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Extensions of weak type multipliers
by

P. MOHANTY and S. MADAN (Kanpur)

Abstract. We prove that if A € M) (RN) and has compact support then A is a weak
summability kernel for 1 < p < oo, where My (RY) is the space of multipliers of LP(R™Y).

1. Introduction. Let G be a locally compact abelian group with Haar
measure u, and let G be its dual. We call an operator T' : LP(G) —
LP>®(G), 1 < p < o0, a multiplier of weak type (p,p) if it is translation
invariant, i.e. 7,7 = T'1, for all x € G, and there exists a constant C' > 0
such that

1014

(1.1) Mo e G Tf(@)] >t < - IfIIp

for all f € LP(G) and t > 0. (Here LP*° denotes the standard weak LP
space.) Asmar, Berkson and Gillespie in [3] proved that for all such operators
T there exists a ¢ € L>®(G) such that (THN = of for all f € L2N LP(@G).
We will also call such ¢’s multipliers of weak type (p,p). Let Méw)(é) denote
the space of multipliers of weak type (p,p) for 1 < p < oo, and let N,E“’)(gs)
be the smallest constant C' such that inequality (1.1) holds.

In this paper we are concerned with extensions of weak type multipliers
from Z~ to RY through summability kernels. For similar results on strong
type multipliers, see [6] and [4]. Here we identify TV with [0,1)" and for
f € LY(RY) we define its Fourier transform as f(£) = §an f(@)e 2™ dy
for £ € RYN. Let us define summability kernels for weak type multipliers as
follows.

DEFINITION 1.1. A bounded measurable function A : RV — C is called
a weak summoability kernel for MZS“’) (RN) if for ¢ € MZE“’) (ZN) the function

Wy (&) = 2 nezy ¢(n)A(§ —n) is defined and belongs to Méw) (RM).
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This definition is just the weak type analogue of summability kernels for
strong type multipliers [4]. We first cite two important results regarding the
summability kernels of strong type multipliers from the work of Jodeit [6]
and of Berkson, Paluszyniski, and Weiss [4]:

THEOREM 1.1 ([6]). Let S € LY(RY) and supp S C [1/4,3/4]" with
T = Y nezn |8(n)] < oo, where s is the 1-periodic extension of S. Then
the function defined by W, (&) =D hezn #(n)S(& = n) belongs to M,(RYN)
for 1 < p < o0, with W, ¢l < Corlldllag vy

THEOREM 1.2 ([4]). For 1 < p < oo, let A € M,(RN) and supp A C
[1/4,3/4)N. For ¢ € My(ZN) define Wy 4(€) = Y ,cpn ¢(n)A(E — n) on
RY. Then Wy a € Mp(RY) and [Wo,allar, vy < CpllAllag, @)l 6llag, @)
where Cp, is a constant. (Further, if A has an arbitrary compact support
the same result holds except that the constant C), necessarily depends on the
support of A, as shown in [4].)

Asmar, Berkson and Gillespie proved a weak type analogue of Theorem
1.1 in [2]. In the same paper they also proved that A defined by A(§) =
H;-Vzl max(1—[¢;],0) for £ = (&1, ...,&N) is a weak type summability kernel.
In this paper, we prove the weak type analogue of Theorem 1.2 in §2, for
1 < p < co. In §3 we relax the hypothesis that supp A C [1/4,3/4]". For the
proof of our main result, as in [4], we will obtain the weak type inequalities by
applying the technique of transference couples due to Berkson, Paluszynski,
and Weiss [4].

DEFINITION 1.2. For a locally compact group G, a transference couple
is a pair (S,T) = ({Su},{Tu}), u € G, of strongly continuous mappings
defined on G with values in B(X), where X is a Banach space, satisfying

(i) Cs = sup{||Sull : v € G} < o0,

(ii) Cr = sup{||Tu|| : v € G} < 0,

(iii) Sy T, = Ty, for all u,v € G.

In §4, as an application of our result, we prove a weak type analogue of
an extension theorem by de Leeuw.

2. Weak type inequality for transference couples and the main
theorem. Let A € L>®°(RY) and supp A C [1/4,3/4]". Consider the fol-
lowing transference couple (S,T') used by Berkson, Paluszyriski, and Weiss
in [4]. For u € TV the family T' = {T,} is given by

(22)  (THMNE =Y AE—n)e*™™"f(g) for f e L’ NL'(RY)

nezZN
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and the family S = {S,} is defined by
(23)  (Suh)NE) = D bE—n) T f(€)  for fe LM L'RY),

nezZN

where b(§) = Hfil bi(&) for & = (&1,...,€n), and for each i, b; is the
continuous function defined on R as b;(z) = 1 if x € [1/4,3/4], 0 outside
[0,1] and linear in [0,1/4) U (3/4, 1]. Tt is easy to see that

(2.4) Suf(x) = Z Bu(l)f@: +u—1) ae,
lezN

where 3, is the inverse Fourier transform of the function £, (&) = b(&)e?™%é4,
given explicitly by

~ N ~
Bu(€) = [ [ Bu: (&),
=1

where
9e2mi(&itui)/2

(cos g(fl —u;) —cos(&; —ul)> if & # g,

. T2 (& — u;)?
(25) ule)={ " &
362771(§i+ui)/2 .
— if & = u;.
Then by a straightforward calculation using (2.5) we have
(2.6) oA Y B =C < oo,
lezN lezZN

where 3(1) = [IX, Bi(l;) and
1/(l; — 1) ifl; > 1,
Bi(li) =14 1/(l; +1)? ifl; < 1,
116i]1 otherwise.

In the following theorem we shall show that the operator transferred by T’
(of the transference couple (S, 7") defined in (2.2) and (2.3)) given by

Hyf(-) = | k()T f() du,
TN
where k € LY(TV) and f € LP(RY), satisfies a weak (p, p) inequality.
THEOREM 2.1. Let (S,T) be the transference couple as defined in (2.2)
and (2.3). Then for 1 <p <oo,t>0 and f € S,

cc y r
w2 I,

Mz e RN - |Hyf(z)| > t} < (
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where \ denotes the Lebesque measure of RN, C' =3, .~ B(1) as in (2.6),
Cr is the uniform bound for the family T = {T,}, and C, = p/(p — 1).

Proof. Let f € S(RN). For t > 0 define E; = {z : |Hyf(x)| > t}. Notice
that

Hyf(x) = Sy1SoHpf(2x) = > Byr (1) | B(u)Tyry f(x — v — 1) du.

lezN N
Let
F = {(v,m) e TV x RN ‘ S B S w) u,lvf(x—Z)du) > t}.
lezN

Then, using translation invariance of Lebesgue measure, we obtain

AE,) = )\{:U eRV:[S, 1 | k)T, 1, /() du’ > t}
TN

- )\{3: eRV ’ 3" 8 () | M) Ty fl@ 1) du( > t}

lezN TN
= S S Xz (v, ) dx dv

TN RN
\{ \Zﬂvl | Tl = o] > i}
lezN
where |E| denotes the measure of the subset £ C TV. Thus
A(E; S H Zﬁ ‘ S —1Uf(x—l)‘du>t}’d:v
lezN

= S Hv : Z BD)kxF(-,z—1)(v)] > t}‘ dz,
RN lezN
where F(v,z) =T, f(x) a.e
We know that sup,- t/\f(t)l/p = ||f||Lp.ee for f € LP>°. Also, since p > 1,
| llp.co is equivalent to a norm || [|5 ., ([8]), using the triangle inequality for
norms we have

MEy) < —H S° Bk« F(x—1)| .
RN l N
ar (Zﬁ Wi Bz = Dl peieny )
RN lezZN
<0 § (X BONFIRIFC 2~ Do)
RN lezN

where Nzgw)(k:) is the weak-type norm of the convolution operator f + kx* f
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for f € LP(TY). Thus,

\NE;) < cr i( Z ﬁ(l)ngw)(k:)( S S | T f(x—1)P dxdv>1/p>p

v lezN RN TN
—a (Y ﬂ(l)N£”>(k)( | ] 2t o dean) ")
lezZN TN RN
cC,C
< (S5 Nl )

Hence, Hy f satisfies a weak (p,p) inequality.
In order to prove the weak-type analogue of Theorem 1.2 we need the
following lemma proved by Asmar, Berkson, and Gillespie in [1].

LEmMA 2.1 ([1)). Suppose that 1 < p < oo, {¢;} C Mz(,w)(é') with
sup{|¢]( ) :jeN ve G < x and suppose ¢; converges pointwise
a.e. on G to a function ¢. If lim inf}; N (qb]) < oo then ¢ € M )(@) and
N (¢) < liminf; NS (¢;).

In the following theorem, we use the family of operators {T},} defined in
(2.2) with A € M,(RY) and supp A C [1/4,3/4]". In this case, by [4] we
have Cr < ¢, || A| pr, (rv), where ¢, is a constant.

THEOREM 2.2. Suppose 1 < p < oo and A € MP(RN) 18 supported in
the set [1/4,3/4]N. For ¢ € M,S“’) (ZN) define

Woa(&) = Y é(m)AE—n) onRY.
nezN
Then W,z € MY (RN) and NS (W 1) < CN™ ()| All ag, vy -

Proof. Using Lemma 2.1 we first show that it is enough to prove the

theorem for ¢ € Méw) (ZN) having finite support. Suppose the theorem is

true for finitely supported ¢. Then, for arbitrary ¢ € MIS“’) (ZN), define ¢; =
k;jp, where k; is the jth Fejér kernel. Then for each j, ¢;’s have finite support

and (Ty, £)\(n) = 6;(n) F(n) = (Ty(ky # ) (n). So &, € ML (ZV) for each
j and N (9;) < N§™\(6). Define Wy, 4(€) = 3z b5 (n)A(€ — n). Now
liminf; Wy, 4(§) = Wy A(€). Also, by our assumption,

NS (We,.1) < CNS ()1 Allagyzvy < ONS (@)1 Al ug, vy
and Wy, 4l < 2[[A]lscll@jlloc < 2[|A]loo][@]loo- Thus by Lemma 2.1, applied to
W, A’s, we conclude that Wy 4 € M,S‘”) (R™). Hence it is enough to assume
that ¢ € Méw)(ZN) has finite support.
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Now let ¢ € Méw)(ZN) be finitely supported. Define
k‘(u) — Z ¢(n)6—27riu.n'

nezZN

Then k& € LY(TV) and E(n) = ¢(n). For this particular k¥ and the transfer-
ence couple (S,T) defined above, we have

(Hef)M€) = (T, 1 )" (6)-

Thus Tw,, , f = Hyf. Hence from Theorem 2.1 and since Cr < ¢p| A7, (),
we have

C p
Mo B i, 1)) > 1) < (S MO 11 )

3. Lattice preserving linear transformations and multipliers.
We shall now relax the hypothesis that supp A C [1/4,3/4]" to allow A
to have arbitrary compact support. In fact this can be done by a partition
of identity argument as in [4]. Here we give a different method by proving
Lemma 3.2 below. Particular cases of this lemma occur in [6] and in [2].
Suppose supp A C [~M, M]VN; define Ay (€) = A1 (4ME), where Aq(€) =
A(& —1/2). So supp Ay C [1/4,3/4]N. Thus if we define a non-singular
transformation 4 : RV — RY such that Az = 4Mzx then Ay = A; o A.
In order to replace the support condition we need to prove Ap; o A7! is
a summability kernel. In the work of Jodeit and of Asmar, Berkson, and
Gillespie they assume A in Lemma 3.2 to be multiplication by 2. We have
combined some of the results proved by Grochenig and Madych [5] in the
following lemma which will help us to prove Lemma 3.2. In the proof of
Theorem 3.1, we only use the case of a diagonal linear transform, but the
more general results proved below are of some interest in their own right.

LeEMMA 3.1 ([5]). Let A : RY — RY be a non-singular linear transfor-
mation which preserves the lattice ZN (i.e. A(ZN) C ZN). Then the follow-
ing are true.

(i) The number of distinct coset representatives of ZN | AZN is equal to
q = |det A|.

(ii) If Qo = [0,1)Y and ky, ...,k are the distinct coset representatives
of ZN JAZN then the sets {A71(Qo + ki)} are mutually disjoint.

(iii) Let Q =U!_; A7H(Qo+k;). Then N(Q) =1 and Uyepn (Q+k) ~ RV,
(iv) AQ ~ Ui, (Qo + ki).
Here E~F if \(F AE)=0.

Using this lemma, we prove
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LEMMA 3.2. Let A be as in Lemma 3.1. Define At = B, where At is the
transpose of A. For ¢ € loo(ZN) define
-1 : N
v = o(Bn), e = { GFI) i 0 € DL,
0 otherwise.

(1) If ¢ € My(ZN) then 1, € My(ZN) with multiplier norms not ex-
ceeding the multiplier norm of ¢.

(ii) If ¢ € MZE“’) (ZN) then ¢, n € Mlgw)(ZN) with weak multiplier norms
not exceeding the weak multiplier norm of ¢.

Proof. (i) For f € LP(Qo), we let f again denote its periodic extension
to RN, Define Sf(z) = f(Az). Then Sf is also periodic and

ViIsSf@Pde = [ 1SF@)P> xo—j)dz=Y" | [Sf(@)Pxo(x)dx

Qo Qo J . J Qotj
= 652 ISf @) dw = o ASQ (@) da
== Z S x)|Pdx  (Lemma 3.1(iv))
=1 Qo+k;
= | |f (@) de.
Qo

Thus S is an isometry, i.e., [|Sf|lzr(o) = [IfllLr(qo)- Further, from the or-
thogonality relations for characters (Lemma 1 of [7]) we have
(Sf)/\(n) _ { f(B’ln) ifn € BZN,
0 otherwise.
For f € LP(Qo) we define an operator W on LP(Qo) by

Zf Y2+ k),

where k1,...,k, are distinct coset representatlves of ZN /AZN . Then for a
trigonometric polynomial f,

~

(W) n) = f(Bn),

and so
P 4 p 1/p
(Fws@pa)” = (§]3 s s k| o)
Qo Qo 13
q
< (Jre@rrpra)”
i=1 Qo
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Therefore [|IVF | (o) < a4 P/2 fll s gy since §g, |f @)[Pda =, | £ () da
as above. It is easy to see that

(3.7) ST,W =T,

(3.8) WT,S =T,

It follows that if ¢ € M,(Z"), then ||Tyf| < Copllollag, 2y 1 | e (Qo)- Also
1T fll 2o (o) < Colldllar, 2y £l e (@q)- Hence ¢,n € My(ZN).

(ii) For ¢ € Méw)(ZN ), we need to calculate the distribution functions
of Sf and Wf. Define E; = {z € Qo : |Sf(x)| >t > 0}. Then

E| = | xp.(2)dz = | xp, (If(Az)| —lt)dfﬁz1 | xe, (1f(@)] - 1) da
Qo Qo 1 4q

:_Z V oxe, (1f@)] =) de = [{z : |f(2)] > t}].

i=1 Qo+ki

Therefore,

(3.9) {z € Qo:[Sf(z)| >t} = {z € Qo [f(z)] > t}].
Also

T € Qop: ‘if x+/€)}>tq}‘

1

o€ Qo: Wi)| > 1)l =|

wre@]3
<erQ0 zq]f x+k))|>tq}‘

=1
q
=37 | xe (FA (@ + k)| — ) da
i=1 Qo
:qz Vo xe (If (@) —t)de
i=1 A=1(Qo+hs)
Thus
(3.10) H{z € Qo : [Wf(z)| >t} < ql{z € Qo : [f(x)] >t}

From the relations (3.7)—(3.10), we conclude that i, n € MIS“’) (ZN) whenever
6 € M (ZN). Also Ni" () < ONy™(9) and Ni"(n) < CNy™ ().

As an application of this lemma we get the following result regarding
weak summability kernels.

LEMMA 3.3. Let A be as in Lemma 3.1. Suppose A is a weak (strong)
summability kernel. Then Ao B and Ao B~! are also weak (strong) summa-
bility kernels.
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Proof. Define Wy, 105 on RY for ¢ € Méw)(ZN) by
Wy toB(x Z d(n)AoB(x —n) = Z n(n)A(Bx —n) = Wy A(Bzx).

nezN nezZN
Asn e MIS“’) (ZN) (by Lemma 3.2) and since A is a summability kernel we
have Wy 4 € M," (]RN) Hence W¢ fop € M(w)(RN). Similarly
Wy noB-1( Z p(n B~ 'n)

nezZN
=Y. ) émAB 'z—B"n),

J=1neBZN +p;
P1,- .-, Pq being distinct coset representatives of BZY /ZV (p1 = 0). We have

Wy toB-1 Z Z ¢(Bn + pj)A(B~ 'z + B 'p; — n)

Jj=1nezN

= qu’A(Bflﬂf) + ...+ WwpqipA(Bflx — Bflpq)

where 9, (1) = ¢(Bl +pj), i = 1,...,q. As ¢ € Méw)(ZN) and A is a
summability kernel we conclude that Wy, yop-1 € M,S“’) (RM).

Hence from Lemma 3.3 and the discusssion preceding Lemma 3.1 we
obtain the following theorem.

THEOREM 3.1. Suppose A € M,(RY) and supp A C [-M, M]; for ¢ €
MEN(ZNY define Wy a(€) = X, eqn $(n)AE — n) on RN, Then Wy, €

Mﬁ” (RY) and Néw)(W@A) < CANZSW)(@HAHMP(RN), where Cy is a constant
depending on A.

4. An application. As an application of Theorem 3.1, we prove a weak-
type version of a result proved by de Leeuw [8].

THEOREM 4.1. For1 <p < oo ande >0, let {¢p:} C MIS“’) (Z) satisfy
(1) lime—o ¢:([x/€]) = @(2) a.e.,
(ii) sup, Néw)(@) =K < oc.
Then ¢ € My (R) and Ni"(¢) < sup, N3 (¢2).
Proof. For each € > 0, define W;_ on R by
(4.11) W, () =3 ¢e(n)xpo,1)(z — n).
nez
As x[0,1) € Mp(R) for 1 < p < oo, from Theorem 3.1 we have Wy_ € MIEU’) (R)
and ngw) (Wy,) < CNZSw) (¢e) < CK. We define another function v, for each
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e >0, by ¢(x) = Wy_(x/e). Then 1), € MIS“’) (R) and
(4.12) N (he) < N (Wy,) < CK.
From (4.11) we have

Ye(@) = Wy (x/e) = ¢e(n)xpo)(@/c —n) = ¢e([z/e]).

neZ

So from our hypothesis

(4.13) lin% Ye(x) = ¢p(z) ae.
E—>

Also we have [t).(z)| < co (as sup,, |¢<(n)| < o).

Hence from (4.11)—(4.13) along with Lemma 2.1 we have ¢ € M,E”) (R)

and N3 (¢) < lim. N\")(¢.) < CK.

(8]
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