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On the eigenfunction expansion method
for semilinear dissipative equations in bounded domains

and the Kuramoto–Sivashinsky equation in a ball

by

V. V. Varlamov (Austin, TX)

Abstract. Presented herein is a method of constructing solutions of semilinear dis-
sipative evolution equations in bounded domains. For small initial data this approach
permits one to represent the solution in the form of an eigenfunction expansion series
and to calculate the higher-order long-time asymptotics. It is applied to the spatially
3D Kuramoto–Sivashinsky equation in the unit ball B in the linearly stable case. A
global-in-time mild solution is constructed in the space C0([0,∞),Hs

0(B)), s < 2, and
the uniqueness is proved for −1 + ε ≤ s < 2, where ε > 0 is small. The second-order
long-time asymptotics is calculated.

1. Introduction. We are concerned with studying solutions of semi-
linear dissipative evolution equations in bounded domains. It is well known
that the Galerkin method (see, e.g., [2, 20]) permits one to establish exis-
tence, uniqueness, and regularity results for such problems. However, this
approach does not allow to construct solutions. The use of invariant mani-
folds for parabolic semilinear equations in bounded domains permits one to
prove stability and find the lower-order long-time asymptotics (see [2, 8, 37]
and the references therein). Since the linear operator of the equation has a
point spectrum, one can separate the phase space into stable, unstable, and
central manifolds. The solutions enjoy exponential decay in time, while the
power-law decay is typical for Cauchy problems. As regards the latter, C.
E. Wayne [39] examined them for the nonlinear heat equation with a suf-
ficiently smooth nonlinear term, constructed the invariant manifolds, and
showed how they can be used to obtain long-time asymptotics.

Our main goal consists, first, in constructing solutions of semilinear dis-
sipative equations governing wave propagation, and second, in obtaining the
higher-order long-time asymptotics. The basic ideas of our method were de-
veloped in the papers [30–36], and in a certain sense they represent a further
development of the approach of [17], where spatially 1D Cauchy problems

2000 Mathematics Subject Classification: 35K55, 35K60, 35B40.

[221]



222 V. V. Varlamov

for the first-order (in time) nonlocal dissipative equations were considered.
We begin with the general description of the method and then show its
application to the spatially 3D Kuramoto–Sivashinsky (K-S) equation in a
ball.

Let H be a Hilbert space with the scalar product 〈·, ·〉 and the corre-
sponding norm ‖ · ‖, and let the operator A be defined on D(A) dense in
H. Assume that A is closed and has a complete orthogonal system {ej}∞j=1
of eigenvectors, ej ∈ D(A),

Aej = Λjej , ReΛj > 0, j ∈ N,
where the eigenvalues Λj are numbered in increasing order of ReΛj , i.e.,
ReΛi ≤ ReΛj for i ≤ j. Moreover, assume that ReΛj →∞ as j →∞. We
do not suppose that the vectors ej are normalized.

Let H2 be the space {u =
∑∞

i=1 ûiei :
∑∞

i=1 |ûi|2|Λi|2‖ei‖2 < ∞} en-
dowed with the norm

‖u‖22 =
∞∑

i=1

|ûi|2|Λi|2‖ei‖2, ûi =
〈u, ei〉
‖ei‖2

.

Then the operator A : D(A)→ H can be extended to a continuous operator
from H2 into H. We will retain the same notation for this operator. Denote
by Hs the space

Hs =
{
u ∈ H : ‖u‖2s =

∞∑

i=1

|ûi|2|Λi|s‖ei‖2 <∞
}
.(1.1)

Consider the following Cauchy problem:

u′(t) + Au(t) = B(u(t), u(t)), t > 0,
(1.2)

u(0) = φ,

where u(t) : [0,∞) → H is a continuous function and B(·, ·) is a bilinear
form. The solution of the corresponding linear problem exists for all φ ∈ H
and is given by the formula

u(t) = exp(−tA)φ =
∞∑

i=1

ûi exp(−Λit)ei,

where exp(−tA) is a strongly continuous semigroup.
We integrate (1.2) with respect to t and reduce it to the integral equation

u(t) = exp(−tA)φ+
t�

0

exp(−(t− τ)A)B(u(τ), u(τ)) dτ.(1.3)

The function u(t) is called a strong solution of the problem (1.2) if each
term in (1.2) is a continuous H-valued function of t. The function u(t)
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is called a mild solution of (1.2) if it satisfies (1.3) in the Banach space
C0([0,∞),Hs).

We seek solutions of (1.2) in the form

u(t) =
∞∑

m=1

ûm(t)em, ûm(t) =
〈u(t), em〉
‖em‖2

.(1.4)

We expand the nonlinear term into the series

B(u(t), u(t)) =
∞∑

m=1

B̂m(t)em,(1.5)

where the coefficients B̂m(t) are calculated in the following way:

B̂m(t) = (B(u(t), u(t)))∧m(t)(1.6)

=
〈B(

∑∞
p=1 ûp(t)ep,

∑∞
k=1 ûk(t)ek), em〉

‖em‖2

=
∞∑

p,k=1

b(m, p, k)ûp(t)ûk(t),

where

b(m, p, k) =
〈B(ep, ek), em〉
‖em‖2

.

Then we substitute (1.4)–(1.6) into (1.2) and after integrating the result in
t obtain
∞∑

m=1

ûm(t)em=
∞∑

m=1

exp(−Λmt)φ̂mem+
∞∑

m=1

( t�

0

exp(−Λm(t−τ))B̂m(τ) dτ
)
em,

which implies that

(1.7) ûm(t) = exp(−Λmt)φ̂m

+
t�

0

exp(−Λm(t− τ))
∞∑

p,k=1

b(m, p, k)ûp(τ)ûk(τ) dτ, m ∈ N.

Next, we assume that the initial data in (1.2) is small and set φ = εφ̃,

where ε = ‖φ‖, φ̃ = φ/‖φ‖. Replacing φ̂m in (1.7) by εφ̃m we seek ûm(t) in
the form of the series in ε

ûm(t) =
∞∑

N=0

εN+1v̂(N)
m (t).(1.8)

Substituting (1.8) into (1.7) we get the following recurrence formulas:
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v̂(0)
m (t) = exp(−Λmt)φ̃m,

(1.9)

v̂(N)
m (t) =

t�

0

exp(−Λm(t− τ))

×
∞∑

p,k=1

b(m, p, k)
N∑

j=1

v̂(j−1)
p (τ)v̂(N−j)

k (τ) dτ.

Thus, the formal solution of (1.2) with small initial data is presented in the
form (1.4), (1.8), (1.9). In order to justify these considerations we should
secure the convergence of the series in (1.4), (1.6), (1.8), (1.9). To this end
we establish the following estimates for integers N ≥ 0, m ≥ 1, and t ≥ 0:

|v̂(N)
m (t)| ≤ cNf1(N)f2(m) exp(−æmt),(1.10)

where æm > 0, the constant c > 0 is independent of N,m, t; f1(N) tends to
zero sufficiently fast to guarantee the absolute convergence of

N∑

j=1

v̂(j−1)
p (t)v̂(N−j)

k (t) as N →∞,

and the decay of f2(m) is sufficient for the absolute convergence, uniform in
m ≥ 1, t ≥ 0, of the series

∞∑

p,k=1

b(p, k,m)
N∑

j=1

v̂(j−1)
p (t)v̂(N−j)

k (t).

The inequalities (1.10) are established by induction, and the behavior of the
zero iteration v̂(0)

m (t) serves as a starting point.
Next, we choose ε ∈ [0, ε0], with ε0 < 1/c, so that the series (1.8) con-

verges uniformly with respect to t ≥ 0, ε ∈ [0, ε0]. The estimate of ûm(t)
deduced on the basis of (1.8), (1.10) permits one to establish that each term
in the equation (1.2) is a continuous H-valued function of t in the case of
strong solutions or that u(t) : [0,∞)→ Hs is continuous in the case of mild
solutions.

Up to this point we have not used to the full extent the dissipativity of
the equation, and the method described above can be used for constructing
solutions of conservative equations as well (at least for a bounded time
interval, and sometimes for all t ≥ 0). The exponential decay in (1.10) will
be essentially used to obtain the higher-order long-time asymptotics, but we
would like to illustrate it by a concrete example: the Kuramoto–Sivashinsky
equation in a ball. An application of the method to second-order (in time)
evolution equations in one and two space dimensions can be found in [30–34].
The nonlinear fractional Laplacian heat equation in 2D and 3D was studied
in [35, 36].
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In principle, we can also treat a power nonlinearity in (1.2), i.e., (u(t))n

with an integer n ≥ 3. We can expand it into the eigenfunction series

(u(t))n =
∞∑

m=1

(un)∧m(t)em,

where

(1.11) (un)∧m(t)

=
〈∑∞p1=1 ûp1(t)ep1 ·

∑∞
p2=1 ûp2(t)ep2 . . .

∑∞
pn=1 ûpn(t)epn, em〉

‖em‖2

=
∑

p1,...,pn≥1

b(m, p1, . . . , pn)ûp1(t) . . . ûpn(t),

where

b(m, p1, . . . , pn) =
〈ep1 . . . epn , em〉
‖em‖2

,

and apply the same procedure as above. Our main concern will be the con-
vergence of the series in (1.11) and much will depend on obtaining subtle
estimates of the coefficients b(m, p1, . . . , pn).

Below we shall consider the K-S equation

∂tu+ ν∆2u+∆u = |∇u|2,(1.12)

where u = u(x1, x2, x3), ν = const > 0, ∇u = gradu, and ∆ is the Laplace
operator in x1, x2, x3. This equation arises in the theory of long waves in
thin films [3, 29], of long waves at an interface between two viscous liquids
[6], in systems of reaction-diffusion type [11, 12], and in the description of
the nonlinear evolution of a linearly unstable flame front [24, 25]. The linear
terms in (1.12) describe the interaction of long-wavelength pumping and
short-wavelength dissipation, and the nonlinear term characterizes energy
redistribution between various modes.

The K-S equation was extensively studied in the eighties (mostly in the
spatially 1D case), both in the context of inertial manifolds and in numer-
ical simulation of dynamical behavior (see [1, 5, 6, 13, 18, 19]). In [14, 15]
Michelson showed that a slight modification of the spatially 2D equation
(1.12),

∂tu+ ν∆2u+∆u+ |∇u|2 = c2,

has stationary solutions. In the context of combustion theory these solutions
represent Bunsen flames on infinite linear or circular burners. Examining
spatially periodic solutions, Nicolaenko, Scheurer, and Temam [19] showed
that the existence of a global absorbing ball implies the existence of a global
attractor, and gave an upper estimate of its Hausdorff dimension. Under the
assumption that the initial data is odd, they proved the existence of a global
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absorbing set in L2(0, l) for the derivative K-S equation. Collet et al. [4] and
independently Goodman [7] got rid of this antisymmetry requirement.

In the spatially 2D case an important problem was to show the existence
of a bounded absorbing set in L2(Ω). Using the method of [21], Sell and
Taboada [23] gave the answer to this question via proving the existence
of a bounded local absorbing set in H1

per([0, 2π] × [0, 2πε]) for sufficiently
small ε. Molinet [16] improved their results and gave sufficient conditions
for the local stability of the solutions of the derivative K-S equation with
spatially periodic boundary conditions in a thin rectangular domain.

We shall examine the first initial-boundary problem for the 3D K-S
equation in a ball with small initial conditions and homogeneous bound-
ary conditions. For the linearly stable case ν > 1/Λ1 we shall construct
its mild global-in-time solutions in the form of an eigenfunction expansion.
The uniqueness will follow from the analysis of the corresponding nonlin-
ear integral equation. Then we shall calculate the second-order long-time
asymptotics of the solution in question. The nonlinear stability result for
the case 0 ≤ ν ≤ 1/Λ1 (but not the asymptotics) can be obtained by the
considerations analogous to those of [23]. However, to calculate the long-time
asymptotic expansion we need the linear stability of the equation.

2. Notation and function spaces. We denote by B the ball of unit
radius and introduce the coordinate system with origin at the center of the
ball, so that B = {(r, θ, ϕ) : |r| < 1, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π}. We set
H = L2(B), the space of real functions square integrable over B endowed
with the norm

‖f‖2 =
1�

0

2π�

0

π�

0

|f(r, θ, ϕ)|2r2 sin θ dθ dϕ dr.

Our main tool will be expansion in eigenfunctions of the Laplace operator
in B. For a function f(r, θ, ϕ) ∈ L2(B) we can write

f(r, θ, ϕ) =
∑

m≥0, n≥1

f̂mnχmn(r, θ, ϕ),(2.1)

where χmn(r, θ, ϕ) are the nontrivial solutions of the problem

∆χ = −Λχ, (r, θ, ϕ) ∈ B,
(2.2) χ|S = 0, |χ(0, θ, ϕ)| <∞, χ(r, θ, ϕ+ 2π) = χ(r, θ, ϕ),

where S = ∂B and

∆ = (1/r2)∂r(r2∂r) + (1/r2)∆θ,ϕ,

∆θ,ϕ = (1/sin θ)∂θ(sin θ∂θ) + (1/sin2 θ)∂2
ϕ.
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The angular eigenfunctions Y (θ, ϕ) come from the problem

∆θ,ϕY + µY = 0, (θ, ϕ) ∈ S,
|Y |θ=0,π <∞, Y (θ, ϕ+ 2π) = Y (θ, ϕ),

whose eigenvalues are µm = m(m+1),m = 0, 1, 2, . . . The functions Ym(θ, ϕ)
are called spherical harmonics of the mth order, and they can be represented
by the linear combination of tesseral harmonics [22]

Ym(θ, ϕ) =
m∑

l=0

[C(1)
lm cos lϕ+ C

(2)
lm sin lϕ]P lm(cos θ),(2.3)

where P lm(cos θ) are the associated Legendre functions.
The radial eigenfunctions are the nontrivial solutions of the problem

1
r2

d

dr

(
r2dR

dr

)
+
(
Λ− m(m+ 1)

r2

)
R = 0,

|R(0)| <∞, R(1) = 0.

They are called spherical Bessel functions and are defined by the formula

Rmn(r) = jm(λmnr) =

√
π

2r
Jm+1/2(λmnr).

Here Λmn = λ2
mn are the corresponding eigenvalues, λmn are the posi-

tive zeros of the Bessel function Jm+1/2(z) numbered in increasing order,
m = 0, 1, 2, . . . ; n = 1, 2, . . . ; n is the number of the zero. We observe that
λ0n = πn.

The Bessel functions Jν(λνnr) are orthogonal and complete in the space
L2,r(0, 1) (L2(0, 1) with the weight r) and for sufficiently large λ > 0 [28,
p. 219],

c1

λ
≤

1�

0

rJ2
ν (λr) dr ≤ c2

λ
.

We introduce the real space L2,r2(0, 1) (L2(0, 1) with the weight r2) with
the scalar product (f, g) = � 1

0 r
2f(r)g(r) dr and norm ‖f‖2 = � 1

0 r
2f2(r) dr.

Then we can write

‖jm‖2(n) =
1�

0

j2
m(λmnr)r2 dr =

π

2

1�

0

J2
m+1/2(λmnr)r dr.

The fact that we have used the same notation for the norm in H and in
L2,r2(0, 1) will not cause any confusion since in what follows, the latter will
always be used with the subindex n showing the dependence on λmn.
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Note that for sufficiently large λ > 0,

C1

λ
≤

1�

0

j2
m(λr)r2 dr ≤ C2

λ
.(2.4)

Large positive zeros of Jm(z) with 0 ≤ m ≤ m0 <∞ have the following
asymptotics uniform in m (called McMahon’s expansion, see [10]):

λmn = %mn +O

(
1
%mn

)
, %mn = (m+ 2n− 1/2)π/2, n→∞.(2.5)

Next, we return to the angular eigenfunctions Ym(θ, ϕ) and describe how
they can be expressed in terms of zonal harmonics. This approach will be
more advantageous than the use of (2.3) since it will simplify the calculation
of |∇u|2. Let P and Q be two variable points on the unit sphere S and let
γ(P,Q) be the angle (between 0 and π) formed by two vector radii OP
and OQ, where O is the center of the unit sphere. Then for P fixed and Q
varying over S, Pm[cos γ(P,Q)] (where Pm(x) is a Legendre polynomial) is
a spherical harmonic of the mth order of the spherical coordinates of Q, and
for fixed Q and variable P this function is also a spherical harmonic with
respect to P .

Introducing the scalar product in the real space L2(S) by the formula
(f, g)S = � S fg dS and denoting by ‖ · ‖S the corresponding norm we have
(see [22, p. 266])

(Ym, Yk)S =
�

S

Ym(Q)Pk[cos γ(P,Q)] dSQ = 0, m 6= k,

‖Ym‖2S =
4π

2m+ 1
,

2m+ 1
4π

�

S

Ym(Q)Pm[cos γ(P,Q)] dSQ = Ym(P ).
(2.6)

The spherical harmonic expressed as a symmetric function of the two points
P and Q is called a Laplace coefficient [22, p. 272], the name coming from
the expansion of f(P ) into a Laplace series. Considered as a function of Q,
Pm[cos γ(P,Q)] contains two arbitrary parameters, the coordinates (θ′, ϕ′)
of the point P , which can be chosen by the choice of the coordinate system.
If we direct the z-axis of the coordinate system through P , the spherical
harmonics will become zonal and the constants will be determined. Then
the last formula in (2.6) will yield

2m+ 1
4π

2π�

0

π�

0

[Pm(cos γ)]2 sin γ dγ dχ = Ym(P ) = 1,

where (γ, χ) are the spherical coordinates in the system with north pole
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at P. Another consequence of (2.6) is the formula

2m+ 1
4π

�

S

Pm[cos γ(P,Q′)]Pm[cos γ(Q,Q′)] dSQ′ = Pm[cos γ(P,Q)].

If P = (θ′, ϕ′) and Q = (θ, ϕ), then by the addition theorem for spherical
harmonics we can represent them in terms of the tesseral ones

Pm[cos γ(P,Q)] = Pm[cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)]
= Pm(cos θ)Pm(cos θ′)

+ 2
m∑

l=1

(m− l)!
(m+ l)!

P lm(cos θ)P lm(cos θ′) cos[l(ϕ− ϕ′)].

If we combine the north pole of the coordinate system with the point P,
then θ′ = 0, Ym(P ) = Pm(1) = 1, and Pm[cos γ(P,Q)] = Pm(cos θ).

As regards the eigenfunction expansion coefficients in (2.1), we have
shown in [36] that in the chosen coordinate system with north pole at P ,

f̂mn =
((f, jm)(n), Ym)S
‖jm‖2(n)‖Ym‖2S

=
〈f, χmn〉
‖χmn‖2

.

Now we shall give some facts concerning the Legendre polynomials
Pm(x), −1 < x < 1 (see [22, pp. 176–200]). They satisfy the equation

d

dx

[
(1− x)2 d

dx
Pm(x)

]
+m(m+ 1)Pm(x) = 0, x ∈ (−1, 1),(2.7)

and

|Pm(x)| < 1, x ∈ (−1, 1), Pm(1) = 1, Pm(−1) = (−1)m.

First Theorem of Stieltjes. For θ ∈ (0, π), m = 1, 2, . . . ,

|Pm(cos θ)| ≤ 4
√

2√
π
· 1
√
m
√

sin θ
.(2.8)

Second Theorem of Stieltjes. For x ∈ [−1, 1], m = 0, 1, . . . ,

|Pm+2(x)− Pm(x)| ≤ 4√
π
· 1√

m+ 2
.(2.9)

We also have the relation
x�

−1

Pm(ξ) dξ =
Pm+1(x)− Pm−1(x)

2m+ 1
, m ≥ 1,(2.10)

which implies that
∣∣∣
x�

−1

Pm(ξ) dξ
∣∣∣ ≤ 4√

π
· 1√

m+ 1 (2m+ 1)
.(2.11)
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We introduce the Sobolev space Hs(B) endowed with the equivalent
norm

‖f‖2s =
∑

m≥0, n≥1

λ2s
mn|f̂mn|2‖χmn‖2

and set Hs
0(B) = Hs(B) ∩ {u|S = 0}. We shall also use the Banach space

C0([0,∞),Hs
0(B)).

3. Kuramoto–Sivashinsky equation in a ball. Statement of the
problem and the main results. We examine the first initial-boundary
value problem for the Kuramoto–Sivashinsky equation in the unit ball B:

ut + ν∆2u+∆u = |∇u|2, (r, θ, ϕ) ∈ B, t > 0,

u(r, θ, ϕ, 0) = ε2φ(r, θ, ϕ), (r, θ, ϕ) ∈ B,
|u(0, θ, ϕ)| <∞, u|S = ∆u|S = 0,

periodicity conditions in ϕ with period 2π,

(3.1)

where ν, ε = const > 0 and φ(r, θ, ϕ) is a real-valued function.
We set A0 = −∆ defined on sufficiently smooth functions satisfying

the conditions (2.2). We also set A = νA2
0 − A0 and note that A > 0 for

ν > 1/λ2
01, where λ2

01 is the first eigenvalue of A0.

Definition. The function u(t) is called a mild solution of the problem
(3.1) if it satisfies the integral equation (1.3) with B(u(t), u(t)) = |

√
Au(t)|2

in the Banach space C0([0,∞),Hs
0(B)).

In what follows we shall use the notation Dθ = −(1/sin θ)∂θ and denote
by V 1

0 (f(r, θ, ϕ)) the total variation of the function f(r, θ, ϕ) in r ∈ [0, 1].
Now we formulate some assumptions on the function f(r,Q), r ∈ (0, 1),
Q = (θ, ϕ) ∈ S.

Assumptions A.

f(0, Q) = f(1, Q) = ∂rf(0, Q) = ∂rf(1, Q) = 0;

D2
θf(0, Q) = D2

θf(1, Q) = ∂rD
2
θf(0, Q) = ∂rD

2
θf(1, Q) = 0;

V 1
0 (r∂2

rD
2
θf(0, Q)) = V2,2(Q) ∈ L1(S),

limr→0+ r∂2
rD

2
θf(0, Q) = F2,2(Q) ∈ L1(S).

Our first result concerns the existence and uniqueness of global-in-time
mild solutions of (3.1) and their representation in the form of eigenfunction
expansion series.

Theorem 1. If ν > 1/π2 and the function φ(r, θ, ϕ) satisfies Assump-
tions A, then there is ε0 > 0 such that for ε ∈ [0, ε0] there exists a mild
solution of (3.1) in the space C0([0,∞),Hs

0(B)) with s < 2. It can be rep-
resented as
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u(r, θ, ϕ, t) =
∑

m≥0, n≥1

ûmn(t)jm(λmnr)Ym(θ, ϕ),

where the coeffcients ûmn(t) are defined by (1.8), (4.11). If −1 + ε ≤ s < 2,
where ε > 0 is small , this solution is unique. If 3/2 < s < 2, then u ∈
C0

b([0,∞), C0(B)).

Remark 3.1. It is not difficult to give an example of an initial function
satisfying Assumptions A. Using separation of variables we set φ(r, θ, ϕ) =
R1(r)Θ1(θ)Φ1(ϕ) whereR1,Θ1 and Φ1 are defined on (0, 1), (0, π) and (0, 2π)
respectively and satisfy the following conditions:

R1(0) = R1(1) = R′1(0) = R′1(1) = 0;

lim
r→0+

rR′′1(r) = c3 <∞, V 1
0 (rR′′1(r)) = c4 <∞;

Φ1(ϕ) ∈ L1(0, 2π) and
d

dθ

(
1

sin θ
d

dθ

)
Θ1(θ) ∈ L1(0, π).

The next theorem is dedicated to obtaining the higher-order long-time
asymptotics of the solution in question.

Theorem 2. Under the assumptions of Theorem 1, there exists a con-
stant C such that for s < 2 the following spatially uniform asymptotics
holds:

‖u(t)− ũ0(t)− ũ1(t)‖s ≤ C exp(−3κ01t),(3.2)

where

ũ0(r, t) = B01 exp(−κ01t)
sin(πr)
πr

, B01 =
√
π

∞∑

N=0

εN+1A
(N)
01 ,

ũ1(r, θ, ϕ, t) = exp(−2κ01t)
[
B̃01

sin(πr)
πr

+ Ã
( ∑

m=0, n≥2

+
∑

m,n≥1

)b(m,n, 0, 1, 0, 1)
κmn − 2κ01

jm(λmnr)Ym(θ, ϕ)
]
,

κ01 = π2(νπ2− 1) > 0, κmn = λ2
mn(νλ2

mn − 1) > 3κ01 for m = 0, n ≥ 2 and
for m,n ≥ 1,

B̃01 =
√
π
b(0, 1, 0, 1, 0, 1)

κ01
Ã, Ã =

∞∑

N=1

εN+1
N∑

j=1

A
(j−1)
01 A

(N−j)
01 ,

the coefficients A(j)
01 are defined by (6.3), and the coefficients b(m,n, 0, 1, 0, 1)

by (4.1).

4. Auxiliary results. In this section we collect several propositions
that will permit us to estimate the eigenfunction expansion coefficients of
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the solution and the nonlinearity. We begin with calculating the latter. We
have

|∇u|2 =
∑

m≥0, n≥1

(|∇u|2)∧mn(t)χmn(r, θ, ϕ),

where

(|∇u|2)∧mn(t) =
∑

p,k≥0; q,s≥1

b(m,n, p, q, k, s)ûpq(t)ûks(t),

(4.1)

b(m,n, p, q, k, s) =
b̃(m,n, p, q, k, s)
‖χmn‖2

=
〈∇χpq · ∇χks, χmn〉

‖χmn‖2
.

Since in spherical coordinates ∇ = {∂r, (1/r)∂θ, (1/r sin θ)∂ϕ}, in the chosen
coordinate system with north pole at P (see Section 2) the third component
of ∇u equals zero, and we have

b̃(m,n, p, q, k, s) =
(
π

2

)3/2

λpqλks

[(
1
4
I1 + I2 + I3 + I4

)
E1 + I1E2

]
,

where

I1 =
1
4

1�

0

Jp+1/2(λpqr)

λpqr
·
Jk+1/2(λksr)

λksr
Jm+1/2(λmnr)

√
r dr,

I2 = −1
2

1�

0

J ′p+1/2(λpqr)
Jk+1/2(λksr)

λksr
Jm+1/2(λmnr)

√
r dr,

I3 = −1
2

1�

0

Jp+1/2(λpqr)

λpqr
J ′k+1/2(λksr)

√
r dr,

I4 =
1�

0

J ′p+1/2(λpqr)J ′k+1/2(λksr)Jm+1/2(λmnr)
√
r dr,

E1 =
�

S

Yp(Q)Yq(Q)Ym(Q) dSQ,

E2 =
�

S

∂θYp(Q)∂θYq(Q)Ym(Q) dSQ.

Using the formulas [38]

J ′µ(z) =
1
2

[Jµ−1(z)− Jµ+1(z)],
Jµ(z)
z

=
1

2µ
[Jµ−1(z)− Jµ+1(z)]

we deduce that

I1 =
1

(2p+ 1)
· 1

(2k + 1)

1�

0

[Jp−1/2(λpqr) + Jp+3/2(λpqr)]

× [Jk−1/2(λksr) + Jk+3/2(λksr)]Jm+1/2(λmnr)
√
r dr,
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I2 = −1
4
· 1

(2k + 1)

1�

0

[Jp−1/2(λpqr)− Jp+3/2(λpqr)]

× [Jk−1/2(λksr) + Jk+3/2(λksr)]Jm+1/2(λmnr)
√
r dr,

I3 = −1
4
· 1

(2p+ 1)

1�

0

[Jp−1/2(λpqr) + Jp+3/2(λpqr)]

× [Jk−1/2(λksr)− Jk+3/2(λksr)]Jm+1/2(λmnr)
√
r dr,

I4 =
1
4

1�

0

[Jp−1/2(λpqr)− Jp+3/2(λpqr)]

× [Jk−1/2(λksr)− Jk+3/2(λksr)]Jm+1/2(λmnr)
√
r dr,

E1 = 2π
π�

0

Pp(cos θ)Pk(cos θ)Pm(cos θ) sin θ dθ,

E2 = 2π
π�

0

P ′p(cos θ)P ′k(cos θ)Pm(cos θ) sin3 θ dθ.

Consider the integral

=m(λ,Q) =
1�

0

r3/2f(r,Q)Jm+3/2(λr) dr, λ > 0, Q ∈ S.

The following proposition will allow us to estimate the eigenfunction coeffi-
cients of the initial data.

Lemma 1. Let f(r,Q) have the partial derivative ∂2
rf(r,Q), r ∈ (0, 1),

Q ∈ S, and f(0, Q) = f(1, Q) = ∂rf(0, Q) = ∂rf(1, Q) = 0 (in case m = 0
the condition f(0, Q) = 0 is not needed). Moreover , assume that for each
Q ∈ S the function r∂rf(r,Q) has bounded variation in r ∈ [0, 1] which is
absolutely integrable over Π, i.e.,

V 1
0 (r∂2

rf(r,Q)) = V2,0(Q) ∈ L1(S), lim
r→0+

r∂2
rf(r,Q) = F2,0(Q) ∈ L1(S).

Then there exists CQ ∈ L1(S) independent of m and λ such that for m ≥ 0,

|=m(λ,Q)| ≤ CQ(m+ 1)2

λ7/2
.

Proof. The proof is a slight modification of that of Lemma 2 of [36]
and is based on two-fold integration by parts in r in the integral defining
=m(λ,Q).

Next, we turn our attention to the typical integral appearing in the
expressions Ii, i = 1, 2, 3, 4, i.e., we study
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Hmpk(λmn, λ1, λ2) =
1�

0

Jm+1/2(λmnr)Jp+1/2(λ1r)Jk+1/2(λ2r)
√
r dr

and obtain its estimate as λ1, λ2 → ∞. To this end we need a few facts
concerning the Fresnel integrals [10, p. 28]

C(x) =
1√
2π

x�

0

cos t√
t
dt, S(x) =

1√
2π

x�

0

sin t√
t
dt.

They have the following properties:

C(0) = S(0) = 0, C(∞) = S(∞) = 1/2,

C(x) =
1
2

+
sinx√

2πx
+O

(
1
x3/2

)
,

S(x) =
1
2
− cosx√

2πx
+O

(
1
x3/2

)
as x→∞.

Lemma 2. For any fixed n ≥ 1, any m, p, k ≥ 0, and positive λ1, λ2 →∞
there exists a constant C independent of m,n, p, k, λ1, λ2 such that

|Hmpk(λmn, λ1, λ2)| ≤ C





λ
−3/2
1 λ

−1/2
2 , λ1 > λ2,

λ
−1/2
1 λ

−3/2
2 , λ1 < λ2,

λ−1, λ1 = λ2 = λ.

(4.2)

Proof. We shall consider the case λ1 > λ2 since λ1 < λ2 can be examined
analogously. For any fixed n the function Jm+1/2(λmnr) has n+ 1 intervals
of monotonicity on the interval [0, 1] (see [39]). We shall denote them by
[0, r1], [r1, r2], . . . , [ri, ri+1], . . . , [rn, rn+1] and the corresponding integrals by
H

(i)
mpk. Then Hmpk =

∑n+1
i=1 H

(i)
mpk.

Since Jm+1/2(λmnr) ≥ 0 and is increasing for r ∈ [0, r1] we can apply
Bonnet’s mean value theorem (see [26, p. 328]) to the corresponding integral
and obtain

H
(1)
mpk = Jm+1/2(λmnr1)

r1�

η

Jp+1/2(λ1r)Jk+1/2(λ2r)
√
r dr,(4.3)

where η ∈ (0, r1). Note that Jm+1/2(λmnr1) is absolutely continuous on
[0, r1].

We observe that for µ ≥ 0 and integer l ≥ 0,

|Jµ(x)| ≤ C√
x
, x > 0.(4.4)

Jl+1/2(x) =

√
2
πx

sin(x− lπ/2) +O

(
1
x3/2

)
, x→∞.(4.5)
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Next, we study the integral � r1η in (4.3) and show that it has the bound

C/λ
3/2
1 λ

1/2
2 as λ1, λ2 →∞, λ1 > λ2. By (4.5), we deduce that

r1�

η

Jp+1/2(λ1r)Jk+1/2(λ2r)
√
r dr = H̃ +O((λ1λ2)−3/2),

where

H̃ =
2

π
√
λ1λ2

r1�

η

sin(λ1r − pπ/2) sin(λ2r − kπ/2)√
r

dr.

We can rewrite H̃ as

H̃ =
2

π
√
λ1λ2

{
cos[(p− k)π/2]

r1�

η

cos(Λ−r)√
r

dr(4.6)

+ sin[(p− k)π/2]
r1�

η

sin(Λ−r)√
r

dr

}

− cos[(p+ k)π/2]
r1�

η

cos(Λ+r)√
r

dr

− sin[(p+ k)π/2]
r1�

η

sin(Λ+r)√
r

dr,

where Λ− = λ1 − λ2 = λ1(1 − λ2/λ1) → ∞ as λ1 → ∞, λ1 > λ2; and
Λ+ = λ1 + λ2. Making the change of variable ζ = Λ−r we obtain
∣∣∣∣
r1�

η

cos(Λ−r)√
r

dr

∣∣∣∣ =
1√
Λ−

∣∣∣∣
Λ−r1�

Λ−η

cos ζ√
ζ
dζ

∣∣∣∣ =

√
2π
Λ−
|C(Λ−r)− C(Λ−η)|

≤ c/Λ− ≤ c/λ1 as λ1 →∞.
The other integrals in (4.6) can be studied analogously. Using the uniform
boundedness of the Bessel functions and recalling (4.4) we deduce the upper
estimate in (4.2).

In order to estimate H(i)
mpk, i ≥ 2, we assume without loss of generality

that the function Jm+1/2(λmnr) is decreasing on [ri, ri+1]. We also observe
that it is absolutely continuous on this interval. Then by the second mean
value theorem there exists ηi ∈ (ri, ri+1) such that

H
(i)
mpk = Jm+1/2(λmnri)

ηi�

ri

Jp+1/2(λ1r)Jk+1/2(λ2r)
√
r dr

+ Jm+1/2(λmnri+1)
ri+1�

ηi

Jp+1/2(λ1r)Jk+1/2(λ2r)
√
r dr
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=
2
π

1√
λ1λ2

{
Jm+1/2(λmnri)

ηi�

ri

sin(λ1r − pπ/2) sin(λ2r − kπ/2)√
r

dr

+ Jm+1/2(λmnri+1)

×
ri+1�

ηi

sin(λ1r − pπ/2) sin(λ2r − kπ/2)√
r

dr +O

(
1

λ1λ2

)}
.

Conducting the same arguments as before we deduce that

|H(i)
mpk| ≤

C

λ
3/2
1 λ

1/2
2

, i ≥ 2.

From these estimates, (4.2) follows for λ1 < λ2.
Let λ1 = λ2 = λ. Applying the first mean value theorem for integrals

(see [26]) and (4.4) we deduce that there exists ξ ∈ (0, 1) such that

|Hmpk| ≤ |Jm+1/2(λmnξ)| ·
1�

0

|Jp+1/2(λ1r)| · |Jk+1/2(λ2r)|
√
r dr ≤ Cλ−1.

Remark 4.1. An estimate analogous to that of (4.2) can be easily ob-
tained for the integral

1�

0

Jm+1/2(λmnr)J−1/2(λ1r)J−1/2(λ2r)
√
r dr.

Such integrals appear in the expressions Ii, i = 1, 2, 3, 4, for p = q = 0.
Indeed, one can use the formula [28, p. 208]

J−1/2(x) =

√
2
πx

cosx

and conduct the arguments described above.

By means of the change of variable x = cos θ we can rewrite the integrals
E1,2 (see the beginning of this section) as

E1 = 2π
1�

−1

Pp(x)Pk(x)Pm(x) dx,

E2 = 2π
1�

−1

P ′p(x)P ′k(x)Pm(x)(1− x2) dx.

Lemma 3. There exists a constant C independent of p, k,m such that
for all integers p, k,m ≥ 0,

|E1| ≤
C√

(m+ 1)(p+ 1)(k + 1)
.

Proof. See [36, Lemma 3].
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Lemma 4. There exists a constant C independent of p, k,m such that
for all integers p, k,m ≥ 0,

|E2| ≤ C
(p+ 1)(k + 1)√

m+ 1
.(4.7)

Proof. Using the equation for Legendre polynomials we can express
P ′p(x) as follows:

P ′p(x) = −p(p+ 1)
� x−1 Pp(ξ) dξ

1− x2

= −p(p+ 1)
2

[G(1)
p (x)−G(2)

p (x)], − 1 < x < 1,

where

G(1)
p (x) =

� x−1 Pp(ξ) dξ

1 + x
, G(2)

p (x) =
� 1
x Pp(ξ) dξ

1− x .

Lagrange’s mean value theorem applied to the intervals [−1, x] and [x, 1]
yields

G(1)
p (x) = Pp(η1), η1 ∈ (−1, x); G(2)

p (x) = Pp(η2), η2 ∈ (x, 1).

Therefore, |G(1,2)
p (x)| ≤ 1 for all x ∈ [−1, 1] and integer p ≥ 0. Consequently,

E2 = 2π
p(p+ 1)k(k + 1)

4
(4.8)

×
1�

−1

[G(1)
p (x)−G(2)

p (x)][G(1)
k (x)−G(2)

k (x)]Pm(x) dx.

Next, we fix some 0 < δ ≤ 1 and represent this integral in the following
way:

E2 = Υ1 + Υ2 + Υ3(4.9)

= 2π
(−1+δ�

−1

+
1−δ�

−1+δ

+
1�

1−δ

)
P ′p(x)P ′k(x)Pm(x)(1− x2) dx.

Using (4.8), (2.8), and the boundedness of G(1,2)
p (x) we get

|Υ1,3| ≤ C
p(p+ 1)k(k + 1)δ√

m+ 1
.

By means of the estimate [22]

|P ′p(x)| ≤ C
√
p+ 1

1− x2 , |x| < 1, p ≥ 0,

we deduce that

|Υ2| ≤ C
√

(p+ 1)(k + 1)
m+ 1

1−δ�

−1+δ

dx

(1− x2)5/4
≤ C

√
(p+ 1)(k + 1)

m+ 1
δ−1/4.
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Choosing δ = δ(p, k) = (p+ 1)−2(k + 1)−2 we deduce that

|Υ1,3| ≤
C√
m+ 1

, |Υ2| ≤ C
(p+ 1)(k + 1)√

m+ 1
,

which implies (4.8).

Lemma 5. If f(r,Q) satisfies Assumptions A, then there exists a con-
stant C independent of m, n such that for all integers m ≥ 0, n ≥ 1,

|f̂mn| ≤ C
√
m+ 1

λ
5/2
mn

.(4.10)

Proof. First, we examine m = 0, 1. By Lemma 1, we have

|f̂mn| ≤ cλmn
2π�

0

dϕ

π�

0

|Pm(cos θ)| sin θ dθ
∣∣∣

1�

0

r2jm(λmnr)f(r, θ, ϕ) dr
∣∣∣

≤ C/λ5/2
mn.

Next we consider m ≥ 2. Setting z = cos θ we introduce the function

℘(2)
m (z) =

z�

−1

dξ

ξ�

−1

Pm(η) dη =
z�

−1

(z − ξ)Pm(ξ) dξ

and note that ℘(2)
m (1) = 0. Then, by (2.10),

℘(2)
m (z) =

1
2m+ 1

[ z�

−1

Pm+1(ξ) dξ −
z�

−1

Pm−1(ξ) dξ
]

=
1

2m+ 1

[
Pm+2(z)− Pm(z)

2m+ 3
− Pm(z)− Pm−2(z)

2m− 1

]
, m ≥ 2.

Hence, by (2.9) and (2.11),

|℘(2)
m (z)| ≤ C/m5/2, m ≥ 2.

Now we study the integral

Γm(r) =
π�

0

F (r, cos θ)Pm(cos θ) sin θ dθ =
1�

−1

F (r, z)Pm(z) dz,

where

F (r, z) = F (r, cos θ) = 〈f〉(r, θ) =
1

2π

2π�

0

f(r, θ, ϕ) dϕ

is the mean value of the function f(r, θ, ϕ) along the parallel all of whose
points have colatitude θ. Each plane characterized by the condition θ = const
has a distance z = cos θ from the center of the unit sphere S.
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Integrating two times by parts we get

Γm(r) =
1�

−1

℘(2)
m (z)∂2

zF (r, z) dz =
π�

0

℘(2)
m (cos θ)D2

θF (r, cos θ) sin θ dθ.

Since D2
θf(r, θ, ϕ) satisfies the hypotheses of Lemma 1, we obtain

|f̂mn| ≤ Cλmn(2m+ 1)
2π�

0

dϕ

π�

0

|℘(2)
m (cos θ)| dθ

≤
∣∣∣∣

1�

0

r2jm(λmnr)∂θ

(
1

sin θ
∂θ

)
f(r, θ, ϕ) dr

∣∣∣∣

≤ C(m+ 1)2(2m+ 1)λmn

λ
7/2
mnm5/2

≤ C
√
m+ 1

λ
5/2
mn

.

The next proposition serves to estimate the linear and nonlinear itera-
tions of the type of (1.9) which for the problem in question can be written
as

v̂(0)
mn(t) = Φ̂mn exp(−κmnt),

(4.11)

v̂(N)
mn (t) =

t�

0

exp[−κmn(t− τ)]

×
∑

p,k≥0; q,s≥1

b(m,n, p, q, k, s)
N∑

j=1

v̂(j−1)
pq (τ)v̂(N−j)

ks (τ) dτ,

where Φ̂mn = εφ̂mn and the coefficients b(m,n, p, q, k, s) are defined by (4.1).

Lemma 6. For the functions v̂(N)
mn (t) the following estimates hold for in-

tegers m ≥ 0, n ≥ 1, N ≥ 0, and real t ≥ 0:

|v̂(N)
mn (t)| ≤ cN (N + 1)−2λ−5/2

mn

√
m+ 1 exp(−κ01t).(4.12)

Proof. Since the function φ(r, θ, ϕ) satisfies Assumptions A, its eigen-
function expansion coefficients φ̂mn satisfy (4.10). We use induction on N.
For N = 0 and sufficiently small ε we have

|v̂(N)
mn (t)| ≤ ε|φ̂mn| exp(−κmnt) ≤ λ−5/2

mn

√
m+ 1 exp(−κ01t).

We assume that (4.12) is valid for all v̂(s)
mn(t) with 0 ≤ s ≤ N − 1 and prove

that it holds for s = N. For this purpose we need the inequality (see [17,
p. 181])

j−2(N + 1− j)−2 ≤ 22(N + 1)−2[j−2 + (N + 1− j)−2], 1 ≤ j ≤ N.
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According to (4.11), we have

|v̂(N)
mn (t)| ≤

t�

0

exp[−κmn(t− τ)]

×
∑

p,k≥0; q,s≥1

|b(m,n, p, q, k, s)|
∣∣∣
N∑

j=1

v̂(j−1
pq (τ)v̂(N−j)

ks (τ)
∣∣∣ dτ

≤ cLmn(t)SN

×
∑

p,k≥0; q,s≥1

|b(m,n, p, q, k, s)|λ−5/2
pq λ

−5/2
ks

√
p+ 1

√
k + 1,

where

Lmn(t) = exp(−κmnt)
t�

0

exp[(κmn − 2κ01)τ ] dτ,

SN =
N∑

j=1

cj−1cN−jj−2(N + 1− j)−2 ≤ cN−1(N + 1)−2.

By Lemmas 2–4 and (4.1), (2.4), (2.6), we deduce that for n ≥ 1;
m, p, k ≥ 0; q ≥ q0 > 0, s ≥ s0 > 0 (q0, s0 being sufficiently large),

|b(m,n, p, q, k, s)| ≤ C λpqλksλmn(2m+ 1)√
(m+ 1)(p+ 1)(k + 1)





λ
−3/2
pq λ

−1/2
ks , λpq > λks,

λ
−1/2
pq λ

−3/2
ks , λpq < λks,

λ−1
pq , λpq = λks.

Therefore,

|v̂(N)
mn (t)| ≤ cLmn(t)SN

λmn(2m+ 1)√
m+ 1

{ ∑

p,q,k,s:
λpq>λks

λpqλks

λ
5/2
pq λ

5/2
ks λ

3/2
pq λ

1/2
ks

(4.13)

+
∑

p,q,k,s:
λpq>λks

λpqλks

λ
5/2
pq λ

5/2
ks λ

1/2
pq λ

3/2
ks

+
∑

p,q

1
λ4
pq

}

≤ cLmn(t)SN
λmn(2m+ 1)√

m+ 1

(
2
∑

p,q

1

λ
5/2
pq

∑

k,s

1

λ
5/2
ks

+
∑

p,q

1
λ4
pq

)

≤ cN (N + 1)−2Lmn(t)λmn
√
m+ 1.

Next, we prove that

Lmn(t) ≤ C exp(−κ01t)
λ4
mn

.(4.14)
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(i) If m = 0, n = 1, then

Lmn(t) = exp(−κ01t)
t�

0

exp(−κ01τ) dτ = exp(−κ01t)
1− exp(−κ01t)

κ01

≤ exp(−κ01t)
λ4

01(ν − 1/λ4
01)

.

(ii) If m = 0, n ≥ 2, then λ0n = πn and λ2
0n − 2λ2

01 ≥ λ2
02 − 2λ2

01 = 2π2,
therefore,

κ0n − 2κ01 = νλ2
0n(λ2

0n − λ2
01) + (νλ2

01 − 1)(λ2
0n − 2λ2

01) > 0,

Lmn(t) = exp(−κ0nt)
exp[(κ0n − 2κ01)t]− 1

κ0n − 2κ01
≤ exp(−2κ01t)
νλ4

0n(1− λ2
01/λ

2
0n)

≤ C(ν)
exp(−κ01t)

λ4
0n

.

(iii) If m = 0, n = 1, then λ2
mn−2λ2

01 ≥ λ2
11−2λ2

01 > 0 since λ11 ' 4.493
and λ01 = π (see [10]). Consequently, κmn − 2κ01 > 0 and

Lmn(t) = exp(−κmnt)
exp[(κmn − 2κ01)t]− 1

κmn − 2κ01

≤ exp(−2κ01t)
νλ4

mn(1− λ2
01/λ

2
mn)
≤ C(ν)

exp(−κ01t)
λ4

0n
.

Thus, (4.14) is established. Combining (4.13) and (4.14) we deduce the re-
quired estimate.

Corollary. For t ≥ 0, N ≥ 1 and for m = 0, n ≥ 2 and m,n ≥ 1,

|v̂(N)
mn (t)| ≤ cN (N + 1)−2λ−5/2

mn

√
m+ 1 exp(−2κ01t).(4.15)

Proof. Since κ0n ≥ κ02 > 2κ01 for n ≥ 2 and κmn ≥ κ11 > 2κ01 for
m,n ≥ 1, (4.15) for N = 0 is evident. Then we apply induction on N and
repeating the arguments of (ii) and (iii) above we arrive at (4.15).

5. Proof of Theorem 1

5.1. Existence and construction of solutions. We seek mild solutions of
(3.1) in the form of an eigenfunction expansion series

u(r, θ, ϕ, t) =
∑

m≥0, n≥1

ûmn(t)χmn(r, θ, ϕ),(5.1)

where

ûmn(t) =
〈u, χmn〉(t)
‖χmn‖2

, χmn = jm(λmnr)Ym(θ, ϕ).

Expanding the nonlinearity |∇u|2 in a series of the type of (5.1) with
(|∇u|2)∧mn(t) defined by (4.1) we substitute the result and (5.1) into (3.1)
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to get
û′mn(t) + κmnûmn(t) = (|∇u|2)∧mn(t), t > 0,

ûmn(0) = ε2φ̂mn, κmn = λ2
mn(νλ2

mn − 1) > 0,
(5.2)

where φ̂mn are the coefficients of the eigenfunction expansion of the initial
function, i.e.,

φ(r, θ, ϕ) =
∑

m≥0, n≥1

φ̂mnχmn(r, θ, ϕ), φ̂mn =
〈φ, χmn〉
‖χmn‖2

.

Setting Φ̂mn = εφ̂mn (it is convenient to keep ε in the coefficients in order
to simplify some estimates) we integrate the Cauchy problem (5.2) in t to
obtain

ûmn(t) = εΦ̂mn exp(−κmnt) +
t�

0

exp[−κmn(t− τ)](|∇u|2)∧mn(τ) dτ.(5.3)

Represent ûmn(t) as a formal series in ε (see (1.8)) and substitute it into
(5.3) to obtain the recurrence formulas (4.11) for v̂(N)

mn (t). By Lemma 6, the
inequalities (4.12) hold for v̂(N)

mn (t) with m ≥ 0, n ≥ 1 and the estimates
(4.15) for these functions with m = 0, n ≥ 2 and with m,n ≥ 1.

Next, we prove that the formally constructed function (5.1), (1.8), (4.11)
is really a mild solution of (3.1) from the space C0([0,∞),Hs(B)), s < 2.
Choosing ε ∈ [0, ε0], ε0 < 1/c, where c is the constant which appears in the
estimates (4.12), we deduce by virtue of (1.8) that for m ≥ 0, n ≥ 1,

|ûmn(t)| ≤ cλ−5/2
mn

√
m+ 1 exp(−κ01t).(5.4)

Using (2.4)–(2.6) and (5.4) we deduce that the series

‖u(t)‖2s =
∑

m≥0, n≥1

λ2s
mn|ûmn(t)|2‖Ym‖2S‖jm‖2(n)

converges absolutely and uniformly with respect to t ≥ 0 for s < 2. To this
end we apply the Fubini–Tonelli theorem to establish the convergence of the
iterated series

∑
m

∑
n by comparison with the integral
∞�

C

(m+ 1) dm
2m+ 1

∞�

D

dn

(m+ 2n)6−2s

with sufficiently large C,D > 0. By the Sobolev embedding theorem and
(5.4), u(t) : [0,∞)→ C0(B) is continuous and bounded for 3/2 < s < 2.

5.2. Uniqueness of solutions. We shall argue by contradiction. Assume
that there exist two mild solutions u(1) and u(2) of problem (3.1) from the
class stated in the theorem. Then each can be expanded in a series (5.1),
where the coefficients û(i)

mn(t), i = 1, 2, satisfy (5.4). Set w = u(1) − u(2) and
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expand it in a series of the type (5.1):

w(r, θ, ϕ, t) =
∑

m≥0, n≥1

ŵmn(t)jm(λmnr)Ym(θ, ϕ),

ŵmn(t) =
t�

0

exp[−κmn(t− τ)]
∑

p,q,k,s

b(m,n, p, q, k, s)

× [û(1)
pq (τ)ŵks(τ) + û

(2)
ks (τ)ŵpq(τ)] dτ.

We can estimate the nonlinear terms as follows:
∣∣∣
∑

p,q,k,s

b(m,n, p, q, k, s)û(1)
pq (t)ŵks(t)

∣∣∣ ≤ C (2m+ 1)λmn√
m+ 1

[Σ1 +Σ2 +Σ3],

where

Σ1 =
∑

p,q,k,s:
λpq>λks

|û(1)
pq (t)|√

(p+ 1)(k + 1)
· |ŵks(t)|
λ

3/2
pq λ

1/2
ks

,

Σ2 =
∑

p,q,k,s:
λpq<λks

|û(1)
pq (t)|√

(p+ 1)(k + 1)
· |ŵks(t)|
λ

1/2
pq λ

3/2
ks

,

Σ3 =
∑

p,q

|û(1)
pq (t)|
p+ 1

· |ŵpq(t)|
λpq

.

We estimate only the sum Σ1 since Σ2,3 can be treated analogously. By
virtue of the Cauchy–Schwarz inequality and (5.6), for some small ε1 > 0,

|Σ1| =
∣∣∣∣
∑

k,s

√
2k + 1
k + 1

· 1

λ2+γ−ε1
ks

· λγks|ŵks(t)|√
2k + 1λ1/2

ks

·
∑

p,q

1

λ
3/2+ε1
pq

√
p+ 1

∣∣∣∣

≤ C
(∑

k,s

1

λ2γ+4−2ε1
ks

)1/2(∑

k,s

λ2γ
ks‖Yk‖2S‖jk‖2(s)|ŵks(t)|2

)1/2
.

Here the series over p, q converges for any ε1 > 0. The first series over k, s
on the right-hand side converges if 2γ + 4 − 2ε1 > 2, i.e., if γ ≥ −1 + ε1,
where ε1 > 0. The second series over k, s represents ‖w(t)‖γ and converges
for γ < 2. Thus, for −1 + ε1 ≤ γ < 2 we obtain

|Σ1| ≤ C‖w(t)‖γ.
Consequently,

|ŵmn(t)| ≤ C
t�

0

exp[−κmn(t− τ)]‖w(τ)‖γ dτ.
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Squaring both sides of the last inequality, multiplying the result by
λ2γ
mn‖Ym‖2S‖jm‖2(n) and summing over m,n we deduce that for some h > 0

and t ∈ [0, h],
‖ŵmn(t)‖2γ ≤ C( sup

t∈[0,h]
‖ŵmn(t)‖2γ)Q(t),

where

Q(t) =
∑

m≥0, n≥1

[1− exp(−κmnt)]2λ2γ
mn

κ2
mnλmn(2m+ 1)

.

The series Q(t) converges absolutely and uniformly with respect to t ∈ [0, h]
for γ < 4. It is a continuous nondecreasing function on [0, h] and Q(0) = 0.
Therefore, for −1 + ε1 ≤ γ < 2,

( sup
t∈[0,h]

‖ŵmn(t)‖γ)2 ≤ CQ(t)( sup
t∈[0,h]

‖ŵmn(t)‖γ)2 ≤ C(h)( sup
t∈[0,h]

‖ŵmn(t)‖γ)2,

where C(h) = CQ(h). The constant C(h) can be made less than one by
an appropriate choice of h. This contradiction establishes uniqueness for
t ∈ [0, h].

Next, we consider the sequence {[Tk, Tk+1]}∞k=1 of intervals with Tk = kh.
Since

t�

Tk

exp[−κmn(t− τ)] dτ =
1− exp[−κmn(t− Tk)]

κmn
,

arguing as above we obtain, for t ∈ [Tk, Tk+1],

( sup
t∈[Tk,Tk+1]

‖ŵmn(t)‖γ)2 ≤ CQ(t− Tk)( sup
t∈[Tk,Tk+1]

‖ŵmn(t)‖γ)2.

Setting t = Tk + η, η ∈ [0, h], we deduce that Q(t− Tk) = Q(η) < 1. Thus,
we have established the uniqueness for all t ≥ 0 and −1 + ε1 ≤ γ < 2.

6. Proof of Theorem 2: long-time asymptotics. We can represent
the solution in question as

u(r, θ, ϕ, t) = û01(t)j0(λ01r)(6.1)

+
( ∑

m=0, n≥2

+
∑

m,n≥1

)
ûmn(t)jm(λmnr)Ym(θ, ϕ).

First, we obtain a subtle asymptotic estimate of the coefficient û01(t) which
contributes to the major term of the long-time asymptotics, and then we
single out the major parts as t→∞ of ûmn(t) with m 6= 0, n 6= 1. We have

û01(t) =
∞∑

N=0

εN+1v̂
(N)
01 (t),(6.2)

where v̂(N)
01 (t) can be represented as follows:
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v̂
(0)
01 (t) = A

(0)
01 exp(−κ01t),

v̂
(N)
01 (t) = exp(−κ01t)[A

(N)
01 +R

(N)
01 (t)], N ≥ 1,

A
(0)
01 = Φ̂01 = εφ̂01,

(6.3)

A
(N)
01 =

∞�

0

exp(κ01τ)

×
∑

p,k≥0; q,s≥1

b(0, 1, p, q, k, s)
N∑

j=1

v̂(j−1)
pq (τ)v̂(N−j)

ks (τ)dτ,

R
(N)
01 (t) = −

∞�

t

exp(κ01τ)(6.4)

×
∑

p,k≥0; q,s≥1

b(0, 1, p, q, k, s)
N∑

j=1

v̂(j−1)
pq (τ)v̂(N−j)

ks (τ) dτ,

and the functions v̂(j)
mn(τ), j = 0, 1, . . . , N − 1, are defined by (4.11). Here

we have added and subtracted the integrals from t to ∞ in the integral
representations for v̂(N)

01 (t), N ≥ 1.

Next, we estimate the residual term R
(N)
01 (t) by means of (4.11), (4.15).

We have

|R(N)
01 (t)| ≤ cSN

∞�

t

exp(κ01τ)[C1 exp(−2κ01τ) + C2 exp(−4κ01τ)] dτ,

where SN was defined in the proof of Lemma 6. Therefore,

|R(N)
01 (t)| ≤ cN (N + 1)−2 exp(−κ01t).(6.5)

Now we obtain the second-order asymptotics of û01(t). Substituting (6.3),
(6.5) into (6.4) and using (4.15) we get

R
(N)
01 (t) = −

∞�

t

exp(κ01τ)
[

exp(−2κ01τ)b(0, 1, 0, 1, 0, 1)
N∑

j=1

A
(j−1)
01 A

(N−j)
01

+ cN (N + 1)−2O(exp(−3κ01τ))

+
∑

p, k≥1; q,s≥2

b(0, 1, p, q, k, s)
N∑

j=1

v̂(j−1)
pq (τ)v̂(N−j)

ks (τ)
]
dτ

= Ã01 exp(−κ01t) + cN (N + 1)−2O(exp(−2κ01t)),

where

Ã01 =
b(0, 1, 0, 1, 0, 1)

κ01
Ã, Ã =

∞∑

N=0

εN+1
N∑

j=1

A
(j−1)
01 A

(N−j)
01 ,
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and the series above converge absolutely and uniformly with respect to ε ∈
[0, ε0] and t ≥ 0. Recalling (1.8) and taking into account (6.3) we deduce
that

|û01(t)− A01 exp(−κ01t)− Ã01 exp(−2κ01t)| ≤ C exp(−3κ01t),(6.6)

where

A01 =
∞∑

N=0

εN+1A
(N)
01 .

The asymptotic estimate (6.3), (6.5) permits us to single out the major
parts in all v̂(N)

mn (t), N ≥ 1 (and consequently in ûmn(t)), which contribute
to the second term of the long-time asymptotics. The functions v̂(0)

mn(t) with
m,n ≥ 1 and m = 0, n ≥ 2 do not make a contribution to this term since,
according to (4.12), they contain the exponential factor exp(−κmnt) and
κmn ≥ κ11 > 3κ01 for m,n ≥ 1; κmn ≥ κ02 > 3κ01 for m = 0, n ≤ 2. Indeed,

κ11 − 3κ01 = λ2
01{νλ2

01[(λ11/λ01)4 − 3] + [3− (λ11/λ01)2]} > 0

since λ11 ' 4.493 and λ01 = π. It is also easy to check that

κ02 − 3κ01 = λ2
02{νλ2

02[(λ02/λ01)4 − 3] + [3− (λ02/λ01)2]} > 0

because λ02/λ01 = 2 and νλ2
02 > 1.

For m,n ≥ 1, N ≥ 1 we can write

v̂(N)
mn (t) = exp(−κmnt)

t�

0

exp(κmnτ)
[
b(m,n, 0, 1, 0, 1)

N∑

j=1

v̂
(j−1)
01 (τ)v̂(N−j)

01 (τ)

+
∑

p, k≥1; q,s≥2

b(m,n, p, q, k, s)
N∑

j=1

v̂(j−1)
pq (τ)v̂(N−j)

ks (τ)
]
dτ.

By means of (6.3), (6.5) we get

v̂(N)
mn (t) = exp(−κmnt)

t�

0

exp(κmnτ)

×
[

exp(−2κ01τ)b(m,n, 0, 1, 0, 1)
N∑

j=1

A
(j−1)
01 A

(N−j)
01

+ cN (N + 1)−2O(exp(−3κ01τ))
]

= exp(−2κ01t)
b(m,n, 0, 1, 0, 1)
κmn − 2κ01

N∑

j=1

A
(j−1)
01 A

(N−j)
01

+ cN (N + 1)−2O(exp(−3κ01t)).
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Therefore, by (1.8), for m,n ≥ 1, t ≥ 0 we have

|ûmn(t)− ũmn(t)| ≤ Cλ−5/2
mn

√
m+ 1 exp(−3κ01t),(6.7)

where

ũmn(t) = Ã
b(m,n, 0, 1, 0, 1)
κmn − 2κ01

exp(−2κ01t).

Recalling that

j0(λ01r) =

√
π

2r
J1/2(πr) =

sin(πr)√
πr

,

setting
B01 =

√
πA01, B̃01 =

√
πÃ01,(6.8)

and combining (6.1), (6.6), and (6.7) we obtain (3.2).

7. Conclusion. We have presented a method of constructing solutions
of semilinear dissipative evolution equations in bounded domains. For small
initial data this approach permits one not only to construct solutions in
the form of eigenfunction expansion series, but also to obtain long-time
asymptotic expansions. As an application we have considered the global-in-
time solutions of the Kuramoto–Sivashinsky in a ball in the linearly stable
case ν > 1/π2. The solution is presented in the form of an expansion in
eigenfunctions of the Laplace operator in the unit ball. The coefficients of
the corresponding series are calculated by means of perturbation theory. The
second-order long-time asymptotics calculated above is essentially nonlinear.
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