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Abstract. With ϕ an inner function and Mϕ the multiplication operator on a given
Hardy space it is known that for any given function f in the Hardy space we may use the
Wold decomposition to obtain a factorization of the given f (not the Riesz factorization).
This new factorization has been shown to be useful in the study of commutants of Toeplitz
operators.

We study the smoothness of each factor of this factorization. We show in some cases
that the factors lie in the same Hardy space (or smoothness class) as the given function f .
We also construct an example to show that there are bounded, holomorphic functions
which have factors that are not in a given Hardy p-space. Many of our results are produced
by studying a natural class of positive measures associated to the given inner function.

1. Introduction. In the study of the classical theory of Hardy spaces
(Hp(D)) on the unit disk it has been shown that each function f in such a
space has a unique (up to a multiplicative unimodular constant) factoriza-
tion. The factorization is given as a product of two holomorphic functions.
The inner part of the factorization is a holomorphic function in the unit
sphere of H∞ which incorporates the zeros of f and its “singular” bound-
ary behavior, whereas the outer part is nonzero and in the same Hp space as
the original f (see [4]). Both parts of this type of factorization are important
as function classes in their own right. For example the zeros of the function
contained in the inner part must satisfy a geometric growth condition (the
Blaschke condition) and the nonzero outer parts have the property that they
are cyclic for the shift operator.

Recently, new research has been initiated in the study of the Wold de-
composition for an analytic Toeplitz operator Tϕ on Hp(D) spaces (see [6],
[10]). For our interests the symbol ϕ in the expression for the Toeplitz op-
erator is a classical inner function. From this work it is possible to define
another factorization of Hp(D) functions that is more intrinsic to the Wold
decomposition. In this factorization the terms depend on the inner func-
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tion ϕ as follows. A function hp is said to be ϕ-p inner if it satisfies:

(i)
� π
−π |hp(eit)|p dt = 1,

(ii)
� 2π
0 |hp(eit)|pϕ(eit)n dt = 0, n > 0.

Then for each f ∈ Hp(D), there exists a factorization

f = hpFp ◦ ϕ
where Fp is an outer function in Hp, and hp is ϕ-p inner. We call this the ϕ-p
factorization of f (see [6], and Section 2.1 below). One can see the efficacy of
this factorization in various aspects of function theory and its relationship
to the natural operators acting on these spaces. For example, the description
of the commutant of the operator of multiplication by an inner function ϕ
can be given in terms of this factorization (see [10]).

In addition to the Wold decomposition, another tool is very useful in
studying properties of such ϕ-p inner functions. By the Herglotz theorem it
is known that for a complex number w of modulus one there is a nonnegative
singular measure σw on the unit circle T such that

Re
w + ϕ(z)
w − ϕ(z)

= �
T

Re
ζ + z

ζ − z dσw(ζ), z ∈ D.

These measures were introduced by Clark in 1972, in his study of one-
dimensional perturbations of the shift operators (see [3]). Further properties
of these measures were investigated by Aleksandrov and Poltoratskĭı [1], [8]).

The study of the properties of these measures leads to a more complete
understanding of the properties of ϕ-p inner and outer functions. In par-
ticular using a result of A. B. Aleksandrov an explicit integral formula has
been given for the ϕ-p outer part of the factorization (see [10], and Section 2
below).

It was proven in [6] that if ϕ is a finite Blaschke product then the ϕ-p
inner part of any function is bounded. In general, this result does not hold
(see [6], [10], and Section 5 below). However, for certain f ∈ Hp we can say
the ϕ-p inner part is bounded for all ϕ. For example, assume ϕ is not a finite
Blaschke product and that f is analytic in the closed unit disk. Then for
every inner function ϕ, the ϕ-p inner part hp of f is bounded. Indeed, assume
that hp is unbounded. Then there exists a sequence {wk} ⊂ T such that ϕ
has nontangential limit of modulus 1 for all wk, and limk→∞ |hp(wk)| =∞.
Let limk→∞ ϕ(wk) = τ . Then

�
T
|f(ζ)|p dστ (ζ) = 0.

(The proof of this statement is similar to the one of Lemma 2 in Section 3.)
Since στ is a nonnegative measure, this implies that f vanishes on the carrier
of στ . Being analytic in the closed unit disk, f has only a finite number of
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zeros on the unit circle. Thus the carrier of στ is finite. By Aleksandrov’s
theorem (Theorem D, Section 2.2), ϕ has to be a finite Blaschke product, a
contradiction. Theorem 1 below gives a more general result.

If ϕ is inner, then ϕ(z) = B(z)S(z) where B is a Blaschke product with
zeros {an} and S is a singular inner function generated by the singular
measure µ. Following the notation of Nikol’skĭı (see [7, p. 62]), we let

Σϕ = supp(µ) ∪ {a1, . . . , an, . . .}
denote the spectrum of ϕ.

Theorem 1. Let ϕ be an inner function. If f ∈ Hp, and f is analyti-
cally extendable through a neighborhood of Σϕ ∩ T, then the ϕ-p inner part
of f is bounded.

To set the strong assumption that f is analytically extendable through
the spectrum in T of ϕ in perspective we note that there are examples of f
in H∞ whose ϕ-p inner part is not in H∞. An example of such behavior is
given in [10]. In that particular example, the ϕ-p inner part has logarithmic
growth. In Section 5 below, we further investigate this phenomenon and
strengthen the result in [10]. The general idea of the proof is analogous to
[10] but we modify the construction to obtain sharper estimates. We prove
the following theorem.

Theorem 2. Let ϕ be an inner function having the property that for all
w ∈ T, σw is a continuous measure. There exists a function f : D → D
in H∞ such that for any p, 0 < p ≤ ∞, the ϕ-p inner part of f is not in Lq

for any q > p.

We can find functions ϕ for which the associated measures σw are con-
tinuous. Consider, for example, a sequence of contiguous arcs In in T where
|In| = 1/n. Let ζn be the midpoint of In and define an = (1 − 1/n2)ζn.
If B(z) is the infinite Blaschke product with zeros an, then B is an inner
function such that σw is continuous for all w ∈ T (see [9, p. 185] for details).

The assumption of continuity of the σw measures is not necessary. For
instance, in Section 5, we give an example which shows that a result similar
to Theorem 2 holds when ϕ is a singular inner function determined by a
point mass at 1. In this case the measures are countable sums of point
masses.

It is natural to ask whether some special properties of ϕ would guarantee
that the ϕ-p inner part is bounded for some wide classes of functions. We
prove this is the case for all disk algebra functions, provided the spectrum of
ϕ contains an arc of the unit circle. For |w| = 1, define the set Ew = {ζ ∈ T :
ϕ(ζ) = w}. Here ϕ(ζ) denotes the nontangential unimodular limit of ϕ at
ζ (which exists for almost all ζ ∈ T). The following theorem is proved in
Section 7.
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Theorem 3. Let ϕ be an inner function. Assume that there exists an
arc I ⊂ T and a w ∈ T such that Ew is dense in I. Let f ∈ A (f 6= 0). If
f = hpFp ◦ ϕ is the ϕ-p factorization of f , then hp is bounded.

The assumption that Ew is dense in some arc of the unit circle is natural
as Theorem 4 illustrates.

Theorem 4. Let ϕ be an inner function which is not a finite Blaschke
product. Assume that for some w0 ∈ T, Ew0 is nowhere dense in T. Then
there exists a function f ∈ A whose ϕ-p inner part is unbounded.

The structure of the paper is as follows. In Section 2, we present all
necessary background results. We give results on generalized factorization,
and define and list properties of singular measures associated with an inner
function. Here we state the relevant theorems of Aleksandrov and show
the relation of ϕ-p inner and outer functions to these singular measures. In
Section 3, we present two auxiliary results which relate the singular measures
associated with the composition of two inner functions. In Section 4, we
prove some smoothness results about the behavior of the outer part of the
ϕ-p factorization. Here, the behavior of the ϕ-p outer functions is consistent
with the behavior of outer functions in the classical factorization of Hp

functions. In Section 5, we show that a function f ∈ H∞ can have a ϕ-p
inner part which is unbounded, for any ϕ with continuous σw measures. This
result is sharp in the sense that we can produce functions f ∈ H∞ whose
ϕ-p inner part (p < ∞) is not in Lq for any q > p. In Section 6, we prove
Theorem 1 stated above. Theorems 3 and 4 are proved in Section 7.

Acknowledgements. The authors would like to thank the referee for
his comments.

2. Background results

2.1. Generalized factorization. The definitions of inner and outer func-
tions, Blaschke products, singular functions, and Hardy spaces can be found
in standard texts (see for example [4]) and we refer the reader to these works.

If f ∈ Hp and ϕ is inner, the following theorem was proved in [6].

Theorem A. Let p > 0. There exists a factorization

f = hpFp ◦ ϕ
where Fp is an outer function in Hp, and hp is ϕ-p inner. The ϕ-p factor-
ization is unique up to a unimodular factor.

The factors hp and Fp are called the ϕ-p inner and ϕ-p outer parts of
the factorization respectively. When ϕ(z) = z, the ϕ-p factorization above
coincides with the classical factorization of f into its inner and outer parts.
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For f ∈ Hp ⊂ Hp′ (i.e. p′ < p) this factorization produces different factors
in contrast to the classical case.

2.2. Singular measures associated with an inner function. Let |w| = 1.
Then

Re
w + ϕ(z)
w − ϕ(z)

> 0

for all z in the unit disk. By Herglotz’s theorem there is a nonnegative
measure σϕw on the unit circle T such that

(1) Re
w + ϕ(z)
w − ϕ(z)

= �
T

Re
ζ + z

ζ − z dσ
ϕ
w(ζ)

for all z ∈ D. Since ϕ is inner, σϕw is singular with respect to the normalized
Lebesgue measure dm on T. In this paper, if it is clear which function ϕ the
measure is associated with, we will omit the superscript ϕ. It was proven by
Aleksandrov (see [1]) that if Ew is the set of points in T where ϕ has w as
a nontangential limit, then

(2) σw(T \Ew) = 0.

If we set z = 0 in (1), then we have

σw(T) =
1− |ϕ(0)|2
|1− wϕ(0)|2 ,

from which we can obtain

(3)
1− |ϕ(0)|
1 + |ϕ(0)| ≤ σw(T) ≤ 1 + |ϕ(0)|

1− |ϕ(0)| .

In particular, if ϕ(0) = 0, then σw is a probability measure for all w ∈ T.
From (1) one can obtain the following formula for the Fourier coefficients

of the σw measures (see [1]):

(4) �
T
ζ−n dσw(ζ) =





∑

k>0

wk �
T
ϕ(ζ)kζ−n dm(ζ), n > 0,

1− |ϕ(0)|2
|1− wϕ(0)|2 , n = 0.

As a consequence of this equality, Aleksandrov obtained the following theo-
rem for any Lebesgue integrable function defined on the unit circle (see [1]).

Theorem B. If f : T → C and f ∈ L1(T, dm), then f ∈ L1(T, dσw)
for almost all w ∈ T. Furthermore,

�
T
f(ζ) dm(ζ) = �

T
�
T
f(ζ) dσw(ζ) dm(w).

Remark. As a corollary to Theorem B, we obtain the following well
known result. If ϕ is an inner function and ϕ(0) = 0, then ϕ is a measure
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preserving mapping of the circle into itself. Indeed, consider V = ϕ−1(I) =⋃
w∈I ϕ

−1({w}) where I is a Lebesgue measurable set. If ϕ(0) = 0, then σw
is a probability measure for every w ∈ T, and by Theorem B,

|V | = �
T
χV (ζ) dm(ζ) = �

T
�
T
χV (ζ) dσw(ζ) dm(w)(5)

= �
T
χI(w) dm(w) = |I|.

If ϕ(0) 6= 0, then (3) and (5) imply that

(6)
1− |ϕ(0)|
1 + |ϕ(0)| |I| ≤ |V | ≤

1 + |ϕ(0)|
1− |ϕ(0)| |I|.

Recall that, for each self-mapping of the unit disk, ϕ : D → D, the
angular derivative Dϕ is defined as

Dϕ(ζ) =

{
lim
r→1−

1− |ϕ(rζ)|2
1− r2 if ϕ(ζ) ∈ T,

∞ otherwise
(see [1]). If ϕ is analytically extendable through some point w ∈ T then

Dϕ(ζ) = |ϕ′(ζ)|.
Let

E = {w ∈ T : ϕ(z) has nontangential limit at w of modulus 1}.
The following result is due to A. Aleksandrov (see [1]).

Theorem C. If ζ ∈ E and w = ϕ(ζ) then

Dϕ(ζ) =
1

σw({ζ}) .

In particular, σw is continuous at ζ if and only if

Dϕ(ζ) =∞.
For ϕ inner, and the set Ew finite for some w ∈ T, Aleksandrov proved

the following (see [1]).

Theorem D. If ϕ is an inner function such that Ew is finite for some
w ∈ T, then ϕ is a finite Blaschke product.

The measures σw are a convenient tool in dealing with the ϕ-p factor-
ization. The following theorems are proved in [10].

Theorem E. A function h is ϕ-p inner if and only if

�
T
|h(ζ)|p dσw(ζ) = 1

for almost every w ∈ T.
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Theorem F. Let ϕ(z) = B(z)S(z), where B is a Blaschke product and
S is a singular inner function generated by a singular measure µ. If w 6∈
Σϕ ∩ T, then any ϕ-p inner function is bounded near w.

Theorem G. If 0 < p < ∞, f ∈ Hp, and f = hpFp ◦ ϕ is the ϕ-p
factorization of f , then for z ∈ D, the outer part Fp is given by

Fp(z) = exp
{

1
p

�
T

ζ + z

ζ − z log
( �
T
|f(τ)|p dσζ(τ)

)
dm(ζ)

}
.

Example. Let f = z+z2, and let ϕ be an inner function with ϕ(0) = 0.
If f = h2F2◦ϕ, then we want to find the factors F2 and h2. From Theorem G,
we have

F2(z) = exp
{

�
T

ζ + z

ζ − z log
( �
T
|τ + τ2|2 dσζ(τ)

)1/2
dm(ζ)

}

= exp
{

�
T

ζ + z

ζ − z log
( �
T
(2 + τ + τ) dσζ(τ)

)1/2
dm(ζ)

}
.

By (4) we obtain

|F2(ζ)|2 = �
T
(2 + τ + τ) dσζ(τ) = 2 + ζ ϕ′(0) + ζϕ′(0).

It is easy to see that
|F2(ζ)|2 = |a+ bζ|2,

where if F2 is outer,

a = (1 + (1− |ϕ′(0)|2)1/2)1/2, b =
ϕ′(0)

(1 + (1− |ϕ′(0)|2)1/2)1/2
.

Thus,

F2(ζ) = (1 + (1− |ϕ′(0)|2)1/2)1/2 +
ϕ′(0)ζ

(1 + (1− |ϕ′(0)|2)1/2)1/2
,

h2(ζ) = (1 + (1− |ϕ′(0)|2)1/2)1/2 ζ + ζ2

1 + (1− |ϕ′(0)|)2)1/2 + ϕ′(0)ϕ(ζ)
.

3. Two auxiliary lemmas. The following lemma expresses singular
measures associated with the composition of two inner functions.

Lemma 1. Let ψ and χ be inner functions and let ϕ = ψ ◦ χ. Then

σϕw = �
T
σχτ dσ

ψ
w(ζ).

That means that for every continuous function f on T,

�
T
f(ζ) dσϕw(ζ) = �

T
�
T
f(ζ) dσχτ (ζ) dσψw(τ).
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Proof. Let ζ ∈ T. Consider the bounded linear functional

L(f) = �
T

�
T
f(ζ) dσχτ (ζ) dσψw(τ)

on the space of continuous functions on T. By the Riesz theorem, there exists
a measure µ such that

L(f) = �
T
f(ζ) dµ(ζ).

Fix z ∈ D. Since

f(τ) = Re
τ + z

τ − z
is continuous we have

�
T

Re
ζ + z

ζ − z dµ(ζ) = �
T

�
T

Re
ζ + z

ζ − z dσ
χ
τ (ζ) dσψw(τ) = �

T
Re

τ + χ(z)
τ − χ(z)

dσψw(τ)

= Re
w + ϕ(z)
w − ϕ(z)

= �
T

Re
ζ + z

ζ − z dσ
ϕ
w(ζ).

By the Uniqueness Theorem µ = σϕw.

Corollary 1. Let ϕ be an inner function and a ∈ T. If

ϕ1(z) =
ϕ(z)− a
1− aϕ(z)

then

σϕ1
w =

1− |a|2
|1 + aw|2 σ

ϕ
w1

where
w1 =

w + a

1 + aw
.

Proof. Let

ψ(z) =
z − a
1− az .

Then ϕ1 = ψ ◦ ϕ. Now the result follows since

σψw =
|1− aw1|2

1− |a|2 δw1 =
1− |a|2
|1 + aw|2 δw1 .

The next result shows that the family of σw measures is weak-∗ contin-
uous.

Lemma 2. Let ϕ be an inner function. If {wn} is a sequence in T with
limn→∞ wn = w then for any continuous function f on T,

lim
n→∞

{ �
T
f(ζ) dσwn(ζ)

}
= �
T
f(ζ) dσw(ζ).
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Proof. Assume first that ϕ(0) = 0. Since Cauchy kernels and their con-
jugates form a complete system in the space of all continuous functions,
it suffices to consider the case when f is a Cauchy kernel. In this case we
obtain

lim
n→∞

1
1− wnϕ(z)

=
1

1− wϕ(z)
.

If ϕ(0) 6= 0, let

ϕ1(z) =
ϕ(z)− ϕ(0)

1− ϕ(0)ϕ(z)
.

Then ϕ1(0) = 0 and the result holds for ϕ by Corollary 1.

4. Outer functions in the ϕ-p factorization. For 0 < p ≤ ∞ and
f ∈ Hp, let f have the ϕ-p factorization f = hpFp ◦ ϕ. From [10] we know
that if f ∈ Hp, then for 0 < r ≤ p ≤ ∞, the outer part Fr is in Hp and
‖Fr‖p ≤ ‖f‖p. This follows from Aleksandrov’s theorem (Theorem B) and
Theorem G above. To make this section self-contained we present below this
simple argument.

Since, for f = hrFr ◦ ϕ,

Fr(z) = exp
{

1
r

�
T

ζ + z

ζ − z log
( �
T
|f(τ)|r dσζ(τ)

)
dm(ζ)

}

it follows from Riesz’s formula that for almost every ζ ∈ T,

|Fr(ζ)| =
{ �
T
|f(τ)|r dσζ(τ)

}1/r
.

Therefore,

�
T
|Fr(ζ)|p dm(ζ) = �

T

{ �
T
|f(τ)|r dσζ(τ)

}p/r
dm(ζ).

Since f r ∈ Lp/r(T), applying Hölder’s inequality to the inside integral we
obtain

�
T
|Fr(ζ)|p dm(ζ) ≤ �

T

{ �
T
|f(τ)|p dσζ(τ)

}{1 + |ϕ(0)|
1− |ϕ(0)|

}(p−r)/r
dm(ζ)

=
{

1 + |ϕ(0)|
1− |ϕ(0)|

}(p−r)/r
‖f‖pp,

where the last equality follows from Aleksandrov’s Theorem (Theorem B).
The following theorem shows that the boundary value of the ϕ-2 outer

part, F2, of a function f is smooth if f is smooth.
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Theorem 5. Assume ϕ is an inner function with ϕ(0) = 0. Let f be
analytic in D and f ∈ CN (D) on the boundary , N > 3. Then the ϕ-2 outer
part of f is in CN−4(D).

Proof. Assume f(z) =
∑∞

n=0 anz
n and ϕ(0) = 0. Then

|f(z)|2 =
∞∑

n=0

anan +
∞∑

k=1

∞∑

n=k

(anan−kzk + anan−kz
k).

If we let

αk =
∞∑

n=k

anan−k, αk =
∞∑

n=k

anan−k

then by Aleksandrov’s theorem

|F2(w)|2 = �
T
|f(ζ)|2 dσw(ζ)(7)

= α0 +
∞∑

j=1

wj
{ ∞∑

k=j

αkβj,k

}
+ wj

{ ∞∑

k=j

αkβj,k

}

= α0 +
∞∑

j=1

(γjwj + γjw
j),

where βj,k =
�
T ϕ(ζ)jζk dm(ζ) and γj =

∑∞
k=j αkβj,k. Since f ∈ CN (D),

|ak| = o(1/kN ) and therefore |αk| = o(1/kN ). Since |βj,k| ≤ 1 it follows that

(8) γj = o(1/jN−1)

and hence |F2(w)|2 ∈ CN−3(T).
Assume |F2| > 0 on T. Then (8) implies

log(F2(z)) = �
T

ζ + z

ζ − z log |F2(ζ)| dm(ζ)

is in CN−4(D) (see [5, p. 81]). Thus

F2(ζ) = exp
{

1
2

�
T

ζ + z

ζ − z log |F2(ζ)|2 dm(ζ)
}

is in CN−4(D).
Now let F2(ζ) ∈ CN−4(T) be arbitrary. Choose {Ψn}, Ψn > 0, such that

the Ψn converge in the CN−3(T) topology to |F2|2. Then

exp
{

�
T

ζ + z

ζ − z log(Ψn(ζ)) dm(ζ)
}

= Ψn(z)

converges in CN−4(D) to F2(z).

The next corollary is straightforward in view of the proof of Theorem 5.
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Corollary 2. If f ∈ C∞(D), then the ϕ-2 inner part of f is in C∞(D).

If f is analytic in the closed disk then the Taylor coefficients of f decay
exponentially. The argument of Theorem 5 shows that the Taylor coefficients
of |F2|2 also decay exponentially. Thus we have the following corollary.

Corollary 3. If f is analytic in the closed unit disk then the ϕ-2 inner
part of f is analytic in the closed unit disk.

If f is a polynomial and ϕ(0) = 0 then we can say more.

Theorem 6. Assume f is a polynomial and ϕ(0) = 0. Then the ϕ-2
outer part of f is a polynomial.

Proof. If ϕ(0) = 0 one can deduce from (4) that |F2|2 is a symmetric
trigonometric polynomial. Let Q(ζ) = |F2(ζ)|2. We show that there exists a
polynomial R(z) such that |R(ζ)|2 = Q(ζ) on T.

Since Q is symmetric,

Q(ζ) = A−Jζ
J + . . .+A0 + . . .+ AJζ

J ≥ 0

where AJ 6= 0 and A−j = Aj .
Now

Q(ζ) = ζJ(A−J +A−J+1ζ + . . .+ Ajζ
2J ).

Let
q(ζ) = A−J + A−J+1ζ + . . .+Ajζ

2J .

Assume a satisfies 0 < |a| ≤ 1 and q(a) = 0. Then also q(a) = a2J q(1/a)
= 0. Hence, 1/a is also a root of q outside the unit circle. Now let a1, . . . , aJ
be the roots of q inside the unit circle and let bj = 1/aj be the corresponding
roots outside the unit circle.

Write r1(z) =
∏J
j=1(z − aj) and r2(z) =

∏J
j=1(z − bj). Now q(z) =

AJr1(z)r2(z), and on the unit circle

r2(z) =
(−1)J

zJ
∏
aj
r1(z).

Since Q(ζ) ≥ 0 on T, it follows that AJ (−1)J/
∏

(aj) > 0. Define the
polynomials

R1(z) =

√
AJ (−1)J∏

aj

J∏

j=1

(z − aJ), R2(z) =

√
AJ (−1)J∏

aj

J∏

j=1

(
z − 1

aJ

)
.

Then, on the unit circle,

Q(z) = zJR1(z)R2(z) = R2(z)R2(z) = |R2(z)|2.
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5. Bounded functions with unbounded ϕ-p inner part. Here, we
give a proof of Theorem 2. Our construction refines the one given in [10].
We start with the following lemma.

Lemma 3. Let ϕ be an inner function having the property that σw mea-
sures are continuous measures for all w ∈ T. Fix p0 > 0. There exists an f
in the unit ball of H∞, f : D → D, such that for all p ≥ p0 the ϕ-p inner
part of f is not in Hq for any q > p.

Proof. Assume first that ϕ(0) = 0 so that the σw are probability mea-
sures. Let Ew = ϕ−1({w}). Let {In} be a set of arcs, n = 2, 3, . . . , with the
following properties:

(i) In ∩ Im = ∅ unless n = m.
(ii) |In| = c/(n(logn)3) (c a normalizing constant independent of n so

that
∑ |In| ≤ 1).

Let Vn = ϕ−1(In) =
⋃
w∈In Ew. Then Vn ∩ Vm = ∅ for n 6= m. Further-

more, the Lebesgue measure |Vn| is positive and by (5),

|Vn| = |In|.
For each w ∈ In, define Jw = (1, eiθ(w)) where σw(Jw) = 1/np0 . This can

be done since the σw are assumed to be continuous. Define

Un =
⋃

w∈In
(Jw ∩ Ew).

Note that the terms Jw ∩ Ew are disjoint. Furthermore, Un ∩ Um = ∅ for
n 6= m and Un ⊂ Vn. Therefore,

σw(Un) =
{

1/np0 , w ∈ In,

0, w ∈ T \ In.

Thus, as in (5), Un has positive Lebesgue measure,

|Un| =
1
np0
|In| =

c

np0n(logn)3 .

Define the following function on T:

(9) %(w) =





1 if w ∈ Un,

1/n if w ∈ Vn \ Un,

1 if w ∈ T \⋃∞n=2 Vn.

Since % ∈ L∞(T) and

(10) �
T
|log(%(w))| dm(w) = c

∞∑

n=2

1− 1/np0

n(logn)2 <∞,

there exists an f ∈ H∞ such that |f(ζ)| = %(ζ) for almost every ζ ∈ T.
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Let f = hpFp ◦ ϕ be the ϕ-p factorization of f . For w ∈ In,

(11) |Fp(w)| =
{ �
Ew

|f(ζ)|p dσw(ζ)
}1/p

=
{

1
np

(
1− 1

np0

)
+

1
np0

}1/p

.

Since p ≥ p0, it follows immediately from (11) that

(12)
1

np0/p
≤ |Fp(w)| ≤ 2

np0/p
.

The functions f , hp, and Fp ◦ ϕ have radial limits almost everywhere. For
all ζ ∈ Un for which these limits exist,

|hp(ζ)| = %(ζ)
|Fp(ϕ(ζ))| ≈ n

p0/p if p ≥ p0.

Now, if q > p,

(13) �
T
|hp(ζ)|q dm(ζ) ≥

∞∑

n=2

�
Un

|hp(ζ)|q dm(ζ) ≥
∞∑

n=2

np0q/pc

np0n(logn)3

The series above diverges since q > p.
If the σw are not probability measures, then by (6) the conclusions of

(10), (12), and (13) hold.

Proof of Theorem 2. Without loss of generality assume that the σw
are probability measures. Let {Ink} be a set of arcs, n = 2, 3, . . . , k =
0, 1, . . . , which have the following properties:

(i) Ink ∩ Iml = ∅ unless n = m and k = l,
(ii) |Ink| = ck/(n(logn)3) where {ck} is a sequence of positive numbers

such that
∞∑

k=0

ck =
( ∞∑

n=2

1
n(logn)3

)−1

.

Let Vnk = ϕ−1(Ink). The Vnk are disjoint subsets of T with positive
Lebesgue measure |Ink|.

Now we iterate the construction of Lemma 1. For each w ∈ Ink let Jw =
(1, eiθ(w)) be the arc so that σw(Jw) = 1/npk where {pk} is a decreasing
sequence of numbers such that limk→∞ pk = 0. Define

Unk =
⋃

w∈Ink
(Jw ∩Ew).

A computation similar to (5) shows that Unk has positive Lebesgue measure
and

�
T
χUnk(ζ) dm(ζ) =

ck
npkn(logn)3 .
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Define a function % similar to (9) on T by

%(w) =





1, w ∈ Unk,

1/n, w ∈ Vnk \ Unk,

1, w ∈ T \⋃n,k Vnk.

The function % is bounded and positive on T. Furthermore |log %| is in L1(T)
since

�
T
|log %(w)| dm(w) =

∞∑

k=0

∞∑

n=2

ck(logn)(1− 1/npk)
n(logn)3(14)

≤
∞∑

k=0

ck

∞∑

n=2

1
n(logn)2

=
( ∞∑

k=0

ck

)( ∞∑

n=2

1
n(logn)2

)
<∞.

Again, there exists a function f , bounded and analytic in D, such that |f |
coincides with % almost everywhere on T.

Let f = hpFp ◦ϕ be the ϕ-p factorization of f . For almost every w ∈ Ink,

(15) |Fp(w)| =
{ �
Ew

|f(ζ)|p dσw(ζ)
}1/p

=
{

1
np

(
1− 1

npk

)
+

1
npk

}1/p

.

Similar to (12), the following estimates hold:

1
n

{
1− 1

npk

}1/p

≤ |Fp(w)| ≤ 2
n

for p ≤ pk,

1
npk/p

≤ |Fp(w)| ≤ 21/p

npk/p
for p > pk.

The set of points ζnk ∈ Unk where ϕ, f , Fp ◦ ϕ, and hp all have radial
limits has measure |Unk|. For all such ζnk,

|hp(ζnk)| = %(ζnk)
|Fp(ϕ(ζnk))| ≈ n

pk/p

for all pk < p. Given p ∈ (0,∞), for pk < p we have

(16) �
T
|hp(ζ)|q dm(ζ) ≥

∞∑

n=2

ckn
pkq/p

npkn(logn)3 .

The series on the right hand side diverges if q > p.

The construction in Theorem 2 may not necessarily work for arbitrary ϕ.
We need a polynomial rate of decrease of the σw(Jw). The following example
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shows that the construction used in the proof of Theorem 2 works for the
singular inner function determined by a point mass at 1.

Example. Let ϕ(ζ) = e(ζ+1)/(ζ−1). If w ∈ T, then ϕ−1(w) = {ζk} where
ζk ∈ T and

logw + 2πik =
ζk + 1
ζk − 1

,

and solving for ζk yields

ζk = 1 +
2

logw + 2πik − 1
.

If ζ 6= 1 and ζ ∈ T, then ϕ is analytically extendable through ζ. Therefore,

σ(ζk) =
1

|ϕ′(ζk)| =
|ζk − 1|2

2
=

2
|logw + 2πik − 1|2 ∼ O

(
1
k2

)
.

Therefore, on the arc (1, ζN ),

σw((1, ζN )) =
∞∑

k=N

2
|logw + 2πik − 1|2 ∼ O

(
1
N

)
.

The conclusion of Theorem 2 will now follow if the Jw = (1, eiθ(w)) are
chosen so that

σw(Jw) ∼ 1/npk .

This can always be done since for each n and pk there exists an integer N
so that 1/(N + 1) ≤ 1/npk ≤ 1/N .

6. The ϕ-p factorization of a function analytically extendable
through the spectrum of ϕ

Proof of Theorem 1. We know that if ϕ is a finite Blaschke product, then
hp is bounded ([6]). Hence, we assume ϕ is not a finite Blaschke product.
Suppose f to be analytically extendable through the spectrum of ϕ. Write
f = hpFp◦ϕ for the ϕ-p factorization of f and assume that hp is unbounded.
Define E to be the set of all ζ on the unit circle where ϕ has unimodular
nontangential limits. Then there exists a sequence {wk} ⊂ E such that
|hp(wk)| > k. Without loss of generality we may assume limk→∞ wk = w0.
From Theorem F it follows that w0 ∈ Σϕ ∩ T. Define

Oδ = {ζ ∈ T : d(ζ,Σϕ ∩ T) < δ} where d(ζ,Σϕ ∩ T) = inf
w∈Σϕ∩T

|ζ − w|.

Since f is analytically extendable in a neighborhood of Σϕ ∩T, there exists
an ε > 0 such that f is analytic in O2ε. Without loss of generality, we can
assume wk ∈ Oε. Now,

|hp(wk)| = |f(wk)|
|Fp(ϕ(wk))| .
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Since f is analytic in O2ε, f is bounded in Oε. Without loss of generality,
we can assume that |f | ≤ 1 on Oε. Therefore, by Theorem G,

|Fp(ϕ(wk))| =
{ �
T
|f(ζ)|p dσϕ(wk)(ζ)

}1/p
≤ 1
k
.

Let τ0 be a limit point of ϕ(wk) = τk. We claim that

(17)
{ �
Oε

|f(ζ)|p dστ0(ζ)
}1/p

= 0.

To prove this, let
A = Oε, B = T \O2ε.

Since f is analytically extendable through O2ε, by Urysohn’s lemma there
exists a continuous function f̂ such that |f̂(ζ)| ≤ |f(ζ)| and

f̂(ζ) =
{
f(ζ), ζ ∈ A,

0, ζ ∈ B.

Therefore, by Lemma 2 we have

�
Oε

|f |p dστ0 = �
Oε

|f̂ |p dστ0(18)

≤ �
O2ε

|f̂ |p dστ0 = �
T
|f̂ |p dστ0 = lim

k→∞
�
T
|f̂ |p dστk

≤ lim
k→∞

�
T
|f |p dστk = 0.

Thus f |Oε = 0 almost everywhere στ0 . Since f is analytically extendable
through Oε, f has only a finite number of zeros in Oε, which implies Eτ0 is
finite on Oε.

Let ζ ∈ T \ Oε. If ϕ is analytically extendable through an arc I ⊂ T,
then ϕ has a nonvanishing derivative on I. Therefore, since ϕ is analytically
extendable through T \ Σϕ, there exists a neighborhood Uζ of ζ such that
card(Eτ0 ∩ Uζ) ≤ 1. The open sets {Uζ} cover T \ Oε. There exists a finite
subcover {Uζi}ni=1. Thus Eτ0 is finite in T \ Oε. Now, since Eτ0 is finite in
{T \Oε} ∪Oε = T, ϕ is a finite Blaschke product, a contradiction.

Remark. If there does not exist an ε so that the set B is empty, then
the function f is analytic in the closed unit disk and the integral in (18) can
be taken over the entire unit circle (see the argument immediately preceding
the statement of Theorem 2).

7. ϕ-p factorization for the disk algebra. The following lemma is
needed for the proof of Theorem 3.
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Lemma 4. Assume there exists a point w ∈ T and an arc I ⊂ T such
that Ew is dense in I. Then the support of σw is dense in I for all w ∈ T.

Proof. Assume that Ew1 is not dense in I. That is, I * supp(σw1).
Then ϕ has an analytic continuation through an arc I1 ⊂ I, which implies
{ϕ−1(w)} is nowhere dense in I1.

Proof of Theorem 3. Without loss of generality assume |f(ζ)| ≤ 1. As-
sume there exists a sequence {wn} so that |hp(wn)| > 2n. If f = hpFp ◦ ϕ
then

|hp(wn)| = |f(wn)|
|Fp(ϕ(wn))| =

|f(wn)|
{

�
T |f(ζ)|p dσϕ(wn)(ζ)}1/p .

Let
An = {w ∈ T : |f(w)| > 1/n}.

Then
σϕ(wn)(Am) < mp/2np.

There exists a subsequence {wnk} so that limnk→∞ ϕ(wnk) = w0. By Lem-
ma 2, σw0(Am) = 0. Furthermore,

σw0

(⋃

n

An

)
≤
∑

m

σw0(Am) = 0.

Now,

σw0

(
I \
{ ∞⋃

n=1

An

})
= σw0(I ∩ {ζ ∈ T : f(ζ) = 0}) = σw0(I).

The set {ζ ∈ T : f(ζ) = 0} is dense in I. Otherwise, there exists some arc
I0 which is in the complement of {ζ ∈ T : f(ζ) = 0} in I. The support of
the measure σw0 is dense in I, hence it follows that σw0(I0) > 0. But this
contradicts the fact that σw(

⋃∞
n=1 An) = 0.

Since f is continuous on T, {w ∈ T : f(ζ) = 0} dense in I implies that
f ≡ 0, a contradiction. We can now conclude that hp is bounded.

Proof of Theorem 4. Since

Ew0 = Ew0 ∪ {Σϕ ∩ T},
|Ew0 | = 0. It follows from Aleksandrov’s theorem that

0 = �
T
χEw0

(ζ) dm(ζ) = �
T

�
T
χEw0

(ζ) dσw(ζ) dm(w).

This implies that for almost all w ∈ T,

σw(Ew0) = �
T
χEw0

(ζ) dσw(ζ) = 0.
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Let {wk} be a sequence in T such that

lim
k→∞

wk = w0 and σwk(Ew0) = 0.

Let
C =

(⋃

k

Ewk

)
∪ Ew0 .

Claim. The set C is a closed subset of T.

Let ζ be a limit point of C. Then there exists a sequence {ζn} in C
converging to ζ. We have either (i) or (ii) below:

(i) The points ζn lie in some Ewk for an infinite number of n. In this
case,

ζ ∈ Σϕ ∩ T ⊂ Ew0 .

(ii) Each Ewk contains at most a finite number of the ζn. If ϕ is contin-
uous at ζ then

lim
n→∞

ϕ(ζn) = lim
k→∞

wkn = w0 = ϕ(ζ).

In this case ζ ∈ Ew0 ⊂ Ew0 . If ϕ is not continuous at ζ then ζ ∈ Σϕ ∩ T ⊂
Ew0 . Thus C is closed in T. Furthermore,

m(C) =
∞∑

k=1

m(Ewk) +m(Ew0) = 0.

Since Ewk is not finite, and Ew consists of the point masses of σw, there
exists a ζk ∈ Ewk so that σwk(ζk) ≤ 1/k. Define the following function %
on C:

%(ζ) =
{

1/k if ζ = ζk,

0 if ζ ∈ C \ {ζk}∞k=0.

It is easily seen that the function % is continuous on C. Since % is defined
on a set of measure zero, by the Rudin–Carleson theorem there exists a
function f ∈ A such that f(ζ) = %(ζ) for ζ ∈ C. If f = hpFp ◦ ϕ, then

|Fp(wk)| =
{ �
T
|f(ζ)|p dσwk(ζ)

}1/p
=
{

1
kp

σwk(ζk)
}1/p

≤ 1
k1+1/p

.

It follows that

|hp(ζk)| = |f(ζk)|
|Fp(wk)| ≥ k

1/p,

from which we conclude that limk→∞ hp(ζk) =∞.



Growth estimates for generalized factors 37

8. Concluding remarks. It is possible to extend the result of Theo-
rem 5 to any p > 0. The conclusion for given f ∈ CN (D) ∩ Hp(D) follows
by considering the canonical factorization of f into its inner and outer part,
f(z) = g(z)F (z). If F = hpF̃p ◦ ϕ is the ϕ-p factorization of F , then

F p/2p = hp/2p F̃ p/2p ◦ ϕ

is the ϕ-2 factorization of F p/2p . Suppose F 6= 0 on the boundary. Since
F ∈ CN (D), it follows from Theorem 5 that F̃ p/2p ∈ CN−4(D). Since F̃p 6= 0
on T, it follows that F̃p ∈ CN−4(D). The conclusion of Theorem 5 now

follows since f = {ghp}F̃p ◦ ϕ is the ϕ-p factorization of f . If F has zeros
on T we may approximate F̃p as before.

Given an inner function ϕ and a function f ∈ Hp, we want to continue to
investigate the ϕ-p inner part. For instance, if we pose certain restrictions on
ϕ, are there any other classes of functions that have bounded ϕ-p inner part?
On other hand, can we find conditions for ϕ—other than continuity of the
measures—which will ensure the existence of an f which has an unbounded
ϕ-p inner part? From the Example in Section 5, we see that the measures
σw need not be continuous for the construction in Theorem 1 to work. We
pose the following conjecture.

Conjecture 1. The conclusion of Theorem 2 holds for an arbitrary
inner function which is not a finite Blaschke product. That is, for every ϕ
inner , there exists a function f whose ϕ-p outer part is not in Lq for any
q > p.
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