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Perturbation and spectral discontinuity in Banach algebras

by

Rudi Brits (Johannesburg)

Abstract. We extend an example of B. Aupetit, which illustrates spectral disconti-
nuity for operators on an infinite-dimensional separable Hilbert space, to a general spectral
discontinuity result in abstract Banach algebras. This can then be used to show that given
any Banach algebra, Y , one may adjoin to Y a non-commutative inessential ideal, I, so
that in the resulting algebra, A, the following holds: To each x ∈ Y whose spectrum sepa-
rates the plane there corresponds a perturbation of x, of the form z = x + a where a ∈ I,
such that the spectrum function on A is discontinuous at z.

1. Introduction. Let A be a unital Banach algebra over C with unit 1
and invertible group A−1. For x ∈ A denote the spectrum of x by σA(x) :=
{λ ∈ C : λ − x /∈ A−1}. A frequent source of trouble in spectral theory is
the possible discontinuity of the map x 7→ σA(x) where σA(x) lives in the
space of compact subsets of C (the metric being the Hausdorff distance).
However, since the spectrum function is upper semicontinuous [2, Theorem
3.4.2] it follows, by a result of Kuratowski, that the set of points of A at
which x 7→ σA(x) is continuous is a dense Gδ subset of A [2, Theorem 3.4.3].
It is well-known that if A is commutative, then the spectrum function is
uniformly continuous on A. In fact a characterizing property of commutative
Banach algebras (modulo the radical) is uniform continuity of the spectral
radius [2, Corollary 5.2.3], or the spectral diameter [10, Theorem 2.4], on A.
In the general case Newburgh’s Theorem [2, Theorem 3.4.4, Corollary 3.4.5]
implies that the spectrum function is continuous at all points of A which
have a totally disconnected spectrum.

Of course, if the spectrum function is continuous at x ∈ A then so is
the spectral radius (denoted rσ(x)). The converse of this is not necessarily
true (see the paper [1] and Example 2.3 of the present paper). Despite the
scarcity of everywhere continuity of the spectrum in non-commutative cases
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it is, in practice, not so easy to find points in A at which the spectrum func-
tion is discontinuous; in particular, early examples illustrating that this may
happen are rather technical and seem to have been furnished on an ad hoc
basis (see for example Kakutani’s construction first described in [14]). Using
subharmonic techniques, Thomas Ransford [13] gives a remarkably simple
example of a pair of operators, S and T , on l2 such that rσ(T − λS) is dis-
continuous at almost every λ in the unit disk. Ransford’s example improves
on a related but much earlier example of Müller [12] who uses combinato-
rial ideas to show that there exist S and T on l2 such that rσ(T − λS) is
discontinuous at λ = 0.

Müller and Ransford’s results are closely related to Kakutani’s example
which shows that it is possible for a sequence of nilpotent operators to con-
verge to a non-quasinilpotent operator, thus establishing discontinuity of the
spectral radius. Müller does however show in [12, p. 594], by a modification
of his example [12, p. 593], that discontinuity of the spectral radius is also
possible in Banach algebras without non-zero quasinilpotents. In [3, p. 106]
Aupetit gives an example of spectral discontinuity arising in a completely
different manner: There exist two operators, T and S, on l2 and a complex
sequence λn → 0 such that for each n ∈ N, σ(T + λnS) is the unit circle
but σ(T ) is the closed unit disk. Since the example says nothing about dis-
continuity of the spectral radius it appears that Kakutani et al.’s results
are somewhat stronger than that of Aupetit (Zemánek’s comments in [15,
p. 584] are instructive here).

What we want to show in this note is that Aupetit’s example is at least
more general: The key observations in his example are, firstly, that the
spectrum of the perturbation T + S gnaws a hole in the spectrum of T
and, secondly, that S is a finite rank operator; this is all that is important,
any further particular details concerning S and T , as well as the underlying
space, are immaterial. The existence of the sequence λn is implicit if the
above two observations could be made; Theorem 2.1 then gives a simple
and general criterion for spectral discontinuity to occur, and Theorem 2.2
shows that one may easily arrange for the situation in Theorem 2.1.

To simplify, we shall assume throughout that A is semisimple and fur-
ther also that dim(A) > 1 (the latter requirement will really be implicit
later on). A two-sided ideal I of a Banach algebra A is said to be inessen-
tial if, for each x ∈ I, σA(x) is either finite or its terms form a sequence
converging to zero. For an abstract semisimple Banach algebra A the most
familiar instances of inessential ideals in A are the socle, its closure in A,
and, more generally, the hull-kernel of the socle. The socle, denoted soc(A),
is a two-sided ideal and is, by definition, the smallest left (or right) ideal
containing all minimal left (right) ideals. A minimal left (right) ideal can
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always be written as a principal ideal, J = Ap (respectively J = pA), where
p is a minimal idempotent (that is, pAp is a division algebra). In the case
where X is a Banach space and A = L(X), the Banach algebra of con-
tinuous linear operators on X, the socle coincides with the ideal of finite
rank operators. It is important to mention that there are many examples
of Banach algebras, though obviously not L(X), which have soc(A) = {0}.
On the other hand there exist semisimple commutative Banach algebras A
for which soc(A) 6= {0}; it is not hard to show that this happens precisely
when the character space, ∆(A), contains a singleton set which is open in
the weak∗ topology on ∆(A).

In connection with soc(A), a useful concept is that of rank: For a semi-
simple Banach algebra A and a ∈ A we define

(1.1) rankA(a) = sup
x∈A

#σ′A(xa) = sup
x∈A

#σ′A(ax) ≤ ∞.

Here σ′A(x) = σA(x) \ {0} and #K is the number of distinct elements in
a set K. If the underlying algebra is clear from the context, we shall agree
to drop the subscript A in the aforementioned definitions. It can be shown
that the set of finite rank elements of A coincides with soc(A) [4, Corollary
2.9] and that the formula (1.1) agrees with the classical operator rank in
the case A = L(X) [4, p. 118]. Also, the semisimplicity of A guarantees that
rank(a) = 0 ⇔ a = 0. Thus (1.1) seems to be a very suitable definition of
rank in the case of abstract semisimple Banach algebras. For more properties
and applications of this spectral rank the reader can look at [4, 5, 6].

Of particular importance to us are the rank one elements of A; it can be
shown that if a 6= 0 then

(1.2) rank(a) = 1 ⇔ aAa = Ca.
So minimal idempotents are rank one in the sense of (1.1). It follows readily
from (1.2) that if rank(a) = 1 then there exists a unique, non-zero, bounded
linear functional τa on A satisfying τa(x)a = axa for each x ∈ A. For a rank
one element a ∈ A we shall call this functional the characteristic functional
of a. From the assumption dim(A) > 1 and the aforementioned functional
relationship it easily follows that a rank one element a has σ(a) = {τa(1), 0}.
Another useful identity, which is also easy to verify, is the following: Let
x ∈ A be arbitrary and a ∈ A be a rank one element such that ax 6= 0. Then
ax has rank one and τax(1) = τa(x) (the same statement holds for xa). Our
first result, Theorem 1.1, which is obtained through an application of this
identity, improves on a perturbation theorem of Aupetit:

If H is an infinite-dimensional separable Hilbert space, then Fong and
Sourour [9] show that any T ∈ L(H) such that T /∈ {λI + K : λ 6= 0,
K compact ∈ L(H)} is the sum of two quasinilpotent operators. Their
result immediately implies that there exist two quasinilpotent operators
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Q1, Q2 ∈ L(H) such that σ(Q1 + Q2) is infinite (in fact uncountable).
In [2, pp. 105–106] Aupetit addresses this question for a general Banach
space X. As he remarks, the problem is now much harder since X may
not have a topological basis. Using a result of Grabiner [2, Lemma 5.6.9],
which guarantees the existence of a non-nilpotent, quasinilpotent, compact
Q ∈ L(X) whenever dim(X) =∞, together with the subharmonic theory of
spectral finiteness [2, V, §6], Aupetit shows that if dim(X) =∞, then there
exist two quasinilpotent and compact operators Q1, Q2 ∈ L(X) such that
#σ(Q1 + Q2) = ∞ [2, Theorem 5.6.10]. For the proof of the next result,
and also in the remainder of this paper, X ′ will be the continuous dual of a
normed space X.

Theorem 1.1. Let X be an infinite-dimensional Banach space and let
V ∈ L(X) be any non-nilpotent quasinilpotent operator. Then, corresponding
to V , there exists a rank one operator Q ∈ L(X) with Q2 = 0 such that

#σ(V + αQ) =∞
for all non-zero α ∈ C with at most one exception.

Proof. For each k ∈ N define Ak = {x ∈ X : V kx = 0}. If X =
⋃
k≥1Ak,

then by Baire’s Theorem there is n such that An contains a non-empty
open set of X. But, since V is not nilpotent, An is a proper vector subspace
of X and hence has empty interior in X. Thus, we can find x∈X such that
V kx 6= 0 for each k ≥ 1. LetX ′x = {φ ∈ X ′ : φ(x) = 0} be the annihilator of x
(which is a non-zero Banach subspace of X ′), and for each k ∈ N define the
closed subspace Ax,k = {φ ∈ X ′x : φ(V kx) = 0} of X ′x. If X ′x =

⋃
k≥1Ax,k,

then again by Baire’s Theorem there is n such that Ax,n contains a non-
empty open set of X ′x. However, since Ax,n is a vector space, we must have
Ax,n = X ′x, implying that φ(V nx) = 0 for each φ ∈ X ′ with φ(x) = 0. But
now, since {x, V nx} is linearly independent, another contradiction follows
from the separation properties of the Hahn–Banach Theorem. We may hence
conclude that there exists φ ∈ X ′x such that φ(V kx) 6= 0 for each k ≥ 1.

Using φ and x we construct Q ∈ L(X) with the desired properties: Define
P ∈ L(X) by Pz = φ(z)x, which has rank 1 and satisfies P 2 = 0. For λ 6= 0
the factorization λ− (V + P ) = (λ− V )[I − (λ− V )−1P ] implies that λ ∈
σ(V +P )⇔ 1 ∈ σ((λ− V )−1P ). Now σ((λ− V )−1P ) = {τP ((λ− V )−1), 0}
and the function τP ((λ−V )−1) is holomorphic on C\{0}. The corresponding
Laurent series, valid for all λ 6= 0, is given by

τP ((λ− V )−1) =
∞∑
j=0

τP (V j)
λj+1

.

Now choose any fixed z ∈ X such that φ(z) 6= 0 and notice that (PV jP )(z)
= φ(z)φ(V jx)x 6= 0 for all j ≥ 1. So, since 0 6= PV jP = τP (V j)P ⇒
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τP (V j) 6= 0 for each j ≥ 1, we see that 0 is an essential singularity of
τP ((λ − V )−1). By Picard’s Theorem [8, XII, Theorem 4.2] there exists
0 6= β ∈ C and a sequence λn → 0 such that τP ((λn−V )−1) = β for each n.
If we set Q = (1/β)P and notice that τQ = τP/β = (1/β)τP , then it follows
that σ(V +Q) = {λ1, λ2, . . . } ∪ {0} and the proof is complete.

Since a rank one quasinilpotent Q ∈ L(X) always takes the form Qx =
(a ⊗ φ)(x) where 0 6= a ∈ X and 0 6= φ ∈ X ′ satisfies φ(a) = 0, it might
not be too hard, in concrete cases, to discover a suitable Q satisfying the
conclusion of Theorem 1.1:

Example 1.2. Let X = C[0, 2π] be the Banach space of continuous
functions on [0, 2π] and let V ∈ L(X) be the Volterra operator

(V f)(t) =
t�

0

f(x) dx, t ∈ [0, 2π],

on X. So V is quasinilpotent, but not nilpotent. Let φ ∈ X ′ be defined
by φ(f) =

	2π
0 f(t) dt. If we take g ∈ X as g(t) = sin t and define Q ∈

L(X) by (Qf)(t) = φ(f)g(t), f ∈ X, then Q is rank one. For each n ≥ 1,
V n maps g to a function which takes the form Pn(t)± cos t or Pn(t)± sin t
where Pn is a polynomial with rational coefficients and deg(Pn) = n − 1.
So, since π is transcendental, it follows that φ(V ng) 6= 0, n ∈ N. But for
each n ∈ N, φ(V ng) = τQ(V n), which consequently proves that 0 is an
essential singularity of τQ((λ−V )−1). Now, as in the proof of Theorem 1.1,
Picard’s Theorem implies the existence of infinitely many scalars α such
that #σ(V + αQ) =∞.

2. Perturbation and spectral discontinuity. If ρ(x) ⊂ C denotes
the resolvent set of x ∈ A then ρ(x) has precisely one unbounded connected
component, and at most countably many bounded components in C. Fol-
lowing Conway [7, p. 206] we refer to the bounded components of ρ(x), if
there are any, as the holes of σ(x). We denote the polynomially convex hull
of σ(x) by σh(x) and the set of accumulation points of σ(x) by accσ(x).
From the theory of perturbation by inessential elements (for a very nice ab-
stract account of this look at [2, V, §7]) we have the following: Let I be an
inessential ideal of A and let x ∈ A, a ∈ I. Then accσ(x) ⊆ σh(x + a) and
accσ(x+ a) ⊆ σh(x). One implication of this is that, if σ(x) has a hole, say
H ⊂ C, and a ∈ I, then σ(x+ a) may fill up the hole H (i.e. H ∩ σ(x) = ∅
but H ⊂ σ(x+ a)). Obviously, perturbation by an inessential element may
then cause a hole to appear as well (as Aupetit’s example illustrates). The
following simple implication, which already appeared in the proof of The-
orem 1.1, will be used throughout the remainder of this paper: For each
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x, y ∈ A,

(2.1) λ /∈ σ(x) ⇒ [λ ∈ σ(x+ y)⇔ 1 ∈ σ((λ− x)−1y)].

With the Scarcity Principle [2, Theorem 3.4.25] and repeated use of pigeon-
hole arguments we can prove:

Theorem 2.1. Let A be a semisimple Banach algebra, x ∈ A and sup-
pose H ⊂ C is a hole of σ(x). Then, for every a ∈ soc(A) such that
H ⊂ σ(x+a), the spectrum function z 7→ σ(z) is discontinuous at z = x+a.
Hence if x ∈ A and there exist H ⊂ C and a ∈ soc(A) such that H is a hole
of σ(x+a) but not a hole of σ(x), then the spectrum function is discontinuous
at x.

Proof. In the proof B(λ, r), r > 0, is the usual notation for an open
disk in the plane. With the hypothesis, define f(λ) = (λ − x)−1a, which is
analytic on the domain H. Since a ∈ soc(A) we have #σ(f(λ)) <∞ for each
λ ∈ H, whence it follows from the Scarcity Principle that there is n > 0 and
a closed and discrete subset E of H such that #σ(f(λ)) = n for λ ∈ H \E,
and #σ(f(λ)) < n for λ ∈ E. Moreover, the n points of σ(f(λ)) are locally
holomorphic functions on H \ E. Now either E is finite or it is a countable
set {α1, α2, . . . } all of whose converging subsequences attain their limits on
the boundary of H. We assume E is countable since the proof for the case
where E is finite is similar. The union

⋃∞
i=1 σ((αi − x)−1a) being at most

countable implies there exists a sequence βk ⊂ (0, 1) such that βk → 1 and
1/βk /∈

⋃∞
i=1 σ((αi − x)−1a) for each k.

To show that the spectrum function is discontinuous at x + a we will
show that σ(x + βka) 9 σ(x + a) as k → ∞. Since λ /∈ σ(x) for λ ∈ H,
notice that (2.1) implies 1 ∈ σ(f(λ)) for each λ ∈ H, and moreover, that
1/β ∈ σ(f(λ)) ⇔ λ ∈ σ(x + βa) holds for all β 6= 0. Fix λ0 ∈ H \ E. Then
there is r′ > 0 and n holomorphic functions on B(λ0, r

′), say {γ1, . . . , γn},
such that σ(f(λ)) = {γ1(λ), . . . , γn(λ)} for each λ ∈ B(λ0, r

′) ⊂ H \ E. Let
0 < r < r′ and observe that one of the functions γj assumes the value 1 at
infinitely many λ ∈ B(λ0, r), and hence must be constantly 1 on B(λ0, r

′).
So we may assume γ1(λ) = 1 for all λ ∈ B(λ0, r

′). Furthermore, since
#σ(f(λ)) = n for λ ∈ H \ E, none of the functions γ2, . . . , γn assumes the
value 1 on B(λ0, r

′). If β 6= 0, 1 is a complex number and σ(x+βa)∩B(λ0, r)
has infinitely many members, then there are infinitely many λ’s in B(λ0, r)
such that 1/β ∈ σ(f(λ)). So this means, using the same argument as for γ1,
that one of γ2, . . . , γn is constantly 1/β on B(λ0, r

′).
Thus, since the sequence βk is infinite and the functions γi form a finite

set, we can find M sufficiently large such that for each k > M the set
Lk = σ(x + βka) ∩ B(λ0, r) is finite. Suppose

⋃
k>M Lk is infinite. Then,

without loss of generality, we may assume that each Lk (k > M) contains at
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least one element, say λk, so that (λk) forms a sequence of distinct elements.
So arguing as above (and passing to a subsequence of (λk) if necessary) we
see that there is some fixed j ∈ {2, . . . , n} such that γj(λk) = 1/βk. But, λk
being bounded, we may assume (λk) (or a subsequence thereof) converges.
Of course the limit, say λ′, belongs to B(λ0, r). By continuity of γj on
B(λ0, r

′) it follows that γj(λ′) = limk→∞ 1/βk = 1, which contradicts the
fact that none of the functions γ2, . . . , γn assumes the value 1 on B(λ0, r

′).
Thus there is N > M such that for all k > N the set Lk is constant and
finite, which in turn implies the existence of B(α0, ε) ⊂ B(λ0, r) such that
σ(x + βka) ∩ B(α0, ε) = ∅ for k > N . But B(α0, ε) ⊂ σ(x + a) and so the
spectrum is discontinuous at x+ a.

Every Banach algebra Y which contains elements with spectra separating
the plane is a source of spectral discontinuities in the following sense: There
exists a relatively small superalgebra A of Y such that to each x ∈ Y whose
spectrum separates the plane, there corresponds a rank one element a ∈ A
such that the spectrum function is discontinuous at x+ a in the algebra A.
The idea is to adjoin to Y a non-commutative socle, similar to the way in
which one would adjoin an identity element to a non-unital Banach algebra,
and then to show that one always reaches the hypothesis of Theorem 2.1 in
the algebra A.

Theorem 2.2. Let Y be a semisimple Banach algebra. Then there is a
semisimple Banach algebra A with the following properties:

(a) A is a norm-preserving and spectrum-preserving extension of Y .
(b) A contains a closed inessential ideal I such that A/I is isometrically

isomorphic to Y .
(c) For each a ∈ Y such that σ(a) separates the complex plane there is

w ∈ I such that a+ w is a point of spectral discontinuity in A.

Proof. We first prove that if σY (a) has a hole H then corresponding to
the left multiplication operator La ∈ L(Y ) there exists a rank one operator
P ∈ L(Y ) such that σL(Y )(La+P ) fills the hole H: Without loss of generality
we may assume 0 ∈ H. Notice that σY (a−1) also has a hole containing 0,
which we denote by H ′. The first step is to show that there exists φ ∈ Y ′
such that φ(a−1) 6= 0 and φ(a−k) = 0 for k ≥ 2. This would be possible
if we can show that a−1 /∈ span{a−2, a−3, . . . }. If this is not the case then
1 = limn Pn, where Pn is a sequence of polynomials of the form Pn =
α1(n)a

−1 + · · ·+ αk(n)a
−k. But for any k ≥ 1,

‖1− (α1a
−1 + · · ·+ αka

−k)‖ ≥ ρ(1− (α1a
−1 + · · ·+ αka

−k))

≥ max
λ∈∂H′

|1− (α1λ+ · · ·+ αkλ
k)| ≥ 1,

where the final inequality follows from the Maximum Principle applied on
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the domain H ′. So we can find φ ∈ Y ′ such that φ(a−1) 6= 0 and φ(a−k) = 0
for k ≥ 2. Obviously we may assume φ(a−1) = −1. Now let P ∈ L(Y ) be
defined by Px = φ(x)1. Then P is rank one and the characteristic functional,
τP , is given by τP (S) = φ(S1), S ∈L(Y ). From this one calculates, for k ∈N,
that τP (La−k) = φ(a−k) and from the series expansion of τP ((λ−La)−1) in
a neighborhood of 0 we see that τP ((λ − La)−1) = 1 for all λ ∈ H. Thus
(2.1) implies σL(Y )(La + P ) fills the hole H.

Let J = soc(L(Y )), J̄ the closure of J in L(Y ), and consider the collec-
tion of formal sums

A = {a+ S : a ∈ Y, S ∈ J̄}.
With addition and scalar multiplication defined in the obvious way and
multiplication by

(a+ S)(b+W ) = ab+ LaW + SLb + SW,

it follows, from the fact that J̄ is a two-sided ideal, that A is a unital algebra.
Moreover,

‖a+ S‖ = ‖a‖+ ‖S‖
defines a complete algebra norm on A. Notice that for each a ∈ Y and each
S ∈ J̄ we have σL(Y )(La + S) ⊆ σA(a + S). Suppose a + S belongs to the
radical of A. If b+W ∈ A is arbitrary, then we have

‖[(a+ S)(b+W )]n‖1/n = ‖(ab)n +Rn‖1/n

= (‖(ab)n‖+ ‖Rn‖)1/n ≥ ‖(ab)n‖1/n

for some sequence Rn in J̄ . From the semisimplicity of Y it follows that
a = 0. Thus, a radical element of A has the form 0 + S where S ∈ J̄ . But if
this is the case, then for each W in L(Y ) we deduce that 0+WSW ∈ A and
that σL(Y )((SW )2) ⊆ σA(0 + S(WSW )) = {0}. Thus σL(Y )(SW ) = {0},
which implies S = 0 since L(Y ) is semisimple. So A is semisimple whenever
Y is. It is elementary to prove that {0 + S : S ∈ J} ⊆ soc(A), and hence
by [2, Corollary 5.7.6], I = {0 + S : S ∈ J̄} is the required inessential ideal
in (b). Note here that the above containment may be strict, which implies
that the homomorphism a + S 7→ La + S does not necessarily embed A
into L(Y ).

To prove (c): If σY (a) = σL(Y )(La) separates the plane, then, by the first
part of the proof, we can find P ∈ J such that σL(Y )(La + P ) fills a hole
of σL(Y )(La). But σA(a + 0) = σL(Y )(La) and σL(Y )(La + P ) ⊆ σA(a + P )
imply that σA(a+ P ) fills a hole of σA(a+ 0). The result then follows from
Theorem 2.1 since 0 + P ∈ soc(A) and a+ P = (a+ 0) + (0 + P ).

The extension A in Theorem 2.2 seems manageable for two reasons: The
adjoined inessential ideal I depends only on the continuous dual of the al-
gebra Y , and secondly, the perturbation theory of inessential elements is a
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well-understood topic. Because of the Gelfand transformation, the commu-
tative case is, somewhat ironically, a good starting point for constructing
spectral discontinuities via Theorem 2.2:

Example 2.3. Let S ⊂ C be the unit circle, and let Y = C(S) with
the usual sup norm. Denote by Y0 the subalgebra of Y consisting of the
complex functions having a holomorphic extension to neighborhoods of S.
Let f ∈ Y0, not a constant function, be holomorphic on a neighborhood Nf

containing S. Then there are at most finitely many z ∈ S such that f ′(z) = 0,
and corresponding to each z ∈ S such that f ′(z) 6= 0 there is a neighborhood
Uz ⊂ Nf such that f is injective on Uz. This shows that f(S) separates the
plane, and hence that σY (f) has at least one hole. So if we adjoin to Y
a non-commutative socle as in Theorem 2.2, we get the following result:
Corresponding to each non-constant f ∈ Y0 there exists a ∈ A such that
the spectrum function on A is discontinuous at f + a. Moreover, using [2,
Theorem 5.7.4], it is not hard to see that the spectral radius is continuous
on A.

3. Commuting perturbations. If a ∈ soc(A) commutes with x then
σ(x + a) cannot fill a hole of σ(x); if this were possible, then Theorem 2.1
would predict the existence of spectral discontinuities in some commutative
algebra, which is absurd. More intuitively, this should also follow from [2,
Theorem 5.7.4], together with the containment σ(x + a) ⊆ σ(x) + σ(a),
which holds whenever x and a commute. We give a sharp estimate, in terms
of rank, for the difference between σ(x + a) and σ(x) where a ∈ soc(A)
commutes with x ∈ A. For this we shall need a generalization of Aupetit
and Mouton’s Diagonalization Theorem [4, Theorem 2.8]:

Theorem 3.1 (Generalized Diagonalization Theorem). Let A be a semi-
simple Banach algebra and 0 6= a ∈ soc(A). Then a is a linear combination
of mutually orthogonal minimal idempotents if and only if there exists y ∈ A
commuting with a such that rank(a) = #σ′(ya).

Proof. Suppose rank(a) = #σ′(ay) = n and ya = ay. We first show
that this hypothesis implies that we can actually take y invertible. If a is
invertible and b ∈ A is arbitrary, then

#σ′(b) = #σ′(a(a−1b)) ≤ rank(a) = n,

which shows that every element of A has finite spectrum. By the Hirschfeld–
Johnson Criterion [11], A is finite-dimensional, so the Wedderburn–Artin
Theorem forces y invertible. If 0 ∈ σ(a) then 0 ∈ σ(ax) for all x ∈ A because
σ(ax) is finite. Since the function λ 7→ a(λ − y) is analytic from C into A,
and 0 ∈ σ(a(λ− y)) for all λ ∈ C, the Scarcity Principle says that {λ ∈ C :
#σ′(a(λ−y)) < n} is discrete in C. Hence we can find λ in the resolvent set
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of y such that #σ′(a(λ−y)) = n = rank(a). So without loss of generality we
may assume y ∈ A−1. By Aupetit and Mouton’s Diagonalization Theorem
there exist mutually orthogonal minimal idempotents p1, . . . , pn and distinct
non-zero scalars λ1, . . . , λn such that ay =

∑n
j=1 λjpj . Since for each j,

pj =
1

2πi

�

Γj

(λ− ay)−1 dλ,

where Γj is a small circle surrounding λj and separating λj from the remain-
ing spectrum of ay, we see that y−1 commutes with pj . From the minimality
of pj we get

a =
n∑
j=1

λjpjy
−1 =

n∑
j=1

λjpjy
−1pj =

n∑
j=1

λjβjpj

with 0 6= βj ∈ C. Conversely, if a =
∑n

j=1 λjpj where the pj are minimal
mutually orthogonal idempotents, then each pj commutes with a. Also from
[4, Theorem 2.16] we deduce that rank(a) = n. So the result follows if we
take y =

∑n
j=1(αj/λj)pj where the αj are distinct non-zero elements of C.

Observe that if y = 1 then Theorem 3.1 is precisely the Diagonalization
Theorem.

Corollary 3.2. Let A be a semisimple Banach algebra and let a ∈
soc(A). If x ∈ A commutes with a then σ(a+ x) and σ(x) differ by at most
2 rank(a) complex numbers.

Proof. If σ(a) = {0} then σ(a + x) = σ(x). So we may assume a is
not quasinilpotent. Let C{a,x} be the bicommutant of {a, x} and form (if
necessary)B = C{a,x}/rad(C{a,x}) so thatB is commutative and semisimple.
If z ∈ C{a,x} and z̃ = z + rad(C{a,x}) is the corresponding coset in B then
σB(z̃) = σC{a,x}(z) = σA(z). Thus we may, without loss of generality, assume
that rad(C{a,x}) = {0}. Obviously a ∈ soc(B) and rankB(a) ≤ rankA(a).
Suppose that rankB(a) = k < ∞ and that σB(a + x) contains a set of
k + 1 distinct elements {λ1, . . . , λk+1} belonging to ρ(x). Applying (2.1)
we see that 1 ∈ σB((λi − x)−1a) for each i ∈ {1, . . . , k + 1}. Since B is
commutative we can write, using Theorem 3.1, a =

∑k
j=1 αjpj , where αj

are non-zero scalars and pj are mutually orthogonal minimal idempotents
belonging to B. It follows that for i ∈ {1, . . . , k + 1},

σ′B((λi − x)−1a) = σ′B

( k∑
j=1

αjpj(λi − x)−1pj

)
=

k⋃
j=1

{αjτpj ((λi − x)−1)},

and hence there exist k0 ∈ {1, . . . , k} and i0, i1 ∈ {1, . . . , k + 1} such that

(3.1) αk0τpk0
((λi0 − x)−1) = αk0τpk0

((λi1 − x)−1) = 1.
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The point now is that, since B is commutative, the characteristic linear
functional τp corresponding to a rank one idempotent p is in fact a character
of B. So (3.1) implies that λi0 = λi1 , which contradicts the assumption that
the λj are distinct. So in conclusion

#[σ(a+ x) ∩ ρ(x)] ≤ rankB(a) ≤ rankA(a).

But, by the above arguments, one also has

ax = xa ⇒ #[σ((x+ a)− a) ∩ ρ(x+ a)] ≤ rankA(−a) = rankA(a).
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