convex,
bounded non-dentable subset of C(ωω

k
) such that the PCP and RNP are

equivalent on subsets of K. We apply Theorem 3.2 for Q = I : C(ωω
k
) →

C(ωω
k
), the identity map. Then there exists a closed, convex, bounded, non-

dentable subset L of K such that on I(L) = L the weak and norm topologies
coincide. But this means that the PCP and RNP are not equivalent on sub-
sets of K, a contradiction completing the proof.

Problem. The problem of equivalence of the Radon–Nikodym Property
and the Krein–Milman Property remains open on subsets of C(ωω

a
) for

ordinals a ≥ ω.
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