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Metric spaces with the small ball property

by

Ehrhard Behrends (Berlin) and Vladimir M. Kadets (Kharkov)

Abstract. A metric space (M,d) is said to have the small ball property (sbp) if for
every ε0 > 0 it is possible to write M as the union of a sequence (B(xn, rn)) of closed balls
such that the rn are smaller than ε0 and lim rn = 0. We study permanence properties
and examples of sbp. The main results of this paper are the following: 1. Bounded convex
closed sets in Banach spaces have sbp only if they are compact. 2. Precisely the finite-
dimensional Banach spaces have sbp. (More generally: a complete metric group has sbp
iff it is separable and locally compact.) 3. Let B be a boundary in the bidual of an
infinite-dimensional Banach space. Then B does not have sbp. In particular the set of
extreme points in the unit ball of an infinite-dimensional reflexive Banach space fails to
have sbp.

1. Introduction. There are various notions to express the fact that a
certain class of objects is “small”; they refer to different structures of the
underlying set. “Small” can mean that the measure is zero, that the set
under consideration is of first category, that the Hausdorff dimension is zero
or something else. For an account of some classical notions of smallness we
refer the reader to [12]; more recent results are discused in Chapter 6 of [1].
Here we study another notion of this kind. The definition can be found in
the abstract, it applies to arbitrary metric spaces.

We are not aware of any systematic study of the small ball property
(sbp) in the literature. Implicitly, however, this notion occurs occasionally;
for an example we refer the reader to the proof of Lemma 11, Chapter 9, in
Diestel’s book [2].

We start our investigations in Section 2 where we collect some general
facts concerning sbp in metric spaces. In Section 3 we deal with spaces with
a special structure, in particular with normed spaces (X, ‖ · ‖). One of our
main results is that bounded convex closed sets in Banach spaces only very
rarely have sbp (only if they are compact). In particular it follows that only
finite-dimensional Banach spaces have this property. In fact we show more:
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if X admits a Banach space norm | · | such that the associated topology is
finer than the original topology then (X, ‖ · ‖) has sbp iff the unit ball with
respect to | · | is ‖ ·‖-precompact. (Recall that a metric space (M,d) is called
precompact if for every positive ε there are finitely many points x1, . . . , xn in
M such that the closed balls B(xi, ε) with centre xi and radius ε cover M .)

In Section 4 we investigate boundaries. (A boundary for a Banach space
X is a subset B of the dual unit ball such that for every x ∈ X there is an
x′ ∈ B such that x′(x) = ‖x‖. The most important example of a boundary
is the set of extreme functionals.)

Boundaries in infinite-dimensional reflexive Banach spaces are, in a sense,
always “large”. In [10] it has been shown that the collection of extreme points
in the unit ball of such spaces is always uncountable, and this has been gen-
eralized in a number of other papers (see [3]–[7], [9], [13]). Here we provide
a further theorem in this direction: boundaries in infinite-dimensional bi-
dual spaces never have sbp, a result which applies in particular to the set of
extreme points in the unit ball of a reflexive space.

It is easy to see that σ-precompact metric spaces have sbp, and by the
results of Section 3 the converse also holds for closed convex sets in Banach
spaces. We show in Section 5, however, that the converse is not generally
true: there is a complete metric space with the small ball property which fails
to be σ-precompact. This section also contains some other counterexamples:
the concepts of category and sbp are independent, and products of spaces
with the small ball property might fail to have it.

2. Metric spaces with the small ball property: basic results.
First we note that σ-precompact metric spaces, i.e., spaces which can be
written as a countable union of precompact subsets M1,M2, . . . , have the
small ball property: given ε0, simply cover Mn by finitely many balls with
radius ε0/n and arrange these countably many balls as a sequence. Therefore
any subset of any finite-dimensional normed space has the small ball prop-
erty; other examples are the ranges of compact operators between Banach
spaces.

Sometimes it will be convenient to work with suitable reformulations
of sbp: for a metric space (M,d) it is equivalent to each of the following
properties:

• For every ε0 > 0 it is possible to write M as the union of a sequence
of subsets whose diameters tend to zero and are bounded by ε0.
• For every sequence (εn) of positive numbers there are finite subsets ∆n

of M such that
M ⊂

⋃

n

⋃

x∈∆n
B(x, εn).
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The next proposition provides some permanence results:

Proposition 2.1. The small ball property passes to

(i) subsets;
(ii) countable unions;
(iii) images under uniformly continuous maps.

Proof. (i) This follows immediately from the first of the preceding two
observations.

(ii) Let M1,M2, . . . be subsets of M and suppose that each Mn has the
small ball property. Fix ε0 > 0. We cover Mn by a sequence (B(xnm, r

n
m)m)

of balls, where rnm ≤ ε0/n and rnm → 0 as m → ∞ for each n. Then each
arrangement of the countable family

{B(xnm, r
n
m) | n,m ∈ N}

as a sequence will cover
⋃
Mn in the desired way.

(iii) can easily be established.

Whereas sbp passes to subsets it does not pass to closures. For a coun-
terexample consider any separable infinite-dimensional Banach space and
note that countable sets have sbp but infinite-dimensional Banach spaces
fail to have it (see Corollary 3.9 below). Even the closure of a convex set
with the small ball property might not have it: let (xn) be dense in the
infinite-dimensional Banach space X and denote by K the convex hull of
this sequence. Then K is σ-compact and thus a set with sbp, its closure,
however, is the whole space, a set without sbp.

3. The case of normed spaces. Let (X, ‖ · ‖) be a normed space and
M a subset of X. It is then obvious that together with M also any multiple
λM and any translate M + x0 have the small ball property. In what follows
we will be interested in situations where the whole space belongs to this
class.

Proposition 3.1. The following conditions are equivalent :

(i) X has the small ball property.
(ii) The unit ball of X has the small ball property.
(iii) X can be written as the union of a sequence of balls whose radii tend

to zero.
(iv) Every open subset O of X has the “open” small ball property : for

ε0 > 0, O can be written as the union of open balls Bo(xn, rn) such that
rn ≤ ε0 and rn → 0.

(v) There is a basis of the topology which is a sequence (Bo(xn, rn)) of
open balls such that lim rn = 0.
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Proof. It is easy to show that (i)⇔(ii)⇔(iii) as well as (iv)⇒(i)⇒(v)⇒
(iv); the details are left to the reader.

Now we are going to show that convex sets in Banach spaces rarely have
the small ball property. As we will see, this property is a consequence of the
fact that convex sets have locally the same structure as the whole set. We
start with the following

Definition 3.2. Let K be a convex set in a linear space X. We will say
that K has the intersection property if the following holds: whenever one
defines sets Kn := xn + εnK in such a way that εn → 0 and K1 ⊃ K2 ⊃
K3 ⊃ . . . , then

⋂
Kn 6= ∅.

Proposition 3.3. Suppose that there exists a norm | · | on X such that
(X, | · |) is a Banach space and K ⊂ X is closed and bounded. Then K has
the intersection property.

Proof. This is an immediate consequence of the Hausdorff intersection
theorem.

Theorem 3.4. Let X be a normed space and K ⊂ X a convex bounded
set with the intersection property. Then K has the small ball property iff K
is precompact.

Proof. Only one implication needs a proof. We assume that K is not
precompact and we will show that K fails to have the small ball property.

Since K is not precompact we may fix a positive δ with the following
property: whenever x1, . . . , xn are finitely many points in X, there exists an
x0 ∈ K such that ‖x0 − xi‖ > 2δ for all i. With d := “the diameter of K”
and a := δ/d we consider the set

K ′ := {(1− a)x0 + ax | x ∈ K}.
Then K ′ has the following properties:

• K ′ ⊂ K (by convexity).
• K ′ ⊂ B(x0, δ) (by construction); in particular, all B(xi, δ) ∩ K ′ are

empty.
• K ′ is of the form x′0 + aK.

Now let ∆1,∆2, . . . be finite subsets of X and ε1, ε2, . . . positive numbers
such that εk ≤ δak−1.

As noted above we may find a subset K1 of K such that K1 is of the
form x′0 + aK and

K1 ∩
⋃

x∈∆1

B(x, ε1) = ∅.

Next we apply the above construction with K replaced by K1: up to the
factor a everything is as before, we get a set K2, a subset of K1, which is of
the form x′′0 + a2K and which does not meet

⋃
x∈∆2

B(x, ε2).
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It should be clear how to continue. It remains to choose an x in the
intersection of the Ki: it will not be an element of

⋃
k

⋃
x∈∆k B(x, εk). Hence

K fails to have the small ball property.

Corollary 3.5. Let X be a Banach space and K a closed convex subset
of X. Then K has the small ball property iff K is σ-compact.

Proof. Let K have sbp. By the preceding theorem the sets Kn := “the
intersection of K with the ball with radius n” are compact. Since K =

⋃
Kn,

K is precompact. The converse is true by the results of Section 2.

As a further corollary we obtain

Theorem 3.6. Let (X, ‖·‖) be a normed space. Suppose that there exists
a norm | · | such that (X, | · |) is complete, and ‖ · ‖ ≤ | · |. The unit ball of X
with respect to | · | will be denoted by K. Then the following are equivalent :

(i) (X, ‖ · ‖) has the small ball property.
(ii) K, as a subset of (X, ‖ · ‖), is precompact.

Remarks. 1. Let Y and Z be Banach spaces and T : Y → Z a one-to-
one continuous operator such that ‖T‖ ≤ 1. Then X := T (Y ), provided with
the Z-norm, satisfies the condition of the theorem: simply put |Ty| := ‖y‖Y .
It follows from the theorem that X has the small ball property iff T is a
compact operator.

As a special case consider the lp-spaces (1 ≤ p < ∞) as subspaces of
c0 (here T means the embedding operator). The norm | · | on lp can be
chosen to be the ordinary lp-norm, and since the associated unit balls are
not precompact in c0 it follows that the lp-spaces, considered as subspaces
of c0, fail to have the small ball property.

2. In particular it follows that—under the assumptions of the theorem—
X has sbp iff X is σ-precompact. It would be interesting to know whether
this is true for arbitrary normed spaces.

Proof of Theorem 3.6. First suppose that K is precompact. Then X =⋃
nK is σ-precompact, and thus it has the small ball property.
If, conversely, (X, ‖ · ‖) has the small ball property, then also the subset

K will have it. By Proposition 3.3, K has the intersection property, and it
follows from Theorem 3.4 that K is ‖ · ‖-precompact.

Corollary 3.7. No infinite-dimensional Banach space has the small
ball property.

We close this section with a similar result for spaces without a linear
structure which admit “sufficiently many” isometries. It obviously general-
izes the preceding corollary.

Proposition 3.8. Let (M,d) be a complete metric space such that for
arbitrary x, y ∈M there is an isometry T on M with Tx = y.
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(i) If (M,d) has the small ball property , then M is locally compact.
(ii) If M is separable and has a compact ball , then M is σ-precompact.

Consequently , M has the small ball property iff M is σ-precompact.

Proof. (i) The idea is to modify the construction from the proof of The-
orem 3.4. Suppose that there are no compact balls; we will show that (M,d)
fails to have sbp. The assumption implies that the balls are “uniformly non-
compact”: for every r > 0 there is an ε = ε(r) > 0 such that no ball with
radius r has a finite 2ε-net.

Now let (B(xn, rn))n be a sequence of balls such that rn ≤ ε(1) and
rn → 0; we will show that there is an x which is contained in no B(xn, rn).

Denote by B1 the ball with radius 1 and centre x1. We choose n1 such
that rn ≤ ε(ε(1)) for n ≥ n1. Since B1 has no finite 2ε(1)-net we find y such
that the ball B2 with radius ε(1) and centre y is contained in B1 and does
not meet

⋃n1
n=1B(xn, rn). Next we choose n2 in such a way that rn ≤ ε(ε(2))

for n ≥ n2. We obtain B3, a ball with radius ε(2), such that B3 ⊂ B2 as
well as B3 ∩

⋃n2
n=1B(xn, rn) = ∅.

It should be clear how to proceed; the unique x in the intersection of the
Bn is contained in no B(xn, rn).

(ii) Let x1, x2, . . . be dense in M and B(x, r) be a compact ball. The
assumption implies that all B(xn, r) are compact as well, and it remains to
note that M =

⋃
nB(xn, r).

Corollary 3.9. A complete metric group has sbp iff it is separable and
locally compact.

4. Boundaries in biduals never have the small ball property.
In this section we investigate boundaries in the unit ball of biduals; our
main result will be Theorem 4.6. (As noted by V. P. Fonf, the assertion also
follows from a characterization theorem for polyhedral Banach spaces in [4];
the connection will be discussed below.)

The structure of this section is as follows. We start with the construction
of “large” subsets of the unit ball of a Banach space where certain prescribed
functionals do not attain their norm. This is the content of Lemma 4.1; it will
be crucial in what follows. A first and rather easy application is Theorem 4.2:
boundaries in infinite-dimensional reflexive spaces fail to have sbp.

One has to argue more subtly in order to show that the same tech-
nique can be modified to cover the more general case of boundaries in bi-
dual spaces. This generalization is prepared in Lemmas 4.3–4.5; the main
result—which contains Theorem 4.2 as a special case—can then be found in
Theorem 4.6.

Lemma 4.1. Let X be a Banach space and Y ⊂ X an infinite-dimen-
sional closed affine subspace (this means that Y is of the form x0+Z with an
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infinite-dimensional closed linear subspace Z). Suppose that there are given
a finite subset ∆ of BX′ (= the closed unit ball of the dual space X ′) and two
numbers a, ε with 0 < a, ε < 1. Then, if d(0, Y ) (:= infy∈Y ‖y‖) is smaller
than a, there exists W ⊂ Y with the following properties:

(i) W is an infinite-dimensional closed affine subspace of X.
(ii) d(0,W ) < a+ ε.
(iii) For every y′ ∈ ⋃x′∈∆B(x′, ε) and every y ∈ BX ∩ W one has

‖y‖ > y′(y).

Proof. Choose y0 ∈ Y with ‖y0‖ < a and consider

Z := {y ∈ Y | x′(y) = x′(y0) for all x′ ∈ ∆}.
This is a closed infinite-dimensional affine subspace of Y , and d(0, Z) < a
(since y0 ∈ Z).

Next we select y1 ∈ Z with ‖y0‖ + ε < ‖y1‖ < a + ε and a normalized
x′0 ∈ X ′ such that x′0(y1) = ‖y1‖. We claim that

W := {y ∈ Z | x′0(y) = x′0(y1)}
behaves as desired.

(i) is obvious, the codimension of W in Y is even finite. (ii) is true since
y1 ∈ W ; it remains to prove (iii). Let y ∈ W ∩ BX , x′ ∈ ∆ and ‖z′‖ ≤ ε be
given. Then

(x′ + z′)(y) = x′(y0) + z′(y) ≤ ‖y0‖+ ε.

On the other hand we have

‖y‖ ≥ x′1(y) = x′1(y1) = ‖y1‖ > ‖y0‖+ ε,

and this proves (iii).

Theorem 4.2. Let X be an infinite-dimensional reflexive Banach space.
Then there exists no boundary for X in X ′ with sbp. In particular the set of
extreme points fails to have sbp.

Proof. Let ∆1,∆2, . . . be finite subsets of BX′ and (εn)n≥0 a sequence
of positive numbers such that

∑
εn < 1. The theorem will be proved as

soon as we have found an x ∈ BX such that y′(x) < ‖x‖ for all y′ in⋃
n

⋃
x′∈∆n B(x′, εn).

We start with Y1 := X and apply the lemma with Y := Y1, a := ε0,
ε := ε1, and ∆ := ∆1. The lemma provides Y2 ⊂ Y1 such that the norm of
no y ∈ BX ∩ Y2 is attained at any y′′ ∈ ⋃x′∈∆1

B(x′, ε1). We continue with
Y := Y2, a := ε0 +ε1, ε := ε2, and ∆ := ∆2. Then every x in the intersection
of the sets BX ∩ Ynwill have the claimed properties, and it remains to note
that this intersection is nonempty by the weak compactness of the unit ball
of X and our choice

∑
εn < 1.



282 E. Behrends and V. M. Kadets

In order to generalize this result to boundaries in biduals it is necessary
to replace the use of compactness in the original space (which was possible
by reflexivity) by an application of the w∗-compactness of the dual unit
ball. Our Lemma 4.1, however, only provides closed subspaces whereas we
would need w∗-closed subspaces in order to argue similarly. To overcome
this difficulty we need some preparations.

Lemma 4.3. Let X be a separable Banach space and Y an infinite-
dimensional subspace of X ′. Then there is a sequence (x′n) in the unit sphere
of Y such that the w∗-limit of (x′n) is zero.

Proof. Fix a dense sequence (xn) in the unit sphere of X. For each n,
the set

Yn := {x′ ∈ Y | x′(x1) = . . . = x′(xn) = 0}
is a subspace of Y with finite codimension. Choose any x′n∈Yn with ‖x′n‖=1;
it is then obvious that these functionals tend to zero in the w∗-topology.

Let us recall that a sequence (x′n) in a dual Banach space X ′ is said to
be a w∗-basic sequence if there exist x1, x2, . . . ∈ X with x′n(xm) = δn,m
and such that for every x′ in the w∗-closed linear span of (x′n) the sequence∑n

i=1 x
′(xi)x′i is w∗-convergent to x′ (cf. [11], Definition 1.b.8). The following

fact is contained in the proof of Proposition 1.b.12 of [11]:

Lemma 4.4. Let X be a Banach space such that both X and X ′ are sepa-
rable. Then for every sequence (x′n) of normalized functionals with w∗- limx′n
= 0 there is a subsequence which forms a boundedly complete w∗-basic se-
quence. (For the definition of a boundedly complete basis see [11], Defini-
tion 1.b.3.)

Lemma 4.5. Let X be an infinite-dimensional Banach space such that X
and X ′ are separable. Then for every infinite-dimensional closed subspace Y
of X ′ there exists an infinite-dimensional subspace W of Y such that W is
w∗-closed in X ′.

Proof. A combination of the preceding lemmas provides a boundedly
complete w∗-basic sequence in the unit sphere of Y . Let W be the (norm)-
closed linear span of Y ; it remains to show that W is w∗-closed.

Let x′ be an element of the w∗-closure of W and (xn) be as in the
definition of a w∗-basic sequence. Then x′ is the w∗-limit of

∑n
i=1 x

′(xi)x′i,
and since these partial sums are bounded we even have convergence in norm
(this follows from the definition of a boundedly complete basic sequence).
Thus x′ ∈W as desired.

Theorem 4.6. Let X be an infinite-dimensional Banach space and B ⊂
BX′′ be a boundary for X ′. Then B fails to have sbp.
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Proof. If a boundary is not separable it fails to have sbp, and thus we
may start with a norm separable boundary for X ′ in the unit ball of X ′′.
Then X ′′ (and thus a fortiori X and X ′) are separable; this follows from the
Rodé–Godefroy theorem (cf. Theorem 77 of [8]). Therefore we may assume
that we are dealing with separable X and X ′ only.

Now it is easy to modify the proof of Theorem 4.2. First, by Lemma 4.5,
we may replace “closed” by “w∗-closed” in Lemma 4.1 if we work with
separable dual spaces.

Some care is needed to assure that the distance condition is met. If Y is closed and
affine with d(0, Y ) < a choose y0 ∈ Y with ‖y0‖ < a and write Y = y0 +W with a closed
subspace W . Pass to a w∗-closed subspace Z of W and continue with y0 + Z.

Then we argue similarly to the above: for finite ∆1,∆2, . . . in BX′′ and
positive ε0, ε1, . . . with ε0 + ε1 + . . . < 1 we find infinite-dimensional affine
subspaces Yn of X ′ with d(0, Yn) < ε0+. . .+εn which are decreasing and w∗-
closed such that for no x′ ∈ Yn∩BX′ and no y′′ ∈ ⋃x′′∈∆n B(x′′, εn) does one
have ‖x′‖ = y′′(x′). The BX′ ∩ Yn are nonempty since d(0, Yn) <

∑
εn < 1,

and by the w∗-compactness of BX′ we get an x′ for which the norm is not
attained for any

y′′ ∈
⋃

n

⋃

x′′∈∆n
B(x′′, εn).

Therefore there are no boundaries in BX′′ with sbp.

Remark. We close this section by indicating another way to prove the
theorem; the idea is due to V. P. Fonf. Let X ′′ be an infinite-dimensional
bidual Banach space with a boundary B with sbp. By the above preparation
we may assume that X ′ is separable.

Choose a sequence of balls Bn := B(x′′n, rn) with ‖x′′n‖ ≤ 1, rn → 0, rn <
1/2 which cover B. Denote by An ⊂ X ′ the collection of all x′ with ‖x′‖ = 1
such that x′′(x′) = 1 for some x′′ ∈ Bn. By assumption, the An cover the
sphere of X ′, and An is contained in the slice {x′ | ‖x′‖ ≤ 1, x′′n(x′) ≥ 1−rn}.
By [4], this slice condition implies that X ′ is polyhedral.

But polyhedral spaces contain a copy of c0 ([3]), and we arrive at a
contradiction since there are no separable dual spaces with this property
(see Prop. 2.e.8 of [11]).

5. Counterexamples. At the beginning of Section 2 we have pointed
out that σ-precompact spaces have sbp. In Section 3 we have shown that
there are situations where the converse holds: this happens for closed convex
subsets of Banach spaces and also for normed spaces with a finer Banach
space norm.

However, being σ-precompact and having sbp are different concepts. The
following proposition shows that counterexamples can be found in every
infinite-dimensional Banach space:
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Proposition 5.1. Let X be an infinite-dimensional separable Banach
space. Then X can be written as the disjoint union of two subsets A and B,
where

(i) A is nowhere dense;
(ii) B is a dense Gδ-subset with sbp.
(iii) B fails to be σ-precompact.

Proof. Let (xn) be a dense sequence and (an) an arbitrary sequence of
positive numbers tending to zero. We put

B :=
⋂

k

⋃

n

Bo(xn, ak+n),

where Bo(x, r) denotes the open ball with centre x and radius r. With
A := X \B it is clear that (i) and (ii) hold. Since precompact subsets of X
are nowhere dense it follows that σ-compact sets are of first category. But
B is of second category by Baire’s theorem, and this proves (iii).

Remarks. 1. The proof shows that the proposition holds in the slightly
more general setting of separable complete metric spaces where all compact
sets have empty interior.

2. Let B be a non-σ-precompact sbp-subset of a Banach space. Then the
closed convex hull of B cannot have sbp (this follows from Theorem 3.4).

It is more demanding to provide an example of a non-σ-precompact
sbp-set which is at the same time complete (the preceding sets B never are).
Recall that, for a Banach space X, the space of bounded sequences from
N to X is denoted by l∞(X); this space is provided with the supremum
norm. Note that l∞(X) can be identified with l∞ in the case X = l∞. Our
counterexample will be a suitable subset of this space.

Denote by en the canonical nth unit vector in l∞. A map Φ from NN to
l∞(l∞) is defined by

(a1, a2, . . .) 7→
(
ea1 ,

1
2a1

ea2 ,
1

2a1+a2
ea3 ,

1
2a1+a2+a3

ea4 , . . .

)
.

The range of Φ will be called K.
It will be convenient to introduce some more notation. For a1, . . . , ar ∈ N

we put

Ka1,...,ar := {Φ(a1, . . . , ar, br+1, br+2, . . .) | br+1, br+2, . . . ∈ N}.
Then the following properties hold:

• Ka1,...,ar is the disjoint union of the Ka1,...,ar ,n with n ∈ N.
• For n 6= m, the distance from any element of Ka1,...,ar ,n to any element

of Ka1,...,ar ,m is 1/2a1+...+ar , and this distance is one if elements of Kn and
Km are concerned.
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• The diameter of Ka1,...,ar is 1/2a1+...+ar .
• K and all Ka1,...,ar are complete metric spaces.
• No point of K has any precompact neighbourhood.

These facts easily follow from the definition. (For the last one note that,
if k = Φ(a1, a2, . . .) is arbitrary, the 1/2a1+...+ar -neighbourhood of k contains
all Ka1,...,ar,n, and these sets have mutual distance 1/2a1+...+ar .)

Theorem 5.2. K has the small ball property , but it fails to be σ-pre-
compact.

Proof. We indicate how K can be written as the union of a sequence of
subsets whose diameters are bounded by ε0 and tend to zero (cf. Proposi-
tion 2.1):

• ε0 = 1/2: Consider K = K1 ∪K2 ∪ . . .
• ε0 = 1/4: K is the union of the K11,K12, . . . and the K2,K3, . . . It re-

mains to arrange these countably many subsets as a sequence; the diameters
will have the desired property.
• ε0 = 1/8: This time one works with K111,K112,K113, . . . together with

K12,K13, . . . and K3,K4, . . .

It should now be clear how to proceed for ε0 = 1/16, 1/32, . . .
It remains to show that K is not σ-precompact. We suppose that K =⋃
Ln with Ln precompact, and we will derive a contradiction.
As K is a complete metric space, the closures L−n of the Ln are compact.

The union of these closures is K and thus, by Baire’s theorem, there must be
an n such that L−n has nonvoid interior. But this would imply that there are
points with a compact neighbourhood, contrary to the above observation.

We now turn to finite products; they will be provided with the max-
imum metric. Clearly the product of two σ-precompact spaces is also σ-
precompact, and it is easy to check that the product of a σ-precompact
space with a space with sbp also has sbp. However, in general this property
does not pass to products:

Theorem 5.3. There is a complete metric space K such that K has the
small ball property but K ×K does not.

Proof. We work with the space K of the preceding counterexample. Let
Bm = B(xm, rm), m = 1, 2, . . . , be a sequence of balls in K ×K such that

rm ≤ 1/3, lim rm = 0.

We will show that there is an x ∈ K ×K which is not in the union of these
balls.

Since—in the above notation—the mutual distance of the K1 × K1,
K2 × K1, . . . is 1, each Bm will meet at most one Kn × K1. Choose an
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m1 such that rm ≤ 1/(2 · 3) for m ≥ m1 and then an a1 such that none of
the balls B1, . . . , Bm1 meets Ka1 × K1. (In fact, there are infinitely many
possible choices for a1.)

Ka1 ×K1 is the disjoint union of the Ka1 ×K1n, n = 1, 2, . . . , and the
mutual distance of the Ka1 × K1n is 1/2. Thus a ball Bm with m ≥ m1
can meet at most one of them. Choose m2 > m1 in such a way that rn <
1/(2a1 · 3) for m > m2 and then a2 ∈ N such that

(Ka1 ×K1a2) ∩
⋃

m1≤m≤m2

Bm = ∅;

note that in fact even

(Ka1 ×K1a2) ∩
⋃

m≤m2

Bm = ∅.

Similarly we find m3 and a3 such that rm ≤ 1/(21+a2 · 3) for m ≥ m3
and

(Ka1a3 ×K1a2) ∩
⋃

m≤m3

Bm = ∅.

It should be clear how this construction has to be continued; finally we
arrive at

x = (Φ(a1a3a5 . . .), Φ(1a2a4 . . .)),

which is not in
⋃
mBm.

Remark. Since a product K ×L of two subsets of a Banach space X is
just the sum of K×{0} and {0}×L in X×X the preceding counterexample
also shows that sums of sets with sbp do not necessarily have it.

Let us point out two open problems:

1. Let the metric space (M,d) be σ-precompact. We have noted that
then the product of M with every sbp-space has sbp. Does, conversely,
σ-precompactness follow from this property?

2. We have provided essentially one class of spaces which have sbp but
fail to be σ-precompact. These spaces are disconnected.

Is this property important for such examples? Are there, e.g., contractible
spaces with sbp which are not σ-precompact?
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