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An Atkinson-type theorem for B-Fredholm operators

by

M. Berkani (Oujda) and M. Sarih (Kénitra)

Abstract. Let X be a Banach space and let T be a bounded linear operator acting
on X. Atkinson’s well known theorem says that T is a Fredholm operator if and only if
its projection in the algebra L(X)/F0(X) is invertible, where F0(X) is the ideal of finite
rank operators in the algebra L(X) of bounded linear operators acting on X. In the main
result of this paper we establish an Atkinson-type theorem for B-Fredholm operators. More
precisely we prove that T is a B-Fredholm operator if and only if its projection in the
algebra L(X)/F0(X) is Drazin invertible. We also show that the set of Drazin invertible
elements in an algebra A with a unit is a regularity in the sense defined by Kordula and
Müller [8].

1. Introduction. Let A be an algebra with a unit e. An element x of A
is called regular if there is an element b of A such that xbx = x. In this case
b is called a generalized inverse of x. Following [10] we say that an element
x of A is Drazin invertible of degree k if there is an element b of A such that

(1) xkbx = xk, bxb = b, xb = bx.

Recall that the concept of Drazin invertibility was originally considered by
M. P. Drazin in [5] where elements satisfying (1) are called pseudo-invertible
elements.

In [10] an element x of A satisfying (1) for k = 1 is called group invert-
ible. It follows from [11, Theorem 3.3 and Proposition 3.9] that an element
of A is group invertible if and only if it has a commuting generalized in-
verse. In [7] and [11] group invertible elements are called respectively simply
polar elements and “generalized invertible” elements. It follows also from
[11, Theorem 3.3 and Proposition 3.9] that an element x of A is group in-
vertible if and only if there is a generalized inverse b of x such that e−xb−bx
is invertible in the algebra A.

In the first part of this paper we show that the set of Drazin invertible
elements in the algebra A is a regularity in the sense of Kordula and Müller
(Definition 2.2).
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So if A is a Banach algebra with unit, the spectrum associated to this
regularity satisfies the spectral mapping theorem. We also show that if a is
a Drazin invertible element in a Banach algebra A and if b is small in norm
and is an invertible element of A commuting with a, then a+ b is invertible.
Moreover we show that the product of two commuting Drazin invertible
elements is also Drazin invertible.

In the second part of this paper we consider a Banach space X and the
Banach algebra L(X) of bounded linear operators acting on X. In Theo-
rem 3.4 we show that an operator T ∈ L(X) is a B-Fredholm operator if
and only if its projection in the algebra L(X)/F0(X) is Drazin invertible,
where F0(X) is the ideal of finite rank operators in the algebra L(X). As
an application we show that the set of B-Fredholm operators is stable under
finite rank perturbations, and we prove that the product of two commuting
B-Fredholm operators is a B-Fredholm operator. At the end of this paper,
we give two open questions.

2. On Drazin invertibility. Let X be a vector space and let T be a
linear operator acting on X.

Definition 2.1. For n ∈ N, let cn(T ) = dimR(Tn)/R(Tn+1) and
c′n(T ) = dimN(Tn+1)/N(Tn). Then the descent of T is defined by δ(T ) =
inf{n : cn(T ) = 0} = inf{n : R(Tn) = R(Tn+1)} and the ascent a(T ) of T
is defined by a(T ) = inf{n : c′n(T ) = 0} = inf{n : N(Tn) = N(Tn+1)}.

For an element x in an algebra A with unit, let Lx and Rx denote
the left and right multiplication operators by x. Following [11, p. 835] we
set al(x) = a(Lx), δl(x) = δ(Lx), ar(x) = a(Rx), δr(x) = δ(Rx). From
[11, Proposition 3.1], for each integer n ≥ 0 we know that

al(x) = δl(x) = n ⇔ ar(x) = δr(x) = n.

Moreover we know from [12, Proposition 3.2] that if δl(x) and δr(x) are both
finite then al(x) = δl(x) = ar(x) = δr(x).

In [8], V. Kordula and V. Müller defined the concept of regularity as
follows:

Definition 2.2. A non-empty subset R ⊂ A is called a regularity if it
satisfies the following conditions:

(i) If a ∈ A and n ≥ 1 is an integer then a ∈ R if and only if an ∈ R.
(ii) If a, b, c, d ∈ A are mutually commuting elements satisfying ac + bd

= e, then ab ∈ R if and only if a, b ∈ R.

A regularity R defines in a natural way a spectrum by σR(a) = {λ ∈ C :
a− λI 6∈ R} for every a ∈ A. Moreover in the case of a Banach algebra A,
the spectrum σR satisfies the spectral mapping theorem.
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Theorem 2.3. Let A be an algebra with unit. Then the set DR(A) of
Drazin invertible elements in the algebra A is a regularity.

Proof. (i) Since every invertible element inA is Drazin invertible, DR(A)
is a non-empty set. Let a ∈ A and n ≥ 1 an integer. If a is Drazin invertible,
then from [5, Theorem 2], an is Drazin invertible. Conversely suppose that
an is Drazin invertible. Then from [10, Lemma 2] there is an integer k ≥ 1
such that ank is group invertible. Again from [10, Lemma 2], a is Drazin
invertible.

(ii) Let a, b, c, d be mutually commuting elements of A such that ac+ bd
= e. As proved in [5, Theorem 4], an element a of A is Drazin invertible if
and only there are elements c, d of A and positive integers p, q such that
ap = ap+1c and aq = daq+1. Hence a is Drazin invertible if and only if δl(a)
and δr(a) are both finite. Since ac + bd = e, we have LaLc + LbLd = I
and RaRc + RbRd = I. From [9, Lemma 4] it follows that δl(ab) is finite if
and only if δl(a) and δl(b) are finite, and δr(ab) is finite if and only if δr(a)
and δr(b) are finite. Hence ab is Drazin invertible if and only if a and b are
Drazin invertible.

If A is a Banach algebra with unit e and if x ∈ A, we define the Drazin
spectrum of x by σDR(x) = {λ ∈ A : x−λe 6∈ DR(A)}. Using the properties
of regularities [8], we immediately obtain the following corollary:

Corollary 2.4. Let A be a Banach algebra with unit , let x ∈ A and
let f be an analytic function in a neighborhood of the usual spectrum σ(x)
of x which is non-constant on any connected component of σ(x). Then
f(σDR(x)) = σDR(f(x)).

Proposition 2.5. Let A be a Banach algebra with unit , let a ∈ A. Sup-
pose that b ∈ A is invertible and commutes with a. If a is Drazin invertible,
and b is sufficiently small in norm, then a+ b is invertible.

Proof. Suppose that a is Drazin invertible. Then the bounded linear
operator La acting on the Banach algebra A is also Drazin invertible. Hence
La has a finite ascent and descent. So La is an operator of topological
uniform descent in the sense of Grabiner [6, Definition 2.5]. Using Grabiner’s
punctured neighborhood theorem [2, Theorem 4.5] it follows that if T is an
invertible bounded linear operator commuting with La and having small
norm, then c0(T + La) = cp(La), c′0(T + La) = c′p(La), for p large enough.
Since a is Drazin invertible, for n ≥ δl(a) we have cn(La) = c′n(La) = 0.
So c0(T + La) = c′0(T + La) = 0 for n ≥ δl(a) and this shows that T + La
is an invertible operator. Now if b is an invertible element of A commuting
with a and having a small norm, and if we set T = Lb, then T is invertible
and its norm is ‖T‖ = ‖Lb‖ = ‖b‖. By the preceding argument we see that
Lb + La = La+b is invertible. So a+ b is invertible.
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Proposition 2.6. Let a, b be two commuting Drazin invertible elements
of an algebra A with unit. Then ab is Drazin invertible.

Proof. It follows from [10, Lemma 2] that there is an integer n such that
an and bn are group invertible. So there are x and y such that xanx = x,
anxan = an, xan = anx and ybny = y, bnybn = bn, ybn = bny. From
[5, Theorem 1], we know that an, bn, x, y are commuting elements. So

xy(ab)nxy = xy, (ab)nxy(ab)n = (ab)n, (ab)nxy = xy(ab)n.

Hence (ab)n is group invertible and so ab is Drazin invertible.

3. An Atkinson-type theorem for B-Fredholm operators. In this
part we consider the Banach algebra L(X) of bounded linear operators act-
ing on a Banach space X. For T ∈ L(X), we denote by N(T ) the null space
of T , by α(T ) the nullity of T , by R(T ) the range of T and by β(T ) its de-
fect. If both α(T ) and β(T ) are finite, then T is called a Fredholm operator
and the index of T is defined by ind(T ) = α(T ) − β(T ). In this case it is
well known that the range R(T ) of T is closed in X.

For each integer n, define Tn to be the restriction of T to R(Tn) viewed
as a map from R(Tn) into R(Tn) (in particular T0 = T ). If for some integer
n the space R(Tn) is closed and Tn is a Fredholm operator, then T is called a
B-Fredholm operator [2, Definition 2.2]. In this case from [1, Proposition 2.1],
Tm is a Fredholm operator and ind(Tm) = ind(Tn) for each m ≥ n. This
remark leads to the following definition:

Definition 3.1. Let T ∈ L(X) be a B-Fredholm operator and let n be
any integer such that Tn is a Fredholm operator. Then the index ind(T ) of
T is defined as the index of the Fredholm operator Tn.

In particular if T is a Fredholm operator we get the usual definition of
the index.

Let BF(X) be the class of all B-Fredholm operators. In [1] the first author
has studied this class of operators and he has proved [1, Theorem 2.1] that
T ∈ L(X) is a B-Fredholm operator if and only if T = Q⊕ F , where Q is a
nilpotent operator and F a Fredholm operator. Let us recall that an operator
T ∈ L(X) has a generalized inverse if there is an operator S ∈ L(X) such
that TST = T . In this case T is also called a regular operator and S is called
a generalized inverse of T . It is well known that T has a generalized inverse
if and only if R(T ) and N(T ) are closed and complemented subspaces of X.
In [4], S. R. Caradus has defined the following class of operators:

Definition 3.2. T ∈ L(X) is called a generalized Fredholm operator if
T is regular and there is a generalized inverse S of T such that I−ST −TS
is a Fredholm operator.
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Let Φg(X) be the class of all generalized Fredholm operators. In [11],
[12], C. Schmoeger has studied this class of operators and he has proved
[13, Theorem 1.1] that T ∈ L(X) is a generalized Fredholm operator if and
only if T = Q ⊕ F , where Q is a finite rank nilpotent operator and F is a
Fredholm operator. Hence a generalized Fredholm operator is a B-Fredholm
operator, but the converse is not true, for example a nilpotent operator with
a non-closed range is a B-Fredholm operator but not a generalized Fredholm
operator, since a non-closed range operator is not regular. Moreover the
class BF(X) of B-Fredholm operators satisfies the spectral mapping theorem
while the class Φg(X) does not.

Let A = L(X)/F0(X) where F0(X) is the ideal of finite rank operators
in L(X) and let π : L(X) → A be the canonical projection. Atkinson’s
well known theorem [7, Theorem 6.4.3] says that T ∈ L(X) is a Fredholm
operator if and only if its projection π(T ) in the algebra A is invertible. In
the following result we establish an Atkinson-type theorem for B-Fredholm
operators. More precisely, in a first step we prove the following important
relation between B-Fredholm operators and generalized Fredholm operators
in the sense of Caradus:

Proposition 3.3. Let T ∈ L(X). Then T is a B-Fredholm operator if
and only if there exists a positive integer p ∈ N such that T p is a generalized
Fredholm operator.

Proof. If T is a generalized Fredholm operator, then T is a B-Fredholm
operator. Conversely if T is a B-Fredholm operator, then from [1, Theo-
rem 2.1], T = Q⊕F , where Q is a nilpotent operator and F a Fredholm op-
erator. Let n be an integer such that Qn = 0. Then Tn = Qn⊕Fn = 0⊕Fn.
Since Fn is a Fredholm operator, from [13, Theorem 1.1] we see that T n is
a generalized Fredholm operator.

Theorem 3.4. Let T ∈ L(X). Then T is a B-Fredholm operator if and
only if π(T ) is Drazin invertible in the algebra L(X)/F0(X).

Proof. From [11, Theorem 3.3] it follows that T is a generalized Fredholm
operator if and only π(T ) is group invertible in the algebra L(X)/F0(X).
Using the preceding proposition we see that T is a B-Fredholm operator
if and only if there exists p ∈ N such that π(T p) is group invertible. Since
π(T p) = π(T )p, using [10, Lemma 2] we see that T is a B-Fredholm operator
if and only if π(T ) is Drazin invertible in L(X)/F0(X).

Corollary 3.5. (i) Let T1, T2 be B-Fredholm operators such that T1T2

and T2T1 are finite rank operators. Then T1 +T2 is a B-Fredholm operator.
(ii) Let T1, T2 be commuting B-Fredholm operators. Then T1T2 is a B-

Fredholm operator.
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(iii) Let T be a B-Fredholm operator and let F be a finite rank operator.
Then T + F is a B-Fredholm operator.

Proof. Let A = L(X)/F0(X) and let π : L(X) → L(X)/F0(X) be the
canonical projection. Then π is an algebra homomorphism and:

(i) We have π(T1)π(T2) = π(T2)π(T1) = 0. From [5, Corollary 1] it
follows that π(T1 +T2) = π(T1)+π(T2) is Drazin invertible in A. So T1 +T2

is a B-Fredholm operator.
(ii) We have π(T1T2) = π(T1)π(T2) = π(T2)π(T1). From Proposition 2.6

it follows that π(T1T2) is Drazin invertible. Hence T1T2 is a B-Fredholm
operator.

(iii) If F is a finite rank operator and T is a B-Fredholm operator then
π(T + F ) = π(T ). So T + F is a B-Fredholm operator.

Remark. The class of B-Fredholm operators is not stable under com-
pact perturbations, that is, BF(X) + K(X) 6⊆ BF(X) where K(X) is the
closed ideal of all compact operators in L(X). For example let (λn)n be a
sequence in C such that λn 6= 0 for all n and λn → 0 as n→∞, and consider
the operator T defined on the Hilbert space l2(N) by

T (ξ1, ξ2, ξ3, . . .) = (λ1ξ1, λ2ξ2, λ3ξ3, . . .).

Then
Tn(ξ1, ξ2, ξ3, . . .) = ((λ1)nξ1, (λ2)nξ2, (λ3)nξ3, . . .).

Since (λm)n 6= 0 for all m ≥ 0 and (λm)n → 0 as m → ∞ for all n ≥ 0
we see that Tn ∈ K(X) and Tn is not a finite rank operator for all n ≥ 1.
Hence R(Tn) is not closed for all n ≥ 1. Thus T 6∈ BF(X). Since 0 ∈ BF(X)
it follows that BF(X) +K(X) 6⊆ BF(X).

As a consequence of this remark, if C(X) = L(X)/K(X) is the Calkin
algebra and if Π : L(X)→ C(X) is the canonical projection, then Π(T ) = 0
is Drazin invertible in C(X) but T is not a B-Fredholm operator.

Open Questions. We finish this paper by the following open questions,
suggested by a comparison between Fredholm operators and B-Fredholm
operators:

1. It is well known that if S, T are Fredholm operators, then ST is a Fred-
holm operator and ind(ST ) = ind(S)+ind(T ), where ind is the index. Now if
S, T are commuting B-Fredholm operators, we know from Corollary 3.5 that
ST is a B-Fredholm operator. Is it still true that ind(ST ) = ind(S)+ind(T )?

2. Let T be a Fredholm operator and K a compact operator. It is known
that T + K is a Fredholm operator and ind(T + K) = ind(T ). Now if T
is a B-Fredholm operator and F a finite rank operator, then T + F is a
B-Fredholm operator. Do we have ind(T + F ) = ind(T )?
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