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Ditkin sets in homogeneous spaces

by

Krishnan Parthasarathy
and Nageswaran Shravan Kumar (Chennai)

Abstract. Ditkin sets for the Fourier algebra A(G/K), where K is a compact sub-
group of a locally compact group G, are studied. The main results discussed are injection
theorems, direct image theorems and the relation between Ditkin sets and operator Ditkin
sets and, in the compact case, the inverse projection theorem for strong Ditkin sets and
the relation between strong Ditkin sets for the Fourier algebra and the Varopoulos algebra.
Results on unions of Ditkin sets and on tensor products are also given.

1. Introduction. Ditkin sets satisfy a strong form of spectral synthesis
and have been studied for a long time, especially on abelian groups. The
Fourier algebra A(G) of a nonabelian locally compact group and its synthe-
sis properties have been extensively studied since the fundamental work of
Eymard [3]. Study of the Fourier algebra A(G/K) on a homogeneous space
G/K, where K is a compact (nonnormal) subgroup of G, was initiated more
recently by Forrest [4]. The present paper studies Ditkin sets and operator
Ditkin sets in the context of A(G/K).

Assume G is abelian and H is a closed subgroup of G. A closed subset
E of H is a Ditkin set for A(H) if and only if it is a Ditkin set for A(G).
This theorem is known as the injection theorem for Ditkin sets and is a
classical result of Reiter (see [17]). A nonabelian version of this theorem is
due to Derighetti [1], who proved that for normal subgroups the injection
theorem holds for local Ditkin sets. Theorem 3.4 of our paper gives an injec-
tion theorem for local Ditkin sets but the subgroups here are compact, not
necessarily normal. We develop the required preliminary results for these,
among them a lemme à la Derighetti in our context. We also present direct
image theorems for coset spaces and double coset spaces of K.

Another classical result of Reiter (see [17]), the inverse projection theo-
rem for sets of synthesis, states that if H is a closed subgroup of the abelian
group G, then Ẽ ⊂ G/H is a set of synthesis for A(G/H) if and only if its
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pull back is a set of synthesis for A(G). No such result seems to be known
for Ditkin sets, even in the abelian case. A partial, nonabelian version for
local Ditkin sets is due to Derighetti [1]. Section 4 of the present paper
contains an inverse projection theorem for strong Ditkin sets in the case of
compact groups. That section also presents a relation between strong Ditkin
sets in the Fourier algebra and the corresponding Varopoulous algebra in
the context of homogenous spaces.

Shulman and Turowska [19] introduced the concept of operator Ditkin
sets. Ludwig and Turowska [11] obtained a relation between these and local
Ditkin sets. Extending their results, we present, in Section 5, the relation
between local Ditkin sets for A(G/K) (for noncompact G) and operator
Ditkin sets with respect to mK\G ×mG.

In the last section we make some simple observations on unions of Ditkin
sets and on Ditkin sets for tensor products of Fourier algebras.

We begin with some of the required preliminaries in the next section.

2. Preliminaries. The basic reference for Fourier algebras is the fun-
damental paper of Eymard [3]. Let G be a locally compact group with a
fixed left Haar measure mG. The Fourier algebra A(G) of G consists of the
coefficient functions of the left regular representation λ of G. A function in
A(G) has a representation of the form u(·) = 〈λ(·)f, g〉, f, g ∈ L2(G), with
the norm ‖u‖A(G) = ‖f‖2‖g‖2. The dual of A(G) is the group von Neumann
algebra VN(G), the von Neumann subalgebra of B(L2(G)) generated by
{λ(x) : x ∈ G}.

For a compact subgroup K of G, let G/K and K\G denote the homo-
geneous spaces of left and right cosets of K, respectively. We write q : G→
G/K, t 7→ ṫ, and p : G→ K\G, t 7→ t̄, for the corresponding quotient maps.
There are unique G-invariant Radon measures mG/K and mK\G in G/K
and K\G, respectively, satisfying the respective Weil formulas.

The range A(G : K) of the map PK defined on A(G) by PKu(t) =	
K u(tk) dk, t ∈ G, consists of those functions in A(G) that are constant

on left cosets of K. It is a closed subalgebra of A(G). A function u in
A(G : K) can be considered as a continuous function ũ on G/K given by
ũ(ṫ) = u(t). We write A(G/K) := {ũ : u ∈ A(G)}. This was introduced by
Forrest [4] and is a regular, commutative, semisimple Banach algebra with
Gelfand structure space G/K. We usually identify A(G/K) with A(G : K)
and call it the Fourier algebra of G/K. (Whenever meaningful, we shall
use similar notation and convention for other function spaces also; thus, for
example, we shall consider L1(G : K) and L1(G/K). We shall also adopt a
similar convention for function spaces on the right coset space K\G.) Any
function in A(G/K) has a representation of the form u(·) = 〈λ(·)f, g〉 with
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f ∈ L2(K\G), g ∈ L2(G). The dual of A(G/K) is VN(G/K), the weak-∗
closure of {λ(f) : f ∈ L1(G/K)} in VN(G). Observe that, for x ∈ G and
k ∈ K, the restriction of λ(xk) to L2(K\G) is independent of k. We write
λ(ẋ) ∈ B(L2(K\G), L2(G)) for this restriction. Thus VN(G/K) can be
considered as the smallest subspace of B(L2(K\G), L2(G)) containing all
the λ(ẋ) that is closed in the weak operator topology. As a linear functional
on A(G/K), λ(ẋ) acts as point evaluation.

The Varopoulos algebra V (G,K\G), considered in [16], is the algebra of
continuous functions on G × K\G which have representations of the form
w =

∑
ϕi ⊗ ψ̃i, ϕi ∈ C(G), ψ̃i ∈ C(K\G), with

∑
|ϕi|2 and

∑
|ψ̃i|2

uniformly convergent. It is the Haagerup tensor product V (G,K\G) =
C(G)⊗h C(K\G) and its norm is given by

‖w‖V = inf
{∥∥∥∑ |ϕi|2

∥∥∥1/2

∞

∥∥∥∑ |ψ̃i|2
∥∥∥1/2

∞
: w =

∑
ϕi ⊗ ψ̃i

}
.

It is a commutative, semisimple, regular Banach algebra with Gelfand max-
imal ideal space G×K\G. If

Vinv(G,K\G) := {w̃ ∈ V (G,K\G) : w̃(sx, t̄.x) = w̃(s, t̄), s, t, x ∈ G},
then Theorem 3.10 of [16] says that the map NK on G × K\G defined
by NK ũ(s, t̄) = ũ(s.ṫ−1) is an isometric isomorphism of A(G/K) onto the
invariant algebra Vinv(G,K\G). (The proof of this heavily uses the operator
space structure of the Fourier algebra. The monograph [2] of Effros and
Ruan is a basic reference for operator spaces.)

For a discussion of operator Ditkin sets we need two more spaces which
we now describe. The space V∞(K\G,G) is the weak-∗ Haagerup tensor
product L∞(K\G)⊗w∗hL∞(G), and consists of functions (up to marginally
null sets) on K\G×G of the form w̃ =

∑∞
n=1 ϕ̃n ⊗ ψn where ϕ̃n, ψn are in

L∞(K\G), L∞(G), respectively, and the series is weak-∗ convergent. Also,

‖w‖V∞ = inf
{∥∥∥∑ |ϕ̃n|2

∥∥∥1/2

∞

∥∥∥∑ |ψn|2
∥∥∥1/2

∞
: w =

∑
ϕ̃n ⊗ ψn

}
with the series

∑
|ϕ̃n|2 and

∑
|ψn|2 converging in the weak-∗ topology. Here

a marginally null set is a subset of a set of the form Ẽ×G∪K\G×F where
F, Ẽ are locally null in G,K\G respectively. The invariant part V∞inv(K\G,G)
= {w̃ ∈ V∞(K\G,G) : w̃(s̄.x, tx) = w̃(s̄, t), s, t, x ∈ G} is a closed subalge-
bra of V∞(K\G,G).

Let T (K\G,G) denote the projective tensor product L2(K\G)⊗γ L2(G).
An element ω =

∑∞
n=1 f̃n ⊗ gn ∈ T (K\G,G) is considered as the func-

tion given by ω(ȳ, x) =
∑
f̃n(ȳ)gn(x) for marginally almost all (ȳ, x) ∈

K\G × G. For such an ω, suppω = {(ȳ, x) ∈ G × K\G : ω(ȳ, x) 6= 0} is
defined up to marginally null sets. The dual of T (K\G,G) is identified with
B(L2(K\G), L2(G)) via the pairing given, for f ∈ L2(K\G), g ∈ L2(G)
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and S ∈ B(L2(K\G), L2(G)), by 〈S, f ⊗ g〉 = 〈Sf, ḡ〉, where on the right
we have the L2(G)-inner product. Moreover, V∞(K\G,G) is the algebra of
multipliers of T (K\G,G):

V∞(K\G,G) = {w : w is a complex function on K\G×G
and mw : ω 7→ w.ω is a bounded linear map on T (K\G,G)}

with ‖w‖V∞(K\G,G) = ‖mw‖. Here, mw is defined by mw(f̃ ⊗ g)(t̄, s) =
w(t̄, s)f̃(t̄)g(s) on elementary tensors. Two functions in V∞(K\G,G) are
identified if they differ on a marginally null set. For a function ũ on G/K

define a function on K\G×G by N †K ũ(t̄, s) = ũ(s.ṫ−1). Then Theorem 4.7
of [16] says that N †K is a complete isometry from the algebra Mcb(A(G/K))
of completely bounded multipliers onto V∞inv(K\G×G). Essential use is made
of this in our discussion on the relation between Ditkin sets and operator
Ditkin sets in the last section.

Let A be a commutative, semisimple, regular Banach algebra with Gel-
fand space ∆(A). For a closed set E in ∆(A), let

jA(E) = {a ∈ A : â has compact support disjoint from E},
JA(E) = jA(E),
IA(E) = {a ∈ A : â = 0 on E}.

The set E is said to be a set of weak spectral synthesis if there is an n ∈ N
such that un ∈ JA(E) whenever u ∈ IA(E), and in this case we write ξA(E)
for the least such n. Furthermore, E is called a set of spectral synthesis if
ξA(E) = 1, that is, if IA(E) = JA(E). We call E a Ditkin set if for every
u ∈ IA(E), there exists a sequence {un} ⊂ jA(E) such that u.un converges
in norm to u; if the condition holds for every u ∈ IcA(E) := Ac∩IA(E), where
Ac stands for elements in A with compactly supported Gelfand transforms,
then E is called a local Ditkin set. If the sequence can be chosen in such a
way that it is bounded and is the same for all u ∈ IA(E), then we say that
E is a strong Ditkin set.

3. Ditkin sets. In [1], Derighetti proved the injection theorem for local
Ditkin sets for Fourier algebras on quotients under the assumption that the
subgroups are normal. We now prove the injection theorem assuming that
the subgroups are compact, but not necessarily normal. We first prove the
injection theorem for local Ditkin sets for groups. We begin with a lemma
that captures the essence of what is needed to utilise Derighetti’s arguments
in our context.

Lemma 3.1. Let G be a locally compact group containing a compact sub-
group K and let U be a neighbourhood of K.
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(a) There is a neighbourhood U1 ⊂ U of K such that U1K ⊂ U.
(b) There are two neighbourhoods U1 and U2 of K contained in U such

that U1U2 ⊆ U.
(c) There is a neighbourhood U3 of K contained in U such that U3U3⊆U.
(d) There is a neighbourhood U4 of K contained in U such that U4 =U−1

4 .

Proof. (a) It is an elementary fact that, since K is compact, there is a
neighbourhood V of the identity element such that V K ⊂ U. Then U1 = V K
is a neighbourhood of K and U1K = V KK = V K ⊂ U.

(b) Choose a neighbourhood U1 of K as in (a). Then U1 · k ⊂ U for each
k ∈ K and so there is a neighbourhood Uk of k such that U1Uk ⊆ U. Since
{Uk}k∈K is an open cover of K and K is compact, there is a finite subset
{k1, . . . , kn} such that K ⊆

⋃n
i=1 Uki

. Let U2 =
⋃n
i=1 Uki

.

(c) Choose neighbourhoods U1 and U2 as in (b). Let U3 = U1 ∩ U2.

(d) Choose U4 = U ∩ U−1.

The following lemma was inspired by a personal communication from
Derighetti regarding a result in his paper. We thank Prof. A. Derighetti for
his kind response to our query.

Lemma 3.2. Given a neighbourhood U of K and an ε > 0 there are a
neighbourhood V of K and a u ∈ A(G) such that (a) V ⊆ U , (b) u(x) = 1
for all x ∈ V , (c) suppu ⊆ U , and (d) ‖u‖A(G) < 1 + ε.

Proof. There are seven neighbourhoods U1, . . . , U6, V of K with the fol-
lowing properties:

(1) Ū1 is compact and Ū1 ⊆ U ,
(2) U2U2 ⊆ U1,
(3) U3 ⊆ U2 and U3 = U−1

3 ,
(4) Ū3 ⊆ U4 and m(U4) < (1 + ε)m(Ū3),
(5) U5 = U2 ∩ U4,
(6) Ū3U6 ⊆ U5 and U6Ū3 ⊆ U5,
(7) V ⊆ U6 and V = V −1.

Choose U1 as in (1) and then apply the previous lemma to U1 to get a U2 as
in (2). Regularity of the measure gives a U4 as in (4). The remaining ones
are easy. Now let

u =
1

m(Ū3)
χŪ3
∗ χV Ū3

Simple computations show that this V and u satisfy the requirements of the
lemma.

This lemma enables us to adapt Derighetti’s arguments to get the next
proposition and the theorem following it.
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Proposition 3.3. Given u ∈ A(G) and ε, η > 0, there exist a v ∈ A(G)
and a neighbourhood W of K such that (a) suppu ⊆W, (b) ‖v‖A(G) < 1+η,
and (c) ‖uv‖A(G) < ε+ ‖u|K‖A(K).

Proof. First consider the case when u is identically 0 on K. Since K is a
set of spectral synthesis for A(G) (Herz [7], Takesaki–Tatsuuma [22]), there
exists a compactly supported function u′ ∈ A(G) such that u′ is identically
0 on a neighbourhood of K and ‖u − u′‖ < ε/(1 + η). Let U and V be
neighbourhoods of K and suppu′ with U ∩ V = ∅. By the previous lemma,
there exist a v ∈ A(G) and a neighbourhood W of K such that W ⊆ U, v is
1 on W, supp v ⊆ U and ‖v‖ < 1 + η. Also ‖uv‖A(G) = ‖(u− u′)v‖A(G) < ε.

Next consider a general u ∈ A(G). Our proof of the general case is
slightly different from the one used in [1]. As in [1], we begin by invoking
Theorem 1(b) of Herz [7] to get a v ∈ A(G) such that ‖v‖A(G) = ‖u|K‖A(K)

and v|K = u|K . Now, the function u1 = u− v is 0 on K and hence, by the
case considered previously, we get a neighbourhood W of K and a function
v ∈ A(G) such that v = 1 on W, ‖v‖A(G) < 1 + ρ and ‖u1.v‖A(G) < ε/2;
here ρ is a positive real number, to be appropriately chosen below. Then

‖u.v‖A(G) = ‖(u1 + v)v‖A(G) ≤ ‖u1.v‖A(G) + ‖v.v‖A(G)

< ε/2 + (1 + ρ)‖u|K‖A(K).

Choose ρ > 0 such that ρ‖u|K‖A(K) < ε/2 to complete the proof.

The next result is known even without the compactness condition (see [11],
where the methods are entirely different).

Theorem 3.4. Let K be a compact subgroup G. Then K is a local Ditkin
set for A(G).

Proof. In view of Proposition 3.3, the proof is essentially the same as
the proof of Théorème 11 of [1].

Theorem 3.5 (Injection theorem). Let K be a compact subgroup of G
and let E be a closed subset of K. Then E is a local Ditkin set for A(K) if
and only if it is so for A(G).

Proof. Even without the compactness condition on the subgroup K, it is
an easy fact to note that if E is locally Ditkin for A(G) then it is so for A(K).
So we need only prove the other part of the statement. Using Proposition
3.3 and the injection theorem for sets of local synthesis [1, Proposition 8],
we can repeat the proof of Théorème 12 in [1]. The details may safely be
omitted.

A direct image theorem for sets of spectral synthesis is given in [16]. We
can now present the analogous result for Ditkin sets, first for A(G/K) and
then for A(K\G/K).
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Proposition 3.6 (Direct image theorem). Let E ⊂ G be a (local) Ditkin
set for A(G). Then q(E) is also a (local) Ditkin set for A(G/K).

Proof. We write the proof for Ditkin sets. Suppose E is a Ditkin set
for A(G) and let ũ ∈ IA(G/K)(q(E)). Then the corresponding u ∈ A(G)
belongs to IA(G)(E) by Lemma 3.1 of [16]. By hypothesis, given ε > 0
there is a v ∈ jA(G)(E) such that ‖u − uv‖A(G) < ε. If ṽ = PKv, then
‖ũ− ũṽ‖A(G/K) < ε and ṽ ∈ jA(G/K)(q(E)). Hence the result follows.

Corollary 3.7. If H is any compact subgroup of G containing K, then
H/K ⊂ G/K is a local Ditkin set for A(G/K).

Proof. Apply Theorem 3.4 and Proposition 3.6.

A function u ∈ A(G) that is constant on double cosets of K can be
considered as a function on the double coset space K\G/K in the natural
way and this gives the Fourier algebra A(K\G/K). We write π = KπK
for the canonical quotient map G → K\G/K and write t for the double
coset π(t) = KtK. Observe also that there is a natural projection KPK of
A(G) onto A(K\G/K). It is well known that A(K\G/K) is a commutative,
regular, tauberian Banach algebra with Gelfand maximal ideal space iden-
tified with K\G/K via pointwise evaluation (in the more general context of
ultraspherical hypergroups, the result is found in Theorem 3.13 of [13]).

Lemma 3.8. Let K be a compact subgroup of a locally compact group G.
Let Ẽ ⊆ K\G/K be closed and let E = π−1(Ẽ) ⊆ G. For a function ũ on
K\G/K let u be the corresponding function on G that is constant on double
cosets of K: u(t) = ũ(π(t)). Then

(i) u ∈ jA(G)(E) if and only if ũ ∈ jA(K\G/K)(Ẽ);
(ii) u ∈ JA(G)(E) if and only if ũ ∈ JA(K\G/K)(Ẽ);
(iii) u ∈ IA(G)(E) if and only if ũ ∈ IA(K\G/K)(Ẽ).

Proof. (i) Observe that if u(t) = 0 for all t in an open set V ⊇ E in G,

then ũ(t) = 0 for all t in the open set π(V ) ⊇ Ẽ, and if ũ(t) = 0 for all t in
an open set Ṽ ⊇ Ẽ in K\G/K, then u(t) = 0 for all t ∈ π−1(Ṽ ) ⊇ E.

(ii) is a consequence of (i) and the fact that u↔ ũ is bicontinuous, and
(iii) is clear.

Theorem 3.9 (Direct image theorem for double coset spaces). Let K be
a compact subgroup of a locally compact group G and let E ⊆ G be closed.

(i) If E is a set of weak synthesis for A(G), then the closed set π(E)
is a set of weak synthesis for A(K\G/K) with ξA(K\G/K)(π(E)) ≤
ξA(G)(E). In particular, if E is of synthesis for A(G), then so is
π(E) for A(K\G/K).



298 K. Parthasarathy and N. Shravan Kumar

(ii) Let E ⊂ G be a (local) Ditkin set for A(G). Then π(E) is also a
(local) Ditkin set for A(K\G/K).

Proof. (i) SupposeE is a set of weak synthesis forA(G) with ξA(G)(E)=n.
Let ũ ∈ IA(K\G/K)(π(E)). Then u ∈ IA(G)(E) by Lemma 3.8 and, by the
assumption on E, un ∈ JA(G)(E). By Lemma 3.8 again, this in turn gives
ũn ∈ JA(K\G/K)(π(E)).

(ii) Using Lemma 3.8 (in place of Lemma 3.1 of [16]), the proof is quite
similar to that of Proposition 3.6.

Corollary 3.10. Singletons are sets of synthesis and local Ditkin sets
for A(K\G/K).

Proof. Choose E to be a singleton set in the previous theorem.

The next result is (one part of) the inverse projection theorem for syn-
thesis in the context of A(K\G/K). Even for A(G/K), only one part is
known and is found in [4]. Our proof is similar to that of Forrest.

Proposition 3.11. Let Ẽ be a closed subset of K\G/K. If E := π−1(Ẽ)
is a set of (weak) synthesis for A(G), then Ẽ is a set of (weak) synthesis for
A(K\G/K).

Proof. We only consider the case of sets of synthesis and prove the con-
trapositive statement. Suppose that there is a function ũ ∈ IA(K\G/K)(Ẽ)
with ũ /∈ JA(K\G/K)(Ẽ). If u = ũ ◦ π, then u ∈ IA(G)(E). We claim that
u /∈ JA(G)(E). Otherwise there is a sequence {un} in jA(G)(E) such that
‖un − u‖A(G) → 0 and so, writing un = ũn ◦ KPK with ũn ∈ A(K\G/K),
we have ‖ũn − ũ‖A(K\G/K) → 0. Since supp ũn ⊂ π(suppun), as is easy to
see, it follows that ũn ∈ jA(K\G/K)(Ẽ) and we run into a contradiction, as
ũ /∈ JA(K\G/K)(Ẽ). This completes the proof.

Corollary 3.12. The singleton {e}, the double coset of the identity
element, is a set of synthesis for A(K\G/K).

Proof. If Ẽ = {e}, then E = KeK = K is a set of synthesis for A(G) by
[7] or [22].

Observe that Corollary 3.12 is a special case of Corollary 3.10. We also
remark that Corollary 3.10 cannot be deduced from Proposition 3.11 since
a double coset KxK may not be of synthesis for A(G). In fact, it has been
proved by Meaney [12] that if G is a noncompact, connected, real semisimple
Lie group with finite centre, then, with the standard notation, KaK is not
a set of synthesis for A(G) when a ∈ A, a 6= e, provided that G/K has
rank one and dimension at least two. This also shows that the converse of
Proposition 3.10 is not true. Thus the full inverse projection theorem for
sets of synthesis is not valid for A(K\G/K).
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Remark. To prove the injection theorem for coset spaces, we need the
analogues of Lemma 3.2 and Proposition 3.3 with G/K in place of G. If
the analogue of Lemma 3.2 for A(G/K) could be proved, then invoking
the injection theorem for sets of local synthesis on homogeneous spaces, the
result that H/K is a set of synthesis for A(G/K) (for a closed subgroup H
of G containing K) and other results of [16] and proceeding as in Proposition
3.3 and Theorem 3.5, we could prove the injection theorem for G/K. But
we are unable to quite get the needed lemma.

4. Strong Ditkin sets. Throughout this section we assume that G is
compact. We prove the inverse projection theorem for strong Ditkin sets,
and also obtain a relation between strong Ditkin sets in the Fourier algebra
and the Varopoulos algebra.

We begin with what appears to be the first complete inverse projection
theorem in the literature in the context of Ditkin sets.

Theorem 4.1 (Inverse projection theorem). Assume that G is compact.
A closed set Ẽ ⊂ G/K is a strong Ditkin set for A(G/K) if and only if
q−1(Ẽ) is a strong Ditkin set for A(G).

Proof. Assume q−1(Ẽ) is a strong Ditkin set for A(G) and let ũ ∈
IA(G/K)(Ẽ). Then u ∈ IA(G)(q−1(Ẽ)) and there is a bounded sequence
un ∈ jA(G)(q−1(Ẽ)) such that ‖unu − u‖A(G) → 0. Observing that PKun ∈
jA(G/K)(Ẽ) and that ‖PKun.ũ − ũ‖A(G/K) → 0, we conclude that Ẽ is a
strong Ditkin set for A(G/K).

Conversely, suppose that Ẽ is a strong Ditkin set for A(G/K) and let
v ∈ IA(G)(q−1(Ẽ)). For each irreducible, unitary representation π of G,
consider the matrix-valued function vπ defined by vπ(s) =

	
K v(sk)π(k) dk

and let ṽπ(s) = π(s)vπ(s). It is clear that vπ(sk) = vπ(s) for s ∈ G, k ∈ K.
The same property holds for ṽπ as well:

ṽπ(sk) = π(sk)
�

K

v(skk′)π(k′) dk′ = π(sk)
�

K

v(sk′)π(k−1k′) dk′

= π(sk)
�

K

v(sk′)π(k−1)π(k′) dk′ = π(s)
�

K

v(sk′)π(k′) dk′ = ṽπ(s).

Writing uπij for the matrix coefficients of π let vπij :=
	
K u

π
ij(k)v.k dk where

v.k(s) = v(sk). Note that v ∈ IA(G)(q−1(Ẽ)) implies that v.k belongs to
IA(G)(q−1(Ẽ)) for all k ∈ K and hence vπij ∈ IA(G)(q−1(Ẽ)). Moreover, ṽπij =∑
uπilv

π
lj ∈ IA(G)(q−1(Ẽ)). But ṽπij(sk) = ṽπij(s), s ∈ G, k ∈ K. Thus ṽπij may

be considered as a function in A(G/K) and then belongs to IA(G/K)(Ẽ). As
Ẽ is a strong Ditkin set for A(G/K), there is a sequence (ũn) in jA(G/K)(Ẽ)
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such that ‖ũnṽπij−ṽπij‖A(G/K) → 0 and ‖ũn‖A(G/K) is bounded. Let un denote
the function in A(G) corresponding to ũn.

Choose a bounded approximate identity {eα} in L1(G) as in [21], [14].
Then, for each α, eα.v = limn un(eα.v) in A(G). But v = limα eα.v. Now,
writing ‖ · ‖A for the norm in A(G),

‖unv − v‖A ≤ ‖unv − uneα.v‖A + ‖uneαv − eα.v‖A + ‖eα.v − v‖A
≤ c‖eα.v − v‖A + ‖uneαv − eα.v‖A + ‖eα.v − v‖A,

since (un) is bounded. Given ε > 0, fix an α such that each of the first and
last terms is less than ε/3. For this α, there is an n0 such that the middle
term is less than ε/3 for n ≥ n0. Thus unv → v and hence q−1(Ẽ) is a strong
Ditkin set for A(G) and the proof is complete.

For abelian groups, Varopoulous [23] proved the classical theorem of
Malliavin on the failure of spectral synthesis using the relation he obtained
between synthesis in the Fourier algebra and the Varopoulous algebra. For
such a relation on nonabelian groups, see [21] and [14]. The corresponding
relation for Ditkin sets seems to be unavailable even for abelian groups. Here
is the analogous result for strong Ditkin sets in homogeneous spaces. Define
Ẽ] = {(t̄, s) ∈ K\G × G : s.ṫ−1 ∈ Ẽ} for a subset Ẽ of G/K. Let QK be
the contractive projection from V (G,K\G) onto Vinv(G,K\G) defined by
QKw(s, t̄) =

	
Gw(sx, t̄.x) dx considered in [16] (to which we refer for more

details).

Theorem 4.2. A closed subset Ẽ of G/K is a strong Ditkin set for
A(G/K) if and only if Ẽ\ is a strong Ditkin set for V (G,K\G).

Proof. One part easily follows from Lemma 3.11 of [16]. Suppose, first,
that Ẽ\ is a strong Ditkin set for V (G,K\G) and let (ṽn) be a bounded
sequence in j

V (G,K\G)
(Ẽ\) such that ‖ṽnṽ − ṽ‖V (G,K\G) → 0 as n → ∞ for

all ṽ ∈ IV (G,K\G)(Ẽ\). If ũ ∈ IA(G/K)(Ẽ), then NK ũ ∈ IV (G,K\G)(Ẽ\) and
so ‖ṽnNK ũ − NK ũ‖V (G,K\G) → 0. It follows that QK ṽn.NK ũ → NK ũ in
V (G,K\G) and hence that ũn := N−1

K (QK ṽn)ũ → ũ in A(G/K). Observe
that (ũn) is a bounded sequence and that ṽn ∈ jV (G,K\G)

(Ẽ\) implies QK ṽn ∈
j

V (G,K\G)
(Ẽ\). Thus, by Lemma 3.11 of [16], ũn ∈ jA(G/K)(Ẽ). This shows

that Ẽ is a strong Ditkin set for A(G/K).
For the converse, we make use of the ideas in [14] and [16]. Assume that

Ẽ is a strong Ditkin set for A(G/K) and let (ũn) be a bounded sequence
in jA(G/K)(Ẽ) as in the definition. Let w̃ ∈ IV (G,K\G)(Ẽ\). For each π ∈ Ĝ,
consider, with the notation of [16], w̃πij , w̃

∗π
ij ∈ IV (G,K\G)(Ẽ\)∩Vinv(G,K\G).

Then N−1
K w̃∗πij ∈ IA(G/K)(Ẽ) and so ũnN−1

K w̃∗πij → N−1
K w̃∗πij . It follows that
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NK ũnw̃
∗π
ij → w̃∗πij . Choosing an approximate identity (eα) for L1(G) as

in [16], we obtain NK ũn(eα.w̃)→ eα.w̃ for each α. Now

‖NK ũnw̃ − w̃‖V (G,K\G) ≤ ‖NK ũnw̃ −NK ũn(eα.w̃)‖V (G,K\G)

+ ‖NK ũn(eα.w̃ − eα.w̃‖V (G,K\G)

+ ‖eα.w̃ − w̃‖V (G,K\G)

≤ C‖eα.w̃ − w̃‖V (G,K\G)

+ ‖NK ũn(eα.w̃)− eα.w̃‖V (G,K\G).

Now fix an α so that the first term is small and then, for this α, the second
term is small for all sufficiently large n. Since NK ũn is a bounded sequence
in jV (G,K\G)(Ẽ\), this completes the proof.

5. Operator Ditkin sets. In this penultimate section of the paper, we
look for relations between Ditkin sets and operator Ditkin sets. (For a recent
study of relations between sets of spectral synthesis and sets of operator syn-
thesis, see [15].) In the case when K is the trivial one-element subgroup, the
main result of this section, Theorem 5.2, is due to Ludwig and Turowska [11].
We use techniques from [11] (extended to our settings) and [16] to prove this
result. The next lemma encapsulates much of the technicalities involved in
the proof of Theorem 5.2. We write Φ(F ) = {ω ∈ T (K\G,G) : ω = 0 on F}
for any closed set F in K\G×G.

Lemma 5.1. Let Ẽ ⊆ G/K be closed. Suppose (un) is a sequence in
jA(G/K)(Ẽ) such that ‖unu−u‖A(G/K)→0 as n→∞ for all u∈IA(G/K)(Ẽ).
Then N †Kun.ω → ω weakly for any ω ∈ Φ(Ẽ]).

Proof. Let us begin by observing that as a consequence of the assumption
on (un) we have

‖N †KunN
†
Ku−N

†
Ku‖V∞(K\G,G) → 0.

Let w ∈ V∞(K\G,G) vanish on Ẽ] and have compact support, say sup-
port w ⊆ p(C)×C where C ⊆ G is compact. For an irreducible unitary rep-
resentation π of G, let uπij , w

π
ij , and w̃πij be as in the previous section. We have∑

k |〈(N
†
Kun − 1)w̃πik.T, u

π
jkN

†
Ku.ω〉| < ∞ by an application of the Schwarz

inequality, for u ∈ A(G/K), T ∈ B(L2(K\G), L2(G)) and ω ∈ T (K\G,G).
So, given ε > 0, we have

∑
k/∈F |〈(N

†
Kun−1)w̃πik.T, u

π
jkN

†
Ku.ω〉| < ε for a suit-

ably chosen finite set F. The finite sum
∑

k∈F |〈(N
†
Kun−1)w̃πik.T, u

π
jkN

†
Ku.ω〉|

is estimated by applying Theorem 4.7 of [16] to get a vπij ∈ Mcb(A(G/K))
such that w̃πij = N †Kv

π
ij . Then
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k∈F
|〈(N †Kun − 1)w̃πik.T, u

π
jkN

†
Ku.ω〉| =

∑
k∈F
|〈T, uπjk(N

†
Kun − 1)N †K(vπiku).ω〉|

≤
∑
k∈F
‖T‖‖(N †Kun − 1)N †K(vπiku)‖‖ω‖,

the norms being, respectively, the operator norm, the norm in V∞(K\G,G)
and the norm in T (K\G,G). The middle term in the sum tends to zero,
by the opening line of this proof. Thus the finite sum is less than ε for
sufficiently large n. So it follows that 〈(N †Kun − 1)wπij .T,N

†
Ku.ω〉 → 0 as

n → ∞ because wπij =
∑

k u
π
kj .w̃

π
ik. An application of [19, Corollary 4.3],

shows that span{N †Ku.ω : u ∈ A(G/K), ω ∈ T (K\G,G)} is dense in
T (K\G,G), and since (N †Kun) is a bounded sequence, we conclude that
〈(N †Kun − 1)wπij .T, ω〉 → 0 as n→∞ for all ω ∈ T (K\G,G).

Choosing an approximate identity (eα) such that each eα is a continuous
function supported in CC−1 and approximating these by sums of the form
u =

∑
ciuiχCC−1 , where ui are matrix coefficients, we see that w can be

approximated in T (K\G,G) by u.w. For ω ∈ T (K\G,G),

|〈(N †Kun − 1)w.T, ω〉|

≤ |〈(N †Kun − 1).T, (w − u.w)ω〉|+ |〈(N †Kun − 1).T, u.wω〉|.

The preceding observation and the boundedness of (N †Kun) imply that the
first term is small for all n. On the other hand,

〈(N †Kun − 1).T, uπijwω〉 = 〈(N †Kun − 1)wπij .T, ω〉 → 0

and hence the second term above tends to zero. Thus

〈(N †Kun − 1)w.T, ω〉 → 0, i.e. 〈N †Kun.T, w.ω〉 → 〈T,w.ω〉
for all ω ∈ T (K\G,G). But

span{wω : w ∈ V∞(K\G,G), w = 0 on Ẽ], ω ∈ T (K\G,G)}
is dense in Φ(Ẽ]) by Proposition 5.3 of [20]. Thus 〈T,N †Kun.ω〉 → 〈T, ω〉 for
all ω ∈ Φ(Ẽ]) and the lemma is proved.

Before presenting the next result, we need a definition. A closed set
F ⊆ K\G×G is called an operator Ditkin set with respect to mK\G ×mG,
or an mK\G×mG-Ditkin set, if for each ω ∈ Φ(F ) there is a sequence (w̃n) in

ψ00(F ) := {w̃ ∈ V∞(K\G,G) : w̃ = 0 on a neighbourhood of F}
such that ‖w̃n.ω − ω‖T (K\G,G) → 0. If a bounded sequence (w̃n) with this
property can be found independent of ω ∈ Φ(F ), then the set F is said to
be a strong mK\G ×mG-Ditkin set.

Theorem 5.2. Let G be a second countable locally compact group with
K a compact subgroup. Let Ẽ ⊆ G/K be a closed set.
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(i) If Ẽ] is a strong mK\G×mG-Ditkin set, then Ẽ is a local Ditkin set
for A(G/K).

(ii) If Ẽ is a strong Ditkin set for A(G/K), then Ẽ] is an mK\G ×mG-
Ditkin set.

Proof. (i) Suppose that Ẽ] is a strong mK\G × mG-Ditkin set and let
(w̃n) be a sequence in ψ00(Ẽ]) such that ‖w̃n.ω − ω‖T (K\G,G) → 0 for all ω
in Φ(Ẽ]). Let 0 6= u ∈ IcA(G/K)(Ẽ) and let C ′ = suppu. Choose a compact

set C ⊆ G such that q(C) = C ′. Define N †Ku
C′(t̄, s) = N †Ku(t̄, s)χC′(ṫ−1) =

u(s.ṫ−1)χC′(ṫ−1), s ∈ G, t̄ ∈ K\G. Note that if t̄ = t̄1, then ṫ−1 = ṫ1
−1

and the function is well defined. If s.ṫ−1 ∈ C ′ and ṫ−1, then st−1 ∈ CK, t ∈
KC−1 and so s ∈ CKC−1. Thus N †Ku

C′(t̄, s) = χCKC−1(s)u(s.ṫ−1)χC′(ṫ−1),
and hence N †Ku

C′ ∈ V∞(K\G,G) vanishes outside a compact set and can be
considered as a function in T (K\G,G). Observe also that N †Ku

C′ vanishes
on Ẽ∗ and so belongs to Φ(Ẽ]). Hence ‖w̃nN †KuC

′ − N †KuC
′‖T (K\G,G) → 0

by assumption. If Q†K : T (K\G,G)→ A(G/K) is the contraction defined by
Q†Kw(ṡ) =

	
w(s−1.t, t) dt, then ‖Q†K(w̃nN

†
Ku

C′)−Q†K(N †Ku
C′)‖A(G/K) → 0.

On the other hand

Q†K(w̃nNKu
C′)(ṡ) =

�

G

w̃n(s−1.t, t)NKu
C′(s−1.t, t) dt

=
�

G

w̃n(s−1.t, t)χCKC−1(t)u(ṡ)χC′(t−1.ṡ) dt

= u(ṡ)
�

G

w̃n(s−1.t, t)χCKC−1(t)χC′(t−1.ṡ) dt

= u(ṡ)
�

G

w̃n(s−1.t, t)χC′ ⊗ χCKC−1(t, t−1.ṡ) dt

= u(ṡ)
�

G

w̃n(s−1.t, t)χC′′ ⊗ χCKC−1(s−1.t, t) dt

= u(ṡ)Q†K(w̃nχC′′ ⊗ χCKC−1)(ṡ)

where C ′′ = {t̄ ∈ K\G : ṫ−1 ∈ C ′}, whereas

Q†K(N †Ku
C′)(ṡ) =

�

G

N †Ku
C′(s−1.t, t) dt = u(ṡ)

�

G

χC′(t−1.ṡ) dt

= u(ṡ)
�

G

χC′( ˙t−1) dt = αC′u(ṡ), say.

Taking αC′ un = Q†K(w̃nχC′′ ⊗ χCKC−1) we see that ‖unu− u‖A(G/K) → 0
and, moreover, un ∈ jA(G/K)(Ẽ). The proof of (i) is thus complete.
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(ii) If Ẽ is a strong Ditkin set, there is a sequence (un) as in Lemma 5.1.
Therefore, the lemma implies that N †Kun.ω → ω weakly for all ω ∈ Φ(Ẽ]).
Then ‖w̃nω − ω‖T (K\G,G) → 0 where each w̃n is a convex combination of
the N †Kuj (see, for example, Rudin [18, Theorem 3.13]). This sequence (w̃n)
satisfies the requirements of the definition of an mK\G×mG-Ditkin set and
the proof is complete.

6. Miscellaneous remarks. Before we conclude, we would like to men-
tion some easy results on unions of Ditkin sets and on Ditkin sets for tensor
products.

In [24], Warner proved that the union of two sets of synthesis is again
a set of synthesis provided their intersection is a Ditkin set. Following the
methods in [10], where a nonabelian analogue was obtained, we can prove
the corresponding results for Ditkin sets and sets of synthesis in the context
of homogenous spaces. For the sake of completeness, we record these results
in this section. We begin by recasting the definition of Ditkin sets as well
as those of the local and strong variants. We let UCc(Ĝ/K) be the space of
operators in VN(G/K) with compact support.

Proposition 6.1. Let Ẽ be a closed set in G/K. Then the following are
equivalent:

(i) Ẽ is a local Ditkin set for A(G/K).
(ii) For T ∈ UCc(Ĝ/K) and u ∈ IcA(G/K)(Ẽ) there is a v ∈ jA(G/K)(Ẽ)

such that 〈T, u〉 = 〈T, uv〉.
(iii) For T ∈ UCc(Ĝ/K) and u ∈ IcA(G/K)(Ẽ) there is a net {vα} in

jA(G/K)(Ẽ) such that 〈T, u〉 = lim 〈T, uvα〉.

Similar characterisations of Ditkin sets (and strong Ditkin sets) are obtained
by replacing UCc(Ĝ/K) by VN(G/K) (and prescribing that, for strong Ditkin
sets, v in (ii) and vα in (iii) come from a bounded set depending only on Ẽ).

Proof. We shall write the proof only for local Ditkin sets. To see that
(i) implies (ii), we just have to observe that {〈T, uv〉 : v ∈ jA(G/K)(Ẽ)} = C
if 〈T, u〉 6= 0. That (ii) implies (iii) is trivial. So assume that (iii) holds and
let u ∈ IcA(G/K)(Ẽ). We have to show that if T ∈ VN(G/K) annihilates

ujA(G/K)(Ẽ) then 〈T, u〉 = 0. Choose v ∈ Ac(G/K) with v = 1 on the

support of u so that u = uv. Then v.T ∈ UCc(Ĝ/K) for any T ∈ VN(G/K)
and, by assumption, 〈T, u〉 = lim 〈T, uvα〉 and the last quantity is zero if T
annihilates ujA(G/K)(Ẽ). The proof is complete for the case of local Ditkin
sets.
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Theorem 6.2. Let G be a locally compact group and K a compact sub-
group of G. Suppose that E1 and E2 are closed subsets of G/K such that
E1 ∩E2 are Ditkin sets for A(G/K). Then E1 ∪E2 is a set of spectral syn-
thesis (respectively, set of local synthesis, local Ditkin set, Ditkin set, strong
Ditkin set) for A(G/K) if and only if both E1 and E2 are so.

Proof. We shall indicate the proof in the case of sets of synthesis and
Ditkin sets. By the previous proposition, the other cases are similar.

Suppose first that E1 and E2 are sets of spectral synthesis for A(G/K).
Assume T ∈ VN(G/K), suppT ⊂ E1 ∪ E2 and u ∈ IA(G/K)(E1 ∪ E2).
Since E1 ∩ E2 is a Ditkin set, there is a v ∈ jA(G/K)(E1 ∩ E2) such that
〈T, u〉 = 〈v.T, u〉. Then we construct, as in [10], v1, v2 ∈ A(G/K) with
disjoint compact supports such that (v1 + v2)vT = vT and supp vjT ⊂ Ej .
If E1 and E2 are sets of synthesis, it follows that 〈(vjv).T, u〉 = 0 for j = 1, 2
and hence 〈v.T, u〉 = 0, which is what we required. The converse is also
proved as for the case of A(G) (see [10]).

Next consider Ditkin sets. The union of two Ditkin sets is again a Ditkin
set for any commutative, regular, semisimple Banach algebra, without any
assumption on their intersection. The proof of the converse is similar to the
one given in [10] for A(G) and we omit it.

Remark. The theorem holds for any regular, tauberian, commutative,
semisimple Banach algebra.

Corollary 6.3. Suppose that A(G/K) has an approximate identity and
let E be an open-closed set in G/K. Then E is a Ditkin set.

We now come to tensor products. Let G be a locally compact group
and H a compact group. Let K and L be compact subgroups of G and H,
respectively. A result of [8] implies that I(E ×H/L) ∼= I(E) ⊗γ A(H/L) if
E ⊂ G/K is a closed set. Assuming this result, we can easily prove that if
E ⊂ G/K is a strong Ditkin set for A(G/K), then E×H/L ⊂ G/K ×H/L
is a strong Ditkin set for A(G/K)⊗γA(H/L). But unfortunately, the author
of [8] has withdrawn the result needed, having found a mistake in the proof
(see [9]). So we do not know how to get the result now.

We can, however, prove a simple result on operator space projective
tensor products. Note that, in view of Proposition 1.2 of [5], A(G/K) ⊗̂
A(H/L), the operator space projective tensor product, can be identified,
completely isometrically, with A(G/K ×H/L).

Let ẏ ∈ H/L and define

χẏ : A(G/K)⊗A(H/L)→ A(G/K) by χẏ(f ⊗ g) = g(ẏ)f.

Then χẏ extends to a homomorphism from A(G/K) ⊗̂A(H/L) to A(G/K)
that is completely contractive.
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Lemma 6.4. Let E and F be closed subsets of G/K and H/L, respec-
tively, and let ẏ ∈ F. Then

χẏ(j(E × F )) ⊆ j(E).

Proof. If ẋ belongs to the support of χẏu, then (ẋ, ẏ) belongs to the
support of u. So if u has compact support disjoint from E × F, then χẏu
has compact support disjoint from E.

We conclude with the following simple result.

Theorem 6.5. Let G and H be locally compact groups and K and L be
compact subgroups of G and H, respectively. Let E ⊂ G/K and F ⊂ H/L
be closed sets.

(i) If E×F is a set of synthesis for A(G/K×H/L), then E and F are
both sets of synthesis, for A(G/K) and A(H/L), respectively.

(ii) If E ×F is a Ditkin set for A(G/K ×H/L), then E and F are both
Ditkin sets, for A(G/K) and A(H/L), respectively.

Proof. (i) Let f ∈ I(E). Let ẏ ∈ F and choose g ∈ A(H/L) such that
g(ẏ) = 1. For any positive ε, if u ∈ j(E ×F ) is such that ‖u− (f ⊗ g)‖ < ε,
then

‖f − χẏ(u)‖ = ‖χẏ(f ⊗ g)− χẏ(u)‖ ≤ ‖f ⊗ g − u‖ < ε.

Also, χẏ(u) ∈ j(E) by the previous lemma. Thus (i) is proved.
(ii) Let f ∈ I(E), let ẏ ∈ F and choose g ∈ A(H/L) as above. If {uα} is

a net in j(E × F ) such that ‖f ⊗ g − uα(f ⊗ g)‖ converges to zero, then so
does ‖f − χẏ(uα)f‖ with χẏ(uα) ∈ j(E). Hence (ii) follows.
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