Extensions of weak type multipliers

by
P. Mohanty and S. Madan (Kanpur)

Abstract

We prove that if $\Lambda \in M_{p}\left(\mathbb{R}^{N}\right)$ and has compact support then Λ is a weak summability kernel for $1<p<\infty$, where $M_{p}\left(\mathbb{R}^{N}\right)$ is the space of multipliers of $L^{p}\left(\mathbb{R}^{N}\right)$.

1. Introduction. Let G be a locally compact abelian group with Haar measure μ, and let \widehat{G} be its dual. We call an operator $T: L^{p}(G) \rightarrow$ $L^{p, \infty}(G), 1 \leq p<\infty$, a multiplier of weak type (p, p) if it is translation invariant, i.e. $\tau_{x} T=T \tau_{x}$ for all $x \in G$, and there exists a constant $C>0$ such that

$$
\begin{equation*}
\mu\{x \in G:|T f(x)|>t\} \leq \frac{C^{p}}{t^{p}}\|f\|_{p}^{p} \tag{1.1}
\end{equation*}
$$

for all $f \in L^{p}(G)$ and $t>0$. (Here $L^{p, \infty}$ denotes the standard weak L^{p} space.) Asmar, Berkson and Gillespie in [3] proved that for all such operators T there exists a $\phi \in L^{\infty}(\widehat{G})$ such that $(T f)^{\wedge}=\phi \widehat{f}$ for all $f \in L^{2} \cap L^{p}(G)$. We will also call such ϕ 's multipliers of weak type (p, p). Let $M_{p}^{(w)}(\widehat{G})$ denote the space of multipliers of weak type (p, p) for $1 \leq p<\infty$, and let $N_{p}^{(w)}(\phi)$ be the smallest constant C such that inequality (1.1) holds.

In this paper we are concerned with extensions of weak type multipliers from \mathbb{Z}^{N} to \mathbb{R}^{N} through summability kernels. For similar results on strong type multipliers, see [6] and [4]. Here we identify \mathbb{T}^{N} with $[0,1)^{N}$ and for $f \in L^{1}\left(\mathbb{R}^{N}\right)$ we define its Fourier transform as $\widehat{f}(\xi)=\int_{\mathbb{R}^{N}} f(x) e^{-2 \pi i \xi \cdot x} d x$ for $\xi \in \mathbb{R}^{N}$. Let us define summability kernels for weak type multipliers as follows.

Definition 1.1. A bounded measurable function $\Lambda: \mathbb{R}^{N} \rightarrow \mathbb{C}$ is called a weak summability kernel for $M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$ if for $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ the function $W_{\phi, \Lambda}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda(\xi-n)$ is defined and belongs to $M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$.

This definition is just the weak type analogue of summability kernels for strong type multipliers [4]. We first cite two important results regarding the summability kernels of strong type multipliers from the work of Jodeit [6] and of Berkson, Paluszyński, and Weiss [4]:

Theorem $1.1([6])$. Let $S \in L^{1}\left(\mathbb{R}^{N}\right)$ and $\operatorname{supp} S \subseteq[1 / 4,3 / 4]^{N}$ with $\tau=\sum_{n \in \mathbb{Z}^{N}}|\widehat{s}(n)|<\infty$, where s is the 1-periodic extension of S. Then the function defined by $W_{\phi, \widehat{S}}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \widehat{S}(\xi-n)$ belongs to $M_{p}\left(\mathbb{R}^{N}\right)$ for $1 \leq p<\infty$, with $\left\|W_{\phi, \widehat{S}}\right\|_{M_{p}\left(\mathbb{R}^{N}\right)} \leq C_{p} \tau\|\phi\|_{M_{p}\left(\mathbb{Z}^{N}\right)}$.

Theorem $1.2([4])$. For $1 \leq p<\infty$, let $\Lambda \in M_{p}\left(\mathbb{R}^{N}\right)$ and $\operatorname{supp} \Lambda \subseteq$ $[1 / 4,3 / 4]^{N}$. For $\phi \in M_{p}\left(\mathbb{Z}^{N}\right)$ define $W_{\phi, \Lambda}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda(\xi-n)$ on \mathbb{R}^{N}. Then $W_{\phi, \Lambda} \in M_{p}\left(\mathbb{R}^{N}\right)$ and $\left\|W_{\phi, \Lambda}\right\|_{M_{p}\left(\mathbb{R}^{N}\right)} \leq C_{p}\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}\|\phi\|_{M_{p}\left(\mathbb{Z}^{N}\right)}$ where C_{p} is a constant. (Further, if Λ has an arbitrary compact support the same result holds except that the constant C_{p} necessarily depends on the support of Λ, as shown in [4].)

Asmar, Berkson and Gillespie proved a weak type analogue of Theorem 1.1 in [2]. In the same paper they also proved that Λ defined by $\Lambda(\xi)=$ $\prod_{j=1}^{N} \max \left(1-\left|\xi_{j}\right|, 0\right)$ for $\xi=\left(\xi_{1}, \ldots, \xi_{N}\right)$ is a weak type summability kernel. In this paper, we prove the weak type analogue of Theorem 1.2 in $\S 2$, for $1<p<\infty$. In $\S 3$ we relax the hypothesis that $\operatorname{supp} \Lambda \subseteq[1 / 4,3 / 4]^{N}$. For the proof of our main result, as in [4], we will obtain the weak type inequalities by applying the technique of transference couples due to Berkson, Paluszyński, and Weiss [4].

Definition 1.2. For a locally compact group G, a transference couple is a pair $(S, T)=\left(\left\{S_{u}\right\},\left\{T_{u}\right\}\right), u \in G$, of strongly continuous mappings defined on G with values in $\mathcal{B}(X)$, where X is a Banach space, satisfying
(i) $C_{S}=\sup \left\{\left\|S_{u}\right\|: u \in G\right\}<\infty$,
(ii) $C_{T}=\sup \left\{\left\|T_{u}\right\|: u \in G\right\}<\infty$,
(iii) $S_{v} T_{u}=T_{v u}$ for all $u, v \in G$.

In $\S 4$, as an application of our result, we prove a weak type analogue of an extension theorem by de Leeuw.
2. Weak type inequality for transference couples and the main theorem. Let $\Lambda \in L^{\infty}\left(\mathbb{R}^{N}\right)$ and $\operatorname{supp} \Lambda \subseteq[1 / 4,3 / 4]^{N}$. Consider the following transference couple (S, T) used by Berkson, Paluszyński, and Weiss in [4]. For $u \in \mathbb{T}^{N}$ the family $T=\left\{T_{u}\right\}$ is given by

$$
\begin{equation*}
\left(T_{u} f\right)^{\wedge}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \Lambda(\xi-n) e^{2 \pi i u . n} \widehat{f}(\xi) \quad \text { for } f \in L^{p} \cap L^{1}\left(\mathbb{R}^{N}\right) \tag{2.2}
\end{equation*}
$$

and the family $S=\left\{S_{u}\right\}$ is defined by

$$
\begin{equation*}
\left(S_{u} f\right)^{\wedge}(\xi)=\sum_{n \in \mathbb{Z}^{N}} b(\xi-n) e^{2 \pi i u . n} \widehat{f}(\xi) \quad \text { for } f \in L^{p} \cap L^{1}\left(\mathbb{R}^{N}\right) \tag{2.3}
\end{equation*}
$$

where $b(\xi)=\prod_{i=1}^{N} b_{i}\left(\xi_{i}\right)$ for $\xi=\left(\xi_{1}, \ldots, \xi_{N}\right)$, and for each i, b_{i} is the continuous function defined on \mathbb{R} as $b_{i}(x)=1$ if $x \in[1 / 4,3 / 4]$, 0 outside $[0,1]$ and linear in $[0,1 / 4) \cup(3 / 4,1]$. It is easy to see that

$$
\begin{equation*}
S_{u} f(x)=\sum_{l \in \mathbb{Z}^{N}} \check{\beta}_{u}(l) f(x+u-l) \quad \text { a.e. } \tag{2.4}
\end{equation*}
$$

where $\check{\beta}_{u}$ is the inverse Fourier transform of the function $\beta_{u}(\xi)=b(\xi) e^{2 \pi i \xi \cdot u}$, given explicitly by

$$
\check{\beta}_{u}(\xi)=\prod_{i=1}^{N} \check{\beta}_{u_{i}}\left(\xi_{i}\right)
$$

where

$$
\check{\beta}_{u_{i}}\left(\xi_{i}\right)= \begin{cases}\frac{2 e^{2 \pi i\left(\xi_{i}+u_{i}\right) / 2}}{\pi^{2}\left(\xi_{i}-u_{i}\right)^{2}}\left(\cos \frac{\pi}{2}\left(\xi_{i}-u_{i}\right)-\cos \pi\left(\xi_{i}-u_{i}\right)\right) & \text { if } \xi_{i} \neq u_{i} \tag{2.5}\\ \frac{3 e^{2 \pi i\left(\xi_{i}+u_{i}\right) / 2}}{4} & \text { if } \xi_{i}=u_{i}\end{cases}
$$

Then by a straightforward calculation using (2.5) we have

$$
\begin{equation*}
\sum_{l \in \mathbb{Z}^{N}}\left|\check{\beta}_{u}(l)\right| \leq \sum_{l \in \mathbb{Z}^{N}} \beta(l)=C<\infty \tag{2.6}
\end{equation*}
$$

where $\beta(l)=\prod_{i=1}^{N} \beta_{i}\left(l_{i}\right)$ and

$$
\beta_{i}\left(l_{i}\right)= \begin{cases}1 /\left(l_{i}-1\right)^{2} & \text { if } l_{i}>1 \\ 1 /\left(l_{i}+1\right)^{2} & \text { if } l_{i}<1 \\ \left\|b_{i}\right\|_{1} & \text { otherwise }\end{cases}
$$

In the following theorem we shall show that the operator transferred by T (of the transference couple (S, T) defined in (2.2) and (2.3)) given by

$$
H_{k} f(\cdot)=\int_{\mathbb{T}^{N}} k(u) T_{u^{-1}} f(\cdot) d u
$$

where $k \in L^{1}\left(\mathbb{T}^{N}\right)$ and $f \in L^{p}\left(\mathbb{R}^{N}\right)$, satisfies a weak (p, p) inequality.
Theorem 2.1. Let (S, T) be the transference couple as defined in (2.2) and (2.3). Then for $1<p<\infty, t>0$ and $f \in \mathcal{S}$,

$$
\lambda\left\{x \in \mathbb{R}^{N}:\left|H_{k} f(x)\right|>t\right\} \leq\left(\frac{C C_{p}}{t} C_{T} N_{p}^{(w)}(k)\|f\|_{p}\right)^{p}
$$

where λ denotes the Lebesgue measure of $\mathbb{R}^{N}, C=\sum_{l \in \mathbb{Z}^{N}} \beta(l)$ as in (2.6), C_{T} is the uniform bound for the family $T=\left\{T_{u}\right\}$, and $C_{p}=p /(p-1)$.

Proof. Let $f \in \mathcal{S}\left(\mathbb{R}^{N}\right)$. For $t>0$ define $E_{t}=\left\{x:\left|H_{k} f(x)\right|>t\right\}$. Notice that

$$
H_{k} f(x)=S_{v^{-1}} S_{v} H_{k} f(x)=\sum_{l \in \mathbb{Z}^{N}} \check{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x-v-l) d u
$$

Let

$$
\mathcal{F}_{t}=\left\{(v, x) \in \mathbb{T}^{N} \times \mathbb{R}^{N}:\left|\sum_{l \in \mathbb{Z}^{N}} \check{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x-l) d u\right|>t\right\} .
$$

Then, using translation invariance of Lebesgue measure, we obtain

$$
\begin{aligned}
\lambda\left(E_{t}\right) & =\lambda\left\{x \in \mathbb{R}^{N}:\left|S_{v^{-1}} \int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x) d u\right|>t\right\} \\
& =\lambda\left\{x \in \mathbb{R}^{N}:\left|\sum_{l \in \mathbb{Z}^{N}} \check{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x-l) d u\right|>t\right\} \\
& =\int_{\mathbb{T}^{N}} \int_{\mathbb{R}^{N}} \chi_{\mathcal{F}_{t}}(v, x) d x d v \\
& =\int_{\mathbb{R}^{N}}\left|\left\{v:\left|\sum_{l \in \mathbb{Z}^{N}} \check{\beta}_{v^{-1}}(l) \int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x-l) d u\right|>t\right\}\right| d x,
\end{aligned}
$$

where $|E|$ denotes the measure of the subset $E \subseteq \mathbb{T}^{N}$. Thus

$$
\begin{aligned}
\lambda\left(E_{t}\right) & \leq \int_{\mathbb{R}^{N}}\left|\left\{v: \sum_{l \in \mathbb{Z}^{N}} \beta(l)\left|\int_{\mathbb{T}^{N}} k(u) T_{u^{-1} v} f(x-l)\right| d u>t\right\}\right| d x \\
& =\int_{\mathbb{R}^{N}}\left|\left\{v: \sum_{l \in \mathbb{Z}^{N}} \beta(l)|k * F(\cdot, x-l)(v)|>t\right\}\right| d x,
\end{aligned}
$$

where $F(v, x)=T_{v} f(x)$ a.e.
We know that $\sup _{t>0} t \lambda_{f}(t)^{1 / p}=\|f\|_{L^{p, \infty}}$ for $f \in L^{p, \infty}$. Also, since $p>1$, $\left\|\|_{p, \infty}\right.$ is equivalent to a norm $\| \|_{p, \infty}^{*}([8])$, using the triangle inequality for norms we have

$$
\begin{aligned}
\lambda\left(E_{t}\right) & \leq \int_{\mathbb{R}^{N}} \frac{1}{t^{p}}\left\|\sum_{l \in \mathbb{Z}^{N}} \beta(l) k * F(\cdot, x-l)\right\|_{L^{p, \infty}\left(\mathbb{T}^{N}\right)}^{p} d x \\
& \leq C_{p}^{p} \int_{\mathbb{R}^{N}} \frac{1}{t^{p}}\left(\sum_{l \in \mathbb{Z}^{N}} \beta(l)\|k * F(\cdot, x-l)\|_{L^{p, \infty}\left(\mathbb{T}^{N}\right)}^{*}\right)^{p} d x, \\
& \leq C_{p}^{p} \int_{\mathbb{R}^{N}} \frac{1}{t^{p}}\left(\sum_{l \in \mathbb{Z}^{N}} \beta(l) N_{p}^{(w)}(k)\|F(\cdot, x-l)\|_{L^{p}\left(\mathbb{T}^{N}\right)}\right)^{p} d x,
\end{aligned}
$$

where $N_{p}^{(w)}(k)$ is the weak-type norm of the convolution operator $f \mapsto k * f$
for $f \in L^{p}\left(\mathbb{T}^{N}\right)$. Thus,

$$
\begin{aligned}
\lambda\left(E_{t}\right) & \leq C_{p}^{p} \frac{1}{t^{p}}\left(\sum_{l \in \mathbb{Z}^{N}} \beta(l) N_{p}^{(w)}(k)\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{T}^{N}}\left|T_{v} f(x-l)\right|^{p} d x d v\right)^{1 / p}\right)^{p} \\
& =C_{p}^{p} \frac{1}{t^{p}}\left(\sum_{l \in \mathbb{Z}^{N}} \beta(l) N_{p}^{(w)}(k)\left(\int_{\mathbb{T}^{N}} \int_{\mathbb{R}^{N}}\left|T_{v} f(x-l)\right|^{p} d x d v\right)^{1 / p}\right)^{p} \\
& \leq\left(\frac{C C_{p} C_{T}}{t^{p}} N_{p}^{(w)}(k)\|f\|_{p}\right)^{p}
\end{aligned}
$$

Hence, $H_{k} f$ satisfies a weak (p, p) inequality.
In order to prove the weak-type analogue of Theorem 1.2 we need the following lemma proved by Asmar, Berkson, and Gillespie in [1].

Lemma 2.1 ([1]). Suppose that $1 \leq p<\infty,\left\{\phi_{j}\right\} \subseteq M_{p}^{(w)}(\widehat{G})$ with $\sup \left\{\left|\phi_{j}(\gamma)\right|: j \in \mathbb{N}, \gamma \in \widehat{G}\right\}<\infty$ and suppose ϕ_{j} converges pointwise a.e. on \widehat{G} to a function ϕ. If $\liminf _{j} N_{p}^{(w)}\left(\phi_{j}\right)<\infty$ then $\phi \in M_{p}^{(w)}(\widehat{G})$ and $N_{p}^{(w)}(\phi) \leq \liminf _{j} N_{p}^{(w)}\left(\phi_{j}\right)$.

In the following theorem, we use the family of operators $\left\{T_{u}\right\}$ defined in (2.2) with $\Lambda \in M_{p}\left(\mathbb{R}^{N}\right)$ and $\operatorname{supp} \Lambda \subseteq[1 / 4,3 / 4]^{N}$. In this case, by [4] we have $C_{T} \leq c_{p}\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}$, where c_{p} is a constant.

Theorem 2.2. Suppose $1<p<\infty$ and $\Lambda \in M_{p}\left(\mathbb{R}^{N}\right)$ is supported in the set $[1 / 4,3 / 4]^{N}$. For $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ define

$$
W_{\phi, \Lambda}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda(\xi-n) \quad \text { on } \mathbb{R}^{N}
$$

Then $W_{\phi, \Lambda} \in M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$ and $N_{p}^{(w)}\left(W_{\phi, \Lambda}\right) \leq C N_{p}^{(w)}(\phi)\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}$.
Proof. Using Lemma 2.1 we first show that it is enough to prove the theorem for $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ having finite support. Suppose the theorem is true for finitely supported ϕ. Then, for arbitrary $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$, define $\phi_{j}=$ $\widehat{k}_{j} \phi$, where k_{j} is the j th Fejér kernel. Then for each j, ϕ_{j} 's have finite support and $\left(T_{\phi_{j}} f\right)^{\wedge}(n)=\phi_{j}(n) \widehat{f}(n)=\left(T_{\phi}\left(k_{j} * f\right)\right)^{\wedge}(n)$. So $\phi_{j} \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ for each j and $N_{p}^{(w)}\left(\phi_{j}\right) \leq N_{p}^{(w)}(\phi)$. Define $W_{\phi_{j}, \Lambda}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi_{j}(n) \Lambda(\xi-n)$. Now $\lim \inf _{j} W_{\phi_{j}, \Lambda}(\xi)=W_{\phi, \Lambda}(\xi)$. Also, by our assumption,

$$
N_{p}^{(w)}\left(W_{\phi_{j}, \Lambda}\right) \leq C N_{p}^{(w)}\left(\phi_{j}\right)\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)} \leq C N_{p}^{(w)}(\phi)\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}
$$

and $\left|W_{\phi_{j}, \Lambda}\right| \leq 2\|\Lambda\|_{\infty}\left\|\phi_{j}\right\|_{\infty} \leq 2\|\Lambda\|_{\infty}\|\phi\|_{\infty}$. Thus by Lemma 2.1, applied to $W_{\phi_{j}, \Lambda}$'s, we conclude that $W_{\phi, \Lambda} \in M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$. Hence it is enough to assume that $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ has finite support.

Now let $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ be finitely supported. Define

$$
k(u)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) e^{-2 \pi i u . n}
$$

Then $k \in L^{1}\left(\mathbb{T}^{N}\right)$ and $\widehat{k}(n)=\phi(n)$. For this particular k and the transference couple (S, T) defined above, we have

$$
\left(H_{k} f\right)^{\wedge}(\xi)=\left(T_{W_{\phi, \Lambda}} f\right)^{\wedge}(\xi)
$$

Thus $T_{W_{\phi, \Lambda}} f=H_{k} f$. Hence from Theorem 2.1 and since $C_{T} \leq c_{p}\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}$, we have

$$
\lambda\left\{x \in \mathbb{R}^{N}:\left|T_{W_{\phi, \Lambda}} f(x)\right|>t\right\} \leq\left(\frac{C}{t} N_{p}^{(w)}(\phi)\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}\|f\|_{p}\right)^{p}
$$

3. Lattice preserving linear transformations and multipliers. We shall now relax the hypothesis that $\operatorname{supp} \Lambda \subseteq[1 / 4,3 / 4]^{N}$ to allow Λ to have arbitrary compact support. In fact this can be done by a partition of identity argument as in [4]. Here we give a different method by proving Lemma 3.2 below. Particular cases of this lemma occur in [6] and in [2]. Suppose $\operatorname{supp} \Lambda \subseteq[-M, M]^{N} ;$ define $\Lambda_{M}(\xi)=\Lambda_{1}(4 M \xi)$, where $\Lambda_{1}(\xi)=$ $\Lambda(\xi-1 / 2)$. So $\operatorname{supp} \Lambda_{M} \subseteq[1 / 4,3 / 4]^{N}$. Thus if we define a non-singular transformation $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ such that $A x=4 M x$ then $\Lambda_{M}=\Lambda_{1} \circ A$. In order to replace the support condition we need to prove $\Lambda_{M} \circ A^{-1}$ is a summability kernel. In the work of Jodeit and of Asmar, Berkson, and Gillespie they assume A in Lemma 3.2 to be multiplication by 2 . We have combined some of the results proved by Gröchenig and Madych [5] in the following lemma which will help us to prove Lemma 3.2. In the proof of Theorem 3.1, we only use the case of a diagonal linear transform, but the more general results proved below are of some interest in their own right.

Lemma $3.1([5])$. Let $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be a non-singular linear transformation which preserves the lattice \mathbb{Z}^{N} (i.e. $\left.A\left(\mathbb{Z}^{N}\right) \subseteq \mathbb{Z}^{N}\right)$. Then the following are true.
(i) The number of distinct coset representatives of $\mathbb{Z}^{N} / A \mathbb{Z}^{N}$ is equal to $q=|\operatorname{det} A|$.
(ii) If $Q_{0}=[0,1)^{N}$ and k_{1}, \ldots, k_{q} are the distinct coset representatives of $\mathbb{Z}^{N} / A \mathbb{Z}^{N}$ then the sets $\left\{A^{-1}\left(Q_{0}+k_{i}\right)\right\}$ are mutually disjoint.
(iii) $\operatorname{Let} Q=\bigcup_{i=1}^{q} A^{-1}\left(Q_{0}+k_{i}\right)$. Then $\lambda(Q)=1$ and $\bigcup_{k \in \mathbb{Z}^{N}}(Q+k) \simeq \mathbb{R}^{N}$.
(iv) $A Q \simeq \bigcup_{i=1}^{q}\left(Q_{0}+k_{i}\right)$.

Here $E \simeq F$ if $\lambda(F \triangle E)=0$.
Using this lemma, we prove

Lemma 3.2. Let A be as in Lemma 3.1. Define $A^{t}=B$, where A^{t} is the transpose of A. For $\phi \in l_{\infty}\left(\mathbb{Z}^{N}\right)$ define

$$
\psi(n)=\phi(B n), \quad \eta(n)= \begin{cases}\phi\left(B^{-1} n\right) & \text { if } n \in B \mathbb{Z}^{N} \\ 0 & \text { otherwise }\end{cases}
$$

(i) If $\phi \in M_{p}\left(\mathbb{Z}^{N}\right)$ then $\psi, \eta \in M_{p}\left(\mathbb{Z}^{N}\right)$ with multiplier norms not exceeding the multiplier norm of ϕ.
(ii) If $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ then $\psi, \eta \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ with weak multiplier norms not exceeding the weak multiplier norm of ϕ.

Proof. (i) For $f \in L^{p}\left(Q_{0}\right)$, we let f again denote its periodic extension to \mathbb{R}^{N}. Define $S f(x)=f(A x)$. Then $S f$ is also periodic and

$$
\begin{aligned}
\int_{Q_{0}}|S f(x)|^{p} d x & =\int_{Q_{0}}|S f(x)|^{p} \sum_{j} \chi_{Q}(x-j) d x=\sum_{j} \int_{Q_{0}+j}|S f(x)|^{p} \chi_{Q}(x) d x \\
& =\int_{Q}|S f(x)|^{p} d x=\frac{1}{|\operatorname{det} A|} \int_{A Q}|f(x)|^{p} d x \\
& =\frac{1}{q} \sum_{i=1}^{q} \int_{Q_{0}+k_{i}}|f(x)|^{p} d x \quad \text { (Lemma 3.1(iv)) } \\
& =\int_{Q_{0}}|f(x)|^{p} d x
\end{aligned}
$$

Thus S is an isometry, i.e., $\|S f\|_{L^{p}\left(Q_{0}\right)}=\|f\|_{L^{p}\left(Q_{0}\right)}$. Further, from the orthogonality relations for characters (Lemma 1 of [7]) we have

$$
(S f)^{\wedge}(n)= \begin{cases}\widehat{f}\left(B^{-1} n\right) & \text { if } n \in B \mathbb{Z}^{N} \\ 0 & \text { otherwise }\end{cases}
$$

For $f \in L^{p}\left(Q_{0}\right)$ we define an operator W on $L^{p}\left(Q_{0}\right)$ by

$$
W f(x)=\frac{1}{q} \sum_{i=1}^{q} f\left(A^{-1}\left(x+k_{i}\right)\right)
$$

where k_{1}, \ldots, k_{q} are distinct coset representatives of $\mathbb{Z}^{N} / A \mathbb{Z}^{N}$. Then for a trigonometric polynomial f,

$$
(W f)^{\wedge}(n)=\widehat{f}(B n)
$$

and so

$$
\begin{aligned}
\left(\int_{Q_{0}}|W f(x)|^{p} d x\right)^{1 / p} & =\left(\int_{Q_{0}}\left|\frac{1}{q} \sum_{i=1}^{q} f\left(A^{-1}\left(x+k_{i}\right)\right)\right|^{p} d x\right)^{1 / p} \\
& \leq \frac{1}{q} \sum_{i=1}^{q}\left(\int_{Q_{0}}\left|f\left(A^{-1}\left(x+k_{i}\right)\right)\right|^{p} d x\right)^{1 / p} \\
& =\frac{q^{1 / p}}{q} \sum_{i=1}^{q}\left(\int_{A^{-1}\left(Q_{0}+k_{i}\right)}|f(x)|^{p} d x\right)^{1 / p}
\end{aligned}
$$

Therefore $\|W f\|_{L^{p}\left(Q_{0}\right)} \leq q^{(1-p) / p}\|f\|_{L^{p}\left(Q_{0}\right)}$, since $\int_{Q_{0}}|f(x)|^{p} d x=\int_{Q}|f(x)|^{p} d x$ as above. It is easy to see that

$$
\begin{align*}
& S T_{\phi} W=T_{\eta} \tag{3.7}\\
& W T_{\phi} S=T_{\psi} \tag{3.8}
\end{align*}
$$

It follows that if $\phi \in M_{p}\left(\mathbb{Z}^{N}\right)$, then $\left\|T_{\psi} f\right\| \leq C_{p}\|\phi\|_{M_{p}\left(\mathbb{Z}^{N}\right)}\|f\|_{L^{p}\left(Q_{0}\right)}$. Also $\left\|T_{\eta} f\right\|_{L^{p}\left(Q_{0}\right)} \leq C_{p}\|\phi\|_{M_{p}\left(\mathbb{Z}^{N}\right)}\|f\|_{L^{p}\left(Q_{0}\right)}$. Hence $\psi, \eta \in M_{p}\left(\mathbb{Z}^{N}\right)$.
(ii) For $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$, we need to calculate the distribution functions of $S f$ and $W f$. Define $E_{t}=\left\{x \in Q_{0}:|S f(x)|>t>0\right\}$. Then

$$
\begin{aligned}
\left|E_{t}\right| & =\int_{Q_{0}} \chi_{E_{t}}(x) d x=\int_{Q_{0}} \chi_{\mathbb{R}_{+}}(|f(A x)|-t) d x=\frac{1}{q} \int_{A Q} \chi_{\mathbb{R}_{+}}(|f(x)|-t) d x \\
& =\frac{1}{q} \sum_{i=1}^{q} \int_{Q_{0}+k_{i}} \chi_{\mathbb{R}_{+}}(|f(x)|-t) d x=|\{x:|f(x)|>t\}|
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|\left\{x \in Q_{0}:|S f(x)|>t\right\}\right|=\left|\left\{x \in Q_{0}:|f(x)|>t\right\}\right| \tag{3.9}
\end{equation*}
$$

Also

$$
\begin{aligned}
\left|\left\{x \in Q_{0}:|W f(x)|>t\right\}\right| & =\left|\left\{x \in Q_{0}:\left|\sum_{i=1}^{q} f\left(A^{-1}\left(x+k_{i}\right)\right)\right|>t q\right\}\right| \\
& \leq\left|\left\{x \in Q_{0}: \sum_{i=1}^{q}\left|f\left(A^{-1}\left(x+k_{i}\right)\right)\right|>t q\right\}\right| \\
& =\sum_{i=1}^{q} \int_{Q_{0}} \chi_{\mathbb{R}_{+}}\left(\left|f\left(A^{-1}\left(x+k_{i}\right)\right)\right|-t\right) d x \\
& =q \sum_{i=1}^{q} \int_{A^{-1}\left(Q_{0}+k_{i}\right)} \chi_{\mathbb{R}_{+}}(|f(x)|-t) d x
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|\left\{x \in Q_{0}:|W f(x)|>t\right\}\right| \leq q\left|\left\{x \in Q_{0}:|f(x)|>t\right\}\right| \tag{3.10}
\end{equation*}
$$

From the relations (3.7)-(3.10), we conclude that $\psi, \eta \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ whenever $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$. Also $N_{p}^{(w)}(\psi) \leq C N_{p}^{(w)}(\phi)$ and $N_{p}^{(w)}(\eta) \leq C N_{p}^{(w)}(\phi)$.

As an application of this lemma we get the following result regarding weak summability kernels.

Lemma 3.3. Let A be as in Lemma 3.1. Suppose Λ is a weak (strong) summability kernel. Then $\Lambda \circ B$ and $\Lambda \circ B^{-1}$ are also weak (strong) summability kernels.

Proof. Define $W_{\phi, \Lambda \circ B}$ on \mathbb{R}^{N} for $\phi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ by

$$
W_{\phi, \Lambda \circ B}(x)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda \circ B(x-n)=\sum_{n \in \mathbb{Z}^{N}} \eta(n) \Lambda(B x-n)=W_{\eta, \Lambda}(B x)
$$

As $\eta \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ (by Lemma 3.2) and since Λ is a summability kernel we have $W_{\eta, \Lambda} \in M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$. Hence $W_{\phi, \Lambda \circ B} \in M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$. Similarly

$$
\begin{aligned}
W_{\phi, \Lambda \circ B^{-1}}(x) & =\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda\left(B^{-1} x-B^{-1} n\right) \\
& =\sum_{j=1}^{q} \sum_{n \in B \mathbb{Z}^{N}+p_{j}} \phi(n) \Lambda\left(B^{-1} x-B^{-1} n\right)
\end{aligned}
$$

p_{1}, \ldots, p_{q} being distinct coset representatives of $B \mathbb{Z}^{N} / \mathbb{Z}^{N}\left(p_{1}=0\right)$. We have

$$
\begin{aligned}
W_{\phi, \Lambda \circ B^{-1}}(x) & =\sum_{j=1}^{q} \sum_{n \in \mathbb{Z}^{N}} \phi\left(B n+p_{j}\right) \Lambda\left(B^{-1} x+B^{-1} p_{j}-n\right) \\
& =W_{\psi, \Lambda}\left(B^{-1} x\right)+\ldots+W_{\psi_{p_{q-1}, \Lambda}}\left(B^{-1} x-B^{-1} p_{q}\right)
\end{aligned}
$$

where $\psi_{p_{i}}(l)=\phi\left(B l+p_{j}\right), i=1, \ldots, q$. As $\psi \in M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ and Λ is a summability kernel we conclude that $W_{\phi, \Lambda \circ B^{-1}} \in M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$.

Hence from Lemma 3.3 and the discusssion preceding Lemma 3.1 we obtain the following theorem.

Theorem 3.1. Suppose $\Lambda \in M_{p}\left(\mathbb{R}^{N}\right)$ and $\operatorname{supp} \Lambda \subseteq[-M, M] ;$ for $\phi \in$ $M_{p}^{(w)}\left(\mathbb{Z}^{N}\right)$ define $W_{\phi, \Lambda}(\xi)=\sum_{n \in \mathbb{Z}^{N}} \phi(n) \Lambda(\xi-n)$ on \mathbb{R}^{N}. Then $W_{\phi, \Lambda} \in$ $M_{p}^{(w)}\left(\mathbb{R}^{N}\right)$ and $N_{p}^{(w)}\left(W_{\phi, \Lambda}\right) \leq C_{\Lambda} N_{p}^{(w)}(\phi)\|\Lambda\|_{M_{p}\left(\mathbb{R}^{N}\right)}$, where C_{Λ} is a constant depending on Λ.
4. An application. As an application of Theorem 3.1, we prove a weaktype version of a result proved by de Leeuw [8].

Theorem 4.1. For $1<p<\infty$ and $\varepsilon>0$, let $\left\{\phi_{\varepsilon}\right\} \subseteq M_{p}^{(w)}(\mathbb{Z})$ satisfy
(i) $\lim _{\varepsilon \rightarrow 0} \phi_{\varepsilon}([x / \varepsilon])=\phi(x)$ a.e.,
(ii) $\sup _{\varepsilon} N_{p}^{(w)}\left(\phi_{\varepsilon}\right)=K<\infty$.

Then $\phi \in M_{p}^{(w)}(\mathbb{R})$ and $N_{p}^{(w)}(\phi) \leq \sup _{\varepsilon} N_{p}^{(w)}\left(\phi_{\varepsilon}\right)$.
Proof. For each $\varepsilon>0$, define $W_{\phi_{\varepsilon}}$ on \mathbb{R} by

$$
\begin{equation*}
W_{\phi_{\varepsilon}}(x)=\sum_{n \in \mathbb{Z}} \phi_{\varepsilon}(n) \chi_{[0,1)}(x-n) \tag{4.11}
\end{equation*}
$$

As $\chi_{[0,1)} \in M_{p}(\mathbb{R})$ for $1<p<\infty$, from Theorem 3.1 we have $W_{\phi_{\varepsilon}} \in M_{p}^{(w)}(\mathbb{R})$ and $N_{p}^{(w)}\left(W_{\phi_{\varepsilon}}\right) \leq C N_{p}^{(w)}\left(\phi_{\varepsilon}\right) \leq C K$. We define another function ψ_{ε}, for each
$\varepsilon>0$ ，by $\psi_{\varepsilon}(x)=W_{\phi_{\varepsilon}}(x / \varepsilon)$ ．Then $\psi_{\varepsilon} \in M_{p}^{(w)}(\mathbb{R})$ and

$$
\begin{equation*}
N_{p}^{(w)}\left(\psi_{\varepsilon}\right) \leq N_{p}^{(w)}\left(W_{\phi_{\varepsilon}}\right) \leq C K \tag{4.12}
\end{equation*}
$$

From（4．11）we have

$$
\psi_{\varepsilon}(x)=W_{\phi_{\varepsilon}}(x / \varepsilon)=\sum_{n \in \mathbb{Z}} \phi_{\varepsilon}(n) \chi_{[0,1)}(x / \varepsilon-n)=\phi_{\varepsilon}([x / \varepsilon])
$$

So from our hypothesis

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \psi_{\varepsilon}(x)=\phi(x) \quad \text { a.e. } \tag{4.13}
\end{equation*}
$$

Also we have $\left|\psi_{\varepsilon}(x)\right|<\infty\left(\right.$ as $\left.\sup _{\varepsilon, n}\left|\phi_{\varepsilon}(n)\right|<\infty\right)$ ．
Hence from（4．11）－（4．13）along with Lemma 2.1 we have $\phi \in M_{p}^{(w)}(\mathbb{R})$ and $N_{p}^{(w)}(\phi) \leq \lim _{\varepsilon} N_{p}^{(w)}\left(\phi_{\varepsilon}\right) \leq C K$ ．

References

［1］N．Asmar，E．Berkson，and T．A．Gillespie，Maximal estimates on measure spaces by weak type multipliers，J．Geom．Anal． 5 （1995），167－179．
［2］—，一，一，Generalized de Leeuw theorems and extension theorems for weak type mul－ tipliers，in：Interaction between Functional Analysis，Harmonic Analysis and Prob－ ability，N．Kalton et al．（eds．），Lecture Notes in Pure and Appl．Math．175，Marcel Dekker，1996，41－67．
［3］－，一，一，Note on norm convergence in the space of weak type multipliers，J．Oper－ ator Theory 39 （1998），139－149．
［4］E．Berkson，M．Paluszyński，and G．Weiss，Transference couples and their applica－ tions to convolution operators and maximal operators，in：Interaction between Func－ tional Analysis，Harmonic Analysis，and Probabilty，N．Kalton et al．（eds．），Lecture Notes in Pure and Appl．Math．175，Marcel Dekker，1996，69－84．
［5］M．Gröchenig and W．R．Madych，Multiresolution analysis，Haar basis，and self－ similar tilings of \mathbb{R}^{N} ，IEEE Trans．Inform．Theory 38 （1992），556－568．
［6］M．Jodeit，Restrictions and extensions of Fourier multipliers，Studia Math． 34 （1970）， 215－226．
［7］W．R．Madych，Some elementary properties of multiresolution analyses of $L^{2}\left(\mathbb{R}^{N}\right)$ ， in：Wavelets．A Tutorial in Theory and Applications，C．K．Chui（ed．），Wavelet Anal． Appl．2，Academic Press，1992，259－294．
［8］E．M．Stein and G．Weiss，Introduction to Fourier Analysis on Euclidean Spaces， Princeton Math．Ser．32，Princeton Univ．Press， 1971.

Indian Institute of Technology
Kanpur 208016，India
E－mail：parasar＠iitk．ac．in madan＠iitk．ac．in

