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Extensions of weak type multipliers

by

P. Mohanty and S. Madan (Kanpur)

Abstract. We prove that if Λ ∈Mp(RN ) and has compact support then Λ is a weak
summability kernel for 1 < p <∞, where Mp(RN ) is the space of multipliers of Lp(RN ).

1. Introduction. Let G be a locally compact abelian group with Haar
measure µ, and let Ĝ be its dual. We call an operator T : Lp(G) →
Lp,∞(G), 1 ≤ p < ∞, a multiplier of weak type (p, p) if it is translation
invariant, i.e. τxT = Tτx for all x ∈ G, and there exists a constant C > 0
such that

µ{x ∈ G : |Tf(x)| > t} ≤ Cp

tp
‖f‖pp(1.1)

for all f ∈ Lp(G) and t > 0. (Here Lp,∞ denotes the standard weak Lp

space.) Asmar, Berkson and Gillespie in [3] proved that for all such operators
T there exists a φ ∈ L∞(Ĝ) such that (Tf)∧ = φf̂ for all f ∈ L2 ∩ Lp(G).
We will also call such φ’s multipliers of weak type (p, p). Let M (w)

p (Ĝ) denote
the space of multipliers of weak type (p, p) for 1 ≤ p <∞, and let N (w)

p (φ)
be the smallest constant C such that inequality (1.1) holds.

In this paper we are concerned with extensions of weak type multipliers
from ZN to RN through summability kernels. For similar results on strong
type multipliers, see [6] and [4]. Here we identify TN with [0, 1)N and for
f ∈ L1(RN ) we define its Fourier transform as f̂(ξ) =

�
RN f(x)e−2πiξ.x dx

for ξ ∈ RN . Let us define summability kernels for weak type multipliers as
follows.

Definition 1.1. A bounded measurable function Λ : RN → C is called
a weak summability kernel for M (w)

p (RN ) if for φ ∈M (w)
p (ZN ) the function

Wφ,Λ(ξ) =
∑

n∈ZN φ(n)Λ(ξ − n) is defined and belongs to M (w)
p (RN ).
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This definition is just the weak type analogue of summability kernels for
strong type multipliers [4]. We first cite two important results regarding the
summability kernels of strong type multipliers from the work of Jodeit [6]
and of Berkson, Paluszyński, and Weiss [4]:

Theorem 1.1 ([6]). Let S ∈ L1(RN ) and suppS ⊆ [1/4, 3/4]N with
τ =

∑
n∈ZN |ŝ(n)| < ∞, where s is the 1-periodic extension of S. Then

the function defined by Wφ,Ŝ(ξ) =
∑

n∈ZN φ(n)Ŝ(ξ − n) belongs to Mp(RN )
for 1 ≤ p <∞, with ‖Wφ,Ŝ‖Mp(RN ) ≤ Cpτ‖φ‖Mp(ZN ).

Theorem 1.2 ([4]). For 1 ≤ p < ∞, let Λ ∈ Mp(RN ) and suppΛ ⊆
[1/4, 3/4]N . For φ ∈ Mp(ZN ) define Wφ,Λ(ξ) =

∑
n∈ZN φ(n)Λ(ξ − n) on

RN . Then Wφ,Λ ∈ Mp(RN ) and ‖Wφ,Λ‖Mp(RN ) ≤ Cp‖Λ‖Mp(RN )‖φ‖Mp(ZN )
where Cp is a constant. (Further , if Λ has an arbitrary compact support
the same result holds except that the constant Cp necessarily depends on the
support of Λ, as shown in [4].)

Asmar, Berkson and Gillespie proved a weak type analogue of Theorem
1.1 in [2]. In the same paper they also proved that Λ defined by Λ(ξ) =∏N
j=1 max(1−|ξj|, 0) for ξ = (ξ1, . . . , ξN ) is a weak type summability kernel.

In this paper, we prove the weak type analogue of Theorem 1.2 in §2, for
1 < p <∞. In §3 we relax the hypothesis that suppΛ ⊆ [1/4, 3/4]N . For the
proof of our main result, as in [4], we will obtain the weak type inequalities by
applying the technique of transference couples due to Berkson, Paluszyński,
and Weiss [4].

Definition 1.2. For a locally compact group G, a transference couple
is a pair (S, T ) = ({Su}, {Tu}), u ∈ G, of strongly continuous mappings
defined on G with values in B(X), where X is a Banach space, satisfying

(i) CS = sup{‖Su‖ : u ∈ G} <∞,
(ii) CT = sup{‖Tu‖ : u ∈ G} <∞,

(iii) SvTu = Tvu for all u, v ∈ G.

In §4, as an application of our result, we prove a weak type analogue of
an extension theorem by de Leeuw.

2. Weak type inequality for transference couples and the main
theorem. Let Λ ∈ L∞(RN ) and suppΛ ⊆ [1/4, 3/4]N . Consider the fol-
lowing transference couple (S, T ) used by Berkson, Paluszyński, and Weiss
in [4]. For u ∈ TN the family T = {Tu} is given by

(Tuf)∧(ξ) =
∑

n∈ZN
Λ(ξ − n)e2πiu.nf̂(ξ) for f ∈ Lp ∩ L1(RN )(2.2)
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and the family S = {Su} is defined by

(Suf)∧(ξ) =
∑

n∈ZN
b(ξ − n)e2πiu.nf̂(ξ) for f ∈ Lp ∩ L1(RN ),(2.3)

where b(ξ) =
∏N
i=1 bi(ξi) for ξ = (ξ1, . . . , ξN ), and for each i, bi is the

continuous function defined on R as bi(x) = 1 if x ∈ [1/4, 3/4], 0 outside
[0, 1] and linear in [0, 1/4) ∪ (3/4, 1]. It is easy to see that

Suf(x) =
∑

l∈ZN
β̌u(l)f(x+ u− l) a.e.,(2.4)

where β̌u is the inverse Fourier transform of the function βu(ξ) = b(ξ)e2πiξ.u,
given explicitly by

β̌u(ξ) =
N∏

i=1

β̌ui(ξi),

where

(2.5) β̌ui(ξi) =





2e2πi(ξi+ui)/2

π2(ξi − ui)2

(
cos

π

2
(ξi−ui)−cosπ(ξi−ui)

)
if ξi 6= ui,

3e2πi(ξi+ui)/2

4
if ξi = ui.

Then by a straightforward calculation using (2.5) we have
∑

l∈ZN
|β̌u(l)| ≤

∑

l∈ZN
β(l) = C <∞,(2.6)

where β(l) =
∏N
i=1 βi(li) and

βi(li) =





1/(li − 1)2 if li > 1,

1/(li + 1)2 if li < 1,

‖bi‖1 otherwise.

In the following theorem we shall show that the operator transferred by T
(of the transference couple (S, T ) defined in (2.2) and (2.3)) given by

Hkf(·) = �
TN
k(u)Tu−1f(·) du,

where k ∈ L1(TN ) and f ∈ Lp(RN ), satisfies a weak (p, p) inequality.

Theorem 2.1. Let (S, T ) be the transference couple as defined in (2.2)
and (2.3). Then for 1 < p <∞, t > 0 and f ∈ S,

λ{x ∈ RN : |Hkf(x)| > t} ≤
(
CCp
t

CTN
(w)
p (k)‖f‖p

)p
,
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where λ denotes the Lebesgue measure of RN , C =
∑

l∈ZN β(l) as in (2.6),
CT is the uniform bound for the family T = {Tu}, and Cp = p/(p− 1).

Proof. Let f ∈ S(RN ). For t > 0 define Et = {x : |Hkf(x)| > t}. Notice
that

Hkf(x) = Sv−1SvHkf(x) =
∑

l∈ZN
β̌v−1(l) �

TN
k(u)Tu−1vf(x− v − l) du.

Let

Ft =
{

(v, x) ∈ TN × RN :
∣∣∣
∑

l∈ZN
β̌v−1(l) �

TN
k(u)Tu−1vf(x− l) du

∣∣∣ > t
}
.

Then, using translation invariance of Lebesgue measure, we obtain

λ(Et) = λ
{
x ∈ RN :

∣∣∣Sv−1 �
TN
k(u)Tu−1vf(x) du

∣∣∣ > t
}

= λ
{
x ∈ RN :

∣∣∣
∑

l∈ZN
β̌v−1(l) �

TN
k(u)Tu−1vf(x− l) du

∣∣∣ > t
}

= �
TN

�
RN

χFt(v, x) dx dv

= �
RN

∣∣∣
{
v :
∣∣∣
∑

l∈ZN
β̌v−1(l) �

TN
k(u)Tu−1vf(x− l) du

∣∣∣ > t
}∣∣∣ dx,

where |E| denotes the measure of the subset E ⊆ TN . Thus

λ(Et) ≤ �
RN

∣∣∣
{
v :
∑

l∈ZN
β(l)

∣∣∣ �
TN
k(u)Tu−1vf(x− l)

∣∣∣ du > t
}∣∣∣ dx

= �
RN

∣∣∣
{
v :
∑

l∈ZN
β(l)|k ∗ F (·, x− l)(v)| > t

}∣∣∣ dx,

where F (v, x) = Tvf(x) a.e.
We know that supt>0 tλf (t)1/p = ‖f‖Lp,∞ for f ∈ Lp,∞. Also, since p > 1,

‖ ‖p,∞ is equivalent to a norm ‖ ‖∗p,∞ ([8]), using the triangle inequality for
norms we have

λ(Et) ≤ �
RN

1
tp

∥∥∥
∑

l∈ZN
β(l)k ∗ F (·, x− l)

∥∥∥
p

Lp,∞(TN )
dx

≤ Cpp �
RN

1
tp

( ∑

l∈ZN
β(l)‖k ∗ F (·, x− l)‖∗Lp,∞(TN )

)p
dx,

≤ Cpp �
RN

1
tp

( ∑

l∈ZN
β(l)N (w)

p (k)‖F (·, x− l)‖Lp(TN )

)p
dx,

where N (w)
p (k) is the weak-type norm of the convolution operator f 7→ k ∗ f
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for f ∈ Lp(TN ). Thus,

λ(Et) ≤ Cpp
1
tp

( ∑

l∈ZN
β(l)N (w)

p (k)
( �
RN

�
TN
|Tvf(x− l)|p dx dv

)1/p)p

= Cpp
1
tp

( ∑

l∈ZN
β(l)N (w)

p (k)
( �
TN

�
RN
|Tvf(x− l)|p dx dv

)1/p)p

≤
(
CCpCT
tp

N (w)
p (k)‖f‖p

)p
.

Hence, Hkf satisfies a weak (p, p) inequality.
In order to prove the weak-type analogue of Theorem 1.2 we need the

following lemma proved by Asmar, Berkson, and Gillespie in [1].

Lemma 2.1 ([1]). Suppose that 1 ≤ p < ∞, {φj} ⊆ M
(w)
p (Ĝ) with

sup{|φj(γ)| : j ∈ N, γ ∈ Ĝ} < ∞ and suppose φj converges pointwise

a.e. on Ĝ to a function φ. If lim infj N
(w)
p (φj) <∞ then φ ∈M (w)

p (Ĝ) and

N
(w)
p (φ) ≤ lim infj N

(w)
p (φj).

In the following theorem, we use the family of operators {Tu} defined in
(2.2) with Λ ∈ Mp(RN ) and suppΛ ⊆ [1/4, 3/4]N . In this case, by [4] we
have CT ≤ cp‖Λ‖Mp(RN ), where cp is a constant.

Theorem 2.2. Suppose 1 < p < ∞ and Λ ∈ Mp(RN ) is supported in

the set [1/4, 3/4]N . For φ ∈M (w)
p (ZN ) define

Wφ,Λ(ξ) =
∑

n∈ZN
φ(n)Λ(ξ − n) on RN .

Then Wφ,Λ ∈M (w)
p (RN ) and N (w)

p (Wφ,Λ) ≤ CN (w)
p (φ)‖Λ‖Mp(RN ).

Proof. Using Lemma 2.1 we first show that it is enough to prove the
theorem for φ ∈ M (w)

p (ZN ) having finite support. Suppose the theorem is
true for finitely supported φ. Then, for arbitrary φ ∈M (w)

p (ZN ), define φj =
k̂jφ, where kj is the jth Fejér kernel. Then for each j, φj ’s have finite support

and (Tφjf)∧(n) = φj(n)f̂(n) = (Tφ(kj ∗f))∧(n). So φj ∈M (w)
p (ZN ) for each

j and N
(w)
p (φj) ≤ N

(w)
p (φ). Define Wφj ,Λ(ξ) =

∑
n∈ZN φj(n)Λ(ξ − n). Now

lim infjWφj ,Λ(ξ) = Wφ,Λ(ξ). Also, by our assumption,

N (w)
p (Wφj ,Λ) ≤ CN (w)

p (φj)‖Λ‖Mp(RN ) ≤ CN (w)
p (φ)‖Λ‖Mp(RN )

and |Wφj ,Λ| ≤ 2‖Λ‖∞‖φj‖∞ ≤ 2‖Λ‖∞‖φ‖∞. Thus by Lemma 2.1, applied to

Wφj ,Λ’s, we conclude that Wφ,Λ ∈M (w)
p (RN ). Hence it is enough to assume

that φ ∈M (w)
p (ZN ) has finite support.
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Now let φ ∈M (w)
p (ZN ) be finitely supported. Define

k(u) =
∑

n∈ZN
φ(n)e−2πiu.n.

Then k ∈ L1(TN ) and k̂(n) = φ(n). For this particular k and the transfer-
ence couple (S, T ) defined above, we have

(Hkf)∧(ξ) = (TWφ,Λ
f)∧(ξ).

Thus TWφ,Λ
f = Hkf . Hence from Theorem 2.1 and since CT ≤ cp‖Λ‖Mp(RN ),

we have

λ{x ∈ RN : |TWφ,Λ
f(x)| > t} ≤

(
C

t
N (w)
p (φ)‖Λ‖Mp(RN )‖f‖p

)p
.

3. Lattice preserving linear transformations and multipliers.
We shall now relax the hypothesis that suppΛ ⊆ [1/4, 3/4]N to allow Λ
to have arbitrary compact support. In fact this can be done by a partition
of identity argument as in [4]. Here we give a different method by proving
Lemma 3.2 below. Particular cases of this lemma occur in [6] and in [2].
Suppose suppΛ ⊆ [−M,M ]N ; define ΛM (ξ) = Λ1(4Mξ), where Λ1(ξ) =
Λ(ξ − 1/2). So suppΛM ⊆ [1/4, 3/4]N . Thus if we define a non-singular
transformation A : RN → RN such that Ax = 4Mx then ΛM = Λ1 ◦ A.
In order to replace the support condition we need to prove ΛM ◦ A−1 is
a summability kernel. In the work of Jodeit and of Asmar, Berkson, and
Gillespie they assume A in Lemma 3.2 to be multiplication by 2. We have
combined some of the results proved by Gröchenig and Madych [5] in the
following lemma which will help us to prove Lemma 3.2. In the proof of
Theorem 3.1, we only use the case of a diagonal linear transform, but the
more general results proved below are of some interest in their own right.

Lemma 3.1 ([5]). Let A : RN → RN be a non-singular linear transfor-
mation which preserves the lattice ZN (i.e. A(ZN ) ⊆ ZN ). Then the follow-
ing are true.

(i) The number of distinct coset representatives of ZN/AZN is equal to
q = |detA|.

(ii) If Q0 = [0, 1)N and k1, . . . , kq are the distinct coset representatives
of ZN/AZN then the sets {A−1(Q0 + ki)} are mutually disjoint.

(iii) Let Q=
⋃q
i=1A

−1(Q0+ki). Then λ(Q) = 1 and
⋃
k∈ZN (Q+k) ' RN .

(iv) AQ ' ⋃q
i=1(Q0 + ki).

Here E ' F if λ(F 4E) = 0.

Using this lemma, we prove
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Lemma 3.2. Let A be as in Lemma 3.1. Define At = B, where At is the
transpose of A. For φ ∈ l∞(ZN ) define

ψ(n) = φ(Bn), η(n) =
{
φ(B−1n) if n ∈ BZN ,
0 otherwise.

(i) If φ ∈ Mp(ZN ) then ψ, η ∈ Mp(ZN ) with multiplier norms not ex-
ceeding the multiplier norm of φ.

(ii) If φ ∈ M (w)
p (ZN ) then ψ, η ∈ M (w)

p (ZN ) with weak multiplier norms
not exceeding the weak multiplier norm of φ.

Proof. (i) For f ∈ Lp(Q0), we let f again denote its periodic extension
to RN . Define Sf(x) = f(Ax). Then Sf is also periodic and

�
Q0

|Sf(x)|p dx = �
Q0

|Sf(x)|p
∑

j

χQ(x− j) dx =
∑

j

�
Q0+j

|Sf(x)|pχQ(x) dx

= �
Q

|Sf(x)|p dx =
1

|detA| �
AQ

|f(x)|p dx

=
1
q

q∑

i=1

�
Q0+ki

|f(x)|p dx (Lemma 3.1(iv))

= �
Q0

|f(x)|p dx.

Thus S is an isometry, i.e., ‖Sf‖Lp(Q0) = ‖f‖Lp(Q0). Further, from the or-
thogonality relations for characters (Lemma 1 of [7]) we have

(Sf)∧(n) =
{
f̂(B−1n) if n ∈ BZN ,
0 otherwise.

For f ∈ Lp(Q0) we define an operator W on Lp(Q0) by

Wf(x) =
1
q

q∑

i=1

f(A−1(x+ ki)),

where k1, . . . , kq are distinct coset representatives of ZN/AZN . Then for a
trigonometric polynomial f ,

(Wf)∧(n) = f̂(Bn),
and so

( �
Q0

|Wf(x)|p dx
)1/p

=
(

�
Q0

∣∣∣∣
1
q

q∑

i=1

f(A−1(x+ ki))

∣∣∣∣
p

dx

)1/p

≤ 1
q

q∑

i=1

( �
Q0

|f(A−1(x+ ki))|p dx
)1/p

=
q1/p

q

q∑

i=1

( �
A−1(Q0+ki)

|f(x)|p dx
)1/p

.
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Therefore ‖Wf‖Lp(Q0)≤ q(1−p)/p‖f‖Lp(Q0), since
�
Q0
|f(x)|pdx=

�
Q |f(x)|pdx

as above. It is easy to see that

STφW = Tη,(3.7)

WTφS = Tψ.(3.8)

It follows that if φ ∈ Mp(ZN ), then ‖Tψf‖ ≤ Cp‖φ‖Mp(ZN )‖f‖Lp(Q0). Also
‖Tηf‖Lp(Q0) ≤ Cp‖φ‖Mp(ZN )‖f‖Lp(Q0). Hence ψ, η ∈Mp(ZN ).

(ii) For φ ∈ M (w)
p (ZN ), we need to calculate the distribution functions

of Sf and Wf . Define Et = {x ∈ Q0 : |Sf(x)| > t > 0}. Then

|Et| = �
Q0

χEt(x) dx = �
Q0

χR+(|f(Ax)| − t) dx =
1
q

�
AQ

χR+(|f(x)| − t) dx

=
1
q

q∑

i=1

�
Q0+ki

χR+(|f(x)| − t) dx = |{x : |f(x)| > t}|.

Therefore,

|{x ∈ Q0 : |Sf(x)| > t}| = |{x ∈ Q0 : |f(x)| > t}|.(3.9)

Also

|{x ∈ Q0 : |Wf(x)| > t}| =
∣∣∣
{
x ∈ Q0 :

∣∣∣
q∑

i=1

f(A−1(x+ ki))
∣∣∣ > tq

}∣∣∣

≤
∣∣∣
{
x ∈ Q0 :

q∑

i=1

|f(A−1(x+ ki))| > tq
}∣∣∣

=
q∑

i=1

�
Q0

χR+(|f(A−1(x+ ki))| − t) dx

= q

q∑

i=1

�
A−1(Q0+ki)

χR+(|f(x)| − t) dx.

Thus

|{x ∈ Q0 : |Wf(x)| > t}| ≤ q|{x ∈ Q0 : |f(x)| > t}|.(3.10)

From the relations (3.7)–(3.10), we conclude that ψ, η ∈M (w)
p (ZN ) whenever

φ ∈M (w)
p (ZN ). Also N (w)

p (ψ) ≤ CN (w)
p (φ) and N

(w)
p (η) ≤ CN (w)

p (φ).

As an application of this lemma we get the following result regarding
weak summability kernels.

Lemma 3.3. Let A be as in Lemma 3.1. Suppose Λ is a weak (strong)
summability kernel. Then Λ◦B and Λ◦B−1 are also weak (strong) summa-
bility kernels.
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Proof. Define Wφ,Λ◦B on RN for φ ∈M (w)
p (ZN ) by

Wφ,Λ◦B(x) =
∑

n∈ZN
φ(n)Λ ◦B(x− n) =

∑

n∈ZN
η(n)Λ(Bx− n) = Wη,Λ(Bx).

As η ∈ M (w)
p (ZN ) (by Lemma 3.2) and since Λ is a summability kernel we

have Wη,Λ ∈M (w)
p (RN ). Hence Wφ,Λ◦B ∈M (w)

p (RN ). Similarly

Wφ,Λ◦B−1(x) =
∑

n∈ZN
φ(n)Λ(B−1x−B−1n)

=
q∑

j=1

∑

n∈BZN+pj

φ(n)Λ(B−1x−B−1n),

p1, . . . , pq being distinct coset representatives of BZN/ZN (p1 = 0). We have

Wφ,Λ◦B−1(x) =
q∑

j=1

∑

n∈ZN
φ(Bn+ pj)Λ(B−1x+B−1pj − n)

= Wψ,Λ(B−1x) + . . .+Wψpq−1 ,Λ
(B−1x−B−1pq)

where ψpi(l) = φ(Bl + pj), i = 1, . . . , q. As ψ ∈ M
(w)
p (ZN ) and Λ is a

summability kernel we conclude that Wφ,Λ◦B−1 ∈M (w)
p (RN ).

Hence from Lemma 3.3 and the discusssion preceding Lemma 3.1 we
obtain the following theorem.

Theorem 3.1. Suppose Λ ∈ Mp(RN ) and suppΛ ⊆ [−M,M ]; for φ ∈
M

(w)
p (ZN ) define Wφ,Λ(ξ) =

∑
n∈ZN φ(n)Λ(ξ − n) on RN . Then Wφ,Λ ∈

M
(w)
p (RN ) and N (w)

p (Wφ,Λ) ≤ CΛN (w)
p (φ)‖Λ‖Mp(RN ), where CΛ is a constant

depending on Λ.

4. An application. As an application of Theorem 3.1, we prove a weak-
type version of a result proved by de Leeuw [8].

Theorem 4.1. For 1 < p <∞ and ε > 0, let {φε} ⊆M (w)
p (Z) satisfy

(i) limε→0 φε([x/ε]) = φ(x) a.e.,
(ii) supεN

(w)
p (φε) = K <∞.

Then φ ∈M (w)
p (R) and N (w)

p (φ) ≤ supεN
(w)
p (φε).

Proof. For each ε > 0, define Wφε on R by

Wφε(x) =
∑

n∈Z
φε(n)χ[0,1)(x− n).(4.11)

As χ[0,1) ∈Mp(R) for 1 < p <∞, from Theorem 3.1 we haveWφε ∈M
(w)
p (R)

andN (w)
p (Wφε) ≤ CN

(w)
p (φε) ≤ CK. We define another function ψε, for each
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ε > 0, by ψε(x) = Wφε(x/ε). Then ψε ∈M (w)
p (R) and

N (w)
p (ψε) ≤ N (w)

p (Wφε) ≤ CK.(4.12)

From (4.11) we have

ψε(x) = Wφε(x/ε) =
∑

n∈Z
φε(n)χ[0,1)(x/ε− n) = φε([x/ε]).

So from our hypothesis

lim
ε→0

ψε(x) = φ(x) a.e.(4.13)

Also we have |ψε(x)| <∞ (as supε,n |φε(n)| <∞).

Hence from (4.11)–(4.13) along with Lemma 2.1 we have φ ∈ M (w)
p (R)

and N
(w)
p (φ) ≤ limεN

(w)
p (φε) ≤ CK.
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